1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Persistent Memory Driver 4 * 5 * Copyright (c) 2014-2015, Intel Corporation. 6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>. 7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>. 8 */ 9 10 #include <asm/cacheflush.h> 11 #include <linux/blkdev.h> 12 #include <linux/hdreg.h> 13 #include <linux/init.h> 14 #include <linux/platform_device.h> 15 #include <linux/set_memory.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/badblocks.h> 19 #include <linux/memremap.h> 20 #include <linux/vmalloc.h> 21 #include <linux/blk-mq.h> 22 #include <linux/pfn_t.h> 23 #include <linux/slab.h> 24 #include <linux/uio.h> 25 #include <linux/dax.h> 26 #include <linux/nd.h> 27 #include <linux/backing-dev.h> 28 #include "pmem.h" 29 #include "pfn.h" 30 #include "nd.h" 31 32 static struct device *to_dev(struct pmem_device *pmem) 33 { 34 /* 35 * nvdimm bus services need a 'dev' parameter, and we record the device 36 * at init in bb.dev. 37 */ 38 return pmem->bb.dev; 39 } 40 41 static struct nd_region *to_region(struct pmem_device *pmem) 42 { 43 return to_nd_region(to_dev(pmem)->parent); 44 } 45 46 static void hwpoison_clear(struct pmem_device *pmem, 47 phys_addr_t phys, unsigned int len) 48 { 49 unsigned long pfn_start, pfn_end, pfn; 50 51 /* only pmem in the linear map supports HWPoison */ 52 if (is_vmalloc_addr(pmem->virt_addr)) 53 return; 54 55 pfn_start = PHYS_PFN(phys); 56 pfn_end = pfn_start + PHYS_PFN(len); 57 for (pfn = pfn_start; pfn < pfn_end; pfn++) { 58 struct page *page = pfn_to_page(pfn); 59 60 /* 61 * Note, no need to hold a get_dev_pagemap() reference 62 * here since we're in the driver I/O path and 63 * outstanding I/O requests pin the dev_pagemap. 64 */ 65 if (test_and_clear_pmem_poison(page)) 66 clear_mce_nospec(pfn); 67 } 68 } 69 70 static blk_status_t pmem_clear_poison(struct pmem_device *pmem, 71 phys_addr_t offset, unsigned int len) 72 { 73 struct device *dev = to_dev(pmem); 74 sector_t sector; 75 long cleared; 76 blk_status_t rc = BLK_STS_OK; 77 78 sector = (offset - pmem->data_offset) / 512; 79 80 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len); 81 if (cleared < len) 82 rc = BLK_STS_IOERR; 83 if (cleared > 0 && cleared / 512) { 84 hwpoison_clear(pmem, pmem->phys_addr + offset, cleared); 85 cleared /= 512; 86 dev_dbg(dev, "%#llx clear %ld sector%s\n", 87 (unsigned long long) sector, cleared, 88 cleared > 1 ? "s" : ""); 89 badblocks_clear(&pmem->bb, sector, cleared); 90 if (pmem->bb_state) 91 sysfs_notify_dirent(pmem->bb_state); 92 } 93 94 arch_invalidate_pmem(pmem->virt_addr + offset, len); 95 96 return rc; 97 } 98 99 static void write_pmem(void *pmem_addr, struct page *page, 100 unsigned int off, unsigned int len) 101 { 102 unsigned int chunk; 103 void *mem; 104 105 while (len) { 106 mem = kmap_atomic(page); 107 chunk = min_t(unsigned int, len, PAGE_SIZE - off); 108 memcpy_flushcache(pmem_addr, mem + off, chunk); 109 kunmap_atomic(mem); 110 len -= chunk; 111 off = 0; 112 page++; 113 pmem_addr += chunk; 114 } 115 } 116 117 static blk_status_t read_pmem(struct page *page, unsigned int off, 118 void *pmem_addr, unsigned int len) 119 { 120 unsigned int chunk; 121 unsigned long rem; 122 void *mem; 123 124 while (len) { 125 mem = kmap_atomic(page); 126 chunk = min_t(unsigned int, len, PAGE_SIZE - off); 127 rem = memcpy_mcsafe(mem + off, pmem_addr, chunk); 128 kunmap_atomic(mem); 129 if (rem) 130 return BLK_STS_IOERR; 131 len -= chunk; 132 off = 0; 133 page++; 134 pmem_addr += chunk; 135 } 136 return BLK_STS_OK; 137 } 138 139 static blk_status_t pmem_do_read(struct pmem_device *pmem, 140 struct page *page, unsigned int page_off, 141 sector_t sector, unsigned int len) 142 { 143 blk_status_t rc; 144 phys_addr_t pmem_off = sector * 512 + pmem->data_offset; 145 void *pmem_addr = pmem->virt_addr + pmem_off; 146 147 if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) 148 return BLK_STS_IOERR; 149 150 rc = read_pmem(page, page_off, pmem_addr, len); 151 flush_dcache_page(page); 152 return rc; 153 } 154 155 static blk_status_t pmem_do_write(struct pmem_device *pmem, 156 struct page *page, unsigned int page_off, 157 sector_t sector, unsigned int len) 158 { 159 blk_status_t rc = BLK_STS_OK; 160 bool bad_pmem = false; 161 phys_addr_t pmem_off = sector * 512 + pmem->data_offset; 162 void *pmem_addr = pmem->virt_addr + pmem_off; 163 164 if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) 165 bad_pmem = true; 166 167 /* 168 * Note that we write the data both before and after 169 * clearing poison. The write before clear poison 170 * handles situations where the latest written data is 171 * preserved and the clear poison operation simply marks 172 * the address range as valid without changing the data. 173 * In this case application software can assume that an 174 * interrupted write will either return the new good 175 * data or an error. 176 * 177 * However, if pmem_clear_poison() leaves the data in an 178 * indeterminate state we need to perform the write 179 * after clear poison. 180 */ 181 flush_dcache_page(page); 182 write_pmem(pmem_addr, page, page_off, len); 183 if (unlikely(bad_pmem)) { 184 rc = pmem_clear_poison(pmem, pmem_off, len); 185 write_pmem(pmem_addr, page, page_off, len); 186 } 187 188 return rc; 189 } 190 191 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio) 192 { 193 int ret = 0; 194 blk_status_t rc = 0; 195 bool do_acct; 196 unsigned long start; 197 struct bio_vec bvec; 198 struct bvec_iter iter; 199 struct pmem_device *pmem = q->queuedata; 200 struct nd_region *nd_region = to_region(pmem); 201 202 if (bio->bi_opf & REQ_PREFLUSH) 203 ret = nvdimm_flush(nd_region, bio); 204 205 do_acct = nd_iostat_start(bio, &start); 206 bio_for_each_segment(bvec, bio, iter) { 207 if (op_is_write(bio_op(bio))) 208 rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset, 209 iter.bi_sector, bvec.bv_len); 210 else 211 rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset, 212 iter.bi_sector, bvec.bv_len); 213 if (rc) { 214 bio->bi_status = rc; 215 break; 216 } 217 } 218 if (do_acct) 219 nd_iostat_end(bio, start); 220 221 if (bio->bi_opf & REQ_FUA) 222 ret = nvdimm_flush(nd_region, bio); 223 224 if (ret) 225 bio->bi_status = errno_to_blk_status(ret); 226 227 bio_endio(bio); 228 return BLK_QC_T_NONE; 229 } 230 231 static int pmem_rw_page(struct block_device *bdev, sector_t sector, 232 struct page *page, unsigned int op) 233 { 234 struct pmem_device *pmem = bdev->bd_queue->queuedata; 235 blk_status_t rc; 236 237 if (op_is_write(op)) 238 rc = pmem_do_write(pmem, page, 0, sector, 239 hpage_nr_pages(page) * PAGE_SIZE); 240 else 241 rc = pmem_do_read(pmem, page, 0, sector, 242 hpage_nr_pages(page) * PAGE_SIZE); 243 /* 244 * The ->rw_page interface is subtle and tricky. The core 245 * retries on any error, so we can only invoke page_endio() in 246 * the successful completion case. Otherwise, we'll see crashes 247 * caused by double completion. 248 */ 249 if (rc == 0) 250 page_endio(page, op_is_write(op), 0); 251 252 return blk_status_to_errno(rc); 253 } 254 255 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */ 256 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff, 257 long nr_pages, void **kaddr, pfn_t *pfn) 258 { 259 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset; 260 261 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512, 262 PFN_PHYS(nr_pages)))) 263 return -EIO; 264 265 if (kaddr) 266 *kaddr = pmem->virt_addr + offset; 267 if (pfn) 268 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags); 269 270 /* 271 * If badblocks are present, limit known good range to the 272 * requested range. 273 */ 274 if (unlikely(pmem->bb.count)) 275 return nr_pages; 276 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset); 277 } 278 279 static const struct block_device_operations pmem_fops = { 280 .owner = THIS_MODULE, 281 .rw_page = pmem_rw_page, 282 .revalidate_disk = nvdimm_revalidate_disk, 283 }; 284 285 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 286 size_t nr_pages) 287 { 288 struct pmem_device *pmem = dax_get_private(dax_dev); 289 290 return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0, 291 PFN_PHYS(pgoff) >> SECTOR_SHIFT, 292 PAGE_SIZE)); 293 } 294 295 static long pmem_dax_direct_access(struct dax_device *dax_dev, 296 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn) 297 { 298 struct pmem_device *pmem = dax_get_private(dax_dev); 299 300 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn); 301 } 302 303 /* 304 * Use the 'no check' versions of copy_from_iter_flushcache() and 305 * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds 306 * checking, both file offset and device offset, is handled by 307 * dax_iomap_actor() 308 */ 309 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 310 void *addr, size_t bytes, struct iov_iter *i) 311 { 312 return _copy_from_iter_flushcache(addr, bytes, i); 313 } 314 315 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 316 void *addr, size_t bytes, struct iov_iter *i) 317 { 318 return _copy_to_iter_mcsafe(addr, bytes, i); 319 } 320 321 static const struct dax_operations pmem_dax_ops = { 322 .direct_access = pmem_dax_direct_access, 323 .dax_supported = generic_fsdax_supported, 324 .copy_from_iter = pmem_copy_from_iter, 325 .copy_to_iter = pmem_copy_to_iter, 326 .zero_page_range = pmem_dax_zero_page_range, 327 }; 328 329 static const struct attribute_group *pmem_attribute_groups[] = { 330 &dax_attribute_group, 331 NULL, 332 }; 333 334 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap) 335 { 336 struct request_queue *q = 337 container_of(pgmap->ref, struct request_queue, q_usage_counter); 338 339 blk_cleanup_queue(q); 340 } 341 342 static void pmem_release_queue(void *pgmap) 343 { 344 pmem_pagemap_cleanup(pgmap); 345 } 346 347 static void pmem_pagemap_kill(struct dev_pagemap *pgmap) 348 { 349 struct request_queue *q = 350 container_of(pgmap->ref, struct request_queue, q_usage_counter); 351 352 blk_freeze_queue_start(q); 353 } 354 355 static void pmem_release_disk(void *__pmem) 356 { 357 struct pmem_device *pmem = __pmem; 358 359 kill_dax(pmem->dax_dev); 360 put_dax(pmem->dax_dev); 361 del_gendisk(pmem->disk); 362 put_disk(pmem->disk); 363 } 364 365 static const struct dev_pagemap_ops fsdax_pagemap_ops = { 366 .kill = pmem_pagemap_kill, 367 .cleanup = pmem_pagemap_cleanup, 368 }; 369 370 static int pmem_attach_disk(struct device *dev, 371 struct nd_namespace_common *ndns) 372 { 373 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); 374 struct nd_region *nd_region = to_nd_region(dev->parent); 375 int nid = dev_to_node(dev), fua; 376 struct resource *res = &nsio->res; 377 struct resource bb_res; 378 struct nd_pfn *nd_pfn = NULL; 379 struct dax_device *dax_dev; 380 struct nd_pfn_sb *pfn_sb; 381 struct pmem_device *pmem; 382 struct request_queue *q; 383 struct device *gendev; 384 struct gendisk *disk; 385 void *addr; 386 int rc; 387 unsigned long flags = 0UL; 388 389 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL); 390 if (!pmem) 391 return -ENOMEM; 392 393 rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve()); 394 if (rc) 395 return rc; 396 397 /* while nsio_rw_bytes is active, parse a pfn info block if present */ 398 if (is_nd_pfn(dev)) { 399 nd_pfn = to_nd_pfn(dev); 400 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap); 401 if (rc) 402 return rc; 403 } 404 405 /* we're attaching a block device, disable raw namespace access */ 406 devm_namespace_disable(dev, ndns); 407 408 dev_set_drvdata(dev, pmem); 409 pmem->phys_addr = res->start; 410 pmem->size = resource_size(res); 411 fua = nvdimm_has_flush(nd_region); 412 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) { 413 dev_warn(dev, "unable to guarantee persistence of writes\n"); 414 fua = 0; 415 } 416 417 if (!devm_request_mem_region(dev, res->start, resource_size(res), 418 dev_name(&ndns->dev))) { 419 dev_warn(dev, "could not reserve region %pR\n", res); 420 return -EBUSY; 421 } 422 423 q = blk_alloc_queue(pmem_make_request, dev_to_node(dev)); 424 if (!q) 425 return -ENOMEM; 426 427 pmem->pfn_flags = PFN_DEV; 428 pmem->pgmap.ref = &q->q_usage_counter; 429 if (is_nd_pfn(dev)) { 430 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX; 431 pmem->pgmap.ops = &fsdax_pagemap_ops; 432 addr = devm_memremap_pages(dev, &pmem->pgmap); 433 pfn_sb = nd_pfn->pfn_sb; 434 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff); 435 pmem->pfn_pad = resource_size(res) - 436 resource_size(&pmem->pgmap.res); 437 pmem->pfn_flags |= PFN_MAP; 438 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res)); 439 bb_res.start += pmem->data_offset; 440 } else if (pmem_should_map_pages(dev)) { 441 memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res)); 442 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX; 443 pmem->pgmap.ops = &fsdax_pagemap_ops; 444 addr = devm_memremap_pages(dev, &pmem->pgmap); 445 pmem->pfn_flags |= PFN_MAP; 446 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res)); 447 } else { 448 if (devm_add_action_or_reset(dev, pmem_release_queue, 449 &pmem->pgmap)) 450 return -ENOMEM; 451 addr = devm_memremap(dev, pmem->phys_addr, 452 pmem->size, ARCH_MEMREMAP_PMEM); 453 memcpy(&bb_res, &nsio->res, sizeof(bb_res)); 454 } 455 456 if (IS_ERR(addr)) 457 return PTR_ERR(addr); 458 pmem->virt_addr = addr; 459 460 blk_queue_write_cache(q, true, fua); 461 blk_queue_physical_block_size(q, PAGE_SIZE); 462 blk_queue_logical_block_size(q, pmem_sector_size(ndns)); 463 blk_queue_max_hw_sectors(q, UINT_MAX); 464 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 465 if (pmem->pfn_flags & PFN_MAP) 466 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 467 q->queuedata = pmem; 468 469 disk = alloc_disk_node(0, nid); 470 if (!disk) 471 return -ENOMEM; 472 pmem->disk = disk; 473 474 disk->fops = &pmem_fops; 475 disk->queue = q; 476 disk->flags = GENHD_FL_EXT_DEVT; 477 disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO; 478 nvdimm_namespace_disk_name(ndns, disk->disk_name); 479 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset) 480 / 512); 481 if (devm_init_badblocks(dev, &pmem->bb)) 482 return -ENOMEM; 483 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res); 484 disk->bb = &pmem->bb; 485 486 if (is_nvdimm_sync(nd_region)) 487 flags = DAXDEV_F_SYNC; 488 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags); 489 if (IS_ERR(dax_dev)) { 490 put_disk(disk); 491 return PTR_ERR(dax_dev); 492 } 493 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region)); 494 pmem->dax_dev = dax_dev; 495 gendev = disk_to_dev(disk); 496 gendev->groups = pmem_attribute_groups; 497 498 device_add_disk(dev, disk, NULL); 499 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem)) 500 return -ENOMEM; 501 502 revalidate_disk(disk); 503 504 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd, 505 "badblocks"); 506 if (!pmem->bb_state) 507 dev_warn(dev, "'badblocks' notification disabled\n"); 508 509 return 0; 510 } 511 512 static int nd_pmem_probe(struct device *dev) 513 { 514 int ret; 515 struct nd_namespace_common *ndns; 516 517 ndns = nvdimm_namespace_common_probe(dev); 518 if (IS_ERR(ndns)) 519 return PTR_ERR(ndns); 520 521 if (is_nd_btt(dev)) 522 return nvdimm_namespace_attach_btt(ndns); 523 524 if (is_nd_pfn(dev)) 525 return pmem_attach_disk(dev, ndns); 526 527 ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve()); 528 if (ret) 529 return ret; 530 531 ret = nd_btt_probe(dev, ndns); 532 if (ret == 0) 533 return -ENXIO; 534 535 /* 536 * We have two failure conditions here, there is no 537 * info reserver block or we found a valid info reserve block 538 * but failed to initialize the pfn superblock. 539 * 540 * For the first case consider namespace as a raw pmem namespace 541 * and attach a disk. 542 * 543 * For the latter, consider this a success and advance the namespace 544 * seed. 545 */ 546 ret = nd_pfn_probe(dev, ndns); 547 if (ret == 0) 548 return -ENXIO; 549 else if (ret == -EOPNOTSUPP) 550 return ret; 551 552 ret = nd_dax_probe(dev, ndns); 553 if (ret == 0) 554 return -ENXIO; 555 else if (ret == -EOPNOTSUPP) 556 return ret; 557 558 /* probe complete, attach handles namespace enabling */ 559 devm_namespace_disable(dev, ndns); 560 561 return pmem_attach_disk(dev, ndns); 562 } 563 564 static int nd_pmem_remove(struct device *dev) 565 { 566 struct pmem_device *pmem = dev_get_drvdata(dev); 567 568 if (is_nd_btt(dev)) 569 nvdimm_namespace_detach_btt(to_nd_btt(dev)); 570 else { 571 /* 572 * Note, this assumes nd_device_lock() context to not 573 * race nd_pmem_notify() 574 */ 575 sysfs_put(pmem->bb_state); 576 pmem->bb_state = NULL; 577 } 578 nvdimm_flush(to_nd_region(dev->parent), NULL); 579 580 return 0; 581 } 582 583 static void nd_pmem_shutdown(struct device *dev) 584 { 585 nvdimm_flush(to_nd_region(dev->parent), NULL); 586 } 587 588 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event) 589 { 590 struct nd_region *nd_region; 591 resource_size_t offset = 0, end_trunc = 0; 592 struct nd_namespace_common *ndns; 593 struct nd_namespace_io *nsio; 594 struct resource res; 595 struct badblocks *bb; 596 struct kernfs_node *bb_state; 597 598 if (event != NVDIMM_REVALIDATE_POISON) 599 return; 600 601 if (is_nd_btt(dev)) { 602 struct nd_btt *nd_btt = to_nd_btt(dev); 603 604 ndns = nd_btt->ndns; 605 nd_region = to_nd_region(ndns->dev.parent); 606 nsio = to_nd_namespace_io(&ndns->dev); 607 bb = &nsio->bb; 608 bb_state = NULL; 609 } else { 610 struct pmem_device *pmem = dev_get_drvdata(dev); 611 612 nd_region = to_region(pmem); 613 bb = &pmem->bb; 614 bb_state = pmem->bb_state; 615 616 if (is_nd_pfn(dev)) { 617 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 618 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb; 619 620 ndns = nd_pfn->ndns; 621 offset = pmem->data_offset + 622 __le32_to_cpu(pfn_sb->start_pad); 623 end_trunc = __le32_to_cpu(pfn_sb->end_trunc); 624 } else { 625 ndns = to_ndns(dev); 626 } 627 628 nsio = to_nd_namespace_io(&ndns->dev); 629 } 630 631 res.start = nsio->res.start + offset; 632 res.end = nsio->res.end - end_trunc; 633 nvdimm_badblocks_populate(nd_region, bb, &res); 634 if (bb_state) 635 sysfs_notify_dirent(bb_state); 636 } 637 638 MODULE_ALIAS("pmem"); 639 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO); 640 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM); 641 static struct nd_device_driver nd_pmem_driver = { 642 .probe = nd_pmem_probe, 643 .remove = nd_pmem_remove, 644 .notify = nd_pmem_notify, 645 .shutdown = nd_pmem_shutdown, 646 .drv = { 647 .name = "nd_pmem", 648 }, 649 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM, 650 }; 651 652 module_nd_driver(nd_pmem_driver); 653 654 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>"); 655 MODULE_LICENSE("GPL v2"); 656