xref: /linux/drivers/nvdimm/pmem.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blk-mq.h>
29 #include <linux/pfn_t.h>
30 #include <linux/slab.h>
31 #include <linux/uio.h>
32 #include <linux/dax.h>
33 #include <linux/nd.h>
34 #include <linux/backing-dev.h>
35 #include "pmem.h"
36 #include "pfn.h"
37 #include "nd.h"
38 
39 static struct device *to_dev(struct pmem_device *pmem)
40 {
41 	/*
42 	 * nvdimm bus services need a 'dev' parameter, and we record the device
43 	 * at init in bb.dev.
44 	 */
45 	return pmem->bb.dev;
46 }
47 
48 static struct nd_region *to_region(struct pmem_device *pmem)
49 {
50 	return to_nd_region(to_dev(pmem)->parent);
51 }
52 
53 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
54 		phys_addr_t offset, unsigned int len)
55 {
56 	struct device *dev = to_dev(pmem);
57 	sector_t sector;
58 	long cleared;
59 	blk_status_t rc = BLK_STS_OK;
60 
61 	sector = (offset - pmem->data_offset) / 512;
62 
63 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
64 	if (cleared < len)
65 		rc = BLK_STS_IOERR;
66 	if (cleared > 0 && cleared / 512) {
67 		cleared /= 512;
68 		dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
69 				(unsigned long long) sector, cleared,
70 				cleared > 1 ? "s" : "");
71 		badblocks_clear(&pmem->bb, sector, cleared);
72 		if (pmem->bb_state)
73 			sysfs_notify_dirent(pmem->bb_state);
74 	}
75 
76 	arch_invalidate_pmem(pmem->virt_addr + offset, len);
77 
78 	return rc;
79 }
80 
81 static void write_pmem(void *pmem_addr, struct page *page,
82 		unsigned int off, unsigned int len)
83 {
84 	unsigned int chunk;
85 	void *mem;
86 
87 	while (len) {
88 		mem = kmap_atomic(page);
89 		chunk = min_t(unsigned int, len, PAGE_SIZE);
90 		memcpy_flushcache(pmem_addr, mem + off, chunk);
91 		kunmap_atomic(mem);
92 		len -= chunk;
93 		off = 0;
94 		page++;
95 		pmem_addr += PAGE_SIZE;
96 	}
97 }
98 
99 static blk_status_t read_pmem(struct page *page, unsigned int off,
100 		void *pmem_addr, unsigned int len)
101 {
102 	unsigned int chunk;
103 	int rc;
104 	void *mem;
105 
106 	while (len) {
107 		mem = kmap_atomic(page);
108 		chunk = min_t(unsigned int, len, PAGE_SIZE);
109 		rc = memcpy_mcsafe(mem + off, pmem_addr, chunk);
110 		kunmap_atomic(mem);
111 		if (rc)
112 			return BLK_STS_IOERR;
113 		len -= chunk;
114 		off = 0;
115 		page++;
116 		pmem_addr += PAGE_SIZE;
117 	}
118 	return BLK_STS_OK;
119 }
120 
121 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
122 			unsigned int len, unsigned int off, bool is_write,
123 			sector_t sector)
124 {
125 	blk_status_t rc = BLK_STS_OK;
126 	bool bad_pmem = false;
127 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
128 	void *pmem_addr = pmem->virt_addr + pmem_off;
129 
130 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
131 		bad_pmem = true;
132 
133 	if (!is_write) {
134 		if (unlikely(bad_pmem))
135 			rc = BLK_STS_IOERR;
136 		else {
137 			rc = read_pmem(page, off, pmem_addr, len);
138 			flush_dcache_page(page);
139 		}
140 	} else {
141 		/*
142 		 * Note that we write the data both before and after
143 		 * clearing poison.  The write before clear poison
144 		 * handles situations where the latest written data is
145 		 * preserved and the clear poison operation simply marks
146 		 * the address range as valid without changing the data.
147 		 * In this case application software can assume that an
148 		 * interrupted write will either return the new good
149 		 * data or an error.
150 		 *
151 		 * However, if pmem_clear_poison() leaves the data in an
152 		 * indeterminate state we need to perform the write
153 		 * after clear poison.
154 		 */
155 		flush_dcache_page(page);
156 		write_pmem(pmem_addr, page, off, len);
157 		if (unlikely(bad_pmem)) {
158 			rc = pmem_clear_poison(pmem, pmem_off, len);
159 			write_pmem(pmem_addr, page, off, len);
160 		}
161 	}
162 
163 	return rc;
164 }
165 
166 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
167 #ifndef REQ_FLUSH
168 #define REQ_FLUSH REQ_PREFLUSH
169 #endif
170 
171 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
172 {
173 	blk_status_t rc = 0;
174 	bool do_acct;
175 	unsigned long start;
176 	struct bio_vec bvec;
177 	struct bvec_iter iter;
178 	struct pmem_device *pmem = q->queuedata;
179 	struct nd_region *nd_region = to_region(pmem);
180 
181 	if (bio->bi_opf & REQ_FLUSH)
182 		nvdimm_flush(nd_region);
183 
184 	do_acct = nd_iostat_start(bio, &start);
185 	bio_for_each_segment(bvec, bio, iter) {
186 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
187 				bvec.bv_offset, op_is_write(bio_op(bio)),
188 				iter.bi_sector);
189 		if (rc) {
190 			bio->bi_status = rc;
191 			break;
192 		}
193 	}
194 	if (do_acct)
195 		nd_iostat_end(bio, start);
196 
197 	if (bio->bi_opf & REQ_FUA)
198 		nvdimm_flush(nd_region);
199 
200 	bio_endio(bio);
201 	return BLK_QC_T_NONE;
202 }
203 
204 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
205 		       struct page *page, bool is_write)
206 {
207 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
208 	blk_status_t rc;
209 
210 	rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
211 			  0, is_write, sector);
212 
213 	/*
214 	 * The ->rw_page interface is subtle and tricky.  The core
215 	 * retries on any error, so we can only invoke page_endio() in
216 	 * the successful completion case.  Otherwise, we'll see crashes
217 	 * caused by double completion.
218 	 */
219 	if (rc == 0)
220 		page_endio(page, is_write, 0);
221 
222 	return blk_status_to_errno(rc);
223 }
224 
225 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
226 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
227 		long nr_pages, void **kaddr, pfn_t *pfn)
228 {
229 	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
230 
231 	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
232 					PFN_PHYS(nr_pages))))
233 		return -EIO;
234 	*kaddr = pmem->virt_addr + offset;
235 	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
236 
237 	/*
238 	 * If badblocks are present, limit known good range to the
239 	 * requested range.
240 	 */
241 	if (unlikely(pmem->bb.count))
242 		return nr_pages;
243 	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
244 }
245 
246 static const struct block_device_operations pmem_fops = {
247 	.owner =		THIS_MODULE,
248 	.rw_page =		pmem_rw_page,
249 	.revalidate_disk =	nvdimm_revalidate_disk,
250 };
251 
252 static long pmem_dax_direct_access(struct dax_device *dax_dev,
253 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
254 {
255 	struct pmem_device *pmem = dax_get_private(dax_dev);
256 
257 	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
258 }
259 
260 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
261 		void *addr, size_t bytes, struct iov_iter *i)
262 {
263 	return copy_from_iter_flushcache(addr, bytes, i);
264 }
265 
266 static const struct dax_operations pmem_dax_ops = {
267 	.direct_access = pmem_dax_direct_access,
268 	.copy_from_iter = pmem_copy_from_iter,
269 };
270 
271 static const struct attribute_group *pmem_attribute_groups[] = {
272 	&dax_attribute_group,
273 	NULL,
274 };
275 
276 static void pmem_release_queue(void *q)
277 {
278 	blk_cleanup_queue(q);
279 }
280 
281 static void pmem_freeze_queue(void *q)
282 {
283 	blk_freeze_queue_start(q);
284 }
285 
286 static void pmem_release_disk(void *__pmem)
287 {
288 	struct pmem_device *pmem = __pmem;
289 
290 	kill_dax(pmem->dax_dev);
291 	put_dax(pmem->dax_dev);
292 	del_gendisk(pmem->disk);
293 	put_disk(pmem->disk);
294 }
295 
296 static int pmem_attach_disk(struct device *dev,
297 		struct nd_namespace_common *ndns)
298 {
299 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
300 	struct nd_region *nd_region = to_nd_region(dev->parent);
301 	struct vmem_altmap __altmap, *altmap = NULL;
302 	int nid = dev_to_node(dev), fua, wbc;
303 	struct resource *res = &nsio->res;
304 	struct nd_pfn *nd_pfn = NULL;
305 	struct dax_device *dax_dev;
306 	struct nd_pfn_sb *pfn_sb;
307 	struct pmem_device *pmem;
308 	struct resource pfn_res;
309 	struct request_queue *q;
310 	struct device *gendev;
311 	struct gendisk *disk;
312 	void *addr;
313 
314 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
315 	if (is_nd_pfn(dev)) {
316 		nd_pfn = to_nd_pfn(dev);
317 		altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
318 		if (IS_ERR(altmap))
319 			return PTR_ERR(altmap);
320 	}
321 
322 	/* we're attaching a block device, disable raw namespace access */
323 	devm_nsio_disable(dev, nsio);
324 
325 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
326 	if (!pmem)
327 		return -ENOMEM;
328 
329 	dev_set_drvdata(dev, pmem);
330 	pmem->phys_addr = res->start;
331 	pmem->size = resource_size(res);
332 	fua = nvdimm_has_flush(nd_region);
333 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
334 		dev_warn(dev, "unable to guarantee persistence of writes\n");
335 		fua = 0;
336 	}
337 	wbc = nvdimm_has_cache(nd_region);
338 
339 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
340 				dev_name(&ndns->dev))) {
341 		dev_warn(dev, "could not reserve region %pR\n", res);
342 		return -EBUSY;
343 	}
344 
345 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
346 	if (!q)
347 		return -ENOMEM;
348 
349 	if (devm_add_action_or_reset(dev, pmem_release_queue, q))
350 		return -ENOMEM;
351 
352 	pmem->pfn_flags = PFN_DEV;
353 	if (is_nd_pfn(dev)) {
354 		addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
355 				altmap);
356 		pfn_sb = nd_pfn->pfn_sb;
357 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
358 		pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
359 		pmem->pfn_flags |= PFN_MAP;
360 		res = &pfn_res; /* for badblocks populate */
361 		res->start += pmem->data_offset;
362 	} else if (pmem_should_map_pages(dev)) {
363 		addr = devm_memremap_pages(dev, &nsio->res,
364 				&q->q_usage_counter, NULL);
365 		pmem->pfn_flags |= PFN_MAP;
366 	} else
367 		addr = devm_memremap(dev, pmem->phys_addr,
368 				pmem->size, ARCH_MEMREMAP_PMEM);
369 
370 	/*
371 	 * At release time the queue must be frozen before
372 	 * devm_memremap_pages is unwound
373 	 */
374 	if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
375 		return -ENOMEM;
376 
377 	if (IS_ERR(addr))
378 		return PTR_ERR(addr);
379 	pmem->virt_addr = addr;
380 
381 	blk_queue_write_cache(q, wbc, fua);
382 	blk_queue_make_request(q, pmem_make_request);
383 	blk_queue_physical_block_size(q, PAGE_SIZE);
384 	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
385 	blk_queue_max_hw_sectors(q, UINT_MAX);
386 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
387 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
388 	q->queuedata = pmem;
389 
390 	disk = alloc_disk_node(0, nid);
391 	if (!disk)
392 		return -ENOMEM;
393 	pmem->disk = disk;
394 
395 	disk->fops		= &pmem_fops;
396 	disk->queue		= q;
397 	disk->flags		= GENHD_FL_EXT_DEVT;
398 	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
399 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
400 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
401 			/ 512);
402 	if (devm_init_badblocks(dev, &pmem->bb))
403 		return -ENOMEM;
404 	nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
405 	disk->bb = &pmem->bb;
406 
407 	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
408 	if (!dax_dev) {
409 		put_disk(disk);
410 		return -ENOMEM;
411 	}
412 	dax_write_cache(dax_dev, wbc);
413 	pmem->dax_dev = dax_dev;
414 
415 	gendev = disk_to_dev(disk);
416 	gendev->groups = pmem_attribute_groups;
417 
418 	device_add_disk(dev, disk);
419 	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
420 		return -ENOMEM;
421 
422 	revalidate_disk(disk);
423 
424 	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
425 					  "badblocks");
426 	if (!pmem->bb_state)
427 		dev_warn(dev, "'badblocks' notification disabled\n");
428 
429 	return 0;
430 }
431 
432 static int nd_pmem_probe(struct device *dev)
433 {
434 	struct nd_namespace_common *ndns;
435 
436 	ndns = nvdimm_namespace_common_probe(dev);
437 	if (IS_ERR(ndns))
438 		return PTR_ERR(ndns);
439 
440 	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
441 		return -ENXIO;
442 
443 	if (is_nd_btt(dev))
444 		return nvdimm_namespace_attach_btt(ndns);
445 
446 	if (is_nd_pfn(dev))
447 		return pmem_attach_disk(dev, ndns);
448 
449 	/* if we find a valid info-block we'll come back as that personality */
450 	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
451 			|| nd_dax_probe(dev, ndns) == 0)
452 		return -ENXIO;
453 
454 	/* ...otherwise we're just a raw pmem device */
455 	return pmem_attach_disk(dev, ndns);
456 }
457 
458 static int nd_pmem_remove(struct device *dev)
459 {
460 	struct pmem_device *pmem = dev_get_drvdata(dev);
461 
462 	if (is_nd_btt(dev))
463 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
464 	else {
465 		/*
466 		 * Note, this assumes device_lock() context to not race
467 		 * nd_pmem_notify()
468 		 */
469 		sysfs_put(pmem->bb_state);
470 		pmem->bb_state = NULL;
471 	}
472 	nvdimm_flush(to_nd_region(dev->parent));
473 
474 	return 0;
475 }
476 
477 static void nd_pmem_shutdown(struct device *dev)
478 {
479 	nvdimm_flush(to_nd_region(dev->parent));
480 }
481 
482 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
483 {
484 	struct nd_region *nd_region;
485 	resource_size_t offset = 0, end_trunc = 0;
486 	struct nd_namespace_common *ndns;
487 	struct nd_namespace_io *nsio;
488 	struct resource res;
489 	struct badblocks *bb;
490 	struct kernfs_node *bb_state;
491 
492 	if (event != NVDIMM_REVALIDATE_POISON)
493 		return;
494 
495 	if (is_nd_btt(dev)) {
496 		struct nd_btt *nd_btt = to_nd_btt(dev);
497 
498 		ndns = nd_btt->ndns;
499 		nd_region = to_nd_region(ndns->dev.parent);
500 		nsio = to_nd_namespace_io(&ndns->dev);
501 		bb = &nsio->bb;
502 		bb_state = NULL;
503 	} else {
504 		struct pmem_device *pmem = dev_get_drvdata(dev);
505 
506 		nd_region = to_region(pmem);
507 		bb = &pmem->bb;
508 		bb_state = pmem->bb_state;
509 
510 		if (is_nd_pfn(dev)) {
511 			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
512 			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
513 
514 			ndns = nd_pfn->ndns;
515 			offset = pmem->data_offset +
516 					__le32_to_cpu(pfn_sb->start_pad);
517 			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
518 		} else {
519 			ndns = to_ndns(dev);
520 		}
521 
522 		nsio = to_nd_namespace_io(&ndns->dev);
523 	}
524 
525 	res.start = nsio->res.start + offset;
526 	res.end = nsio->res.end - end_trunc;
527 	nvdimm_badblocks_populate(nd_region, bb, &res);
528 	if (bb_state)
529 		sysfs_notify_dirent(bb_state);
530 }
531 
532 MODULE_ALIAS("pmem");
533 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
534 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
535 static struct nd_device_driver nd_pmem_driver = {
536 	.probe = nd_pmem_probe,
537 	.remove = nd_pmem_remove,
538 	.notify = nd_pmem_notify,
539 	.shutdown = nd_pmem_shutdown,
540 	.drv = {
541 		.name = "nd_pmem",
542 	},
543 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
544 };
545 
546 static int __init pmem_init(void)
547 {
548 	return nd_driver_register(&nd_pmem_driver);
549 }
550 module_init(pmem_init);
551 
552 static void pmem_exit(void)
553 {
554 	driver_unregister(&nd_pmem_driver.drv);
555 }
556 module_exit(pmem_exit);
557 
558 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
559 MODULE_LICENSE("GPL v2");
560