xref: /linux/drivers/nvdimm/pmem.c (revision e21f9e2e862e9eb3dd64eaddb6256b3e5098660f)
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blk-mq.h>
29 #include <linux/pfn_t.h>
30 #include <linux/slab.h>
31 #include <linux/uio.h>
32 #include <linux/dax.h>
33 #include <linux/nd.h>
34 #include <linux/backing-dev.h>
35 #include "pmem.h"
36 #include "pfn.h"
37 #include "nd.h"
38 #include "nd-core.h"
39 
40 static struct device *to_dev(struct pmem_device *pmem)
41 {
42 	/*
43 	 * nvdimm bus services need a 'dev' parameter, and we record the device
44 	 * at init in bb.dev.
45 	 */
46 	return pmem->bb.dev;
47 }
48 
49 static struct nd_region *to_region(struct pmem_device *pmem)
50 {
51 	return to_nd_region(to_dev(pmem)->parent);
52 }
53 
54 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
55 		phys_addr_t offset, unsigned int len)
56 {
57 	struct device *dev = to_dev(pmem);
58 	sector_t sector;
59 	long cleared;
60 	blk_status_t rc = BLK_STS_OK;
61 
62 	sector = (offset - pmem->data_offset) / 512;
63 
64 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
65 	if (cleared < len)
66 		rc = BLK_STS_IOERR;
67 	if (cleared > 0 && cleared / 512) {
68 		cleared /= 512;
69 		dev_dbg(dev, "%#llx clear %ld sector%s\n",
70 				(unsigned long long) sector, cleared,
71 				cleared > 1 ? "s" : "");
72 		badblocks_clear(&pmem->bb, sector, cleared);
73 		if (pmem->bb_state)
74 			sysfs_notify_dirent(pmem->bb_state);
75 	}
76 
77 	arch_invalidate_pmem(pmem->virt_addr + offset, len);
78 
79 	return rc;
80 }
81 
82 static void write_pmem(void *pmem_addr, struct page *page,
83 		unsigned int off, unsigned int len)
84 {
85 	unsigned int chunk;
86 	void *mem;
87 
88 	while (len) {
89 		mem = kmap_atomic(page);
90 		chunk = min_t(unsigned int, len, PAGE_SIZE);
91 		memcpy_flushcache(pmem_addr, mem + off, chunk);
92 		kunmap_atomic(mem);
93 		len -= chunk;
94 		off = 0;
95 		page++;
96 		pmem_addr += PAGE_SIZE;
97 	}
98 }
99 
100 static blk_status_t read_pmem(struct page *page, unsigned int off,
101 		void *pmem_addr, unsigned int len)
102 {
103 	unsigned int chunk;
104 	int rc;
105 	void *mem;
106 
107 	while (len) {
108 		mem = kmap_atomic(page);
109 		chunk = min_t(unsigned int, len, PAGE_SIZE);
110 		rc = memcpy_mcsafe(mem + off, pmem_addr, chunk);
111 		kunmap_atomic(mem);
112 		if (rc)
113 			return BLK_STS_IOERR;
114 		len -= chunk;
115 		off = 0;
116 		page++;
117 		pmem_addr += PAGE_SIZE;
118 	}
119 	return BLK_STS_OK;
120 }
121 
122 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
123 			unsigned int len, unsigned int off, bool is_write,
124 			sector_t sector)
125 {
126 	blk_status_t rc = BLK_STS_OK;
127 	bool bad_pmem = false;
128 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
129 	void *pmem_addr = pmem->virt_addr + pmem_off;
130 
131 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
132 		bad_pmem = true;
133 
134 	if (!is_write) {
135 		if (unlikely(bad_pmem))
136 			rc = BLK_STS_IOERR;
137 		else {
138 			rc = read_pmem(page, off, pmem_addr, len);
139 			flush_dcache_page(page);
140 		}
141 	} else {
142 		/*
143 		 * Note that we write the data both before and after
144 		 * clearing poison.  The write before clear poison
145 		 * handles situations where the latest written data is
146 		 * preserved and the clear poison operation simply marks
147 		 * the address range as valid without changing the data.
148 		 * In this case application software can assume that an
149 		 * interrupted write will either return the new good
150 		 * data or an error.
151 		 *
152 		 * However, if pmem_clear_poison() leaves the data in an
153 		 * indeterminate state we need to perform the write
154 		 * after clear poison.
155 		 */
156 		flush_dcache_page(page);
157 		write_pmem(pmem_addr, page, off, len);
158 		if (unlikely(bad_pmem)) {
159 			rc = pmem_clear_poison(pmem, pmem_off, len);
160 			write_pmem(pmem_addr, page, off, len);
161 		}
162 	}
163 
164 	return rc;
165 }
166 
167 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
168 #ifndef REQ_FLUSH
169 #define REQ_FLUSH REQ_PREFLUSH
170 #endif
171 
172 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
173 {
174 	blk_status_t rc = 0;
175 	bool do_acct;
176 	unsigned long start;
177 	struct bio_vec bvec;
178 	struct bvec_iter iter;
179 	struct pmem_device *pmem = q->queuedata;
180 	struct nd_region *nd_region = to_region(pmem);
181 
182 	if (bio->bi_opf & REQ_FLUSH)
183 		nvdimm_flush(nd_region);
184 
185 	do_acct = nd_iostat_start(bio, &start);
186 	bio_for_each_segment(bvec, bio, iter) {
187 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
188 				bvec.bv_offset, op_is_write(bio_op(bio)),
189 				iter.bi_sector);
190 		if (rc) {
191 			bio->bi_status = rc;
192 			break;
193 		}
194 	}
195 	if (do_acct)
196 		nd_iostat_end(bio, start);
197 
198 	if (bio->bi_opf & REQ_FUA)
199 		nvdimm_flush(nd_region);
200 
201 	bio_endio(bio);
202 	return BLK_QC_T_NONE;
203 }
204 
205 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
206 		       struct page *page, bool is_write)
207 {
208 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
209 	blk_status_t rc;
210 
211 	rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
212 			  0, is_write, sector);
213 
214 	/*
215 	 * The ->rw_page interface is subtle and tricky.  The core
216 	 * retries on any error, so we can only invoke page_endio() in
217 	 * the successful completion case.  Otherwise, we'll see crashes
218 	 * caused by double completion.
219 	 */
220 	if (rc == 0)
221 		page_endio(page, is_write, 0);
222 
223 	return blk_status_to_errno(rc);
224 }
225 
226 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
227 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
228 		long nr_pages, void **kaddr, pfn_t *pfn)
229 {
230 	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
231 
232 	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
233 					PFN_PHYS(nr_pages))))
234 		return -EIO;
235 	*kaddr = pmem->virt_addr + offset;
236 	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
237 
238 	/*
239 	 * If badblocks are present, limit known good range to the
240 	 * requested range.
241 	 */
242 	if (unlikely(pmem->bb.count))
243 		return nr_pages;
244 	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
245 }
246 
247 static const struct block_device_operations pmem_fops = {
248 	.owner =		THIS_MODULE,
249 	.rw_page =		pmem_rw_page,
250 	.revalidate_disk =	nvdimm_revalidate_disk,
251 };
252 
253 static long pmem_dax_direct_access(struct dax_device *dax_dev,
254 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
255 {
256 	struct pmem_device *pmem = dax_get_private(dax_dev);
257 
258 	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
259 }
260 
261 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
262 		void *addr, size_t bytes, struct iov_iter *i)
263 {
264 	return copy_from_iter_flushcache(addr, bytes, i);
265 }
266 
267 static const struct dax_operations pmem_dax_ops = {
268 	.direct_access = pmem_dax_direct_access,
269 	.copy_from_iter = pmem_copy_from_iter,
270 };
271 
272 static const struct attribute_group *pmem_attribute_groups[] = {
273 	&dax_attribute_group,
274 	NULL,
275 };
276 
277 static void pmem_release_queue(void *q)
278 {
279 	blk_cleanup_queue(q);
280 }
281 
282 static void pmem_freeze_queue(void *q)
283 {
284 	blk_freeze_queue_start(q);
285 }
286 
287 static void pmem_release_disk(void *__pmem)
288 {
289 	struct pmem_device *pmem = __pmem;
290 
291 	kill_dax(pmem->dax_dev);
292 	put_dax(pmem->dax_dev);
293 	del_gendisk(pmem->disk);
294 	put_disk(pmem->disk);
295 }
296 
297 static int pmem_attach_disk(struct device *dev,
298 		struct nd_namespace_common *ndns)
299 {
300 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
301 	struct nd_region *nd_region = to_nd_region(dev->parent);
302 	int nid = dev_to_node(dev), fua, wbc;
303 	struct resource *res = &nsio->res;
304 	struct resource bb_res;
305 	struct nd_pfn *nd_pfn = NULL;
306 	struct dax_device *dax_dev;
307 	struct nd_pfn_sb *pfn_sb;
308 	struct pmem_device *pmem;
309 	struct request_queue *q;
310 	struct device *gendev;
311 	struct gendisk *disk;
312 	void *addr;
313 	int rc;
314 
315 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
316 	if (!pmem)
317 		return -ENOMEM;
318 
319 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
320 	if (is_nd_pfn(dev)) {
321 		nd_pfn = to_nd_pfn(dev);
322 		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
323 		if (rc)
324 			return rc;
325 	}
326 
327 	/* we're attaching a block device, disable raw namespace access */
328 	devm_nsio_disable(dev, nsio);
329 
330 	dev_set_drvdata(dev, pmem);
331 	pmem->phys_addr = res->start;
332 	pmem->size = resource_size(res);
333 	fua = nvdimm_has_flush(nd_region);
334 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
335 		dev_warn(dev, "unable to guarantee persistence of writes\n");
336 		fua = 0;
337 	}
338 	wbc = nvdimm_has_cache(nd_region);
339 
340 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
341 				dev_name(&ndns->dev))) {
342 		dev_warn(dev, "could not reserve region %pR\n", res);
343 		return -EBUSY;
344 	}
345 
346 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev), NULL);
347 	if (!q)
348 		return -ENOMEM;
349 
350 	if (devm_add_action_or_reset(dev, pmem_release_queue, q))
351 		return -ENOMEM;
352 
353 	pmem->pfn_flags = PFN_DEV;
354 	pmem->pgmap.ref = &q->q_usage_counter;
355 	if (is_nd_pfn(dev)) {
356 		addr = devm_memremap_pages(dev, &pmem->pgmap);
357 		pfn_sb = nd_pfn->pfn_sb;
358 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
359 		pmem->pfn_pad = resource_size(res) -
360 			resource_size(&pmem->pgmap.res);
361 		pmem->pfn_flags |= PFN_MAP;
362 		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
363 		bb_res.start += pmem->data_offset;
364 	} else if (pmem_should_map_pages(dev)) {
365 		memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
366 		pmem->pgmap.altmap_valid = false;
367 		addr = devm_memremap_pages(dev, &pmem->pgmap);
368 		pmem->pfn_flags |= PFN_MAP;
369 		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
370 	} else
371 		addr = devm_memremap(dev, pmem->phys_addr,
372 				pmem->size, ARCH_MEMREMAP_PMEM);
373 
374 	/*
375 	 * At release time the queue must be frozen before
376 	 * devm_memremap_pages is unwound
377 	 */
378 	if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
379 		return -ENOMEM;
380 
381 	if (IS_ERR(addr))
382 		return PTR_ERR(addr);
383 	pmem->virt_addr = addr;
384 
385 	blk_queue_write_cache(q, wbc, fua);
386 	blk_queue_make_request(q, pmem_make_request);
387 	blk_queue_physical_block_size(q, PAGE_SIZE);
388 	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
389 	blk_queue_max_hw_sectors(q, UINT_MAX);
390 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
391 	blk_queue_flag_set(QUEUE_FLAG_DAX, q);
392 	q->queuedata = pmem;
393 
394 	disk = alloc_disk_node(0, nid);
395 	if (!disk)
396 		return -ENOMEM;
397 	pmem->disk = disk;
398 
399 	disk->fops		= &pmem_fops;
400 	disk->queue		= q;
401 	disk->flags		= GENHD_FL_EXT_DEVT;
402 	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
403 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
404 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
405 			/ 512);
406 	if (devm_init_badblocks(dev, &pmem->bb))
407 		return -ENOMEM;
408 	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
409 	disk->bb = &pmem->bb;
410 
411 	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
412 	if (!dax_dev) {
413 		put_disk(disk);
414 		return -ENOMEM;
415 	}
416 	dax_write_cache(dax_dev, wbc);
417 	pmem->dax_dev = dax_dev;
418 
419 	gendev = disk_to_dev(disk);
420 	gendev->groups = pmem_attribute_groups;
421 
422 	device_add_disk(dev, disk);
423 	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
424 		return -ENOMEM;
425 
426 	revalidate_disk(disk);
427 
428 	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
429 					  "badblocks");
430 	if (!pmem->bb_state)
431 		dev_warn(dev, "'badblocks' notification disabled\n");
432 
433 	return 0;
434 }
435 
436 static int nd_pmem_probe(struct device *dev)
437 {
438 	struct nd_namespace_common *ndns;
439 
440 	ndns = nvdimm_namespace_common_probe(dev);
441 	if (IS_ERR(ndns))
442 		return PTR_ERR(ndns);
443 
444 	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
445 		return -ENXIO;
446 
447 	if (is_nd_btt(dev))
448 		return nvdimm_namespace_attach_btt(ndns);
449 
450 	if (is_nd_pfn(dev))
451 		return pmem_attach_disk(dev, ndns);
452 
453 	/* if we find a valid info-block we'll come back as that personality */
454 	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
455 			|| nd_dax_probe(dev, ndns) == 0)
456 		return -ENXIO;
457 
458 	/* ...otherwise we're just a raw pmem device */
459 	return pmem_attach_disk(dev, ndns);
460 }
461 
462 static int nd_pmem_remove(struct device *dev)
463 {
464 	struct pmem_device *pmem = dev_get_drvdata(dev);
465 
466 	if (is_nd_btt(dev))
467 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
468 	else {
469 		/*
470 		 * Note, this assumes device_lock() context to not race
471 		 * nd_pmem_notify()
472 		 */
473 		sysfs_put(pmem->bb_state);
474 		pmem->bb_state = NULL;
475 	}
476 	nvdimm_flush(to_nd_region(dev->parent));
477 
478 	return 0;
479 }
480 
481 static void nd_pmem_shutdown(struct device *dev)
482 {
483 	nvdimm_flush(to_nd_region(dev->parent));
484 }
485 
486 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
487 {
488 	struct nd_region *nd_region;
489 	resource_size_t offset = 0, end_trunc = 0;
490 	struct nd_namespace_common *ndns;
491 	struct nd_namespace_io *nsio;
492 	struct resource res;
493 	struct badblocks *bb;
494 	struct kernfs_node *bb_state;
495 
496 	if (event != NVDIMM_REVALIDATE_POISON)
497 		return;
498 
499 	if (is_nd_btt(dev)) {
500 		struct nd_btt *nd_btt = to_nd_btt(dev);
501 
502 		ndns = nd_btt->ndns;
503 		nd_region = to_nd_region(ndns->dev.parent);
504 		nsio = to_nd_namespace_io(&ndns->dev);
505 		bb = &nsio->bb;
506 		bb_state = NULL;
507 	} else {
508 		struct pmem_device *pmem = dev_get_drvdata(dev);
509 
510 		nd_region = to_region(pmem);
511 		bb = &pmem->bb;
512 		bb_state = pmem->bb_state;
513 
514 		if (is_nd_pfn(dev)) {
515 			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
516 			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
517 
518 			ndns = nd_pfn->ndns;
519 			offset = pmem->data_offset +
520 					__le32_to_cpu(pfn_sb->start_pad);
521 			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
522 		} else {
523 			ndns = to_ndns(dev);
524 		}
525 
526 		nsio = to_nd_namespace_io(&ndns->dev);
527 	}
528 
529 	res.start = nsio->res.start + offset;
530 	res.end = nsio->res.end - end_trunc;
531 	nvdimm_badblocks_populate(nd_region, bb, &res);
532 	if (bb_state)
533 		sysfs_notify_dirent(bb_state);
534 }
535 
536 MODULE_ALIAS("pmem");
537 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
538 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
539 static struct nd_device_driver nd_pmem_driver = {
540 	.probe = nd_pmem_probe,
541 	.remove = nd_pmem_remove,
542 	.notify = nd_pmem_notify,
543 	.shutdown = nd_pmem_shutdown,
544 	.drv = {
545 		.name = "nd_pmem",
546 	},
547 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
548 };
549 
550 module_nd_driver(nd_pmem_driver);
551 
552 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
553 MODULE_LICENSE("GPL v2");
554