xref: /linux/drivers/nvdimm/pmem.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blk-mq.h>
29 #include <linux/pfn_t.h>
30 #include <linux/slab.h>
31 #include <linux/pmem.h>
32 #include <linux/dax.h>
33 #include <linux/nd.h>
34 #include "pmem.h"
35 #include "pfn.h"
36 #include "nd.h"
37 
38 static struct device *to_dev(struct pmem_device *pmem)
39 {
40 	/*
41 	 * nvdimm bus services need a 'dev' parameter, and we record the device
42 	 * at init in bb.dev.
43 	 */
44 	return pmem->bb.dev;
45 }
46 
47 static struct nd_region *to_region(struct pmem_device *pmem)
48 {
49 	return to_nd_region(to_dev(pmem)->parent);
50 }
51 
52 static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
53 		unsigned int len)
54 {
55 	struct device *dev = to_dev(pmem);
56 	sector_t sector;
57 	long cleared;
58 	int rc = 0;
59 
60 	sector = (offset - pmem->data_offset) / 512;
61 
62 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
63 	if (cleared < len)
64 		rc = -EIO;
65 	if (cleared > 0 && cleared / 512) {
66 		cleared /= 512;
67 		dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
68 				(unsigned long long) sector, cleared,
69 				cleared > 1 ? "s" : "");
70 		badblocks_clear(&pmem->bb, sector, cleared);
71 	}
72 
73 	invalidate_pmem(pmem->virt_addr + offset, len);
74 
75 	return rc;
76 }
77 
78 static void write_pmem(void *pmem_addr, struct page *page,
79 		unsigned int off, unsigned int len)
80 {
81 	void *mem = kmap_atomic(page);
82 
83 	memcpy_to_pmem(pmem_addr, mem + off, len);
84 	kunmap_atomic(mem);
85 }
86 
87 static int read_pmem(struct page *page, unsigned int off,
88 		void *pmem_addr, unsigned int len)
89 {
90 	int rc;
91 	void *mem = kmap_atomic(page);
92 
93 	rc = memcpy_mcsafe(mem + off, pmem_addr, len);
94 	kunmap_atomic(mem);
95 	if (rc)
96 		return -EIO;
97 	return 0;
98 }
99 
100 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
101 			unsigned int len, unsigned int off, bool is_write,
102 			sector_t sector)
103 {
104 	int rc = 0;
105 	bool bad_pmem = false;
106 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
107 	void *pmem_addr = pmem->virt_addr + pmem_off;
108 
109 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
110 		bad_pmem = true;
111 
112 	if (!is_write) {
113 		if (unlikely(bad_pmem))
114 			rc = -EIO;
115 		else {
116 			rc = read_pmem(page, off, pmem_addr, len);
117 			flush_dcache_page(page);
118 		}
119 	} else {
120 		/*
121 		 * Note that we write the data both before and after
122 		 * clearing poison.  The write before clear poison
123 		 * handles situations where the latest written data is
124 		 * preserved and the clear poison operation simply marks
125 		 * the address range as valid without changing the data.
126 		 * In this case application software can assume that an
127 		 * interrupted write will either return the new good
128 		 * data or an error.
129 		 *
130 		 * However, if pmem_clear_poison() leaves the data in an
131 		 * indeterminate state we need to perform the write
132 		 * after clear poison.
133 		 */
134 		flush_dcache_page(page);
135 		write_pmem(pmem_addr, page, off, len);
136 		if (unlikely(bad_pmem)) {
137 			rc = pmem_clear_poison(pmem, pmem_off, len);
138 			write_pmem(pmem_addr, page, off, len);
139 		}
140 	}
141 
142 	return rc;
143 }
144 
145 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
146 #ifndef REQ_FLUSH
147 #define REQ_FLUSH REQ_PREFLUSH
148 #endif
149 
150 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
151 {
152 	int rc = 0;
153 	bool do_acct;
154 	unsigned long start;
155 	struct bio_vec bvec;
156 	struct bvec_iter iter;
157 	struct pmem_device *pmem = q->queuedata;
158 	struct nd_region *nd_region = to_region(pmem);
159 
160 	if (bio->bi_opf & REQ_FLUSH)
161 		nvdimm_flush(nd_region);
162 
163 	do_acct = nd_iostat_start(bio, &start);
164 	bio_for_each_segment(bvec, bio, iter) {
165 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
166 				bvec.bv_offset, op_is_write(bio_op(bio)),
167 				iter.bi_sector);
168 		if (rc) {
169 			bio->bi_error = rc;
170 			break;
171 		}
172 	}
173 	if (do_acct)
174 		nd_iostat_end(bio, start);
175 
176 	if (bio->bi_opf & REQ_FUA)
177 		nvdimm_flush(nd_region);
178 
179 	bio_endio(bio);
180 	return BLK_QC_T_NONE;
181 }
182 
183 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
184 		       struct page *page, bool is_write)
185 {
186 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
187 	int rc;
188 
189 	rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
190 
191 	/*
192 	 * The ->rw_page interface is subtle and tricky.  The core
193 	 * retries on any error, so we can only invoke page_endio() in
194 	 * the successful completion case.  Otherwise, we'll see crashes
195 	 * caused by double completion.
196 	 */
197 	if (rc == 0)
198 		page_endio(page, is_write, 0);
199 
200 	return rc;
201 }
202 
203 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
204 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
205 		long nr_pages, void **kaddr, pfn_t *pfn)
206 {
207 	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
208 
209 	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
210 					PFN_PHYS(nr_pages))))
211 		return -EIO;
212 	*kaddr = pmem->virt_addr + offset;
213 	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
214 
215 	/*
216 	 * If badblocks are present, limit known good range to the
217 	 * requested range.
218 	 */
219 	if (unlikely(pmem->bb.count))
220 		return nr_pages;
221 	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
222 }
223 
224 static const struct block_device_operations pmem_fops = {
225 	.owner =		THIS_MODULE,
226 	.rw_page =		pmem_rw_page,
227 	.revalidate_disk =	nvdimm_revalidate_disk,
228 };
229 
230 static long pmem_dax_direct_access(struct dax_device *dax_dev,
231 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
232 {
233 	struct pmem_device *pmem = dax_get_private(dax_dev);
234 
235 	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
236 }
237 
238 static const struct dax_operations pmem_dax_ops = {
239 	.direct_access = pmem_dax_direct_access,
240 };
241 
242 static void pmem_release_queue(void *q)
243 {
244 	blk_cleanup_queue(q);
245 }
246 
247 static void pmem_freeze_queue(void *q)
248 {
249 	blk_freeze_queue_start(q);
250 }
251 
252 static void pmem_release_disk(void *__pmem)
253 {
254 	struct pmem_device *pmem = __pmem;
255 
256 	kill_dax(pmem->dax_dev);
257 	put_dax(pmem->dax_dev);
258 	del_gendisk(pmem->disk);
259 	put_disk(pmem->disk);
260 }
261 
262 static int pmem_attach_disk(struct device *dev,
263 		struct nd_namespace_common *ndns)
264 {
265 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
266 	struct nd_region *nd_region = to_nd_region(dev->parent);
267 	struct vmem_altmap __altmap, *altmap = NULL;
268 	struct resource *res = &nsio->res;
269 	struct nd_pfn *nd_pfn = NULL;
270 	struct dax_device *dax_dev;
271 	int nid = dev_to_node(dev);
272 	struct nd_pfn_sb *pfn_sb;
273 	struct pmem_device *pmem;
274 	struct resource pfn_res;
275 	struct request_queue *q;
276 	struct gendisk *disk;
277 	void *addr;
278 
279 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
280 	if (is_nd_pfn(dev)) {
281 		nd_pfn = to_nd_pfn(dev);
282 		altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
283 		if (IS_ERR(altmap))
284 			return PTR_ERR(altmap);
285 	}
286 
287 	/* we're attaching a block device, disable raw namespace access */
288 	devm_nsio_disable(dev, nsio);
289 
290 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
291 	if (!pmem)
292 		return -ENOMEM;
293 
294 	dev_set_drvdata(dev, pmem);
295 	pmem->phys_addr = res->start;
296 	pmem->size = resource_size(res);
297 	if (nvdimm_has_flush(nd_region) < 0)
298 		dev_warn(dev, "unable to guarantee persistence of writes\n");
299 
300 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
301 				dev_name(&ndns->dev))) {
302 		dev_warn(dev, "could not reserve region %pR\n", res);
303 		return -EBUSY;
304 	}
305 
306 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
307 	if (!q)
308 		return -ENOMEM;
309 
310 	if (devm_add_action_or_reset(dev, pmem_release_queue, q))
311 		return -ENOMEM;
312 
313 	pmem->pfn_flags = PFN_DEV;
314 	if (is_nd_pfn(dev)) {
315 		addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
316 				altmap);
317 		pfn_sb = nd_pfn->pfn_sb;
318 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
319 		pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
320 		pmem->pfn_flags |= PFN_MAP;
321 		res = &pfn_res; /* for badblocks populate */
322 		res->start += pmem->data_offset;
323 	} else if (pmem_should_map_pages(dev)) {
324 		addr = devm_memremap_pages(dev, &nsio->res,
325 				&q->q_usage_counter, NULL);
326 		pmem->pfn_flags |= PFN_MAP;
327 	} else
328 		addr = devm_memremap(dev, pmem->phys_addr,
329 				pmem->size, ARCH_MEMREMAP_PMEM);
330 
331 	/*
332 	 * At release time the queue must be frozen before
333 	 * devm_memremap_pages is unwound
334 	 */
335 	if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
336 		return -ENOMEM;
337 
338 	if (IS_ERR(addr))
339 		return PTR_ERR(addr);
340 	pmem->virt_addr = addr;
341 
342 	blk_queue_write_cache(q, true, true);
343 	blk_queue_make_request(q, pmem_make_request);
344 	blk_queue_physical_block_size(q, PAGE_SIZE);
345 	blk_queue_max_hw_sectors(q, UINT_MAX);
346 	blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
347 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
348 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
349 	q->queuedata = pmem;
350 
351 	disk = alloc_disk_node(0, nid);
352 	if (!disk)
353 		return -ENOMEM;
354 	pmem->disk = disk;
355 
356 	disk->fops		= &pmem_fops;
357 	disk->queue		= q;
358 	disk->flags		= GENHD_FL_EXT_DEVT;
359 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
360 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
361 			/ 512);
362 	if (devm_init_badblocks(dev, &pmem->bb))
363 		return -ENOMEM;
364 	nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
365 	disk->bb = &pmem->bb;
366 
367 	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
368 	if (!dax_dev) {
369 		put_disk(disk);
370 		return -ENOMEM;
371 	}
372 	pmem->dax_dev = dax_dev;
373 
374 	device_add_disk(dev, disk);
375 	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
376 		return -ENOMEM;
377 
378 	revalidate_disk(disk);
379 
380 	return 0;
381 }
382 
383 static int nd_pmem_probe(struct device *dev)
384 {
385 	struct nd_namespace_common *ndns;
386 
387 	ndns = nvdimm_namespace_common_probe(dev);
388 	if (IS_ERR(ndns))
389 		return PTR_ERR(ndns);
390 
391 	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
392 		return -ENXIO;
393 
394 	if (is_nd_btt(dev))
395 		return nvdimm_namespace_attach_btt(ndns);
396 
397 	if (is_nd_pfn(dev))
398 		return pmem_attach_disk(dev, ndns);
399 
400 	/* if we find a valid info-block we'll come back as that personality */
401 	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
402 			|| nd_dax_probe(dev, ndns) == 0)
403 		return -ENXIO;
404 
405 	/* ...otherwise we're just a raw pmem device */
406 	return pmem_attach_disk(dev, ndns);
407 }
408 
409 static int nd_pmem_remove(struct device *dev)
410 {
411 	if (is_nd_btt(dev))
412 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
413 	nvdimm_flush(to_nd_region(dev->parent));
414 
415 	return 0;
416 }
417 
418 static void nd_pmem_shutdown(struct device *dev)
419 {
420 	nvdimm_flush(to_nd_region(dev->parent));
421 }
422 
423 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
424 {
425 	struct nd_region *nd_region;
426 	resource_size_t offset = 0, end_trunc = 0;
427 	struct nd_namespace_common *ndns;
428 	struct nd_namespace_io *nsio;
429 	struct resource res;
430 	struct badblocks *bb;
431 
432 	if (event != NVDIMM_REVALIDATE_POISON)
433 		return;
434 
435 	if (is_nd_btt(dev)) {
436 		struct nd_btt *nd_btt = to_nd_btt(dev);
437 
438 		ndns = nd_btt->ndns;
439 		nd_region = to_nd_region(ndns->dev.parent);
440 		nsio = to_nd_namespace_io(&ndns->dev);
441 		bb = &nsio->bb;
442 	} else {
443 		struct pmem_device *pmem = dev_get_drvdata(dev);
444 
445 		nd_region = to_region(pmem);
446 		bb = &pmem->bb;
447 
448 		if (is_nd_pfn(dev)) {
449 			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
450 			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
451 
452 			ndns = nd_pfn->ndns;
453 			offset = pmem->data_offset +
454 					__le32_to_cpu(pfn_sb->start_pad);
455 			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
456 		} else {
457 			ndns = to_ndns(dev);
458 		}
459 
460 		nsio = to_nd_namespace_io(&ndns->dev);
461 	}
462 
463 	res.start = nsio->res.start + offset;
464 	res.end = nsio->res.end - end_trunc;
465 	nvdimm_badblocks_populate(nd_region, bb, &res);
466 }
467 
468 MODULE_ALIAS("pmem");
469 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
470 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
471 static struct nd_device_driver nd_pmem_driver = {
472 	.probe = nd_pmem_probe,
473 	.remove = nd_pmem_remove,
474 	.notify = nd_pmem_notify,
475 	.shutdown = nd_pmem_shutdown,
476 	.drv = {
477 		.name = "nd_pmem",
478 	},
479 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
480 };
481 
482 static int __init pmem_init(void)
483 {
484 	return nd_driver_register(&nd_pmem_driver);
485 }
486 module_init(pmem_init);
487 
488 static void pmem_exit(void)
489 {
490 	driver_unregister(&nd_pmem_driver.drv);
491 }
492 module_exit(pmem_exit);
493 
494 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
495 MODULE_LICENSE("GPL v2");
496