xref: /linux/drivers/nvdimm/pmem.c (revision 22c55fb9eb92395d999b8404d73e58540d11bdd8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9 
10 #include <linux/blkdev.h>
11 #include <linux/pagemap.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/kstrtox.h>
21 #include <linux/vmalloc.h>
22 #include <linux/blk-mq.h>
23 #include <linux/slab.h>
24 #include <linux/uio.h>
25 #include <linux/dax.h>
26 #include <linux/nd.h>
27 #include <linux/mm.h>
28 #include <asm/cacheflush.h>
29 #include "pmem.h"
30 #include "btt.h"
31 #include "pfn.h"
32 #include "nd.h"
33 
34 static struct device *to_dev(struct pmem_device *pmem)
35 {
36 	/*
37 	 * nvdimm bus services need a 'dev' parameter, and we record the device
38 	 * at init in bb.dev.
39 	 */
40 	return pmem->bb.dev;
41 }
42 
43 static struct nd_region *to_region(struct pmem_device *pmem)
44 {
45 	return to_nd_region(to_dev(pmem)->parent);
46 }
47 
48 static phys_addr_t pmem_to_phys(struct pmem_device *pmem, phys_addr_t offset)
49 {
50 	return pmem->phys_addr + offset;
51 }
52 
53 static sector_t to_sect(struct pmem_device *pmem, phys_addr_t offset)
54 {
55 	return (offset - pmem->data_offset) >> SECTOR_SHIFT;
56 }
57 
58 static phys_addr_t to_offset(struct pmem_device *pmem, sector_t sector)
59 {
60 	return (sector << SECTOR_SHIFT) + pmem->data_offset;
61 }
62 
63 static void pmem_mkpage_present(struct pmem_device *pmem, phys_addr_t offset,
64 		unsigned int len)
65 {
66 	phys_addr_t phys = pmem_to_phys(pmem, offset);
67 	unsigned long pfn_start, pfn_end, pfn;
68 
69 	/* only pmem in the linear map supports HWPoison */
70 	if (is_vmalloc_addr(pmem->virt_addr))
71 		return;
72 
73 	pfn_start = PHYS_PFN(phys);
74 	pfn_end = pfn_start + PHYS_PFN(len);
75 	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
76 		struct page *page = pfn_to_page(pfn);
77 
78 		/*
79 		 * Note, no need to hold a get_dev_pagemap() reference
80 		 * here since we're in the driver I/O path and
81 		 * outstanding I/O requests pin the dev_pagemap.
82 		 */
83 		if (test_and_clear_pmem_poison(page))
84 			clear_mce_nospec(pfn);
85 	}
86 }
87 
88 static void pmem_clear_bb(struct pmem_device *pmem, sector_t sector, long blks)
89 {
90 	if (blks == 0)
91 		return;
92 	badblocks_clear(&pmem->bb, sector, blks);
93 	if (pmem->bb_state)
94 		sysfs_notify_dirent(pmem->bb_state);
95 }
96 
97 static long __pmem_clear_poison(struct pmem_device *pmem,
98 		phys_addr_t offset, unsigned int len)
99 {
100 	phys_addr_t phys = pmem_to_phys(pmem, offset);
101 	long cleared = nvdimm_clear_poison(to_dev(pmem), phys, len);
102 
103 	if (cleared > 0) {
104 		pmem_mkpage_present(pmem, offset, cleared);
105 		arch_invalidate_pmem(pmem->virt_addr + offset, len);
106 	}
107 	return cleared;
108 }
109 
110 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
111 		phys_addr_t offset, unsigned int len)
112 {
113 	long cleared = __pmem_clear_poison(pmem, offset, len);
114 
115 	if (cleared < 0)
116 		return BLK_STS_IOERR;
117 
118 	pmem_clear_bb(pmem, to_sect(pmem, offset), cleared >> SECTOR_SHIFT);
119 	if (cleared < len)
120 		return BLK_STS_IOERR;
121 	return BLK_STS_OK;
122 }
123 
124 static void write_pmem(void *pmem_addr, struct page *page,
125 		unsigned int off, unsigned int len)
126 {
127 	unsigned int chunk;
128 	void *mem;
129 
130 	while (len) {
131 		mem = kmap_atomic(page);
132 		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
133 		memcpy_flushcache(pmem_addr, mem + off, chunk);
134 		kunmap_atomic(mem);
135 		len -= chunk;
136 		off = 0;
137 		page++;
138 		pmem_addr += chunk;
139 	}
140 }
141 
142 static blk_status_t read_pmem(struct page *page, unsigned int off,
143 		void *pmem_addr, unsigned int len)
144 {
145 	unsigned int chunk;
146 	unsigned long rem;
147 	void *mem;
148 
149 	while (len) {
150 		mem = kmap_atomic(page);
151 		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
152 		rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
153 		kunmap_atomic(mem);
154 		if (rem)
155 			return BLK_STS_IOERR;
156 		len -= chunk;
157 		off = 0;
158 		page++;
159 		pmem_addr += chunk;
160 	}
161 	return BLK_STS_OK;
162 }
163 
164 static blk_status_t pmem_do_read(struct pmem_device *pmem,
165 			struct page *page, unsigned int page_off,
166 			sector_t sector, unsigned int len)
167 {
168 	blk_status_t rc;
169 	phys_addr_t pmem_off = to_offset(pmem, sector);
170 	void *pmem_addr = pmem->virt_addr + pmem_off;
171 
172 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
173 		return BLK_STS_IOERR;
174 
175 	rc = read_pmem(page, page_off, pmem_addr, len);
176 	flush_dcache_page(page);
177 	return rc;
178 }
179 
180 static blk_status_t pmem_do_write(struct pmem_device *pmem,
181 			struct page *page, unsigned int page_off,
182 			sector_t sector, unsigned int len)
183 {
184 	phys_addr_t pmem_off = to_offset(pmem, sector);
185 	void *pmem_addr = pmem->virt_addr + pmem_off;
186 
187 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) {
188 		blk_status_t rc = pmem_clear_poison(pmem, pmem_off, len);
189 
190 		if (rc != BLK_STS_OK)
191 			return rc;
192 	}
193 
194 	flush_dcache_page(page);
195 	write_pmem(pmem_addr, page, page_off, len);
196 
197 	return BLK_STS_OK;
198 }
199 
200 static void pmem_submit_bio(struct bio *bio)
201 {
202 	int ret = 0;
203 	blk_status_t rc = 0;
204 	bool do_acct;
205 	unsigned long start;
206 	struct bio_vec bvec;
207 	struct bvec_iter iter;
208 	struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
209 	struct nd_region *nd_region = to_region(pmem);
210 
211 	if (bio->bi_opf & REQ_PREFLUSH)
212 		ret = nvdimm_flush(nd_region, bio);
213 
214 	do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
215 	if (do_acct)
216 		start = bio_start_io_acct(bio);
217 	bio_for_each_segment(bvec, bio, iter) {
218 		if (op_is_write(bio_op(bio)))
219 			rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
220 				iter.bi_sector, bvec.bv_len);
221 		else
222 			rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
223 				iter.bi_sector, bvec.bv_len);
224 		if (rc) {
225 			bio->bi_status = rc;
226 			break;
227 		}
228 	}
229 	if (do_acct)
230 		bio_end_io_acct(bio, start);
231 
232 	if (bio->bi_opf & REQ_FUA)
233 		ret = nvdimm_flush(nd_region, bio);
234 
235 	if (ret)
236 		bio->bi_status = errno_to_blk_status(ret);
237 
238 	bio_endio(bio);
239 }
240 
241 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
242 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
243 		long nr_pages, enum dax_access_mode mode, void **kaddr,
244 		unsigned long *pfn)
245 {
246 	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
247 	sector_t sector = PFN_PHYS(pgoff) >> SECTOR_SHIFT;
248 	unsigned int num = PFN_PHYS(nr_pages) >> SECTOR_SHIFT;
249 	struct badblocks *bb = &pmem->bb;
250 	sector_t first_bad;
251 	sector_t num_bad;
252 
253 	if (kaddr)
254 		*kaddr = pmem->virt_addr + offset;
255 	if (pfn)
256 		*pfn = PHYS_PFN(pmem->phys_addr + offset);
257 
258 	if (bb->count &&
259 	    badblocks_check(bb, sector, num, &first_bad, &num_bad)) {
260 		long actual_nr;
261 
262 		if (mode != DAX_RECOVERY_WRITE)
263 			return -EHWPOISON;
264 
265 		/*
266 		 * Set the recovery stride is set to kernel page size because
267 		 * the underlying driver and firmware clear poison functions
268 		 * don't appear to handle large chunk(such as 2MiB) reliably.
269 		 */
270 		actual_nr = PHYS_PFN(
271 			PAGE_ALIGN((first_bad - sector) << SECTOR_SHIFT));
272 		dev_dbg(pmem->bb.dev, "start sector(%llu), nr_pages(%ld), first_bad(%llu), actual_nr(%ld)\n",
273 				sector, nr_pages, first_bad, actual_nr);
274 		if (actual_nr)
275 			return actual_nr;
276 		return 1;
277 	}
278 
279 	/*
280 	 * If badblocks are present but not in the range, limit known good range
281 	 * to the requested range.
282 	 */
283 	if (bb->count)
284 		return nr_pages;
285 	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
286 }
287 
288 static const struct block_device_operations pmem_fops = {
289 	.owner =		THIS_MODULE,
290 	.submit_bio =		pmem_submit_bio,
291 };
292 
293 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
294 				    size_t nr_pages)
295 {
296 	struct pmem_device *pmem = dax_get_private(dax_dev);
297 
298 	return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
299 				   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
300 				   PAGE_SIZE));
301 }
302 
303 static long pmem_dax_direct_access(struct dax_device *dax_dev,
304 		pgoff_t pgoff, long nr_pages, enum dax_access_mode mode,
305 		void **kaddr, unsigned long *pfn)
306 {
307 	struct pmem_device *pmem = dax_get_private(dax_dev);
308 
309 	return __pmem_direct_access(pmem, pgoff, nr_pages, mode, kaddr, pfn);
310 }
311 
312 /*
313  * The recovery write thread started out as a normal pwrite thread and
314  * when the filesystem was told about potential media error in the
315  * range, filesystem turns the normal pwrite to a dax_recovery_write.
316  *
317  * The recovery write consists of clearing media poison, clearing page
318  * HWPoison bit, re-enable page-wide read-write permission, flush the
319  * caches and finally write.  A competing pread thread will be held
320  * off during the recovery process since data read back might not be
321  * valid, and this is achieved by clearing the badblock records after
322  * the recovery write is complete. Competing recovery write threads
323  * are already serialized by writer lock held by dax_iomap_rw().
324  */
325 static size_t pmem_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
326 		void *addr, size_t bytes, struct iov_iter *i)
327 {
328 	struct pmem_device *pmem = dax_get_private(dax_dev);
329 	size_t olen, len, off;
330 	phys_addr_t pmem_off;
331 	struct device *dev = pmem->bb.dev;
332 	long cleared;
333 
334 	off = offset_in_page(addr);
335 	len = PFN_PHYS(PFN_UP(off + bytes));
336 	if (!is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) >> SECTOR_SHIFT, len))
337 		return _copy_from_iter_flushcache(addr, bytes, i);
338 
339 	/*
340 	 * Not page-aligned range cannot be recovered. This should not
341 	 * happen unless something else went wrong.
342 	 */
343 	if (off || !PAGE_ALIGNED(bytes)) {
344 		dev_dbg(dev, "Found poison, but addr(%p) or bytes(%#zx) not page aligned\n",
345 			addr, bytes);
346 		return 0;
347 	}
348 
349 	pmem_off = PFN_PHYS(pgoff) + pmem->data_offset;
350 	cleared = __pmem_clear_poison(pmem, pmem_off, len);
351 	if (cleared > 0 && cleared < len) {
352 		dev_dbg(dev, "poison cleared only %ld out of %zu bytes\n",
353 			cleared, len);
354 		return 0;
355 	}
356 	if (cleared < 0) {
357 		dev_dbg(dev, "poison clear failed: %ld\n", cleared);
358 		return 0;
359 	}
360 
361 	olen = _copy_from_iter_flushcache(addr, bytes, i);
362 	pmem_clear_bb(pmem, to_sect(pmem, pmem_off), cleared >> SECTOR_SHIFT);
363 
364 	return olen;
365 }
366 
367 static const struct dax_operations pmem_dax_ops = {
368 	.direct_access = pmem_dax_direct_access,
369 	.zero_page_range = pmem_dax_zero_page_range,
370 	.recovery_write = pmem_recovery_write,
371 };
372 
373 static ssize_t write_cache_show(struct device *dev,
374 		struct device_attribute *attr, char *buf)
375 {
376 	struct pmem_device *pmem = dev_to_disk(dev)->private_data;
377 
378 	return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev));
379 }
380 
381 static ssize_t write_cache_store(struct device *dev,
382 		struct device_attribute *attr, const char *buf, size_t len)
383 {
384 	struct pmem_device *pmem = dev_to_disk(dev)->private_data;
385 	bool write_cache;
386 	int rc;
387 
388 	rc = kstrtobool(buf, &write_cache);
389 	if (rc)
390 		return rc;
391 	dax_write_cache(pmem->dax_dev, write_cache);
392 	return len;
393 }
394 static DEVICE_ATTR_RW(write_cache);
395 
396 static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
397 {
398 #ifndef CONFIG_ARCH_HAS_PMEM_API
399 	if (a == &dev_attr_write_cache.attr)
400 		return 0;
401 #endif
402 	return a->mode;
403 }
404 
405 static struct attribute *dax_attributes[] = {
406 	&dev_attr_write_cache.attr,
407 	NULL,
408 };
409 
410 static const struct attribute_group dax_attribute_group = {
411 	.name		= "dax",
412 	.attrs		= dax_attributes,
413 	.is_visible	= dax_visible,
414 };
415 
416 static const struct attribute_group *pmem_attribute_groups[] = {
417 	&dax_attribute_group,
418 	NULL,
419 };
420 
421 static void pmem_release_disk(void *__pmem)
422 {
423 	struct pmem_device *pmem = __pmem;
424 
425 	dax_remove_host(pmem->disk);
426 	kill_dax(pmem->dax_dev);
427 	put_dax(pmem->dax_dev);
428 	del_gendisk(pmem->disk);
429 
430 	put_disk(pmem->disk);
431 }
432 
433 static int pmem_pagemap_memory_failure(struct dev_pagemap *pgmap,
434 		unsigned long pfn, unsigned long nr_pages, int mf_flags)
435 {
436 	struct pmem_device *pmem =
437 			container_of(pgmap, struct pmem_device, pgmap);
438 	u64 offset = PFN_PHYS(pfn) - pmem->phys_addr - pmem->data_offset;
439 	u64 len = nr_pages << PAGE_SHIFT;
440 
441 	return dax_holder_notify_failure(pmem->dax_dev, offset, len, mf_flags);
442 }
443 
444 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
445 	.memory_failure		= pmem_pagemap_memory_failure,
446 };
447 
448 static int pmem_attach_disk(struct device *dev,
449 		struct nd_namespace_common *ndns)
450 {
451 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
452 	struct nd_region *nd_region = to_nd_region(dev->parent);
453 	struct queue_limits lim = {
454 		.logical_block_size	= pmem_sector_size(ndns),
455 		.physical_block_size	= PAGE_SIZE,
456 		.max_hw_sectors		= UINT_MAX,
457 		.features		= BLK_FEAT_WRITE_CACHE |
458 					  BLK_FEAT_SYNCHRONOUS,
459 	};
460 	int nid = dev_to_node(dev), fua;
461 	struct resource *res = &nsio->res;
462 	struct range bb_range;
463 	struct nd_pfn *nd_pfn = NULL;
464 	struct dax_device *dax_dev;
465 	struct nd_pfn_sb *pfn_sb;
466 	struct pmem_device *pmem;
467 	struct gendisk *disk;
468 	void *addr;
469 	int rc;
470 
471 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
472 	if (!pmem)
473 		return -ENOMEM;
474 
475 	rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
476 	if (rc)
477 		return rc;
478 
479 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
480 	if (is_nd_pfn(dev)) {
481 		nd_pfn = to_nd_pfn(dev);
482 		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
483 		if (rc)
484 			return rc;
485 	}
486 
487 	/* we're attaching a block device, disable raw namespace access */
488 	devm_namespace_disable(dev, ndns);
489 
490 	dev_set_drvdata(dev, pmem);
491 	pmem->phys_addr = res->start;
492 	pmem->size = resource_size(res);
493 	fua = nvdimm_has_flush(nd_region);
494 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
495 		dev_warn(dev, "unable to guarantee persistence of writes\n");
496 		fua = 0;
497 	}
498 	if (fua)
499 		lim.features |= BLK_FEAT_FUA;
500 	if (is_nd_pfn(dev) || pmem_should_map_pages(dev))
501 		lim.features |= BLK_FEAT_DAX;
502 
503 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
504 				dev_name(&ndns->dev))) {
505 		dev_warn(dev, "could not reserve region %pR\n", res);
506 		return -EBUSY;
507 	}
508 
509 	disk = blk_alloc_disk(&lim, nid);
510 	if (IS_ERR(disk))
511 		return PTR_ERR(disk);
512 
513 	pmem->disk = disk;
514 	pmem->pgmap.owner = pmem;
515 	if (is_nd_pfn(dev)) {
516 		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
517 		pmem->pgmap.ops = &fsdax_pagemap_ops;
518 		addr = devm_memremap_pages(dev, &pmem->pgmap);
519 		pfn_sb = nd_pfn->pfn_sb;
520 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
521 		pmem->pfn_pad = resource_size(res) -
522 			range_len(&pmem->pgmap.range);
523 		bb_range = pmem->pgmap.range;
524 		bb_range.start += pmem->data_offset;
525 	} else if (pmem_should_map_pages(dev)) {
526 		pmem->pgmap.range.start = res->start;
527 		pmem->pgmap.range.end = res->end;
528 		pmem->pgmap.nr_range = 1;
529 		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
530 		pmem->pgmap.ops = &fsdax_pagemap_ops;
531 		addr = devm_memremap_pages(dev, &pmem->pgmap);
532 		bb_range = pmem->pgmap.range;
533 	} else {
534 		addr = devm_memremap(dev, pmem->phys_addr,
535 				pmem->size, ARCH_MEMREMAP_PMEM);
536 		bb_range.start =  res->start;
537 		bb_range.end = res->end;
538 	}
539 
540 	if (IS_ERR(addr)) {
541 		rc = PTR_ERR(addr);
542 		goto out;
543 	}
544 	pmem->virt_addr = addr;
545 
546 	disk->fops		= &pmem_fops;
547 	disk->private_data	= pmem;
548 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
549 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
550 			/ 512);
551 	if (devm_init_badblocks(dev, &pmem->bb))
552 		return -ENOMEM;
553 	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
554 	disk->bb = &pmem->bb;
555 
556 	dax_dev = alloc_dax(pmem, &pmem_dax_ops);
557 	if (IS_ERR(dax_dev)) {
558 		rc = PTR_ERR(dax_dev);
559 		if (rc != -EOPNOTSUPP)
560 			goto out;
561 	} else {
562 		set_dax_nocache(dax_dev);
563 		set_dax_nomc(dax_dev);
564 		if (is_nvdimm_sync(nd_region))
565 			set_dax_synchronous(dax_dev);
566 		pmem->dax_dev = dax_dev;
567 		rc = dax_add_host(dax_dev, disk);
568 		if (rc)
569 			goto out_cleanup_dax;
570 		dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
571 	}
572 	rc = device_add_disk(dev, disk, pmem_attribute_groups);
573 	if (rc)
574 		goto out_remove_host;
575 	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
576 		return -ENOMEM;
577 
578 	nvdimm_check_and_set_ro(disk);
579 
580 	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
581 					  "badblocks");
582 	if (!pmem->bb_state)
583 		dev_warn(dev, "'badblocks' notification disabled\n");
584 	return 0;
585 
586 out_remove_host:
587 	dax_remove_host(pmem->disk);
588 out_cleanup_dax:
589 	kill_dax(pmem->dax_dev);
590 	put_dax(pmem->dax_dev);
591 out:
592 	put_disk(pmem->disk);
593 	return rc;
594 }
595 
596 static int nd_pmem_probe(struct device *dev)
597 {
598 	int ret;
599 	struct nd_namespace_common *ndns;
600 
601 	ndns = nvdimm_namespace_common_probe(dev);
602 	if (IS_ERR(ndns))
603 		return PTR_ERR(ndns);
604 
605 	if (is_nd_btt(dev))
606 		return nvdimm_namespace_attach_btt(ndns);
607 
608 	if (is_nd_pfn(dev))
609 		return pmem_attach_disk(dev, ndns);
610 
611 	ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
612 	if (ret)
613 		return ret;
614 
615 	ret = nd_btt_probe(dev, ndns);
616 	if (ret == 0)
617 		return -ENXIO;
618 
619 	/*
620 	 * We have two failure conditions here, there is no
621 	 * info reserver block or we found a valid info reserve block
622 	 * but failed to initialize the pfn superblock.
623 	 *
624 	 * For the first case consider namespace as a raw pmem namespace
625 	 * and attach a disk.
626 	 *
627 	 * For the latter, consider this a success and advance the namespace
628 	 * seed.
629 	 */
630 	ret = nd_pfn_probe(dev, ndns);
631 	if (ret == 0)
632 		return -ENXIO;
633 	else if (ret == -EOPNOTSUPP)
634 		return ret;
635 
636 	ret = nd_dax_probe(dev, ndns);
637 	if (ret == 0)
638 		return -ENXIO;
639 	else if (ret == -EOPNOTSUPP)
640 		return ret;
641 
642 	/* probe complete, attach handles namespace enabling */
643 	devm_namespace_disable(dev, ndns);
644 
645 	return pmem_attach_disk(dev, ndns);
646 }
647 
648 static void nd_pmem_remove(struct device *dev)
649 {
650 	struct pmem_device *pmem = dev_get_drvdata(dev);
651 
652 	if (is_nd_btt(dev))
653 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
654 	else {
655 		/*
656 		 * Note, this assumes device_lock() context to not
657 		 * race nd_pmem_notify()
658 		 */
659 		sysfs_put(pmem->bb_state);
660 		pmem->bb_state = NULL;
661 	}
662 	nvdimm_flush(to_nd_region(dev->parent), NULL);
663 }
664 
665 static void nd_pmem_shutdown(struct device *dev)
666 {
667 	nvdimm_flush(to_nd_region(dev->parent), NULL);
668 }
669 
670 static void pmem_revalidate_poison(struct device *dev)
671 {
672 	struct nd_region *nd_region;
673 	resource_size_t offset = 0, end_trunc = 0;
674 	struct nd_namespace_common *ndns;
675 	struct nd_namespace_io *nsio;
676 	struct badblocks *bb;
677 	struct range range;
678 	struct kernfs_node *bb_state;
679 
680 	if (is_nd_btt(dev)) {
681 		struct nd_btt *nd_btt = to_nd_btt(dev);
682 
683 		ndns = nd_btt->ndns;
684 		nd_region = to_nd_region(ndns->dev.parent);
685 		nsio = to_nd_namespace_io(&ndns->dev);
686 		bb = &nsio->bb;
687 		bb_state = NULL;
688 	} else {
689 		struct pmem_device *pmem = dev_get_drvdata(dev);
690 
691 		nd_region = to_region(pmem);
692 		bb = &pmem->bb;
693 		bb_state = pmem->bb_state;
694 
695 		if (is_nd_pfn(dev)) {
696 			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
697 			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
698 
699 			ndns = nd_pfn->ndns;
700 			offset = pmem->data_offset +
701 					__le32_to_cpu(pfn_sb->start_pad);
702 			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
703 		} else {
704 			ndns = to_ndns(dev);
705 		}
706 
707 		nsio = to_nd_namespace_io(&ndns->dev);
708 	}
709 
710 	range.start = nsio->res.start + offset;
711 	range.end = nsio->res.end - end_trunc;
712 	nvdimm_badblocks_populate(nd_region, bb, &range);
713 	if (bb_state)
714 		sysfs_notify_dirent(bb_state);
715 }
716 
717 static void pmem_revalidate_region(struct device *dev)
718 {
719 	struct pmem_device *pmem;
720 
721 	if (is_nd_btt(dev)) {
722 		struct nd_btt *nd_btt = to_nd_btt(dev);
723 		struct btt *btt = nd_btt->btt;
724 
725 		nvdimm_check_and_set_ro(btt->btt_disk);
726 		return;
727 	}
728 
729 	pmem = dev_get_drvdata(dev);
730 	nvdimm_check_and_set_ro(pmem->disk);
731 }
732 
733 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
734 {
735 	switch (event) {
736 	case NVDIMM_REVALIDATE_POISON:
737 		pmem_revalidate_poison(dev);
738 		break;
739 	case NVDIMM_REVALIDATE_REGION:
740 		pmem_revalidate_region(dev);
741 		break;
742 	default:
743 		dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
744 		break;
745 	}
746 }
747 
748 MODULE_ALIAS("pmem");
749 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
750 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
751 static struct nd_device_driver nd_pmem_driver = {
752 	.probe = nd_pmem_probe,
753 	.remove = nd_pmem_remove,
754 	.notify = nd_pmem_notify,
755 	.shutdown = nd_pmem_shutdown,
756 	.drv = {
757 		.name = "nd_pmem",
758 	},
759 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
760 };
761 
762 module_nd_driver(nd_pmem_driver);
763 
764 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
765 MODULE_DESCRIPTION("NVDIMM Persistent Memory Driver");
766 MODULE_LICENSE("GPL v2");
767