xref: /linux/drivers/nvdimm/pmem.c (revision 6faadbbb7f9da70ce484f98f72223c20125a1009)
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blk-mq.h>
29 #include <linux/pfn_t.h>
30 #include <linux/slab.h>
31 #include <linux/uio.h>
32 #include <linux/dax.h>
33 #include <linux/nd.h>
34 #include "pmem.h"
35 #include "pfn.h"
36 #include "nd.h"
37 
38 static struct device *to_dev(struct pmem_device *pmem)
39 {
40 	/*
41 	 * nvdimm bus services need a 'dev' parameter, and we record the device
42 	 * at init in bb.dev.
43 	 */
44 	return pmem->bb.dev;
45 }
46 
47 static struct nd_region *to_region(struct pmem_device *pmem)
48 {
49 	return to_nd_region(to_dev(pmem)->parent);
50 }
51 
52 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
53 		phys_addr_t offset, unsigned int len)
54 {
55 	struct device *dev = to_dev(pmem);
56 	sector_t sector;
57 	long cleared;
58 	blk_status_t rc = BLK_STS_OK;
59 
60 	sector = (offset - pmem->data_offset) / 512;
61 
62 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
63 	if (cleared < len)
64 		rc = BLK_STS_IOERR;
65 	if (cleared > 0 && cleared / 512) {
66 		cleared /= 512;
67 		dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
68 				(unsigned long long) sector, cleared,
69 				cleared > 1 ? "s" : "");
70 		badblocks_clear(&pmem->bb, sector, cleared);
71 		if (pmem->bb_state)
72 			sysfs_notify_dirent(pmem->bb_state);
73 	}
74 
75 	arch_invalidate_pmem(pmem->virt_addr + offset, len);
76 
77 	return rc;
78 }
79 
80 static void write_pmem(void *pmem_addr, struct page *page,
81 		unsigned int off, unsigned int len)
82 {
83 	unsigned int chunk;
84 	void *mem;
85 
86 	while (len) {
87 		mem = kmap_atomic(page);
88 		chunk = min_t(unsigned int, len, PAGE_SIZE);
89 		memcpy_flushcache(pmem_addr, mem + off, chunk);
90 		kunmap_atomic(mem);
91 		len -= chunk;
92 		off = 0;
93 		page++;
94 		pmem_addr += PAGE_SIZE;
95 	}
96 }
97 
98 static blk_status_t read_pmem(struct page *page, unsigned int off,
99 		void *pmem_addr, unsigned int len)
100 {
101 	unsigned int chunk;
102 	int rc;
103 	void *mem;
104 
105 	while (len) {
106 		mem = kmap_atomic(page);
107 		chunk = min_t(unsigned int, len, PAGE_SIZE);
108 		rc = memcpy_mcsafe(mem + off, pmem_addr, chunk);
109 		kunmap_atomic(mem);
110 		if (rc)
111 			return BLK_STS_IOERR;
112 		len -= chunk;
113 		off = 0;
114 		page++;
115 		pmem_addr += PAGE_SIZE;
116 	}
117 	return BLK_STS_OK;
118 }
119 
120 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
121 			unsigned int len, unsigned int off, bool is_write,
122 			sector_t sector)
123 {
124 	blk_status_t rc = BLK_STS_OK;
125 	bool bad_pmem = false;
126 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
127 	void *pmem_addr = pmem->virt_addr + pmem_off;
128 
129 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
130 		bad_pmem = true;
131 
132 	if (!is_write) {
133 		if (unlikely(bad_pmem))
134 			rc = BLK_STS_IOERR;
135 		else {
136 			rc = read_pmem(page, off, pmem_addr, len);
137 			flush_dcache_page(page);
138 		}
139 	} else {
140 		/*
141 		 * Note that we write the data both before and after
142 		 * clearing poison.  The write before clear poison
143 		 * handles situations where the latest written data is
144 		 * preserved and the clear poison operation simply marks
145 		 * the address range as valid without changing the data.
146 		 * In this case application software can assume that an
147 		 * interrupted write will either return the new good
148 		 * data or an error.
149 		 *
150 		 * However, if pmem_clear_poison() leaves the data in an
151 		 * indeterminate state we need to perform the write
152 		 * after clear poison.
153 		 */
154 		flush_dcache_page(page);
155 		write_pmem(pmem_addr, page, off, len);
156 		if (unlikely(bad_pmem)) {
157 			rc = pmem_clear_poison(pmem, pmem_off, len);
158 			write_pmem(pmem_addr, page, off, len);
159 		}
160 	}
161 
162 	return rc;
163 }
164 
165 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
166 #ifndef REQ_FLUSH
167 #define REQ_FLUSH REQ_PREFLUSH
168 #endif
169 
170 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
171 {
172 	blk_status_t rc = 0;
173 	bool do_acct;
174 	unsigned long start;
175 	struct bio_vec bvec;
176 	struct bvec_iter iter;
177 	struct pmem_device *pmem = q->queuedata;
178 	struct nd_region *nd_region = to_region(pmem);
179 
180 	if (bio->bi_opf & REQ_FLUSH)
181 		nvdimm_flush(nd_region);
182 
183 	do_acct = nd_iostat_start(bio, &start);
184 	bio_for_each_segment(bvec, bio, iter) {
185 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
186 				bvec.bv_offset, op_is_write(bio_op(bio)),
187 				iter.bi_sector);
188 		if (rc) {
189 			bio->bi_status = rc;
190 			break;
191 		}
192 	}
193 	if (do_acct)
194 		nd_iostat_end(bio, start);
195 
196 	if (bio->bi_opf & REQ_FUA)
197 		nvdimm_flush(nd_region);
198 
199 	bio_endio(bio);
200 	return BLK_QC_T_NONE;
201 }
202 
203 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
204 		       struct page *page, bool is_write)
205 {
206 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
207 	blk_status_t rc;
208 
209 	rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
210 			  0, is_write, sector);
211 
212 	/*
213 	 * The ->rw_page interface is subtle and tricky.  The core
214 	 * retries on any error, so we can only invoke page_endio() in
215 	 * the successful completion case.  Otherwise, we'll see crashes
216 	 * caused by double completion.
217 	 */
218 	if (rc == 0)
219 		page_endio(page, is_write, 0);
220 
221 	return blk_status_to_errno(rc);
222 }
223 
224 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
225 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
226 		long nr_pages, void **kaddr, pfn_t *pfn)
227 {
228 	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
229 
230 	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
231 					PFN_PHYS(nr_pages))))
232 		return -EIO;
233 	*kaddr = pmem->virt_addr + offset;
234 	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
235 
236 	/*
237 	 * If badblocks are present, limit known good range to the
238 	 * requested range.
239 	 */
240 	if (unlikely(pmem->bb.count))
241 		return nr_pages;
242 	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
243 }
244 
245 static const struct block_device_operations pmem_fops = {
246 	.owner =		THIS_MODULE,
247 	.rw_page =		pmem_rw_page,
248 	.revalidate_disk =	nvdimm_revalidate_disk,
249 };
250 
251 static long pmem_dax_direct_access(struct dax_device *dax_dev,
252 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
253 {
254 	struct pmem_device *pmem = dax_get_private(dax_dev);
255 
256 	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
257 }
258 
259 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
260 		void *addr, size_t bytes, struct iov_iter *i)
261 {
262 	return copy_from_iter_flushcache(addr, bytes, i);
263 }
264 
265 static void pmem_dax_flush(struct dax_device *dax_dev, pgoff_t pgoff,
266 		void *addr, size_t size)
267 {
268 	arch_wb_cache_pmem(addr, size);
269 }
270 
271 static const struct dax_operations pmem_dax_ops = {
272 	.direct_access = pmem_dax_direct_access,
273 	.copy_from_iter = pmem_copy_from_iter,
274 	.flush = pmem_dax_flush,
275 };
276 
277 static const struct attribute_group *pmem_attribute_groups[] = {
278 	&dax_attribute_group,
279 	NULL,
280 };
281 
282 static void pmem_release_queue(void *q)
283 {
284 	blk_cleanup_queue(q);
285 }
286 
287 static void pmem_freeze_queue(void *q)
288 {
289 	blk_freeze_queue_start(q);
290 }
291 
292 static void pmem_release_disk(void *__pmem)
293 {
294 	struct pmem_device *pmem = __pmem;
295 
296 	kill_dax(pmem->dax_dev);
297 	put_dax(pmem->dax_dev);
298 	del_gendisk(pmem->disk);
299 	put_disk(pmem->disk);
300 }
301 
302 static int pmem_attach_disk(struct device *dev,
303 		struct nd_namespace_common *ndns)
304 {
305 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
306 	struct nd_region *nd_region = to_nd_region(dev->parent);
307 	struct vmem_altmap __altmap, *altmap = NULL;
308 	int nid = dev_to_node(dev), fua, wbc;
309 	struct resource *res = &nsio->res;
310 	struct nd_pfn *nd_pfn = NULL;
311 	struct dax_device *dax_dev;
312 	struct nd_pfn_sb *pfn_sb;
313 	struct pmem_device *pmem;
314 	struct resource pfn_res;
315 	struct request_queue *q;
316 	struct device *gendev;
317 	struct gendisk *disk;
318 	void *addr;
319 
320 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
321 	if (is_nd_pfn(dev)) {
322 		nd_pfn = to_nd_pfn(dev);
323 		altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
324 		if (IS_ERR(altmap))
325 			return PTR_ERR(altmap);
326 	}
327 
328 	/* we're attaching a block device, disable raw namespace access */
329 	devm_nsio_disable(dev, nsio);
330 
331 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
332 	if (!pmem)
333 		return -ENOMEM;
334 
335 	dev_set_drvdata(dev, pmem);
336 	pmem->phys_addr = res->start;
337 	pmem->size = resource_size(res);
338 	fua = nvdimm_has_flush(nd_region);
339 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
340 		dev_warn(dev, "unable to guarantee persistence of writes\n");
341 		fua = 0;
342 	}
343 	wbc = nvdimm_has_cache(nd_region);
344 
345 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
346 				dev_name(&ndns->dev))) {
347 		dev_warn(dev, "could not reserve region %pR\n", res);
348 		return -EBUSY;
349 	}
350 
351 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
352 	if (!q)
353 		return -ENOMEM;
354 
355 	if (devm_add_action_or_reset(dev, pmem_release_queue, q))
356 		return -ENOMEM;
357 
358 	pmem->pfn_flags = PFN_DEV;
359 	if (is_nd_pfn(dev)) {
360 		addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
361 				altmap);
362 		pfn_sb = nd_pfn->pfn_sb;
363 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
364 		pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
365 		pmem->pfn_flags |= PFN_MAP;
366 		res = &pfn_res; /* for badblocks populate */
367 		res->start += pmem->data_offset;
368 	} else if (pmem_should_map_pages(dev)) {
369 		addr = devm_memremap_pages(dev, &nsio->res,
370 				&q->q_usage_counter, NULL);
371 		pmem->pfn_flags |= PFN_MAP;
372 	} else
373 		addr = devm_memremap(dev, pmem->phys_addr,
374 				pmem->size, ARCH_MEMREMAP_PMEM);
375 
376 	/*
377 	 * At release time the queue must be frozen before
378 	 * devm_memremap_pages is unwound
379 	 */
380 	if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
381 		return -ENOMEM;
382 
383 	if (IS_ERR(addr))
384 		return PTR_ERR(addr);
385 	pmem->virt_addr = addr;
386 
387 	blk_queue_write_cache(q, wbc, fua);
388 	blk_queue_make_request(q, pmem_make_request);
389 	blk_queue_physical_block_size(q, PAGE_SIZE);
390 	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
391 	blk_queue_max_hw_sectors(q, UINT_MAX);
392 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
393 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
394 	q->queuedata = pmem;
395 
396 	disk = alloc_disk_node(0, nid);
397 	if (!disk)
398 		return -ENOMEM;
399 	pmem->disk = disk;
400 
401 	disk->fops		= &pmem_fops;
402 	disk->queue		= q;
403 	disk->flags		= GENHD_FL_EXT_DEVT;
404 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
405 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
406 			/ 512);
407 	if (devm_init_badblocks(dev, &pmem->bb))
408 		return -ENOMEM;
409 	nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
410 	disk->bb = &pmem->bb;
411 
412 	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
413 	if (!dax_dev) {
414 		put_disk(disk);
415 		return -ENOMEM;
416 	}
417 	dax_write_cache(dax_dev, wbc);
418 	pmem->dax_dev = dax_dev;
419 
420 	gendev = disk_to_dev(disk);
421 	gendev->groups = pmem_attribute_groups;
422 
423 	device_add_disk(dev, disk);
424 	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
425 		return -ENOMEM;
426 
427 	revalidate_disk(disk);
428 
429 	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
430 					  "badblocks");
431 	if (!pmem->bb_state)
432 		dev_warn(dev, "'badblocks' notification disabled\n");
433 
434 	return 0;
435 }
436 
437 static int nd_pmem_probe(struct device *dev)
438 {
439 	struct nd_namespace_common *ndns;
440 
441 	ndns = nvdimm_namespace_common_probe(dev);
442 	if (IS_ERR(ndns))
443 		return PTR_ERR(ndns);
444 
445 	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
446 		return -ENXIO;
447 
448 	if (is_nd_btt(dev))
449 		return nvdimm_namespace_attach_btt(ndns);
450 
451 	if (is_nd_pfn(dev))
452 		return pmem_attach_disk(dev, ndns);
453 
454 	/* if we find a valid info-block we'll come back as that personality */
455 	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
456 			|| nd_dax_probe(dev, ndns) == 0)
457 		return -ENXIO;
458 
459 	/* ...otherwise we're just a raw pmem device */
460 	return pmem_attach_disk(dev, ndns);
461 }
462 
463 static int nd_pmem_remove(struct device *dev)
464 {
465 	struct pmem_device *pmem = dev_get_drvdata(dev);
466 
467 	if (is_nd_btt(dev))
468 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
469 	else {
470 		/*
471 		 * Note, this assumes device_lock() context to not race
472 		 * nd_pmem_notify()
473 		 */
474 		sysfs_put(pmem->bb_state);
475 		pmem->bb_state = NULL;
476 	}
477 	nvdimm_flush(to_nd_region(dev->parent));
478 
479 	return 0;
480 }
481 
482 static void nd_pmem_shutdown(struct device *dev)
483 {
484 	nvdimm_flush(to_nd_region(dev->parent));
485 }
486 
487 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
488 {
489 	struct nd_region *nd_region;
490 	resource_size_t offset = 0, end_trunc = 0;
491 	struct nd_namespace_common *ndns;
492 	struct nd_namespace_io *nsio;
493 	struct resource res;
494 	struct badblocks *bb;
495 	struct kernfs_node *bb_state;
496 
497 	if (event != NVDIMM_REVALIDATE_POISON)
498 		return;
499 
500 	if (is_nd_btt(dev)) {
501 		struct nd_btt *nd_btt = to_nd_btt(dev);
502 
503 		ndns = nd_btt->ndns;
504 		nd_region = to_nd_region(ndns->dev.parent);
505 		nsio = to_nd_namespace_io(&ndns->dev);
506 		bb = &nsio->bb;
507 		bb_state = NULL;
508 	} else {
509 		struct pmem_device *pmem = dev_get_drvdata(dev);
510 
511 		nd_region = to_region(pmem);
512 		bb = &pmem->bb;
513 		bb_state = pmem->bb_state;
514 
515 		if (is_nd_pfn(dev)) {
516 			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
517 			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
518 
519 			ndns = nd_pfn->ndns;
520 			offset = pmem->data_offset +
521 					__le32_to_cpu(pfn_sb->start_pad);
522 			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
523 		} else {
524 			ndns = to_ndns(dev);
525 		}
526 
527 		nsio = to_nd_namespace_io(&ndns->dev);
528 	}
529 
530 	res.start = nsio->res.start + offset;
531 	res.end = nsio->res.end - end_trunc;
532 	nvdimm_badblocks_populate(nd_region, bb, &res);
533 	if (bb_state)
534 		sysfs_notify_dirent(bb_state);
535 }
536 
537 MODULE_ALIAS("pmem");
538 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
539 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
540 static struct nd_device_driver nd_pmem_driver = {
541 	.probe = nd_pmem_probe,
542 	.remove = nd_pmem_remove,
543 	.notify = nd_pmem_notify,
544 	.shutdown = nd_pmem_shutdown,
545 	.drv = {
546 		.name = "nd_pmem",
547 	},
548 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
549 };
550 
551 static int __init pmem_init(void)
552 {
553 	return nd_driver_register(&nd_pmem_driver);
554 }
555 module_init(pmem_init);
556 
557 static void pmem_exit(void)
558 {
559 	driver_unregister(&nd_pmem_driver.drv);
560 }
561 module_exit(pmem_exit);
562 
563 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
564 MODULE_LICENSE("GPL v2");
565