xref: /linux/drivers/nvdimm/pmem.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pmem.h"
33 #include "pfn.h"
34 #include "nd.h"
35 
36 static struct device *to_dev(struct pmem_device *pmem)
37 {
38 	/*
39 	 * nvdimm bus services need a 'dev' parameter, and we record the device
40 	 * at init in bb.dev.
41 	 */
42 	return pmem->bb.dev;
43 }
44 
45 static struct nd_region *to_region(struct pmem_device *pmem)
46 {
47 	return to_nd_region(to_dev(pmem)->parent);
48 }
49 
50 static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
51 		unsigned int len)
52 {
53 	struct device *dev = to_dev(pmem);
54 	sector_t sector;
55 	long cleared;
56 	int rc = 0;
57 
58 	sector = (offset - pmem->data_offset) / 512;
59 
60 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
61 	if (cleared < len)
62 		rc = -EIO;
63 	if (cleared > 0 && cleared / 512) {
64 		cleared /= 512;
65 		dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
66 				(unsigned long long) sector, cleared,
67 				cleared > 1 ? "s" : "");
68 		badblocks_clear(&pmem->bb, sector, cleared);
69 	}
70 
71 	invalidate_pmem(pmem->virt_addr + offset, len);
72 
73 	return rc;
74 }
75 
76 static void write_pmem(void *pmem_addr, struct page *page,
77 		unsigned int off, unsigned int len)
78 {
79 	void *mem = kmap_atomic(page);
80 
81 	memcpy_to_pmem(pmem_addr, mem + off, len);
82 	kunmap_atomic(mem);
83 }
84 
85 static int read_pmem(struct page *page, unsigned int off,
86 		void *pmem_addr, unsigned int len)
87 {
88 	int rc;
89 	void *mem = kmap_atomic(page);
90 
91 	rc = memcpy_from_pmem(mem + off, pmem_addr, len);
92 	kunmap_atomic(mem);
93 	if (rc)
94 		return -EIO;
95 	return 0;
96 }
97 
98 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
99 			unsigned int len, unsigned int off, bool is_write,
100 			sector_t sector)
101 {
102 	int rc = 0;
103 	bool bad_pmem = false;
104 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
105 	void *pmem_addr = pmem->virt_addr + pmem_off;
106 
107 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
108 		bad_pmem = true;
109 
110 	if (!is_write) {
111 		if (unlikely(bad_pmem))
112 			rc = -EIO;
113 		else {
114 			rc = read_pmem(page, off, pmem_addr, len);
115 			flush_dcache_page(page);
116 		}
117 	} else {
118 		/*
119 		 * Note that we write the data both before and after
120 		 * clearing poison.  The write before clear poison
121 		 * handles situations where the latest written data is
122 		 * preserved and the clear poison operation simply marks
123 		 * the address range as valid without changing the data.
124 		 * In this case application software can assume that an
125 		 * interrupted write will either return the new good
126 		 * data or an error.
127 		 *
128 		 * However, if pmem_clear_poison() leaves the data in an
129 		 * indeterminate state we need to perform the write
130 		 * after clear poison.
131 		 */
132 		flush_dcache_page(page);
133 		write_pmem(pmem_addr, page, off, len);
134 		if (unlikely(bad_pmem)) {
135 			rc = pmem_clear_poison(pmem, pmem_off, len);
136 			write_pmem(pmem_addr, page, off, len);
137 		}
138 	}
139 
140 	return rc;
141 }
142 
143 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
144 #ifndef REQ_FLUSH
145 #define REQ_FLUSH REQ_PREFLUSH
146 #endif
147 
148 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
149 {
150 	int rc = 0;
151 	bool do_acct;
152 	unsigned long start;
153 	struct bio_vec bvec;
154 	struct bvec_iter iter;
155 	struct pmem_device *pmem = q->queuedata;
156 	struct nd_region *nd_region = to_region(pmem);
157 
158 	if (bio->bi_opf & REQ_FLUSH)
159 		nvdimm_flush(nd_region);
160 
161 	do_acct = nd_iostat_start(bio, &start);
162 	bio_for_each_segment(bvec, bio, iter) {
163 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
164 				bvec.bv_offset, op_is_write(bio_op(bio)),
165 				iter.bi_sector);
166 		if (rc) {
167 			bio->bi_error = rc;
168 			break;
169 		}
170 	}
171 	if (do_acct)
172 		nd_iostat_end(bio, start);
173 
174 	if (bio->bi_opf & REQ_FUA)
175 		nvdimm_flush(nd_region);
176 
177 	bio_endio(bio);
178 	return BLK_QC_T_NONE;
179 }
180 
181 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
182 		       struct page *page, bool is_write)
183 {
184 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
185 	int rc;
186 
187 	rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
188 
189 	/*
190 	 * The ->rw_page interface is subtle and tricky.  The core
191 	 * retries on any error, so we can only invoke page_endio() in
192 	 * the successful completion case.  Otherwise, we'll see crashes
193 	 * caused by double completion.
194 	 */
195 	if (rc == 0)
196 		page_endio(page, is_write, 0);
197 
198 	return rc;
199 }
200 
201 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
202 __weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
203 		      void **kaddr, pfn_t *pfn, long size)
204 {
205 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
206 	resource_size_t offset = sector * 512 + pmem->data_offset;
207 
208 	if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
209 		return -EIO;
210 	*kaddr = pmem->virt_addr + offset;
211 	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
212 
213 	/*
214 	 * If badblocks are present, limit known good range to the
215 	 * requested range.
216 	 */
217 	if (unlikely(pmem->bb.count))
218 		return size;
219 	return pmem->size - pmem->pfn_pad - offset;
220 }
221 
222 static const struct block_device_operations pmem_fops = {
223 	.owner =		THIS_MODULE,
224 	.rw_page =		pmem_rw_page,
225 	.direct_access =	pmem_direct_access,
226 	.revalidate_disk =	nvdimm_revalidate_disk,
227 };
228 
229 static void pmem_release_queue(void *q)
230 {
231 	blk_cleanup_queue(q);
232 }
233 
234 static void pmem_release_disk(void *disk)
235 {
236 	del_gendisk(disk);
237 	put_disk(disk);
238 }
239 
240 static int pmem_attach_disk(struct device *dev,
241 		struct nd_namespace_common *ndns)
242 {
243 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
244 	struct nd_region *nd_region = to_nd_region(dev->parent);
245 	struct vmem_altmap __altmap, *altmap = NULL;
246 	struct resource *res = &nsio->res;
247 	struct nd_pfn *nd_pfn = NULL;
248 	int nid = dev_to_node(dev);
249 	struct nd_pfn_sb *pfn_sb;
250 	struct pmem_device *pmem;
251 	struct resource pfn_res;
252 	struct request_queue *q;
253 	struct gendisk *disk;
254 	void *addr;
255 
256 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
257 	if (is_nd_pfn(dev)) {
258 		nd_pfn = to_nd_pfn(dev);
259 		altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
260 		if (IS_ERR(altmap))
261 			return PTR_ERR(altmap);
262 	}
263 
264 	/* we're attaching a block device, disable raw namespace access */
265 	devm_nsio_disable(dev, nsio);
266 
267 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
268 	if (!pmem)
269 		return -ENOMEM;
270 
271 	dev_set_drvdata(dev, pmem);
272 	pmem->phys_addr = res->start;
273 	pmem->size = resource_size(res);
274 	if (nvdimm_has_flush(nd_region) < 0)
275 		dev_warn(dev, "unable to guarantee persistence of writes\n");
276 
277 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
278 				dev_name(&ndns->dev))) {
279 		dev_warn(dev, "could not reserve region %pR\n", res);
280 		return -EBUSY;
281 	}
282 
283 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
284 	if (!q)
285 		return -ENOMEM;
286 
287 	pmem->pfn_flags = PFN_DEV;
288 	if (is_nd_pfn(dev)) {
289 		addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
290 				altmap);
291 		pfn_sb = nd_pfn->pfn_sb;
292 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
293 		pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
294 		pmem->pfn_flags |= PFN_MAP;
295 		res = &pfn_res; /* for badblocks populate */
296 		res->start += pmem->data_offset;
297 	} else if (pmem_should_map_pages(dev)) {
298 		addr = devm_memremap_pages(dev, &nsio->res,
299 				&q->q_usage_counter, NULL);
300 		pmem->pfn_flags |= PFN_MAP;
301 	} else
302 		addr = devm_memremap(dev, pmem->phys_addr,
303 				pmem->size, ARCH_MEMREMAP_PMEM);
304 
305 	/*
306 	 * At release time the queue must be dead before
307 	 * devm_memremap_pages is unwound
308 	 */
309 	if (devm_add_action_or_reset(dev, pmem_release_queue, q))
310 		return -ENOMEM;
311 
312 	if (IS_ERR(addr))
313 		return PTR_ERR(addr);
314 	pmem->virt_addr = addr;
315 
316 	blk_queue_write_cache(q, true, true);
317 	blk_queue_make_request(q, pmem_make_request);
318 	blk_queue_physical_block_size(q, PAGE_SIZE);
319 	blk_queue_max_hw_sectors(q, UINT_MAX);
320 	blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
321 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
322 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
323 	q->queuedata = pmem;
324 
325 	disk = alloc_disk_node(0, nid);
326 	if (!disk)
327 		return -ENOMEM;
328 
329 	disk->fops		= &pmem_fops;
330 	disk->queue		= q;
331 	disk->flags		= GENHD_FL_EXT_DEVT;
332 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
333 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
334 			/ 512);
335 	if (devm_init_badblocks(dev, &pmem->bb))
336 		return -ENOMEM;
337 	nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
338 	disk->bb = &pmem->bb;
339 	device_add_disk(dev, disk);
340 
341 	if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
342 		return -ENOMEM;
343 
344 	revalidate_disk(disk);
345 
346 	return 0;
347 }
348 
349 static int nd_pmem_probe(struct device *dev)
350 {
351 	struct nd_namespace_common *ndns;
352 
353 	ndns = nvdimm_namespace_common_probe(dev);
354 	if (IS_ERR(ndns))
355 		return PTR_ERR(ndns);
356 
357 	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
358 		return -ENXIO;
359 
360 	if (is_nd_btt(dev))
361 		return nvdimm_namespace_attach_btt(ndns);
362 
363 	if (is_nd_pfn(dev))
364 		return pmem_attach_disk(dev, ndns);
365 
366 	/* if we find a valid info-block we'll come back as that personality */
367 	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
368 			|| nd_dax_probe(dev, ndns) == 0)
369 		return -ENXIO;
370 
371 	/* ...otherwise we're just a raw pmem device */
372 	return pmem_attach_disk(dev, ndns);
373 }
374 
375 static int nd_pmem_remove(struct device *dev)
376 {
377 	if (is_nd_btt(dev))
378 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
379 	nvdimm_flush(to_nd_region(dev->parent));
380 
381 	return 0;
382 }
383 
384 static void nd_pmem_shutdown(struct device *dev)
385 {
386 	nvdimm_flush(to_nd_region(dev->parent));
387 }
388 
389 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
390 {
391 	struct pmem_device *pmem = dev_get_drvdata(dev);
392 	struct nd_region *nd_region = to_region(pmem);
393 	resource_size_t offset = 0, end_trunc = 0;
394 	struct nd_namespace_common *ndns;
395 	struct nd_namespace_io *nsio;
396 	struct resource res;
397 
398 	if (event != NVDIMM_REVALIDATE_POISON)
399 		return;
400 
401 	if (is_nd_btt(dev)) {
402 		struct nd_btt *nd_btt = to_nd_btt(dev);
403 
404 		ndns = nd_btt->ndns;
405 	} else if (is_nd_pfn(dev)) {
406 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
407 		struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
408 
409 		ndns = nd_pfn->ndns;
410 		offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
411 		end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
412 	} else
413 		ndns = to_ndns(dev);
414 
415 	nsio = to_nd_namespace_io(&ndns->dev);
416 	res.start = nsio->res.start + offset;
417 	res.end = nsio->res.end - end_trunc;
418 	nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
419 }
420 
421 MODULE_ALIAS("pmem");
422 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
423 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
424 static struct nd_device_driver nd_pmem_driver = {
425 	.probe = nd_pmem_probe,
426 	.remove = nd_pmem_remove,
427 	.notify = nd_pmem_notify,
428 	.shutdown = nd_pmem_shutdown,
429 	.drv = {
430 		.name = "nd_pmem",
431 	},
432 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
433 };
434 
435 static int __init pmem_init(void)
436 {
437 	return nd_driver_register(&nd_pmem_driver);
438 }
439 module_init(pmem_init);
440 
441 static void pmem_exit(void)
442 {
443 	driver_unregister(&nd_pmem_driver.drv);
444 }
445 module_exit(pmem_exit);
446 
447 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
448 MODULE_LICENSE("GPL v2");
449