xref: /linux/drivers/nvdimm/pmem.c (revision 98838d95075a5295f3478ceba18bcccf472e30f4)
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pmem.h"
33 #include "pfn.h"
34 #include "nd.h"
35 
36 static struct device *to_dev(struct pmem_device *pmem)
37 {
38 	/*
39 	 * nvdimm bus services need a 'dev' parameter, and we record the device
40 	 * at init in bb.dev.
41 	 */
42 	return pmem->bb.dev;
43 }
44 
45 static struct nd_region *to_region(struct pmem_device *pmem)
46 {
47 	return to_nd_region(to_dev(pmem)->parent);
48 }
49 
50 static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
51 		unsigned int len)
52 {
53 	struct device *dev = to_dev(pmem);
54 	sector_t sector;
55 	long cleared;
56 
57 	sector = (offset - pmem->data_offset) / 512;
58 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
59 
60 	if (cleared > 0 && cleared / 512) {
61 		dev_dbg(dev, "%s: %#llx clear %ld sector%s\n",
62 				__func__, (unsigned long long) sector,
63 				cleared / 512, cleared / 512 > 1 ? "s" : "");
64 		badblocks_clear(&pmem->bb, sector, cleared / 512);
65 	} else {
66 		return -EIO;
67 	}
68 
69 	invalidate_pmem(pmem->virt_addr + offset, len);
70 	return 0;
71 }
72 
73 static void write_pmem(void *pmem_addr, struct page *page,
74 		unsigned int off, unsigned int len)
75 {
76 	void *mem = kmap_atomic(page);
77 
78 	memcpy_to_pmem(pmem_addr, mem + off, len);
79 	kunmap_atomic(mem);
80 }
81 
82 static int read_pmem(struct page *page, unsigned int off,
83 		void *pmem_addr, unsigned int len)
84 {
85 	int rc;
86 	void *mem = kmap_atomic(page);
87 
88 	rc = memcpy_from_pmem(mem + off, pmem_addr, len);
89 	kunmap_atomic(mem);
90 	return rc;
91 }
92 
93 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
94 			unsigned int len, unsigned int off, bool is_write,
95 			sector_t sector)
96 {
97 	int rc = 0;
98 	bool bad_pmem = false;
99 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
100 	void *pmem_addr = pmem->virt_addr + pmem_off;
101 
102 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
103 		bad_pmem = true;
104 
105 	if (!is_write) {
106 		if (unlikely(bad_pmem))
107 			rc = -EIO;
108 		else {
109 			rc = read_pmem(page, off, pmem_addr, len);
110 			flush_dcache_page(page);
111 		}
112 	} else {
113 		/*
114 		 * Note that we write the data both before and after
115 		 * clearing poison.  The write before clear poison
116 		 * handles situations where the latest written data is
117 		 * preserved and the clear poison operation simply marks
118 		 * the address range as valid without changing the data.
119 		 * In this case application software can assume that an
120 		 * interrupted write will either return the new good
121 		 * data or an error.
122 		 *
123 		 * However, if pmem_clear_poison() leaves the data in an
124 		 * indeterminate state we need to perform the write
125 		 * after clear poison.
126 		 */
127 		flush_dcache_page(page);
128 		write_pmem(pmem_addr, page, off, len);
129 		if (unlikely(bad_pmem)) {
130 			rc = pmem_clear_poison(pmem, pmem_off, len);
131 			write_pmem(pmem_addr, page, off, len);
132 		}
133 	}
134 
135 	return rc;
136 }
137 
138 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
139 #ifndef REQ_FLUSH
140 #define REQ_FLUSH REQ_PREFLUSH
141 #endif
142 
143 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
144 {
145 	int rc = 0;
146 	bool do_acct;
147 	unsigned long start;
148 	struct bio_vec bvec;
149 	struct bvec_iter iter;
150 	struct pmem_device *pmem = q->queuedata;
151 	struct nd_region *nd_region = to_region(pmem);
152 
153 	if (bio->bi_opf & REQ_FLUSH)
154 		nvdimm_flush(nd_region);
155 
156 	do_acct = nd_iostat_start(bio, &start);
157 	bio_for_each_segment(bvec, bio, iter) {
158 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
159 				bvec.bv_offset, op_is_write(bio_op(bio)),
160 				iter.bi_sector);
161 		if (rc) {
162 			bio->bi_error = rc;
163 			break;
164 		}
165 	}
166 	if (do_acct)
167 		nd_iostat_end(bio, start);
168 
169 	if (bio->bi_opf & REQ_FUA)
170 		nvdimm_flush(nd_region);
171 
172 	bio_endio(bio);
173 	return BLK_QC_T_NONE;
174 }
175 
176 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
177 		       struct page *page, bool is_write)
178 {
179 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
180 	int rc;
181 
182 	rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
183 
184 	/*
185 	 * The ->rw_page interface is subtle and tricky.  The core
186 	 * retries on any error, so we can only invoke page_endio() in
187 	 * the successful completion case.  Otherwise, we'll see crashes
188 	 * caused by double completion.
189 	 */
190 	if (rc == 0)
191 		page_endio(page, is_write, 0);
192 
193 	return rc;
194 }
195 
196 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
197 __weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
198 		      void **kaddr, pfn_t *pfn, long size)
199 {
200 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
201 	resource_size_t offset = sector * 512 + pmem->data_offset;
202 
203 	if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
204 		return -EIO;
205 	*kaddr = pmem->virt_addr + offset;
206 	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
207 
208 	/*
209 	 * If badblocks are present, limit known good range to the
210 	 * requested range.
211 	 */
212 	if (unlikely(pmem->bb.count))
213 		return size;
214 	return pmem->size - pmem->pfn_pad - offset;
215 }
216 
217 static const struct block_device_operations pmem_fops = {
218 	.owner =		THIS_MODULE,
219 	.rw_page =		pmem_rw_page,
220 	.direct_access =	pmem_direct_access,
221 	.revalidate_disk =	nvdimm_revalidate_disk,
222 };
223 
224 static void pmem_release_queue(void *q)
225 {
226 	blk_cleanup_queue(q);
227 }
228 
229 static void pmem_release_disk(void *disk)
230 {
231 	del_gendisk(disk);
232 	put_disk(disk);
233 }
234 
235 static int pmem_attach_disk(struct device *dev,
236 		struct nd_namespace_common *ndns)
237 {
238 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
239 	struct nd_region *nd_region = to_nd_region(dev->parent);
240 	struct vmem_altmap __altmap, *altmap = NULL;
241 	struct resource *res = &nsio->res;
242 	struct nd_pfn *nd_pfn = NULL;
243 	int nid = dev_to_node(dev);
244 	struct nd_pfn_sb *pfn_sb;
245 	struct pmem_device *pmem;
246 	struct resource pfn_res;
247 	struct request_queue *q;
248 	struct gendisk *disk;
249 	void *addr;
250 
251 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
252 	if (is_nd_pfn(dev)) {
253 		nd_pfn = to_nd_pfn(dev);
254 		altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
255 		if (IS_ERR(altmap))
256 			return PTR_ERR(altmap);
257 	}
258 
259 	/* we're attaching a block device, disable raw namespace access */
260 	devm_nsio_disable(dev, nsio);
261 
262 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
263 	if (!pmem)
264 		return -ENOMEM;
265 
266 	dev_set_drvdata(dev, pmem);
267 	pmem->phys_addr = res->start;
268 	pmem->size = resource_size(res);
269 	if (nvdimm_has_flush(nd_region) < 0)
270 		dev_warn(dev, "unable to guarantee persistence of writes\n");
271 
272 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
273 				dev_name(dev))) {
274 		dev_warn(dev, "could not reserve region %pR\n", res);
275 		return -EBUSY;
276 	}
277 
278 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
279 	if (!q)
280 		return -ENOMEM;
281 
282 	pmem->pfn_flags = PFN_DEV;
283 	if (is_nd_pfn(dev)) {
284 		addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
285 				altmap);
286 		pfn_sb = nd_pfn->pfn_sb;
287 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
288 		pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
289 		pmem->pfn_flags |= PFN_MAP;
290 		res = &pfn_res; /* for badblocks populate */
291 		res->start += pmem->data_offset;
292 	} else if (pmem_should_map_pages(dev)) {
293 		addr = devm_memremap_pages(dev, &nsio->res,
294 				&q->q_usage_counter, NULL);
295 		pmem->pfn_flags |= PFN_MAP;
296 	} else
297 		addr = devm_memremap(dev, pmem->phys_addr,
298 				pmem->size, ARCH_MEMREMAP_PMEM);
299 
300 	/*
301 	 * At release time the queue must be dead before
302 	 * devm_memremap_pages is unwound
303 	 */
304 	if (devm_add_action_or_reset(dev, pmem_release_queue, q))
305 		return -ENOMEM;
306 
307 	if (IS_ERR(addr))
308 		return PTR_ERR(addr);
309 	pmem->virt_addr = addr;
310 
311 	blk_queue_write_cache(q, true, true);
312 	blk_queue_make_request(q, pmem_make_request);
313 	blk_queue_physical_block_size(q, PAGE_SIZE);
314 	blk_queue_max_hw_sectors(q, UINT_MAX);
315 	blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
316 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
317 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
318 	q->queuedata = pmem;
319 
320 	disk = alloc_disk_node(0, nid);
321 	if (!disk)
322 		return -ENOMEM;
323 
324 	disk->fops		= &pmem_fops;
325 	disk->queue		= q;
326 	disk->flags		= GENHD_FL_EXT_DEVT;
327 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
328 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
329 			/ 512);
330 	if (devm_init_badblocks(dev, &pmem->bb))
331 		return -ENOMEM;
332 	nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
333 	disk->bb = &pmem->bb;
334 	device_add_disk(dev, disk);
335 
336 	if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
337 		return -ENOMEM;
338 
339 	revalidate_disk(disk);
340 
341 	return 0;
342 }
343 
344 static int nd_pmem_probe(struct device *dev)
345 {
346 	struct nd_namespace_common *ndns;
347 
348 	ndns = nvdimm_namespace_common_probe(dev);
349 	if (IS_ERR(ndns))
350 		return PTR_ERR(ndns);
351 
352 	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
353 		return -ENXIO;
354 
355 	if (is_nd_btt(dev))
356 		return nvdimm_namespace_attach_btt(ndns);
357 
358 	if (is_nd_pfn(dev))
359 		return pmem_attach_disk(dev, ndns);
360 
361 	/* if we find a valid info-block we'll come back as that personality */
362 	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
363 			|| nd_dax_probe(dev, ndns) == 0)
364 		return -ENXIO;
365 
366 	/* ...otherwise we're just a raw pmem device */
367 	return pmem_attach_disk(dev, ndns);
368 }
369 
370 static int nd_pmem_remove(struct device *dev)
371 {
372 	if (is_nd_btt(dev))
373 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
374 	nvdimm_flush(to_nd_region(dev->parent));
375 
376 	return 0;
377 }
378 
379 static void nd_pmem_shutdown(struct device *dev)
380 {
381 	nvdimm_flush(to_nd_region(dev->parent));
382 }
383 
384 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
385 {
386 	struct pmem_device *pmem = dev_get_drvdata(dev);
387 	struct nd_region *nd_region = to_region(pmem);
388 	resource_size_t offset = 0, end_trunc = 0;
389 	struct nd_namespace_common *ndns;
390 	struct nd_namespace_io *nsio;
391 	struct resource res;
392 
393 	if (event != NVDIMM_REVALIDATE_POISON)
394 		return;
395 
396 	if (is_nd_btt(dev)) {
397 		struct nd_btt *nd_btt = to_nd_btt(dev);
398 
399 		ndns = nd_btt->ndns;
400 	} else if (is_nd_pfn(dev)) {
401 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
402 		struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
403 
404 		ndns = nd_pfn->ndns;
405 		offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
406 		end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
407 	} else
408 		ndns = to_ndns(dev);
409 
410 	nsio = to_nd_namespace_io(&ndns->dev);
411 	res.start = nsio->res.start + offset;
412 	res.end = nsio->res.end - end_trunc;
413 	nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
414 }
415 
416 MODULE_ALIAS("pmem");
417 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
418 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
419 static struct nd_device_driver nd_pmem_driver = {
420 	.probe = nd_pmem_probe,
421 	.remove = nd_pmem_remove,
422 	.notify = nd_pmem_notify,
423 	.shutdown = nd_pmem_shutdown,
424 	.drv = {
425 		.name = "nd_pmem",
426 	},
427 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
428 };
429 
430 static int __init pmem_init(void)
431 {
432 	return nd_driver_register(&nd_pmem_driver);
433 }
434 module_init(pmem_init);
435 
436 static void pmem_exit(void)
437 {
438 	driver_unregister(&nd_pmem_driver.drv);
439 }
440 module_exit(pmem_exit);
441 
442 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
443 MODULE_LICENSE("GPL v2");
444