xref: /linux/drivers/nvdimm/pmem.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/memory_hotplug.h>
25 #include <linux/moduleparam.h>
26 #include <linux/vmalloc.h>
27 #include <linux/slab.h>
28 #include <linux/pmem.h>
29 #include <linux/nd.h>
30 #include "pfn.h"
31 #include "nd.h"
32 
33 struct pmem_device {
34 	struct request_queue	*pmem_queue;
35 	struct gendisk		*pmem_disk;
36 	struct nd_namespace_common *ndns;
37 
38 	/* One contiguous memory region per device */
39 	phys_addr_t		phys_addr;
40 	/* when non-zero this device is hosting a 'pfn' instance */
41 	phys_addr_t		data_offset;
42 	void __pmem		*virt_addr;
43 	size_t			size;
44 };
45 
46 static int pmem_major;
47 
48 static void pmem_do_bvec(struct pmem_device *pmem, struct page *page,
49 			unsigned int len, unsigned int off, int rw,
50 			sector_t sector)
51 {
52 	void *mem = kmap_atomic(page);
53 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
54 	void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
55 
56 	if (rw == READ) {
57 		memcpy_from_pmem(mem + off, pmem_addr, len);
58 		flush_dcache_page(page);
59 	} else {
60 		flush_dcache_page(page);
61 		memcpy_to_pmem(pmem_addr, mem + off, len);
62 	}
63 
64 	kunmap_atomic(mem);
65 }
66 
67 static void pmem_make_request(struct request_queue *q, struct bio *bio)
68 {
69 	bool do_acct;
70 	unsigned long start;
71 	struct bio_vec bvec;
72 	struct bvec_iter iter;
73 	struct block_device *bdev = bio->bi_bdev;
74 	struct pmem_device *pmem = bdev->bd_disk->private_data;
75 
76 	do_acct = nd_iostat_start(bio, &start);
77 	bio_for_each_segment(bvec, bio, iter)
78 		pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len, bvec.bv_offset,
79 				bio_data_dir(bio), iter.bi_sector);
80 	if (do_acct)
81 		nd_iostat_end(bio, start);
82 
83 	if (bio_data_dir(bio))
84 		wmb_pmem();
85 
86 	bio_endio(bio);
87 }
88 
89 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
90 		       struct page *page, int rw)
91 {
92 	struct pmem_device *pmem = bdev->bd_disk->private_data;
93 
94 	pmem_do_bvec(pmem, page, PAGE_CACHE_SIZE, 0, rw, sector);
95 	if (rw & WRITE)
96 		wmb_pmem();
97 	page_endio(page, rw & WRITE, 0);
98 
99 	return 0;
100 }
101 
102 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
103 		      void __pmem **kaddr, unsigned long *pfn)
104 {
105 	struct pmem_device *pmem = bdev->bd_disk->private_data;
106 	resource_size_t offset = sector * 512 + pmem->data_offset;
107 	resource_size_t size;
108 
109 	if (pmem->data_offset) {
110 		/*
111 		 * Limit the direct_access() size to what is covered by
112 		 * the memmap
113 		 */
114 		size = (pmem->size - offset) & ~ND_PFN_MASK;
115 	} else
116 		size = pmem->size - offset;
117 
118 	/* FIXME convert DAX to comprehend that this mapping has a lifetime */
119 	*kaddr = pmem->virt_addr + offset;
120 	*pfn = (pmem->phys_addr + offset) >> PAGE_SHIFT;
121 
122 	return size;
123 }
124 
125 static const struct block_device_operations pmem_fops = {
126 	.owner =		THIS_MODULE,
127 	.rw_page =		pmem_rw_page,
128 	.direct_access =	pmem_direct_access,
129 	.revalidate_disk =	nvdimm_revalidate_disk,
130 };
131 
132 static struct pmem_device *pmem_alloc(struct device *dev,
133 		struct resource *res, int id)
134 {
135 	struct pmem_device *pmem;
136 
137 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
138 	if (!pmem)
139 		return ERR_PTR(-ENOMEM);
140 
141 	pmem->phys_addr = res->start;
142 	pmem->size = resource_size(res);
143 	if (!arch_has_wmb_pmem())
144 		dev_warn(dev, "unable to guarantee persistence of writes\n");
145 
146 	if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
147 			dev_name(dev))) {
148 		dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
149 				&pmem->phys_addr, pmem->size);
150 		return ERR_PTR(-EBUSY);
151 	}
152 
153 	if (pmem_should_map_pages(dev)) {
154 		void *addr = devm_memremap_pages(dev, res);
155 
156 		if (IS_ERR(addr))
157 			return addr;
158 		pmem->virt_addr = (void __pmem *) addr;
159 	} else {
160 		pmem->virt_addr = memremap_pmem(dev, pmem->phys_addr,
161 				pmem->size);
162 		if (!pmem->virt_addr)
163 			return ERR_PTR(-ENXIO);
164 	}
165 
166 	return pmem;
167 }
168 
169 static void pmem_detach_disk(struct pmem_device *pmem)
170 {
171 	if (!pmem->pmem_disk)
172 		return;
173 
174 	del_gendisk(pmem->pmem_disk);
175 	put_disk(pmem->pmem_disk);
176 	blk_cleanup_queue(pmem->pmem_queue);
177 }
178 
179 static int pmem_attach_disk(struct device *dev,
180 		struct nd_namespace_common *ndns, struct pmem_device *pmem)
181 {
182 	struct gendisk *disk;
183 
184 	pmem->pmem_queue = blk_alloc_queue(GFP_KERNEL);
185 	if (!pmem->pmem_queue)
186 		return -ENOMEM;
187 
188 	blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
189 	blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
190 	blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
191 	blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
192 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
193 
194 	disk = alloc_disk(0);
195 	if (!disk) {
196 		blk_cleanup_queue(pmem->pmem_queue);
197 		return -ENOMEM;
198 	}
199 
200 	disk->major		= pmem_major;
201 	disk->first_minor	= 0;
202 	disk->fops		= &pmem_fops;
203 	disk->private_data	= pmem;
204 	disk->queue		= pmem->pmem_queue;
205 	disk->flags		= GENHD_FL_EXT_DEVT;
206 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
207 	disk->driverfs_dev = dev;
208 	set_capacity(disk, (pmem->size - pmem->data_offset) / 512);
209 	pmem->pmem_disk = disk;
210 
211 	add_disk(disk);
212 	revalidate_disk(disk);
213 
214 	return 0;
215 }
216 
217 static int pmem_rw_bytes(struct nd_namespace_common *ndns,
218 		resource_size_t offset, void *buf, size_t size, int rw)
219 {
220 	struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
221 
222 	if (unlikely(offset + size > pmem->size)) {
223 		dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
224 		return -EFAULT;
225 	}
226 
227 	if (rw == READ)
228 		memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
229 	else {
230 		memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
231 		wmb_pmem();
232 	}
233 
234 	return 0;
235 }
236 
237 static int nd_pfn_init(struct nd_pfn *nd_pfn)
238 {
239 	struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
240 	struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
241 	struct nd_namespace_common *ndns = nd_pfn->ndns;
242 	struct nd_region *nd_region;
243 	unsigned long npfns;
244 	phys_addr_t offset;
245 	u64 checksum;
246 	int rc;
247 
248 	if (!pfn_sb)
249 		return -ENOMEM;
250 
251 	nd_pfn->pfn_sb = pfn_sb;
252 	rc = nd_pfn_validate(nd_pfn);
253 	if (rc == 0 || rc == -EBUSY)
254 		return rc;
255 
256 	/* section alignment for simple hotplug */
257 	if (nvdimm_namespace_capacity(ndns) < ND_PFN_ALIGN
258 			|| pmem->phys_addr & ND_PFN_MASK)
259 		return -ENODEV;
260 
261 	nd_region = to_nd_region(nd_pfn->dev.parent);
262 	if (nd_region->ro) {
263 		dev_info(&nd_pfn->dev,
264 				"%s is read-only, unable to init metadata\n",
265 				dev_name(&nd_region->dev));
266 		goto err;
267 	}
268 
269 	memset(pfn_sb, 0, sizeof(*pfn_sb));
270 	npfns = (pmem->size - SZ_8K) / SZ_4K;
271 	/*
272 	 * Note, we use 64 here for the standard size of struct page,
273 	 * debugging options may cause it to be larger in which case the
274 	 * implementation will limit the pfns advertised through
275 	 * ->direct_access() to those that are included in the memmap.
276 	 */
277 	if (nd_pfn->mode == PFN_MODE_PMEM)
278 		offset = ALIGN(SZ_8K + 64 * npfns, PMD_SIZE);
279 	else if (nd_pfn->mode == PFN_MODE_RAM)
280 		offset = SZ_8K;
281 	else
282 		goto err;
283 
284 	npfns = (pmem->size - offset) / SZ_4K;
285 	pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
286 	pfn_sb->dataoff = cpu_to_le64(offset);
287 	pfn_sb->npfns = cpu_to_le64(npfns);
288 	memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
289 	memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
290 	pfn_sb->version_major = cpu_to_le16(1);
291 	checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
292 	pfn_sb->checksum = cpu_to_le64(checksum);
293 
294 	rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
295 	if (rc)
296 		goto err;
297 
298 	return 0;
299  err:
300 	nd_pfn->pfn_sb = NULL;
301 	kfree(pfn_sb);
302 	return -ENXIO;
303 }
304 
305 static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
306 {
307 	struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
308 	struct pmem_device *pmem;
309 
310 	/* free pmem disk */
311 	pmem = dev_get_drvdata(&nd_pfn->dev);
312 	pmem_detach_disk(pmem);
313 
314 	/* release nd_pfn resources */
315 	kfree(nd_pfn->pfn_sb);
316 	nd_pfn->pfn_sb = NULL;
317 
318 	return 0;
319 }
320 
321 static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
322 {
323 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
324 	struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
325 	struct device *dev = &nd_pfn->dev;
326 	struct vmem_altmap *altmap;
327 	struct nd_region *nd_region;
328 	struct nd_pfn_sb *pfn_sb;
329 	struct pmem_device *pmem;
330 	phys_addr_t offset;
331 	int rc;
332 
333 	if (!nd_pfn->uuid || !nd_pfn->ndns)
334 		return -ENODEV;
335 
336 	nd_region = to_nd_region(dev->parent);
337 	rc = nd_pfn_init(nd_pfn);
338 	if (rc)
339 		return rc;
340 
341 	if (PAGE_SIZE != SZ_4K) {
342 		dev_err(dev, "only supported on systems with 4K PAGE_SIZE\n");
343 		return -ENXIO;
344 	}
345 	if (nsio->res.start & ND_PFN_MASK) {
346 		dev_err(dev, "%s not memory hotplug section aligned\n",
347 				dev_name(&ndns->dev));
348 		return -ENXIO;
349 	}
350 
351 	pfn_sb = nd_pfn->pfn_sb;
352 	offset = le64_to_cpu(pfn_sb->dataoff);
353 	nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
354 	if (nd_pfn->mode == PFN_MODE_RAM) {
355 		if (offset != SZ_8K)
356 			return -EINVAL;
357 		nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
358 		altmap = NULL;
359 	} else {
360 		rc = -ENXIO;
361 		goto err;
362 	}
363 
364 	/* establish pfn range for lookup, and switch to direct map */
365 	pmem = dev_get_drvdata(dev);
366 	memunmap_pmem(dev, pmem->virt_addr);
367 	pmem->virt_addr = (void __pmem *)devm_memremap_pages(dev, &nsio->res);
368 	if (IS_ERR(pmem->virt_addr)) {
369 		rc = PTR_ERR(pmem->virt_addr);
370 		goto err;
371 	}
372 
373 	/* attach pmem disk in "pfn-mode" */
374 	pmem->data_offset = offset;
375 	rc = pmem_attach_disk(dev, ndns, pmem);
376 	if (rc)
377 		goto err;
378 
379 	return rc;
380  err:
381 	nvdimm_namespace_detach_pfn(ndns);
382 	return rc;
383 }
384 
385 static int nd_pmem_probe(struct device *dev)
386 {
387 	struct nd_region *nd_region = to_nd_region(dev->parent);
388 	struct nd_namespace_common *ndns;
389 	struct nd_namespace_io *nsio;
390 	struct pmem_device *pmem;
391 
392 	ndns = nvdimm_namespace_common_probe(dev);
393 	if (IS_ERR(ndns))
394 		return PTR_ERR(ndns);
395 
396 	nsio = to_nd_namespace_io(&ndns->dev);
397 	pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
398 	if (IS_ERR(pmem))
399 		return PTR_ERR(pmem);
400 
401 	pmem->ndns = ndns;
402 	dev_set_drvdata(dev, pmem);
403 	ndns->rw_bytes = pmem_rw_bytes;
404 
405 	if (is_nd_btt(dev))
406 		return nvdimm_namespace_attach_btt(ndns);
407 
408 	if (is_nd_pfn(dev))
409 		return nvdimm_namespace_attach_pfn(ndns);
410 
411 	if (nd_btt_probe(ndns, pmem) == 0) {
412 		/* we'll come back as btt-pmem */
413 		return -ENXIO;
414 	}
415 
416 	if (nd_pfn_probe(ndns, pmem) == 0) {
417 		/* we'll come back as pfn-pmem */
418 		return -ENXIO;
419 	}
420 
421 	return pmem_attach_disk(dev, ndns, pmem);
422 }
423 
424 static int nd_pmem_remove(struct device *dev)
425 {
426 	struct pmem_device *pmem = dev_get_drvdata(dev);
427 
428 	if (is_nd_btt(dev))
429 		nvdimm_namespace_detach_btt(pmem->ndns);
430 	else if (is_nd_pfn(dev))
431 		nvdimm_namespace_detach_pfn(pmem->ndns);
432 	else
433 		pmem_detach_disk(pmem);
434 
435 	return 0;
436 }
437 
438 MODULE_ALIAS("pmem");
439 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
440 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
441 static struct nd_device_driver nd_pmem_driver = {
442 	.probe = nd_pmem_probe,
443 	.remove = nd_pmem_remove,
444 	.drv = {
445 		.name = "nd_pmem",
446 	},
447 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
448 };
449 
450 static int __init pmem_init(void)
451 {
452 	int error;
453 
454 	pmem_major = register_blkdev(0, "pmem");
455 	if (pmem_major < 0)
456 		return pmem_major;
457 
458 	error = nd_driver_register(&nd_pmem_driver);
459 	if (error) {
460 		unregister_blkdev(pmem_major, "pmem");
461 		return error;
462 	}
463 
464 	return 0;
465 }
466 module_init(pmem_init);
467 
468 static void pmem_exit(void)
469 {
470 	driver_unregister(&nd_pmem_driver.drv);
471 	unregister_blkdev(pmem_major, "pmem");
472 }
473 module_exit(pmem_exit);
474 
475 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
476 MODULE_LICENSE("GPL v2");
477