1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Persistent Memory Driver 4 * 5 * Copyright (c) 2014-2015, Intel Corporation. 6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>. 7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>. 8 */ 9 10 #include <linux/blkdev.h> 11 #include <linux/pagemap.h> 12 #include <linux/hdreg.h> 13 #include <linux/init.h> 14 #include <linux/platform_device.h> 15 #include <linux/set_memory.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/badblocks.h> 19 #include <linux/memremap.h> 20 #include <linux/vmalloc.h> 21 #include <linux/blk-mq.h> 22 #include <linux/pfn_t.h> 23 #include <linux/slab.h> 24 #include <linux/uio.h> 25 #include <linux/dax.h> 26 #include <linux/nd.h> 27 #include <linux/mm.h> 28 #include <asm/cacheflush.h> 29 #include "pmem.h" 30 #include "btt.h" 31 #include "pfn.h" 32 #include "nd.h" 33 34 static struct device *to_dev(struct pmem_device *pmem) 35 { 36 /* 37 * nvdimm bus services need a 'dev' parameter, and we record the device 38 * at init in bb.dev. 39 */ 40 return pmem->bb.dev; 41 } 42 43 static struct nd_region *to_region(struct pmem_device *pmem) 44 { 45 return to_nd_region(to_dev(pmem)->parent); 46 } 47 48 static phys_addr_t pmem_to_phys(struct pmem_device *pmem, phys_addr_t offset) 49 { 50 return pmem->phys_addr + offset; 51 } 52 53 static sector_t to_sect(struct pmem_device *pmem, phys_addr_t offset) 54 { 55 return (offset - pmem->data_offset) >> SECTOR_SHIFT; 56 } 57 58 static phys_addr_t to_offset(struct pmem_device *pmem, sector_t sector) 59 { 60 return (sector << SECTOR_SHIFT) + pmem->data_offset; 61 } 62 63 static void pmem_mkpage_present(struct pmem_device *pmem, phys_addr_t offset, 64 unsigned int len) 65 { 66 phys_addr_t phys = pmem_to_phys(pmem, offset); 67 unsigned long pfn_start, pfn_end, pfn; 68 69 /* only pmem in the linear map supports HWPoison */ 70 if (is_vmalloc_addr(pmem->virt_addr)) 71 return; 72 73 pfn_start = PHYS_PFN(phys); 74 pfn_end = pfn_start + PHYS_PFN(len); 75 for (pfn = pfn_start; pfn < pfn_end; pfn++) { 76 struct page *page = pfn_to_page(pfn); 77 78 /* 79 * Note, no need to hold a get_dev_pagemap() reference 80 * here since we're in the driver I/O path and 81 * outstanding I/O requests pin the dev_pagemap. 82 */ 83 if (test_and_clear_pmem_poison(page)) 84 clear_mce_nospec(pfn); 85 } 86 } 87 88 static void pmem_clear_bb(struct pmem_device *pmem, sector_t sector, long blks) 89 { 90 if (blks == 0) 91 return; 92 badblocks_clear(&pmem->bb, sector, blks); 93 if (pmem->bb_state) 94 sysfs_notify_dirent(pmem->bb_state); 95 } 96 97 static long __pmem_clear_poison(struct pmem_device *pmem, 98 phys_addr_t offset, unsigned int len) 99 { 100 phys_addr_t phys = pmem_to_phys(pmem, offset); 101 long cleared = nvdimm_clear_poison(to_dev(pmem), phys, len); 102 103 if (cleared > 0) { 104 pmem_mkpage_present(pmem, offset, cleared); 105 arch_invalidate_pmem(pmem->virt_addr + offset, len); 106 } 107 return cleared; 108 } 109 110 static blk_status_t pmem_clear_poison(struct pmem_device *pmem, 111 phys_addr_t offset, unsigned int len) 112 { 113 long cleared = __pmem_clear_poison(pmem, offset, len); 114 115 if (cleared < 0) 116 return BLK_STS_IOERR; 117 118 pmem_clear_bb(pmem, to_sect(pmem, offset), cleared >> SECTOR_SHIFT); 119 if (cleared < len) 120 return BLK_STS_IOERR; 121 return BLK_STS_OK; 122 } 123 124 static void write_pmem(void *pmem_addr, struct page *page, 125 unsigned int off, unsigned int len) 126 { 127 unsigned int chunk; 128 void *mem; 129 130 while (len) { 131 mem = kmap_atomic(page); 132 chunk = min_t(unsigned int, len, PAGE_SIZE - off); 133 memcpy_flushcache(pmem_addr, mem + off, chunk); 134 kunmap_atomic(mem); 135 len -= chunk; 136 off = 0; 137 page++; 138 pmem_addr += chunk; 139 } 140 } 141 142 static blk_status_t read_pmem(struct page *page, unsigned int off, 143 void *pmem_addr, unsigned int len) 144 { 145 unsigned int chunk; 146 unsigned long rem; 147 void *mem; 148 149 while (len) { 150 mem = kmap_atomic(page); 151 chunk = min_t(unsigned int, len, PAGE_SIZE - off); 152 rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk); 153 kunmap_atomic(mem); 154 if (rem) 155 return BLK_STS_IOERR; 156 len -= chunk; 157 off = 0; 158 page++; 159 pmem_addr += chunk; 160 } 161 return BLK_STS_OK; 162 } 163 164 static blk_status_t pmem_do_read(struct pmem_device *pmem, 165 struct page *page, unsigned int page_off, 166 sector_t sector, unsigned int len) 167 { 168 blk_status_t rc; 169 phys_addr_t pmem_off = to_offset(pmem, sector); 170 void *pmem_addr = pmem->virt_addr + pmem_off; 171 172 if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) 173 return BLK_STS_IOERR; 174 175 rc = read_pmem(page, page_off, pmem_addr, len); 176 flush_dcache_page(page); 177 return rc; 178 } 179 180 static blk_status_t pmem_do_write(struct pmem_device *pmem, 181 struct page *page, unsigned int page_off, 182 sector_t sector, unsigned int len) 183 { 184 phys_addr_t pmem_off = to_offset(pmem, sector); 185 void *pmem_addr = pmem->virt_addr + pmem_off; 186 187 if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) { 188 blk_status_t rc = pmem_clear_poison(pmem, pmem_off, len); 189 190 if (rc != BLK_STS_OK) 191 return rc; 192 } 193 194 flush_dcache_page(page); 195 write_pmem(pmem_addr, page, page_off, len); 196 197 return BLK_STS_OK; 198 } 199 200 static void pmem_submit_bio(struct bio *bio) 201 { 202 int ret = 0; 203 blk_status_t rc = 0; 204 bool do_acct; 205 unsigned long start; 206 struct bio_vec bvec; 207 struct bvec_iter iter; 208 struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data; 209 struct nd_region *nd_region = to_region(pmem); 210 211 if (bio->bi_opf & REQ_PREFLUSH) 212 ret = nvdimm_flush(nd_region, bio); 213 214 do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue); 215 if (do_acct) 216 start = bio_start_io_acct(bio); 217 bio_for_each_segment(bvec, bio, iter) { 218 if (op_is_write(bio_op(bio))) 219 rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset, 220 iter.bi_sector, bvec.bv_len); 221 else 222 rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset, 223 iter.bi_sector, bvec.bv_len); 224 if (rc) { 225 bio->bi_status = rc; 226 break; 227 } 228 } 229 if (do_acct) 230 bio_end_io_acct(bio, start); 231 232 if (bio->bi_opf & REQ_FUA) 233 ret = nvdimm_flush(nd_region, bio); 234 235 if (ret) 236 bio->bi_status = errno_to_blk_status(ret); 237 238 bio_endio(bio); 239 } 240 241 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */ 242 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff, 243 long nr_pages, enum dax_access_mode mode, void **kaddr, 244 pfn_t *pfn) 245 { 246 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset; 247 sector_t sector = PFN_PHYS(pgoff) >> SECTOR_SHIFT; 248 unsigned int num = PFN_PHYS(nr_pages) >> SECTOR_SHIFT; 249 struct badblocks *bb = &pmem->bb; 250 sector_t first_bad; 251 int num_bad; 252 253 if (kaddr) 254 *kaddr = pmem->virt_addr + offset; 255 if (pfn) 256 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags); 257 258 if (bb->count && 259 badblocks_check(bb, sector, num, &first_bad, &num_bad)) { 260 long actual_nr; 261 262 if (mode != DAX_RECOVERY_WRITE) 263 return -EIO; 264 265 /* 266 * Set the recovery stride is set to kernel page size because 267 * the underlying driver and firmware clear poison functions 268 * don't appear to handle large chunk(such as 2MiB) reliably. 269 */ 270 actual_nr = PHYS_PFN( 271 PAGE_ALIGN((first_bad - sector) << SECTOR_SHIFT)); 272 dev_dbg(pmem->bb.dev, "start sector(%llu), nr_pages(%ld), first_bad(%llu), actual_nr(%ld)\n", 273 sector, nr_pages, first_bad, actual_nr); 274 if (actual_nr) 275 return actual_nr; 276 return 1; 277 } 278 279 /* 280 * If badblocks are present but not in the range, limit known good range 281 * to the requested range. 282 */ 283 if (bb->count) 284 return nr_pages; 285 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset); 286 } 287 288 static const struct block_device_operations pmem_fops = { 289 .owner = THIS_MODULE, 290 .submit_bio = pmem_submit_bio, 291 }; 292 293 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 294 size_t nr_pages) 295 { 296 struct pmem_device *pmem = dax_get_private(dax_dev); 297 298 return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0, 299 PFN_PHYS(pgoff) >> SECTOR_SHIFT, 300 PAGE_SIZE)); 301 } 302 303 static long pmem_dax_direct_access(struct dax_device *dax_dev, 304 pgoff_t pgoff, long nr_pages, enum dax_access_mode mode, 305 void **kaddr, pfn_t *pfn) 306 { 307 struct pmem_device *pmem = dax_get_private(dax_dev); 308 309 return __pmem_direct_access(pmem, pgoff, nr_pages, mode, kaddr, pfn); 310 } 311 312 /* 313 * The recovery write thread started out as a normal pwrite thread and 314 * when the filesystem was told about potential media error in the 315 * range, filesystem turns the normal pwrite to a dax_recovery_write. 316 * 317 * The recovery write consists of clearing media poison, clearing page 318 * HWPoison bit, reenable page-wide read-write permission, flush the 319 * caches and finally write. A competing pread thread will be held 320 * off during the recovery process since data read back might not be 321 * valid, and this is achieved by clearing the badblock records after 322 * the recovery write is complete. Competing recovery write threads 323 * are already serialized by writer lock held by dax_iomap_rw(). 324 */ 325 static size_t pmem_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 326 void *addr, size_t bytes, struct iov_iter *i) 327 { 328 struct pmem_device *pmem = dax_get_private(dax_dev); 329 size_t olen, len, off; 330 phys_addr_t pmem_off; 331 struct device *dev = pmem->bb.dev; 332 long cleared; 333 334 off = offset_in_page(addr); 335 len = PFN_PHYS(PFN_UP(off + bytes)); 336 if (!is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) >> SECTOR_SHIFT, len)) 337 return _copy_from_iter_flushcache(addr, bytes, i); 338 339 /* 340 * Not page-aligned range cannot be recovered. This should not 341 * happen unless something else went wrong. 342 */ 343 if (off || !PAGE_ALIGNED(bytes)) { 344 dev_dbg(dev, "Found poison, but addr(%p) or bytes(%#zx) not page aligned\n", 345 addr, bytes); 346 return 0; 347 } 348 349 pmem_off = PFN_PHYS(pgoff) + pmem->data_offset; 350 cleared = __pmem_clear_poison(pmem, pmem_off, len); 351 if (cleared > 0 && cleared < len) { 352 dev_dbg(dev, "poison cleared only %ld out of %zu bytes\n", 353 cleared, len); 354 return 0; 355 } 356 if (cleared < 0) { 357 dev_dbg(dev, "poison clear failed: %ld\n", cleared); 358 return 0; 359 } 360 361 olen = _copy_from_iter_flushcache(addr, bytes, i); 362 pmem_clear_bb(pmem, to_sect(pmem, pmem_off), cleared >> SECTOR_SHIFT); 363 364 return olen; 365 } 366 367 static const struct dax_operations pmem_dax_ops = { 368 .direct_access = pmem_dax_direct_access, 369 .zero_page_range = pmem_dax_zero_page_range, 370 .recovery_write = pmem_recovery_write, 371 }; 372 373 static ssize_t write_cache_show(struct device *dev, 374 struct device_attribute *attr, char *buf) 375 { 376 struct pmem_device *pmem = dev_to_disk(dev)->private_data; 377 378 return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev)); 379 } 380 381 static ssize_t write_cache_store(struct device *dev, 382 struct device_attribute *attr, const char *buf, size_t len) 383 { 384 struct pmem_device *pmem = dev_to_disk(dev)->private_data; 385 bool write_cache; 386 int rc; 387 388 rc = strtobool(buf, &write_cache); 389 if (rc) 390 return rc; 391 dax_write_cache(pmem->dax_dev, write_cache); 392 return len; 393 } 394 static DEVICE_ATTR_RW(write_cache); 395 396 static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n) 397 { 398 #ifndef CONFIG_ARCH_HAS_PMEM_API 399 if (a == &dev_attr_write_cache.attr) 400 return 0; 401 #endif 402 return a->mode; 403 } 404 405 static struct attribute *dax_attributes[] = { 406 &dev_attr_write_cache.attr, 407 NULL, 408 }; 409 410 static const struct attribute_group dax_attribute_group = { 411 .name = "dax", 412 .attrs = dax_attributes, 413 .is_visible = dax_visible, 414 }; 415 416 static const struct attribute_group *pmem_attribute_groups[] = { 417 &dax_attribute_group, 418 NULL, 419 }; 420 421 static void pmem_release_disk(void *__pmem) 422 { 423 struct pmem_device *pmem = __pmem; 424 425 dax_remove_host(pmem->disk); 426 kill_dax(pmem->dax_dev); 427 put_dax(pmem->dax_dev); 428 del_gendisk(pmem->disk); 429 430 put_disk(pmem->disk); 431 } 432 433 static int pmem_pagemap_memory_failure(struct dev_pagemap *pgmap, 434 unsigned long pfn, unsigned long nr_pages, int mf_flags) 435 { 436 struct pmem_device *pmem = 437 container_of(pgmap, struct pmem_device, pgmap); 438 u64 offset = PFN_PHYS(pfn) - pmem->phys_addr - pmem->data_offset; 439 u64 len = nr_pages << PAGE_SHIFT; 440 441 return dax_holder_notify_failure(pmem->dax_dev, offset, len, mf_flags); 442 } 443 444 static const struct dev_pagemap_ops fsdax_pagemap_ops = { 445 .memory_failure = pmem_pagemap_memory_failure, 446 }; 447 448 static int pmem_attach_disk(struct device *dev, 449 struct nd_namespace_common *ndns) 450 { 451 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); 452 struct nd_region *nd_region = to_nd_region(dev->parent); 453 int nid = dev_to_node(dev), fua; 454 struct resource *res = &nsio->res; 455 struct range bb_range; 456 struct nd_pfn *nd_pfn = NULL; 457 struct dax_device *dax_dev; 458 struct nd_pfn_sb *pfn_sb; 459 struct pmem_device *pmem; 460 struct request_queue *q; 461 struct gendisk *disk; 462 void *addr; 463 int rc; 464 465 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL); 466 if (!pmem) 467 return -ENOMEM; 468 469 rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve()); 470 if (rc) 471 return rc; 472 473 /* while nsio_rw_bytes is active, parse a pfn info block if present */ 474 if (is_nd_pfn(dev)) { 475 nd_pfn = to_nd_pfn(dev); 476 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap); 477 if (rc) 478 return rc; 479 } 480 481 /* we're attaching a block device, disable raw namespace access */ 482 devm_namespace_disable(dev, ndns); 483 484 dev_set_drvdata(dev, pmem); 485 pmem->phys_addr = res->start; 486 pmem->size = resource_size(res); 487 fua = nvdimm_has_flush(nd_region); 488 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) { 489 dev_warn(dev, "unable to guarantee persistence of writes\n"); 490 fua = 0; 491 } 492 493 if (!devm_request_mem_region(dev, res->start, resource_size(res), 494 dev_name(&ndns->dev))) { 495 dev_warn(dev, "could not reserve region %pR\n", res); 496 return -EBUSY; 497 } 498 499 disk = blk_alloc_disk(nid); 500 if (!disk) 501 return -ENOMEM; 502 q = disk->queue; 503 504 pmem->disk = disk; 505 pmem->pgmap.owner = pmem; 506 pmem->pfn_flags = PFN_DEV; 507 if (is_nd_pfn(dev)) { 508 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX; 509 pmem->pgmap.ops = &fsdax_pagemap_ops; 510 addr = devm_memremap_pages(dev, &pmem->pgmap); 511 pfn_sb = nd_pfn->pfn_sb; 512 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff); 513 pmem->pfn_pad = resource_size(res) - 514 range_len(&pmem->pgmap.range); 515 pmem->pfn_flags |= PFN_MAP; 516 bb_range = pmem->pgmap.range; 517 bb_range.start += pmem->data_offset; 518 } else if (pmem_should_map_pages(dev)) { 519 pmem->pgmap.range.start = res->start; 520 pmem->pgmap.range.end = res->end; 521 pmem->pgmap.nr_range = 1; 522 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX; 523 pmem->pgmap.ops = &fsdax_pagemap_ops; 524 addr = devm_memremap_pages(dev, &pmem->pgmap); 525 pmem->pfn_flags |= PFN_MAP; 526 bb_range = pmem->pgmap.range; 527 } else { 528 addr = devm_memremap(dev, pmem->phys_addr, 529 pmem->size, ARCH_MEMREMAP_PMEM); 530 bb_range.start = res->start; 531 bb_range.end = res->end; 532 } 533 534 if (IS_ERR(addr)) { 535 rc = PTR_ERR(addr); 536 goto out; 537 } 538 pmem->virt_addr = addr; 539 540 blk_queue_write_cache(q, true, fua); 541 blk_queue_physical_block_size(q, PAGE_SIZE); 542 blk_queue_logical_block_size(q, pmem_sector_size(ndns)); 543 blk_queue_max_hw_sectors(q, UINT_MAX); 544 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 545 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, q); 546 if (pmem->pfn_flags & PFN_MAP) 547 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 548 549 disk->fops = &pmem_fops; 550 disk->private_data = pmem; 551 nvdimm_namespace_disk_name(ndns, disk->disk_name); 552 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset) 553 / 512); 554 if (devm_init_badblocks(dev, &pmem->bb)) 555 return -ENOMEM; 556 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range); 557 disk->bb = &pmem->bb; 558 559 dax_dev = alloc_dax(pmem, &pmem_dax_ops); 560 if (IS_ERR(dax_dev)) { 561 rc = PTR_ERR(dax_dev); 562 goto out; 563 } 564 set_dax_nocache(dax_dev); 565 set_dax_nomc(dax_dev); 566 if (is_nvdimm_sync(nd_region)) 567 set_dax_synchronous(dax_dev); 568 rc = dax_add_host(dax_dev, disk); 569 if (rc) 570 goto out_cleanup_dax; 571 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region)); 572 pmem->dax_dev = dax_dev; 573 574 rc = device_add_disk(dev, disk, pmem_attribute_groups); 575 if (rc) 576 goto out_remove_host; 577 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem)) 578 return -ENOMEM; 579 580 nvdimm_check_and_set_ro(disk); 581 582 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd, 583 "badblocks"); 584 if (!pmem->bb_state) 585 dev_warn(dev, "'badblocks' notification disabled\n"); 586 return 0; 587 588 out_remove_host: 589 dax_remove_host(pmem->disk); 590 out_cleanup_dax: 591 kill_dax(pmem->dax_dev); 592 put_dax(pmem->dax_dev); 593 out: 594 put_disk(pmem->disk); 595 return rc; 596 } 597 598 static int nd_pmem_probe(struct device *dev) 599 { 600 int ret; 601 struct nd_namespace_common *ndns; 602 603 ndns = nvdimm_namespace_common_probe(dev); 604 if (IS_ERR(ndns)) 605 return PTR_ERR(ndns); 606 607 if (is_nd_btt(dev)) 608 return nvdimm_namespace_attach_btt(ndns); 609 610 if (is_nd_pfn(dev)) 611 return pmem_attach_disk(dev, ndns); 612 613 ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve()); 614 if (ret) 615 return ret; 616 617 ret = nd_btt_probe(dev, ndns); 618 if (ret == 0) 619 return -ENXIO; 620 621 /* 622 * We have two failure conditions here, there is no 623 * info reserver block or we found a valid info reserve block 624 * but failed to initialize the pfn superblock. 625 * 626 * For the first case consider namespace as a raw pmem namespace 627 * and attach a disk. 628 * 629 * For the latter, consider this a success and advance the namespace 630 * seed. 631 */ 632 ret = nd_pfn_probe(dev, ndns); 633 if (ret == 0) 634 return -ENXIO; 635 else if (ret == -EOPNOTSUPP) 636 return ret; 637 638 ret = nd_dax_probe(dev, ndns); 639 if (ret == 0) 640 return -ENXIO; 641 else if (ret == -EOPNOTSUPP) 642 return ret; 643 644 /* probe complete, attach handles namespace enabling */ 645 devm_namespace_disable(dev, ndns); 646 647 return pmem_attach_disk(dev, ndns); 648 } 649 650 static void nd_pmem_remove(struct device *dev) 651 { 652 struct pmem_device *pmem = dev_get_drvdata(dev); 653 654 if (is_nd_btt(dev)) 655 nvdimm_namespace_detach_btt(to_nd_btt(dev)); 656 else { 657 /* 658 * Note, this assumes device_lock() context to not 659 * race nd_pmem_notify() 660 */ 661 sysfs_put(pmem->bb_state); 662 pmem->bb_state = NULL; 663 } 664 nvdimm_flush(to_nd_region(dev->parent), NULL); 665 } 666 667 static void nd_pmem_shutdown(struct device *dev) 668 { 669 nvdimm_flush(to_nd_region(dev->parent), NULL); 670 } 671 672 static void pmem_revalidate_poison(struct device *dev) 673 { 674 struct nd_region *nd_region; 675 resource_size_t offset = 0, end_trunc = 0; 676 struct nd_namespace_common *ndns; 677 struct nd_namespace_io *nsio; 678 struct badblocks *bb; 679 struct range range; 680 struct kernfs_node *bb_state; 681 682 if (is_nd_btt(dev)) { 683 struct nd_btt *nd_btt = to_nd_btt(dev); 684 685 ndns = nd_btt->ndns; 686 nd_region = to_nd_region(ndns->dev.parent); 687 nsio = to_nd_namespace_io(&ndns->dev); 688 bb = &nsio->bb; 689 bb_state = NULL; 690 } else { 691 struct pmem_device *pmem = dev_get_drvdata(dev); 692 693 nd_region = to_region(pmem); 694 bb = &pmem->bb; 695 bb_state = pmem->bb_state; 696 697 if (is_nd_pfn(dev)) { 698 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 699 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb; 700 701 ndns = nd_pfn->ndns; 702 offset = pmem->data_offset + 703 __le32_to_cpu(pfn_sb->start_pad); 704 end_trunc = __le32_to_cpu(pfn_sb->end_trunc); 705 } else { 706 ndns = to_ndns(dev); 707 } 708 709 nsio = to_nd_namespace_io(&ndns->dev); 710 } 711 712 range.start = nsio->res.start + offset; 713 range.end = nsio->res.end - end_trunc; 714 nvdimm_badblocks_populate(nd_region, bb, &range); 715 if (bb_state) 716 sysfs_notify_dirent(bb_state); 717 } 718 719 static void pmem_revalidate_region(struct device *dev) 720 { 721 struct pmem_device *pmem; 722 723 if (is_nd_btt(dev)) { 724 struct nd_btt *nd_btt = to_nd_btt(dev); 725 struct btt *btt = nd_btt->btt; 726 727 nvdimm_check_and_set_ro(btt->btt_disk); 728 return; 729 } 730 731 pmem = dev_get_drvdata(dev); 732 nvdimm_check_and_set_ro(pmem->disk); 733 } 734 735 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event) 736 { 737 switch (event) { 738 case NVDIMM_REVALIDATE_POISON: 739 pmem_revalidate_poison(dev); 740 break; 741 case NVDIMM_REVALIDATE_REGION: 742 pmem_revalidate_region(dev); 743 break; 744 default: 745 dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event); 746 break; 747 } 748 } 749 750 MODULE_ALIAS("pmem"); 751 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO); 752 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM); 753 static struct nd_device_driver nd_pmem_driver = { 754 .probe = nd_pmem_probe, 755 .remove = nd_pmem_remove, 756 .notify = nd_pmem_notify, 757 .shutdown = nd_pmem_shutdown, 758 .drv = { 759 .name = "nd_pmem", 760 }, 761 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM, 762 }; 763 764 module_nd_driver(nd_pmem_driver); 765 766 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>"); 767 MODULE_LICENSE("GPL v2"); 768