1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/scatterlist.h> 6 #include <linux/memregion.h> 7 #include <linux/highmem.h> 8 #include <linux/kstrtox.h> 9 #include <linux/sched.h> 10 #include <linux/slab.h> 11 #include <linux/hash.h> 12 #include <linux/sort.h> 13 #include <linux/io.h> 14 #include <linux/nd.h> 15 #include "nd-core.h" 16 #include "nd.h" 17 18 /* 19 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 20 * irrelevant. 21 */ 22 #include <linux/io-64-nonatomic-hi-lo.h> 23 24 static DEFINE_PER_CPU(int, flush_idx); 25 26 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 27 struct nd_region_data *ndrd) 28 { 29 int i, j; 30 31 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 32 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 33 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 34 struct resource *res = &nvdimm->flush_wpq[i]; 35 unsigned long pfn = PHYS_PFN(res->start); 36 void __iomem *flush_page; 37 38 /* check if flush hints share a page */ 39 for (j = 0; j < i; j++) { 40 struct resource *res_j = &nvdimm->flush_wpq[j]; 41 unsigned long pfn_j = PHYS_PFN(res_j->start); 42 43 if (pfn == pfn_j) 44 break; 45 } 46 47 if (j < i) 48 flush_page = (void __iomem *) ((unsigned long) 49 ndrd_get_flush_wpq(ndrd, dimm, j) 50 & PAGE_MASK); 51 else 52 flush_page = devm_nvdimm_ioremap(dev, 53 PFN_PHYS(pfn), PAGE_SIZE); 54 if (!flush_page) 55 return -ENXIO; 56 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 57 + (res->start & ~PAGE_MASK)); 58 } 59 60 return 0; 61 } 62 63 static int nd_region_invalidate_memregion(struct nd_region *nd_region) 64 { 65 int i, incoherent = 0; 66 67 for (i = 0; i < nd_region->ndr_mappings; i++) { 68 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 69 struct nvdimm *nvdimm = nd_mapping->nvdimm; 70 71 if (test_bit(NDD_INCOHERENT, &nvdimm->flags)) { 72 incoherent++; 73 break; 74 } 75 } 76 77 if (!incoherent) 78 return 0; 79 80 if (!cpu_cache_has_invalidate_memregion()) { 81 if (IS_ENABLED(CONFIG_NVDIMM_SECURITY_TEST)) { 82 dev_warn( 83 &nd_region->dev, 84 "Bypassing cpu_cache_invalidate_memergion() for testing!\n"); 85 goto out; 86 } else { 87 dev_err(&nd_region->dev, 88 "Failed to synchronize CPU cache state\n"); 89 return -ENXIO; 90 } 91 } 92 93 cpu_cache_invalidate_memregion(IORES_DESC_PERSISTENT_MEMORY); 94 out: 95 for (i = 0; i < nd_region->ndr_mappings; i++) { 96 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 97 struct nvdimm *nvdimm = nd_mapping->nvdimm; 98 99 clear_bit(NDD_INCOHERENT, &nvdimm->flags); 100 } 101 102 return 0; 103 } 104 105 int nd_region_activate(struct nd_region *nd_region) 106 { 107 int i, j, rc, num_flush = 0; 108 struct nd_region_data *ndrd; 109 struct device *dev = &nd_region->dev; 110 size_t flush_data_size = sizeof(void *); 111 112 nvdimm_bus_lock(&nd_region->dev); 113 for (i = 0; i < nd_region->ndr_mappings; i++) { 114 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 115 struct nvdimm *nvdimm = nd_mapping->nvdimm; 116 117 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 118 nvdimm_bus_unlock(&nd_region->dev); 119 return -EBUSY; 120 } 121 122 /* at least one null hint slot per-dimm for the "no-hint" case */ 123 flush_data_size += sizeof(void *); 124 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 125 if (!nvdimm->num_flush) 126 continue; 127 flush_data_size += nvdimm->num_flush * sizeof(void *); 128 } 129 nvdimm_bus_unlock(&nd_region->dev); 130 131 rc = nd_region_invalidate_memregion(nd_region); 132 if (rc) 133 return rc; 134 135 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 136 if (!ndrd) 137 return -ENOMEM; 138 dev_set_drvdata(dev, ndrd); 139 140 if (!num_flush) 141 return 0; 142 143 ndrd->hints_shift = ilog2(num_flush); 144 for (i = 0; i < nd_region->ndr_mappings; i++) { 145 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 146 struct nvdimm *nvdimm = nd_mapping->nvdimm; 147 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 148 149 if (rc) 150 return rc; 151 } 152 153 /* 154 * Clear out entries that are duplicates. This should prevent the 155 * extra flushings. 156 */ 157 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 158 /* ignore if NULL already */ 159 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 160 continue; 161 162 for (j = i + 1; j < nd_region->ndr_mappings; j++) 163 if (ndrd_get_flush_wpq(ndrd, i, 0) == 164 ndrd_get_flush_wpq(ndrd, j, 0)) 165 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 166 } 167 168 return 0; 169 } 170 171 static void nd_region_release(struct device *dev) 172 { 173 struct nd_region *nd_region = to_nd_region(dev); 174 u16 i; 175 176 for (i = 0; i < nd_region->ndr_mappings; i++) { 177 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 178 struct nvdimm *nvdimm = nd_mapping->nvdimm; 179 180 put_device(&nvdimm->dev); 181 } 182 free_percpu(nd_region->lane); 183 if (!test_bit(ND_REGION_CXL, &nd_region->flags)) 184 memregion_free(nd_region->id); 185 kfree(nd_region); 186 } 187 188 struct nd_region *to_nd_region(struct device *dev) 189 { 190 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 191 192 WARN_ON(dev->type->release != nd_region_release); 193 return nd_region; 194 } 195 EXPORT_SYMBOL_GPL(to_nd_region); 196 197 struct device *nd_region_dev(struct nd_region *nd_region) 198 { 199 if (!nd_region) 200 return NULL; 201 return &nd_region->dev; 202 } 203 EXPORT_SYMBOL_GPL(nd_region_dev); 204 205 void *nd_region_provider_data(struct nd_region *nd_region) 206 { 207 return nd_region->provider_data; 208 } 209 EXPORT_SYMBOL_GPL(nd_region_provider_data); 210 211 /** 212 * nd_region_to_nstype() - region to an integer namespace type 213 * @nd_region: region-device to interrogate 214 * 215 * This is the 'nstype' attribute of a region as well, an input to the 216 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 217 * namespace devices with namespace drivers. 218 */ 219 int nd_region_to_nstype(struct nd_region *nd_region) 220 { 221 if (is_memory(&nd_region->dev)) { 222 u16 i, label; 223 224 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) { 225 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 226 struct nvdimm *nvdimm = nd_mapping->nvdimm; 227 228 if (test_bit(NDD_LABELING, &nvdimm->flags)) 229 label++; 230 } 231 if (label) 232 return ND_DEVICE_NAMESPACE_PMEM; 233 else 234 return ND_DEVICE_NAMESPACE_IO; 235 } 236 237 return 0; 238 } 239 EXPORT_SYMBOL(nd_region_to_nstype); 240 241 static unsigned long long region_size(struct nd_region *nd_region) 242 { 243 if (is_memory(&nd_region->dev)) { 244 return nd_region->ndr_size; 245 } else if (nd_region->ndr_mappings == 1) { 246 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 247 248 return nd_mapping->size; 249 } 250 251 return 0; 252 } 253 254 static ssize_t size_show(struct device *dev, 255 struct device_attribute *attr, char *buf) 256 { 257 struct nd_region *nd_region = to_nd_region(dev); 258 259 return sprintf(buf, "%llu\n", region_size(nd_region)); 260 } 261 static DEVICE_ATTR_RO(size); 262 263 static ssize_t deep_flush_show(struct device *dev, 264 struct device_attribute *attr, char *buf) 265 { 266 struct nd_region *nd_region = to_nd_region(dev); 267 268 /* 269 * NOTE: in the nvdimm_has_flush() error case this attribute is 270 * not visible. 271 */ 272 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 273 } 274 275 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 276 const char *buf, size_t len) 277 { 278 bool flush; 279 int rc = kstrtobool(buf, &flush); 280 struct nd_region *nd_region = to_nd_region(dev); 281 282 if (rc) 283 return rc; 284 if (!flush) 285 return -EINVAL; 286 rc = nvdimm_flush(nd_region, NULL); 287 if (rc) 288 return rc; 289 290 return len; 291 } 292 static DEVICE_ATTR_RW(deep_flush); 293 294 static ssize_t mappings_show(struct device *dev, 295 struct device_attribute *attr, char *buf) 296 { 297 struct nd_region *nd_region = to_nd_region(dev); 298 299 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 300 } 301 static DEVICE_ATTR_RO(mappings); 302 303 static ssize_t nstype_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 struct nd_region *nd_region = to_nd_region(dev); 307 308 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 309 } 310 static DEVICE_ATTR_RO(nstype); 311 312 static ssize_t set_cookie_show(struct device *dev, 313 struct device_attribute *attr, char *buf) 314 { 315 struct nd_region *nd_region = to_nd_region(dev); 316 struct nd_interleave_set *nd_set = nd_region->nd_set; 317 ssize_t rc = 0; 318 319 if (is_memory(dev) && nd_set) 320 /* pass, should be precluded by region_visible */; 321 else 322 return -ENXIO; 323 324 /* 325 * The cookie to show depends on which specification of the 326 * labels we are using. If there are not labels then default to 327 * the v1.1 namespace label cookie definition. To read all this 328 * data we need to wait for probing to settle. 329 */ 330 device_lock(dev); 331 nvdimm_bus_lock(dev); 332 wait_nvdimm_bus_probe_idle(dev); 333 if (nd_region->ndr_mappings) { 334 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 335 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 336 337 if (ndd) { 338 struct nd_namespace_index *nsindex; 339 340 nsindex = to_namespace_index(ndd, ndd->ns_current); 341 rc = sprintf(buf, "%#llx\n", 342 nd_region_interleave_set_cookie(nd_region, 343 nsindex)); 344 } 345 } 346 nvdimm_bus_unlock(dev); 347 device_unlock(dev); 348 349 if (rc) 350 return rc; 351 return sprintf(buf, "%#llx\n", nd_set->cookie1); 352 } 353 static DEVICE_ATTR_RO(set_cookie); 354 355 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 356 { 357 resource_size_t available; 358 int i; 359 360 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 361 362 available = 0; 363 for (i = 0; i < nd_region->ndr_mappings; i++) { 364 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 365 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 366 367 /* if a dimm is disabled the available capacity is zero */ 368 if (!ndd) 369 return 0; 370 371 available += nd_pmem_available_dpa(nd_region, nd_mapping); 372 } 373 374 return available; 375 } 376 377 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) 378 { 379 resource_size_t avail = 0; 380 int i; 381 382 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 383 for (i = 0; i < nd_region->ndr_mappings; i++) { 384 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 385 386 avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa( 387 nd_region, nd_mapping)); 388 } 389 return avail * nd_region->ndr_mappings; 390 } 391 392 static ssize_t available_size_show(struct device *dev, 393 struct device_attribute *attr, char *buf) 394 { 395 struct nd_region *nd_region = to_nd_region(dev); 396 unsigned long long available = 0; 397 398 /* 399 * Flush in-flight updates and grab a snapshot of the available 400 * size. Of course, this value is potentially invalidated the 401 * memory nvdimm_bus_lock() is dropped, but that's userspace's 402 * problem to not race itself. 403 */ 404 device_lock(dev); 405 nvdimm_bus_lock(dev); 406 wait_nvdimm_bus_probe_idle(dev); 407 available = nd_region_available_dpa(nd_region); 408 nvdimm_bus_unlock(dev); 409 device_unlock(dev); 410 411 return sprintf(buf, "%llu\n", available); 412 } 413 static DEVICE_ATTR_RO(available_size); 414 415 static ssize_t max_available_extent_show(struct device *dev, 416 struct device_attribute *attr, char *buf) 417 { 418 struct nd_region *nd_region = to_nd_region(dev); 419 unsigned long long available = 0; 420 421 device_lock(dev); 422 nvdimm_bus_lock(dev); 423 wait_nvdimm_bus_probe_idle(dev); 424 available = nd_region_allocatable_dpa(nd_region); 425 nvdimm_bus_unlock(dev); 426 device_unlock(dev); 427 428 return sprintf(buf, "%llu\n", available); 429 } 430 static DEVICE_ATTR_RO(max_available_extent); 431 432 static ssize_t init_namespaces_show(struct device *dev, 433 struct device_attribute *attr, char *buf) 434 { 435 struct nd_region_data *ndrd = dev_get_drvdata(dev); 436 ssize_t rc; 437 438 nvdimm_bus_lock(dev); 439 if (ndrd) 440 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 441 else 442 rc = -ENXIO; 443 nvdimm_bus_unlock(dev); 444 445 return rc; 446 } 447 static DEVICE_ATTR_RO(init_namespaces); 448 449 static ssize_t namespace_seed_show(struct device *dev, 450 struct device_attribute *attr, char *buf) 451 { 452 struct nd_region *nd_region = to_nd_region(dev); 453 ssize_t rc; 454 455 nvdimm_bus_lock(dev); 456 if (nd_region->ns_seed) 457 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 458 else 459 rc = sprintf(buf, "\n"); 460 nvdimm_bus_unlock(dev); 461 return rc; 462 } 463 static DEVICE_ATTR_RO(namespace_seed); 464 465 static ssize_t btt_seed_show(struct device *dev, 466 struct device_attribute *attr, char *buf) 467 { 468 struct nd_region *nd_region = to_nd_region(dev); 469 ssize_t rc; 470 471 nvdimm_bus_lock(dev); 472 if (nd_region->btt_seed) 473 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 474 else 475 rc = sprintf(buf, "\n"); 476 nvdimm_bus_unlock(dev); 477 478 return rc; 479 } 480 static DEVICE_ATTR_RO(btt_seed); 481 482 static ssize_t pfn_seed_show(struct device *dev, 483 struct device_attribute *attr, char *buf) 484 { 485 struct nd_region *nd_region = to_nd_region(dev); 486 ssize_t rc; 487 488 nvdimm_bus_lock(dev); 489 if (nd_region->pfn_seed) 490 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 491 else 492 rc = sprintf(buf, "\n"); 493 nvdimm_bus_unlock(dev); 494 495 return rc; 496 } 497 static DEVICE_ATTR_RO(pfn_seed); 498 499 static ssize_t dax_seed_show(struct device *dev, 500 struct device_attribute *attr, char *buf) 501 { 502 struct nd_region *nd_region = to_nd_region(dev); 503 ssize_t rc; 504 505 nvdimm_bus_lock(dev); 506 if (nd_region->dax_seed) 507 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 508 else 509 rc = sprintf(buf, "\n"); 510 nvdimm_bus_unlock(dev); 511 512 return rc; 513 } 514 static DEVICE_ATTR_RO(dax_seed); 515 516 static ssize_t read_only_show(struct device *dev, 517 struct device_attribute *attr, char *buf) 518 { 519 struct nd_region *nd_region = to_nd_region(dev); 520 521 return sprintf(buf, "%d\n", nd_region->ro); 522 } 523 524 static int revalidate_read_only(struct device *dev, void *data) 525 { 526 nd_device_notify(dev, NVDIMM_REVALIDATE_REGION); 527 return 0; 528 } 529 530 static ssize_t read_only_store(struct device *dev, 531 struct device_attribute *attr, const char *buf, size_t len) 532 { 533 bool ro; 534 int rc = kstrtobool(buf, &ro); 535 struct nd_region *nd_region = to_nd_region(dev); 536 537 if (rc) 538 return rc; 539 540 nd_region->ro = ro; 541 device_for_each_child(dev, NULL, revalidate_read_only); 542 return len; 543 } 544 static DEVICE_ATTR_RW(read_only); 545 546 static ssize_t align_show(struct device *dev, 547 struct device_attribute *attr, char *buf) 548 { 549 struct nd_region *nd_region = to_nd_region(dev); 550 551 return sprintf(buf, "%#lx\n", nd_region->align); 552 } 553 554 static ssize_t align_store(struct device *dev, 555 struct device_attribute *attr, const char *buf, size_t len) 556 { 557 struct nd_region *nd_region = to_nd_region(dev); 558 unsigned long val, dpa; 559 u32 mappings, remainder; 560 int rc; 561 562 rc = kstrtoul(buf, 0, &val); 563 if (rc) 564 return rc; 565 566 /* 567 * Ensure space-align is evenly divisible by the region 568 * interleave-width because the kernel typically has no facility 569 * to determine which DIMM(s), dimm-physical-addresses, would 570 * contribute to the tail capacity in system-physical-address 571 * space for the namespace. 572 */ 573 mappings = max_t(u32, 1, nd_region->ndr_mappings); 574 dpa = div_u64_rem(val, mappings, &remainder); 575 if (!is_power_of_2(dpa) || dpa < PAGE_SIZE 576 || val > region_size(nd_region) || remainder) 577 return -EINVAL; 578 579 /* 580 * Given that space allocation consults this value multiple 581 * times ensure it does not change for the duration of the 582 * allocation. 583 */ 584 nvdimm_bus_lock(dev); 585 nd_region->align = val; 586 nvdimm_bus_unlock(dev); 587 588 return len; 589 } 590 static DEVICE_ATTR_RW(align); 591 592 static ssize_t region_badblocks_show(struct device *dev, 593 struct device_attribute *attr, char *buf) 594 { 595 struct nd_region *nd_region = to_nd_region(dev); 596 ssize_t rc; 597 598 device_lock(dev); 599 if (dev->driver) 600 rc = badblocks_show(&nd_region->bb, buf, 0); 601 else 602 rc = -ENXIO; 603 device_unlock(dev); 604 605 return rc; 606 } 607 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 608 609 static ssize_t resource_show(struct device *dev, 610 struct device_attribute *attr, char *buf) 611 { 612 struct nd_region *nd_region = to_nd_region(dev); 613 614 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 615 } 616 static DEVICE_ATTR_ADMIN_RO(resource); 617 618 static ssize_t persistence_domain_show(struct device *dev, 619 struct device_attribute *attr, char *buf) 620 { 621 struct nd_region *nd_region = to_nd_region(dev); 622 623 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) 624 return sprintf(buf, "cpu_cache\n"); 625 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) 626 return sprintf(buf, "memory_controller\n"); 627 else 628 return sprintf(buf, "\n"); 629 } 630 static DEVICE_ATTR_RO(persistence_domain); 631 632 static struct attribute *nd_region_attributes[] = { 633 &dev_attr_size.attr, 634 &dev_attr_align.attr, 635 &dev_attr_nstype.attr, 636 &dev_attr_mappings.attr, 637 &dev_attr_btt_seed.attr, 638 &dev_attr_pfn_seed.attr, 639 &dev_attr_dax_seed.attr, 640 &dev_attr_deep_flush.attr, 641 &dev_attr_read_only.attr, 642 &dev_attr_set_cookie.attr, 643 &dev_attr_available_size.attr, 644 &dev_attr_max_available_extent.attr, 645 &dev_attr_namespace_seed.attr, 646 &dev_attr_init_namespaces.attr, 647 &dev_attr_badblocks.attr, 648 &dev_attr_resource.attr, 649 &dev_attr_persistence_domain.attr, 650 NULL, 651 }; 652 653 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 654 { 655 struct device *dev = container_of(kobj, typeof(*dev), kobj); 656 struct nd_region *nd_region = to_nd_region(dev); 657 struct nd_interleave_set *nd_set = nd_region->nd_set; 658 int type = nd_region_to_nstype(nd_region); 659 660 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 661 return 0; 662 663 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 664 return 0; 665 666 if (!is_memory(dev) && a == &dev_attr_badblocks.attr) 667 return 0; 668 669 if (a == &dev_attr_resource.attr && !is_memory(dev)) 670 return 0; 671 672 if (a == &dev_attr_deep_flush.attr) { 673 int has_flush = nvdimm_has_flush(nd_region); 674 675 if (has_flush == 1) 676 return a->mode; 677 else if (has_flush == 0) 678 return 0444; 679 else 680 return 0; 681 } 682 683 if (a == &dev_attr_persistence_domain.attr) { 684 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) 685 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) 686 return 0; 687 return a->mode; 688 } 689 690 if (a == &dev_attr_align.attr) 691 return a->mode; 692 693 if (a != &dev_attr_set_cookie.attr 694 && a != &dev_attr_available_size.attr) 695 return a->mode; 696 697 if (type == ND_DEVICE_NAMESPACE_PMEM && 698 a == &dev_attr_available_size.attr) 699 return a->mode; 700 else if (is_memory(dev) && nd_set) 701 return a->mode; 702 703 return 0; 704 } 705 706 static ssize_t mappingN(struct device *dev, char *buf, int n) 707 { 708 struct nd_region *nd_region = to_nd_region(dev); 709 struct nd_mapping *nd_mapping; 710 struct nvdimm *nvdimm; 711 712 if (n >= nd_region->ndr_mappings) 713 return -ENXIO; 714 nd_mapping = &nd_region->mapping[n]; 715 nvdimm = nd_mapping->nvdimm; 716 717 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 718 nd_mapping->start, nd_mapping->size, 719 nd_mapping->position); 720 } 721 722 #define REGION_MAPPING(idx) \ 723 static ssize_t mapping##idx##_show(struct device *dev, \ 724 struct device_attribute *attr, char *buf) \ 725 { \ 726 return mappingN(dev, buf, idx); \ 727 } \ 728 static DEVICE_ATTR_RO(mapping##idx) 729 730 /* 731 * 32 should be enough for a while, even in the presence of socket 732 * interleave a 32-way interleave set is a degenerate case. 733 */ 734 REGION_MAPPING(0); 735 REGION_MAPPING(1); 736 REGION_MAPPING(2); 737 REGION_MAPPING(3); 738 REGION_MAPPING(4); 739 REGION_MAPPING(5); 740 REGION_MAPPING(6); 741 REGION_MAPPING(7); 742 REGION_MAPPING(8); 743 REGION_MAPPING(9); 744 REGION_MAPPING(10); 745 REGION_MAPPING(11); 746 REGION_MAPPING(12); 747 REGION_MAPPING(13); 748 REGION_MAPPING(14); 749 REGION_MAPPING(15); 750 REGION_MAPPING(16); 751 REGION_MAPPING(17); 752 REGION_MAPPING(18); 753 REGION_MAPPING(19); 754 REGION_MAPPING(20); 755 REGION_MAPPING(21); 756 REGION_MAPPING(22); 757 REGION_MAPPING(23); 758 REGION_MAPPING(24); 759 REGION_MAPPING(25); 760 REGION_MAPPING(26); 761 REGION_MAPPING(27); 762 REGION_MAPPING(28); 763 REGION_MAPPING(29); 764 REGION_MAPPING(30); 765 REGION_MAPPING(31); 766 767 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 768 { 769 struct device *dev = container_of(kobj, struct device, kobj); 770 struct nd_region *nd_region = to_nd_region(dev); 771 772 if (n < nd_region->ndr_mappings) 773 return a->mode; 774 return 0; 775 } 776 777 static struct attribute *mapping_attributes[] = { 778 &dev_attr_mapping0.attr, 779 &dev_attr_mapping1.attr, 780 &dev_attr_mapping2.attr, 781 &dev_attr_mapping3.attr, 782 &dev_attr_mapping4.attr, 783 &dev_attr_mapping5.attr, 784 &dev_attr_mapping6.attr, 785 &dev_attr_mapping7.attr, 786 &dev_attr_mapping8.attr, 787 &dev_attr_mapping9.attr, 788 &dev_attr_mapping10.attr, 789 &dev_attr_mapping11.attr, 790 &dev_attr_mapping12.attr, 791 &dev_attr_mapping13.attr, 792 &dev_attr_mapping14.attr, 793 &dev_attr_mapping15.attr, 794 &dev_attr_mapping16.attr, 795 &dev_attr_mapping17.attr, 796 &dev_attr_mapping18.attr, 797 &dev_attr_mapping19.attr, 798 &dev_attr_mapping20.attr, 799 &dev_attr_mapping21.attr, 800 &dev_attr_mapping22.attr, 801 &dev_attr_mapping23.attr, 802 &dev_attr_mapping24.attr, 803 &dev_attr_mapping25.attr, 804 &dev_attr_mapping26.attr, 805 &dev_attr_mapping27.attr, 806 &dev_attr_mapping28.attr, 807 &dev_attr_mapping29.attr, 808 &dev_attr_mapping30.attr, 809 &dev_attr_mapping31.attr, 810 NULL, 811 }; 812 813 static const struct attribute_group nd_mapping_attribute_group = { 814 .is_visible = mapping_visible, 815 .attrs = mapping_attributes, 816 }; 817 818 static const struct attribute_group nd_region_attribute_group = { 819 .attrs = nd_region_attributes, 820 .is_visible = region_visible, 821 }; 822 823 static const struct attribute_group *nd_region_attribute_groups[] = { 824 &nd_device_attribute_group, 825 &nd_region_attribute_group, 826 &nd_numa_attribute_group, 827 &nd_mapping_attribute_group, 828 NULL, 829 }; 830 831 static const struct device_type nd_pmem_device_type = { 832 .name = "nd_pmem", 833 .release = nd_region_release, 834 .groups = nd_region_attribute_groups, 835 }; 836 837 static const struct device_type nd_volatile_device_type = { 838 .name = "nd_volatile", 839 .release = nd_region_release, 840 .groups = nd_region_attribute_groups, 841 }; 842 843 bool is_nd_pmem(const struct device *dev) 844 { 845 return dev ? dev->type == &nd_pmem_device_type : false; 846 } 847 848 bool is_nd_volatile(const struct device *dev) 849 { 850 return dev ? dev->type == &nd_volatile_device_type : false; 851 } 852 853 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 854 struct nd_namespace_index *nsindex) 855 { 856 struct nd_interleave_set *nd_set = nd_region->nd_set; 857 858 if (!nd_set) 859 return 0; 860 861 if (nsindex && __le16_to_cpu(nsindex->major) == 1 862 && __le16_to_cpu(nsindex->minor) == 1) 863 return nd_set->cookie1; 864 return nd_set->cookie2; 865 } 866 867 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 868 { 869 struct nd_interleave_set *nd_set = nd_region->nd_set; 870 871 if (nd_set) 872 return nd_set->altcookie; 873 return 0; 874 } 875 876 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 877 { 878 struct nd_label_ent *label_ent, *e; 879 880 lockdep_assert_held(&nd_mapping->lock); 881 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 882 list_del(&label_ent->list); 883 kfree(label_ent); 884 } 885 } 886 887 /* 888 * When a namespace is activated create new seeds for the next 889 * namespace, or namespace-personality to be configured. 890 */ 891 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev) 892 { 893 nvdimm_bus_lock(dev); 894 if (nd_region->ns_seed == dev) { 895 nd_region_create_ns_seed(nd_region); 896 } else if (is_nd_btt(dev)) { 897 struct nd_btt *nd_btt = to_nd_btt(dev); 898 899 if (nd_region->btt_seed == dev) 900 nd_region_create_btt_seed(nd_region); 901 if (nd_region->ns_seed == &nd_btt->ndns->dev) 902 nd_region_create_ns_seed(nd_region); 903 } else if (is_nd_pfn(dev)) { 904 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 905 906 if (nd_region->pfn_seed == dev) 907 nd_region_create_pfn_seed(nd_region); 908 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 909 nd_region_create_ns_seed(nd_region); 910 } else if (is_nd_dax(dev)) { 911 struct nd_dax *nd_dax = to_nd_dax(dev); 912 913 if (nd_region->dax_seed == dev) 914 nd_region_create_dax_seed(nd_region); 915 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 916 nd_region_create_ns_seed(nd_region); 917 } 918 nvdimm_bus_unlock(dev); 919 } 920 921 /** 922 * nd_region_acquire_lane - allocate and lock a lane 923 * @nd_region: region id and number of lanes possible 924 * 925 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 926 * We optimize for the common case where there are 256 lanes, one 927 * per-cpu. For larger systems we need to lock to share lanes. For now 928 * this implementation assumes the cost of maintaining an allocator for 929 * free lanes is on the order of the lock hold time, so it implements a 930 * static lane = cpu % num_lanes mapping. 931 * 932 * In the case of a BTT instance on top of a BLK namespace a lane may be 933 * acquired recursively. We lock on the first instance. 934 * 935 * In the case of a BTT instance on top of PMEM, we only acquire a lane 936 * for the BTT metadata updates. 937 */ 938 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 939 { 940 unsigned int cpu, lane; 941 942 cpu = get_cpu(); 943 if (nd_region->num_lanes < nr_cpu_ids) { 944 struct nd_percpu_lane *ndl_lock, *ndl_count; 945 946 lane = cpu % nd_region->num_lanes; 947 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 948 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 949 if (ndl_count->count++ == 0) 950 spin_lock(&ndl_lock->lock); 951 } else 952 lane = cpu; 953 954 return lane; 955 } 956 EXPORT_SYMBOL(nd_region_acquire_lane); 957 958 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 959 { 960 if (nd_region->num_lanes < nr_cpu_ids) { 961 unsigned int cpu = get_cpu(); 962 struct nd_percpu_lane *ndl_lock, *ndl_count; 963 964 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 965 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 966 if (--ndl_count->count == 0) 967 spin_unlock(&ndl_lock->lock); 968 put_cpu(); 969 } 970 put_cpu(); 971 } 972 EXPORT_SYMBOL(nd_region_release_lane); 973 974 /* 975 * PowerPC requires this alignment for memremap_pages(). All other archs 976 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()). 977 */ 978 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M 979 980 static unsigned long default_align(struct nd_region *nd_region) 981 { 982 unsigned long align; 983 u32 remainder; 984 int mappings; 985 986 align = MEMREMAP_COMPAT_ALIGN_MAX; 987 if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX) 988 align = PAGE_SIZE; 989 990 mappings = max_t(u16, 1, nd_region->ndr_mappings); 991 div_u64_rem(align, mappings, &remainder); 992 if (remainder) 993 align *= mappings; 994 995 return align; 996 } 997 998 static struct lock_class_key nvdimm_region_key; 999 1000 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 1001 struct nd_region_desc *ndr_desc, 1002 const struct device_type *dev_type, const char *caller) 1003 { 1004 struct nd_region *nd_region; 1005 struct device *dev; 1006 unsigned int i; 1007 int ro = 0; 1008 1009 for (i = 0; i < ndr_desc->num_mappings; i++) { 1010 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1011 struct nvdimm *nvdimm = mapping->nvdimm; 1012 1013 if ((mapping->start | mapping->size) % PAGE_SIZE) { 1014 dev_err(&nvdimm_bus->dev, 1015 "%s: %s mapping%d is not %ld aligned\n", 1016 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE); 1017 return NULL; 1018 } 1019 1020 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 1021 ro = 1; 1022 1023 } 1024 1025 nd_region = 1026 kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings), 1027 GFP_KERNEL); 1028 1029 if (!nd_region) 1030 return NULL; 1031 /* CXL pre-assigns memregion ids before creating nvdimm regions */ 1032 if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) { 1033 nd_region->id = ndr_desc->memregion; 1034 } else { 1035 nd_region->id = memregion_alloc(GFP_KERNEL); 1036 if (nd_region->id < 0) 1037 goto err_id; 1038 } 1039 1040 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 1041 if (!nd_region->lane) 1042 goto err_percpu; 1043 1044 for (i = 0; i < nr_cpu_ids; i++) { 1045 struct nd_percpu_lane *ndl; 1046 1047 ndl = per_cpu_ptr(nd_region->lane, i); 1048 spin_lock_init(&ndl->lock); 1049 ndl->count = 0; 1050 } 1051 1052 for (i = 0; i < ndr_desc->num_mappings; i++) { 1053 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1054 struct nvdimm *nvdimm = mapping->nvdimm; 1055 1056 nd_region->mapping[i].nvdimm = nvdimm; 1057 nd_region->mapping[i].start = mapping->start; 1058 nd_region->mapping[i].size = mapping->size; 1059 nd_region->mapping[i].position = mapping->position; 1060 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 1061 mutex_init(&nd_region->mapping[i].lock); 1062 1063 get_device(&nvdimm->dev); 1064 } 1065 nd_region->ndr_mappings = ndr_desc->num_mappings; 1066 nd_region->provider_data = ndr_desc->provider_data; 1067 nd_region->nd_set = ndr_desc->nd_set; 1068 nd_region->num_lanes = ndr_desc->num_lanes; 1069 nd_region->flags = ndr_desc->flags; 1070 nd_region->ro = ro; 1071 nd_region->numa_node = ndr_desc->numa_node; 1072 nd_region->target_node = ndr_desc->target_node; 1073 ida_init(&nd_region->ns_ida); 1074 ida_init(&nd_region->btt_ida); 1075 ida_init(&nd_region->pfn_ida); 1076 ida_init(&nd_region->dax_ida); 1077 dev = &nd_region->dev; 1078 dev_set_name(dev, "region%d", nd_region->id); 1079 dev->parent = &nvdimm_bus->dev; 1080 dev->type = dev_type; 1081 dev->groups = ndr_desc->attr_groups; 1082 dev->of_node = ndr_desc->of_node; 1083 nd_region->ndr_size = resource_size(ndr_desc->res); 1084 nd_region->ndr_start = ndr_desc->res->start; 1085 nd_region->align = default_align(nd_region); 1086 if (ndr_desc->flush) 1087 nd_region->flush = ndr_desc->flush; 1088 else 1089 nd_region->flush = NULL; 1090 1091 device_initialize(dev); 1092 lockdep_set_class(&dev->mutex, &nvdimm_region_key); 1093 nd_device_register(dev); 1094 1095 return nd_region; 1096 1097 err_percpu: 1098 if (!test_bit(ND_REGION_CXL, &ndr_desc->flags)) 1099 memregion_free(nd_region->id); 1100 err_id: 1101 kfree(nd_region); 1102 return NULL; 1103 } 1104 1105 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1106 struct nd_region_desc *ndr_desc) 1107 { 1108 ndr_desc->num_lanes = ND_MAX_LANES; 1109 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1110 __func__); 1111 } 1112 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1113 1114 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1115 struct nd_region_desc *ndr_desc) 1116 { 1117 ndr_desc->num_lanes = ND_MAX_LANES; 1118 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1119 __func__); 1120 } 1121 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1122 1123 void nvdimm_region_delete(struct nd_region *nd_region) 1124 { 1125 if (nd_region) 1126 nd_device_unregister(&nd_region->dev, ND_SYNC); 1127 } 1128 EXPORT_SYMBOL_GPL(nvdimm_region_delete); 1129 1130 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio) 1131 { 1132 int rc = 0; 1133 1134 if (!nd_region->flush) 1135 rc = generic_nvdimm_flush(nd_region); 1136 else { 1137 if (nd_region->flush(nd_region, bio)) 1138 rc = -EIO; 1139 } 1140 1141 return rc; 1142 } 1143 /** 1144 * generic_nvdimm_flush() - flush any posted write queues between the cpu and pmem media 1145 * @nd_region: interleaved pmem region 1146 */ 1147 int generic_nvdimm_flush(struct nd_region *nd_region) 1148 { 1149 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1150 int i, idx; 1151 1152 /* 1153 * Try to encourage some diversity in flush hint addresses 1154 * across cpus assuming a limited number of flush hints. 1155 */ 1156 idx = this_cpu_read(flush_idx); 1157 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1158 1159 /* 1160 * The pmem_wmb() is needed to 'sfence' all 1161 * previous writes such that they are architecturally visible for 1162 * the platform buffer flush. Note that we've already arranged for pmem 1163 * writes to avoid the cache via memcpy_flushcache(). The final 1164 * wmb() ensures ordering for the NVDIMM flush write. 1165 */ 1166 pmem_wmb(); 1167 for (i = 0; i < nd_region->ndr_mappings; i++) 1168 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1169 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1170 wmb(); 1171 1172 return 0; 1173 } 1174 EXPORT_SYMBOL_GPL(nvdimm_flush); 1175 1176 /** 1177 * nvdimm_has_flush - determine write flushing requirements 1178 * @nd_region: interleaved pmem region 1179 * 1180 * Returns 1 if writes require flushing 1181 * Returns 0 if writes do not require flushing 1182 * Returns -ENXIO if flushing capability can not be determined 1183 */ 1184 int nvdimm_has_flush(struct nd_region *nd_region) 1185 { 1186 int i; 1187 1188 /* no nvdimm or pmem api == flushing capability unknown */ 1189 if (nd_region->ndr_mappings == 0 1190 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1191 return -ENXIO; 1192 1193 /* Test if an explicit flush function is defined */ 1194 if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush) 1195 return 1; 1196 1197 /* Test if any flush hints for the region are available */ 1198 for (i = 0; i < nd_region->ndr_mappings; i++) { 1199 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1200 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1201 1202 /* flush hints present / available */ 1203 if (nvdimm->num_flush) 1204 return 1; 1205 } 1206 1207 /* 1208 * The platform defines dimm devices without hints nor explicit flush, 1209 * assume platform persistence mechanism like ADR 1210 */ 1211 return 0; 1212 } 1213 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1214 1215 int nvdimm_has_cache(struct nd_region *nd_region) 1216 { 1217 return is_nd_pmem(&nd_region->dev) && 1218 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); 1219 } 1220 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1221 1222 bool is_nvdimm_sync(struct nd_region *nd_region) 1223 { 1224 if (is_nd_volatile(&nd_region->dev)) 1225 return true; 1226 1227 return is_nd_pmem(&nd_region->dev) && 1228 !test_bit(ND_REGION_ASYNC, &nd_region->flags); 1229 } 1230 EXPORT_SYMBOL_GPL(is_nvdimm_sync); 1231 1232 struct conflict_context { 1233 struct nd_region *nd_region; 1234 resource_size_t start, size; 1235 }; 1236 1237 static int region_conflict(struct device *dev, void *data) 1238 { 1239 struct nd_region *nd_region; 1240 struct conflict_context *ctx = data; 1241 resource_size_t res_end, region_end, region_start; 1242 1243 if (!is_memory(dev)) 1244 return 0; 1245 1246 nd_region = to_nd_region(dev); 1247 if (nd_region == ctx->nd_region) 1248 return 0; 1249 1250 res_end = ctx->start + ctx->size; 1251 region_start = nd_region->ndr_start; 1252 region_end = region_start + nd_region->ndr_size; 1253 if (ctx->start >= region_start && ctx->start < region_end) 1254 return -EBUSY; 1255 if (res_end > region_start && res_end <= region_end) 1256 return -EBUSY; 1257 return 0; 1258 } 1259 1260 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start, 1261 resource_size_t size) 1262 { 1263 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 1264 struct conflict_context ctx = { 1265 .nd_region = nd_region, 1266 .start = start, 1267 .size = size, 1268 }; 1269 1270 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict); 1271 } 1272 1273 MODULE_IMPORT_NS(DEVMEM); 1274