xref: /linux/drivers/nvdimm/namespace_devs.c (revision 5e0266f0e5f57617472d5aac4013f58a3ef264ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/module.h>
6 #include <linux/device.h>
7 #include <linux/sort.h>
8 #include <linux/slab.h>
9 #include <linux/list.h>
10 #include <linux/nd.h>
11 #include "nd-core.h"
12 #include "pmem.h"
13 #include "pfn.h"
14 #include "nd.h"
15 
16 static void namespace_io_release(struct device *dev)
17 {
18 	struct nd_namespace_io *nsio = to_nd_namespace_io(dev);
19 
20 	kfree(nsio);
21 }
22 
23 static void namespace_pmem_release(struct device *dev)
24 {
25 	struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
26 	struct nd_region *nd_region = to_nd_region(dev->parent);
27 
28 	if (nspm->id >= 0)
29 		ida_simple_remove(&nd_region->ns_ida, nspm->id);
30 	kfree(nspm->alt_name);
31 	kfree(nspm->uuid);
32 	kfree(nspm);
33 }
34 
35 static bool is_namespace_pmem(const struct device *dev);
36 static bool is_namespace_io(const struct device *dev);
37 
38 static int is_uuid_busy(struct device *dev, void *data)
39 {
40 	uuid_t *uuid1 = data, *uuid2 = NULL;
41 
42 	if (is_namespace_pmem(dev)) {
43 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
44 
45 		uuid2 = nspm->uuid;
46 	} else if (is_nd_btt(dev)) {
47 		struct nd_btt *nd_btt = to_nd_btt(dev);
48 
49 		uuid2 = nd_btt->uuid;
50 	} else if (is_nd_pfn(dev)) {
51 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
52 
53 		uuid2 = nd_pfn->uuid;
54 	}
55 
56 	if (uuid2 && uuid_equal(uuid1, uuid2))
57 		return -EBUSY;
58 
59 	return 0;
60 }
61 
62 static int is_namespace_uuid_busy(struct device *dev, void *data)
63 {
64 	if (is_nd_region(dev))
65 		return device_for_each_child(dev, data, is_uuid_busy);
66 	return 0;
67 }
68 
69 /**
70  * nd_is_uuid_unique - verify that no other namespace has @uuid
71  * @dev: any device on a nvdimm_bus
72  * @uuid: uuid to check
73  */
74 bool nd_is_uuid_unique(struct device *dev, uuid_t *uuid)
75 {
76 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
77 
78 	if (!nvdimm_bus)
79 		return false;
80 	WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm_bus->dev));
81 	if (device_for_each_child(&nvdimm_bus->dev, uuid,
82 				is_namespace_uuid_busy) != 0)
83 		return false;
84 	return true;
85 }
86 
87 bool pmem_should_map_pages(struct device *dev)
88 {
89 	struct nd_region *nd_region = to_nd_region(dev->parent);
90 	struct nd_namespace_common *ndns = to_ndns(dev);
91 	struct nd_namespace_io *nsio;
92 
93 	if (!IS_ENABLED(CONFIG_ZONE_DEVICE))
94 		return false;
95 
96 	if (!test_bit(ND_REGION_PAGEMAP, &nd_region->flags))
97 		return false;
98 
99 	if (is_nd_pfn(dev) || is_nd_btt(dev))
100 		return false;
101 
102 	if (ndns->force_raw)
103 		return false;
104 
105 	nsio = to_nd_namespace_io(dev);
106 	if (region_intersects(nsio->res.start, resource_size(&nsio->res),
107 				IORESOURCE_SYSTEM_RAM,
108 				IORES_DESC_NONE) == REGION_MIXED)
109 		return false;
110 
111 	return ARCH_MEMREMAP_PMEM == MEMREMAP_WB;
112 }
113 EXPORT_SYMBOL(pmem_should_map_pages);
114 
115 unsigned int pmem_sector_size(struct nd_namespace_common *ndns)
116 {
117 	if (is_namespace_pmem(&ndns->dev)) {
118 		struct nd_namespace_pmem *nspm;
119 
120 		nspm = to_nd_namespace_pmem(&ndns->dev);
121 		if (nspm->lbasize == 0 || nspm->lbasize == 512)
122 			/* default */;
123 		else if (nspm->lbasize == 4096)
124 			return 4096;
125 		else
126 			dev_WARN(&ndns->dev, "unsupported sector size: %ld\n",
127 					nspm->lbasize);
128 	}
129 
130 	/*
131 	 * There is no namespace label (is_namespace_io()), or the label
132 	 * indicates the default sector size.
133 	 */
134 	return 512;
135 }
136 EXPORT_SYMBOL(pmem_sector_size);
137 
138 const char *nvdimm_namespace_disk_name(struct nd_namespace_common *ndns,
139 		char *name)
140 {
141 	struct nd_region *nd_region = to_nd_region(ndns->dev.parent);
142 	const char *suffix = NULL;
143 
144 	if (ndns->claim && is_nd_btt(ndns->claim))
145 		suffix = "s";
146 
147 	if (is_namespace_pmem(&ndns->dev) || is_namespace_io(&ndns->dev)) {
148 		int nsidx = 0;
149 
150 		if (is_namespace_pmem(&ndns->dev)) {
151 			struct nd_namespace_pmem *nspm;
152 
153 			nspm = to_nd_namespace_pmem(&ndns->dev);
154 			nsidx = nspm->id;
155 		}
156 
157 		if (nsidx)
158 			sprintf(name, "pmem%d.%d%s", nd_region->id, nsidx,
159 					suffix ? suffix : "");
160 		else
161 			sprintf(name, "pmem%d%s", nd_region->id,
162 					suffix ? suffix : "");
163 	} else {
164 		return NULL;
165 	}
166 
167 	return name;
168 }
169 EXPORT_SYMBOL(nvdimm_namespace_disk_name);
170 
171 const uuid_t *nd_dev_to_uuid(struct device *dev)
172 {
173 	if (dev && is_namespace_pmem(dev)) {
174 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
175 
176 		return nspm->uuid;
177 	}
178 	return &uuid_null;
179 }
180 EXPORT_SYMBOL(nd_dev_to_uuid);
181 
182 static ssize_t nstype_show(struct device *dev,
183 		struct device_attribute *attr, char *buf)
184 {
185 	struct nd_region *nd_region = to_nd_region(dev->parent);
186 
187 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
188 }
189 static DEVICE_ATTR_RO(nstype);
190 
191 static ssize_t __alt_name_store(struct device *dev, const char *buf,
192 		const size_t len)
193 {
194 	char *input, *pos, *alt_name, **ns_altname;
195 	ssize_t rc;
196 
197 	if (is_namespace_pmem(dev)) {
198 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
199 
200 		ns_altname = &nspm->alt_name;
201 	} else
202 		return -ENXIO;
203 
204 	if (dev->driver || to_ndns(dev)->claim)
205 		return -EBUSY;
206 
207 	input = kstrndup(buf, len, GFP_KERNEL);
208 	if (!input)
209 		return -ENOMEM;
210 
211 	pos = strim(input);
212 	if (strlen(pos) + 1 > NSLABEL_NAME_LEN) {
213 		rc = -EINVAL;
214 		goto out;
215 	}
216 
217 	alt_name = kzalloc(NSLABEL_NAME_LEN, GFP_KERNEL);
218 	if (!alt_name) {
219 		rc = -ENOMEM;
220 		goto out;
221 	}
222 	kfree(*ns_altname);
223 	*ns_altname = alt_name;
224 	sprintf(*ns_altname, "%s", pos);
225 	rc = len;
226 
227 out:
228 	kfree(input);
229 	return rc;
230 }
231 
232 static int nd_namespace_label_update(struct nd_region *nd_region,
233 		struct device *dev)
234 {
235 	dev_WARN_ONCE(dev, dev->driver || to_ndns(dev)->claim,
236 			"namespace must be idle during label update\n");
237 	if (dev->driver || to_ndns(dev)->claim)
238 		return 0;
239 
240 	/*
241 	 * Only allow label writes that will result in a valid namespace
242 	 * or deletion of an existing namespace.
243 	 */
244 	if (is_namespace_pmem(dev)) {
245 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
246 		resource_size_t size = resource_size(&nspm->nsio.res);
247 
248 		if (size == 0 && nspm->uuid)
249 			/* delete allocation */;
250 		else if (!nspm->uuid)
251 			return 0;
252 
253 		return nd_pmem_namespace_label_update(nd_region, nspm, size);
254 	} else
255 		return -ENXIO;
256 }
257 
258 static ssize_t alt_name_store(struct device *dev,
259 		struct device_attribute *attr, const char *buf, size_t len)
260 {
261 	struct nd_region *nd_region = to_nd_region(dev->parent);
262 	ssize_t rc;
263 
264 	device_lock(dev);
265 	nvdimm_bus_lock(dev);
266 	wait_nvdimm_bus_probe_idle(dev);
267 	rc = __alt_name_store(dev, buf, len);
268 	if (rc >= 0)
269 		rc = nd_namespace_label_update(nd_region, dev);
270 	dev_dbg(dev, "%s(%zd)\n", rc < 0 ? "fail " : "", rc);
271 	nvdimm_bus_unlock(dev);
272 	device_unlock(dev);
273 
274 	return rc < 0 ? rc : len;
275 }
276 
277 static ssize_t alt_name_show(struct device *dev,
278 		struct device_attribute *attr, char *buf)
279 {
280 	char *ns_altname;
281 
282 	if (is_namespace_pmem(dev)) {
283 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
284 
285 		ns_altname = nspm->alt_name;
286 	} else
287 		return -ENXIO;
288 
289 	return sprintf(buf, "%s\n", ns_altname ? ns_altname : "");
290 }
291 static DEVICE_ATTR_RW(alt_name);
292 
293 static int scan_free(struct nd_region *nd_region,
294 		struct nd_mapping *nd_mapping, struct nd_label_id *label_id,
295 		resource_size_t n)
296 {
297 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
298 	int rc = 0;
299 
300 	while (n) {
301 		struct resource *res, *last;
302 
303 		last = NULL;
304 		for_each_dpa_resource(ndd, res)
305 			if (strcmp(res->name, label_id->id) == 0)
306 				last = res;
307 		res = last;
308 		if (!res)
309 			return 0;
310 
311 		if (n >= resource_size(res)) {
312 			n -= resource_size(res);
313 			nd_dbg_dpa(nd_region, ndd, res, "delete %d\n", rc);
314 			nvdimm_free_dpa(ndd, res);
315 			/* retry with last resource deleted */
316 			continue;
317 		}
318 
319 		rc = adjust_resource(res, res->start, resource_size(res) - n);
320 		if (rc == 0)
321 			res->flags |= DPA_RESOURCE_ADJUSTED;
322 		nd_dbg_dpa(nd_region, ndd, res, "shrink %d\n", rc);
323 		break;
324 	}
325 
326 	return rc;
327 }
328 
329 /**
330  * shrink_dpa_allocation - for each dimm in region free n bytes for label_id
331  * @nd_region: the set of dimms to reclaim @n bytes from
332  * @label_id: unique identifier for the namespace consuming this dpa range
333  * @n: number of bytes per-dimm to release
334  *
335  * Assumes resources are ordered.  Starting from the end try to
336  * adjust_resource() the allocation to @n, but if @n is larger than the
337  * allocation delete it and find the 'new' last allocation in the label
338  * set.
339  */
340 static int shrink_dpa_allocation(struct nd_region *nd_region,
341 		struct nd_label_id *label_id, resource_size_t n)
342 {
343 	int i;
344 
345 	for (i = 0; i < nd_region->ndr_mappings; i++) {
346 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
347 		int rc;
348 
349 		rc = scan_free(nd_region, nd_mapping, label_id, n);
350 		if (rc)
351 			return rc;
352 	}
353 
354 	return 0;
355 }
356 
357 static resource_size_t init_dpa_allocation(struct nd_label_id *label_id,
358 		struct nd_region *nd_region, struct nd_mapping *nd_mapping,
359 		resource_size_t n)
360 {
361 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
362 	struct resource *res;
363 	int rc = 0;
364 
365 	/* first resource allocation for this label-id or dimm */
366 	res = nvdimm_allocate_dpa(ndd, label_id, nd_mapping->start, n);
367 	if (!res)
368 		rc = -EBUSY;
369 
370 	nd_dbg_dpa(nd_region, ndd, res, "init %d\n", rc);
371 	return rc ? n : 0;
372 }
373 
374 
375 /**
376  * space_valid() - validate free dpa space against constraints
377  * @nd_region: hosting region of the free space
378  * @ndd: dimm device data for debug
379  * @label_id: namespace id to allocate space
380  * @prev: potential allocation that precedes free space
381  * @next: allocation that follows the given free space range
382  * @exist: first allocation with same id in the mapping
383  * @n: range that must satisfied for pmem allocations
384  * @valid: free space range to validate
385  *
386  * BLK-space is valid as long as it does not precede a PMEM
387  * allocation in a given region. PMEM-space must be contiguous
388  * and adjacent to an existing allocation (if one
389  * exists).  If reserving PMEM any space is valid.
390  */
391 static void space_valid(struct nd_region *nd_region, struct nvdimm_drvdata *ndd,
392 		struct nd_label_id *label_id, struct resource *prev,
393 		struct resource *next, struct resource *exist,
394 		resource_size_t n, struct resource *valid)
395 {
396 	bool is_reserve = strcmp(label_id->id, "pmem-reserve") == 0;
397 	unsigned long align;
398 
399 	align = nd_region->align / nd_region->ndr_mappings;
400 	valid->start = ALIGN(valid->start, align);
401 	valid->end = ALIGN_DOWN(valid->end + 1, align) - 1;
402 
403 	if (valid->start >= valid->end)
404 		goto invalid;
405 
406 	if (is_reserve)
407 		return;
408 
409 	/* allocation needs to be contiguous, so this is all or nothing */
410 	if (resource_size(valid) < n)
411 		goto invalid;
412 
413 	/* we've got all the space we need and no existing allocation */
414 	if (!exist)
415 		return;
416 
417 	/* allocation needs to be contiguous with the existing namespace */
418 	if (valid->start == exist->end + 1
419 			|| valid->end == exist->start - 1)
420 		return;
421 
422  invalid:
423 	/* truncate @valid size to 0 */
424 	valid->end = valid->start - 1;
425 }
426 
427 enum alloc_loc {
428 	ALLOC_ERR = 0, ALLOC_BEFORE, ALLOC_MID, ALLOC_AFTER,
429 };
430 
431 static resource_size_t scan_allocate(struct nd_region *nd_region,
432 		struct nd_mapping *nd_mapping, struct nd_label_id *label_id,
433 		resource_size_t n)
434 {
435 	resource_size_t mapping_end = nd_mapping->start + nd_mapping->size - 1;
436 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
437 	struct resource *res, *exist = NULL, valid;
438 	const resource_size_t to_allocate = n;
439 	int first;
440 
441 	for_each_dpa_resource(ndd, res)
442 		if (strcmp(label_id->id, res->name) == 0)
443 			exist = res;
444 
445 	valid.start = nd_mapping->start;
446 	valid.end = mapping_end;
447 	valid.name = "free space";
448  retry:
449 	first = 0;
450 	for_each_dpa_resource(ndd, res) {
451 		struct resource *next = res->sibling, *new_res = NULL;
452 		resource_size_t allocate, available = 0;
453 		enum alloc_loc loc = ALLOC_ERR;
454 		const char *action;
455 		int rc = 0;
456 
457 		/* ignore resources outside this nd_mapping */
458 		if (res->start > mapping_end)
459 			continue;
460 		if (res->end < nd_mapping->start)
461 			continue;
462 
463 		/* space at the beginning of the mapping */
464 		if (!first++ && res->start > nd_mapping->start) {
465 			valid.start = nd_mapping->start;
466 			valid.end = res->start - 1;
467 			space_valid(nd_region, ndd, label_id, NULL, next, exist,
468 					to_allocate, &valid);
469 			available = resource_size(&valid);
470 			if (available)
471 				loc = ALLOC_BEFORE;
472 		}
473 
474 		/* space between allocations */
475 		if (!loc && next) {
476 			valid.start = res->start + resource_size(res);
477 			valid.end = min(mapping_end, next->start - 1);
478 			space_valid(nd_region, ndd, label_id, res, next, exist,
479 					to_allocate, &valid);
480 			available = resource_size(&valid);
481 			if (available)
482 				loc = ALLOC_MID;
483 		}
484 
485 		/* space at the end of the mapping */
486 		if (!loc && !next) {
487 			valid.start = res->start + resource_size(res);
488 			valid.end = mapping_end;
489 			space_valid(nd_region, ndd, label_id, res, next, exist,
490 					to_allocate, &valid);
491 			available = resource_size(&valid);
492 			if (available)
493 				loc = ALLOC_AFTER;
494 		}
495 
496 		if (!loc || !available)
497 			continue;
498 		allocate = min(available, n);
499 		switch (loc) {
500 		case ALLOC_BEFORE:
501 			if (strcmp(res->name, label_id->id) == 0) {
502 				/* adjust current resource up */
503 				rc = adjust_resource(res, res->start - allocate,
504 						resource_size(res) + allocate);
505 				action = "cur grow up";
506 			} else
507 				action = "allocate";
508 			break;
509 		case ALLOC_MID:
510 			if (strcmp(next->name, label_id->id) == 0) {
511 				/* adjust next resource up */
512 				rc = adjust_resource(next, next->start
513 						- allocate, resource_size(next)
514 						+ allocate);
515 				new_res = next;
516 				action = "next grow up";
517 			} else if (strcmp(res->name, label_id->id) == 0) {
518 				action = "grow down";
519 			} else
520 				action = "allocate";
521 			break;
522 		case ALLOC_AFTER:
523 			if (strcmp(res->name, label_id->id) == 0)
524 				action = "grow down";
525 			else
526 				action = "allocate";
527 			break;
528 		default:
529 			return n;
530 		}
531 
532 		if (strcmp(action, "allocate") == 0) {
533 			new_res = nvdimm_allocate_dpa(ndd, label_id,
534 					valid.start, allocate);
535 			if (!new_res)
536 				rc = -EBUSY;
537 		} else if (strcmp(action, "grow down") == 0) {
538 			/* adjust current resource down */
539 			rc = adjust_resource(res, res->start, resource_size(res)
540 					+ allocate);
541 			if (rc == 0)
542 				res->flags |= DPA_RESOURCE_ADJUSTED;
543 		}
544 
545 		if (!new_res)
546 			new_res = res;
547 
548 		nd_dbg_dpa(nd_region, ndd, new_res, "%s(%d) %d\n",
549 				action, loc, rc);
550 
551 		if (rc)
552 			return n;
553 
554 		n -= allocate;
555 		if (n) {
556 			/*
557 			 * Retry scan with newly inserted resources.
558 			 * For example, if we did an ALLOC_BEFORE
559 			 * insertion there may also have been space
560 			 * available for an ALLOC_AFTER insertion, so we
561 			 * need to check this same resource again
562 			 */
563 			goto retry;
564 		} else
565 			return 0;
566 	}
567 
568 	if (n == to_allocate)
569 		return init_dpa_allocation(label_id, nd_region, nd_mapping, n);
570 	return n;
571 }
572 
573 static int merge_dpa(struct nd_region *nd_region,
574 		struct nd_mapping *nd_mapping, struct nd_label_id *label_id)
575 {
576 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
577 	struct resource *res;
578 
579 	if (strncmp("pmem", label_id->id, 4) == 0)
580 		return 0;
581  retry:
582 	for_each_dpa_resource(ndd, res) {
583 		int rc;
584 		struct resource *next = res->sibling;
585 		resource_size_t end = res->start + resource_size(res);
586 
587 		if (!next || strcmp(res->name, label_id->id) != 0
588 				|| strcmp(next->name, label_id->id) != 0
589 				|| end != next->start)
590 			continue;
591 		end += resource_size(next);
592 		nvdimm_free_dpa(ndd, next);
593 		rc = adjust_resource(res, res->start, end - res->start);
594 		nd_dbg_dpa(nd_region, ndd, res, "merge %d\n", rc);
595 		if (rc)
596 			return rc;
597 		res->flags |= DPA_RESOURCE_ADJUSTED;
598 		goto retry;
599 	}
600 
601 	return 0;
602 }
603 
604 int __reserve_free_pmem(struct device *dev, void *data)
605 {
606 	struct nvdimm *nvdimm = data;
607 	struct nd_region *nd_region;
608 	struct nd_label_id label_id;
609 	int i;
610 
611 	if (!is_memory(dev))
612 		return 0;
613 
614 	nd_region = to_nd_region(dev);
615 	if (nd_region->ndr_mappings == 0)
616 		return 0;
617 
618 	memset(&label_id, 0, sizeof(label_id));
619 	strcat(label_id.id, "pmem-reserve");
620 	for (i = 0; i < nd_region->ndr_mappings; i++) {
621 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
622 		resource_size_t n, rem = 0;
623 
624 		if (nd_mapping->nvdimm != nvdimm)
625 			continue;
626 
627 		n = nd_pmem_available_dpa(nd_region, nd_mapping);
628 		if (n == 0)
629 			return 0;
630 		rem = scan_allocate(nd_region, nd_mapping, &label_id, n);
631 		dev_WARN_ONCE(&nd_region->dev, rem,
632 				"pmem reserve underrun: %#llx of %#llx bytes\n",
633 				(unsigned long long) n - rem,
634 				(unsigned long long) n);
635 		return rem ? -ENXIO : 0;
636 	}
637 
638 	return 0;
639 }
640 
641 void release_free_pmem(struct nvdimm_bus *nvdimm_bus,
642 		struct nd_mapping *nd_mapping)
643 {
644 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
645 	struct resource *res, *_res;
646 
647 	for_each_dpa_resource_safe(ndd, res, _res)
648 		if (strcmp(res->name, "pmem-reserve") == 0)
649 			nvdimm_free_dpa(ndd, res);
650 }
651 
652 /**
653  * grow_dpa_allocation - for each dimm allocate n bytes for @label_id
654  * @nd_region: the set of dimms to allocate @n more bytes from
655  * @label_id: unique identifier for the namespace consuming this dpa range
656  * @n: number of bytes per-dimm to add to the existing allocation
657  *
658  * Assumes resources are ordered.  For BLK regions, first consume
659  * BLK-only available DPA free space, then consume PMEM-aliased DPA
660  * space starting at the highest DPA.  For PMEM regions start
661  * allocations from the start of an interleave set and end at the first
662  * BLK allocation or the end of the interleave set, whichever comes
663  * first.
664  */
665 static int grow_dpa_allocation(struct nd_region *nd_region,
666 		struct nd_label_id *label_id, resource_size_t n)
667 {
668 	int i;
669 
670 	for (i = 0; i < nd_region->ndr_mappings; i++) {
671 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
672 		resource_size_t rem = n;
673 		int rc;
674 
675 		rem = scan_allocate(nd_region, nd_mapping, label_id, rem);
676 		dev_WARN_ONCE(&nd_region->dev, rem,
677 				"allocation underrun: %#llx of %#llx bytes\n",
678 				(unsigned long long) n - rem,
679 				(unsigned long long) n);
680 		if (rem)
681 			return -ENXIO;
682 
683 		rc = merge_dpa(nd_region, nd_mapping, label_id);
684 		if (rc)
685 			return rc;
686 	}
687 
688 	return 0;
689 }
690 
691 static void nd_namespace_pmem_set_resource(struct nd_region *nd_region,
692 		struct nd_namespace_pmem *nspm, resource_size_t size)
693 {
694 	struct resource *res = &nspm->nsio.res;
695 	resource_size_t offset = 0;
696 
697 	if (size && !nspm->uuid) {
698 		WARN_ON_ONCE(1);
699 		size = 0;
700 	}
701 
702 	if (size && nspm->uuid) {
703 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
704 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
705 		struct nd_label_id label_id;
706 		struct resource *res;
707 
708 		if (!ndd) {
709 			size = 0;
710 			goto out;
711 		}
712 
713 		nd_label_gen_id(&label_id, nspm->uuid, 0);
714 
715 		/* calculate a spa offset from the dpa allocation offset */
716 		for_each_dpa_resource(ndd, res)
717 			if (strcmp(res->name, label_id.id) == 0) {
718 				offset = (res->start - nd_mapping->start)
719 					* nd_region->ndr_mappings;
720 				goto out;
721 			}
722 
723 		WARN_ON_ONCE(1);
724 		size = 0;
725 	}
726 
727  out:
728 	res->start = nd_region->ndr_start + offset;
729 	res->end = res->start + size - 1;
730 }
731 
732 static bool uuid_not_set(const uuid_t *uuid, struct device *dev,
733 			 const char *where)
734 {
735 	if (!uuid) {
736 		dev_dbg(dev, "%s: uuid not set\n", where);
737 		return true;
738 	}
739 	return false;
740 }
741 
742 static ssize_t __size_store(struct device *dev, unsigned long long val)
743 {
744 	resource_size_t allocated = 0, available = 0;
745 	struct nd_region *nd_region = to_nd_region(dev->parent);
746 	struct nd_namespace_common *ndns = to_ndns(dev);
747 	struct nd_mapping *nd_mapping;
748 	struct nvdimm_drvdata *ndd;
749 	struct nd_label_id label_id;
750 	u32 flags = 0, remainder;
751 	int rc, i, id = -1;
752 	uuid_t *uuid = NULL;
753 
754 	if (dev->driver || ndns->claim)
755 		return -EBUSY;
756 
757 	if (is_namespace_pmem(dev)) {
758 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
759 
760 		uuid = nspm->uuid;
761 		id = nspm->id;
762 	}
763 
764 	/*
765 	 * We need a uuid for the allocation-label and dimm(s) on which
766 	 * to store the label.
767 	 */
768 	if (uuid_not_set(uuid, dev, __func__))
769 		return -ENXIO;
770 	if (nd_region->ndr_mappings == 0) {
771 		dev_dbg(dev, "not associated with dimm(s)\n");
772 		return -ENXIO;
773 	}
774 
775 	div_u64_rem(val, nd_region->align, &remainder);
776 	if (remainder) {
777 		dev_dbg(dev, "%llu is not %ldK aligned\n", val,
778 				nd_region->align / SZ_1K);
779 		return -EINVAL;
780 	}
781 
782 	nd_label_gen_id(&label_id, uuid, flags);
783 	for (i = 0; i < nd_region->ndr_mappings; i++) {
784 		nd_mapping = &nd_region->mapping[i];
785 		ndd = to_ndd(nd_mapping);
786 
787 		/*
788 		 * All dimms in an interleave set, need to be enabled
789 		 * for the size to be changed.
790 		 */
791 		if (!ndd)
792 			return -ENXIO;
793 
794 		allocated += nvdimm_allocated_dpa(ndd, &label_id);
795 	}
796 	available = nd_region_allocatable_dpa(nd_region);
797 
798 	if (val > available + allocated)
799 		return -ENOSPC;
800 
801 	if (val == allocated)
802 		return 0;
803 
804 	val = div_u64(val, nd_region->ndr_mappings);
805 	allocated = div_u64(allocated, nd_region->ndr_mappings);
806 	if (val < allocated)
807 		rc = shrink_dpa_allocation(nd_region, &label_id,
808 				allocated - val);
809 	else
810 		rc = grow_dpa_allocation(nd_region, &label_id, val - allocated);
811 
812 	if (rc)
813 		return rc;
814 
815 	if (is_namespace_pmem(dev)) {
816 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
817 
818 		nd_namespace_pmem_set_resource(nd_region, nspm,
819 				val * nd_region->ndr_mappings);
820 	}
821 
822 	/*
823 	 * Try to delete the namespace if we deleted all of its
824 	 * allocation, this is not the seed or 0th device for the
825 	 * region, and it is not actively claimed by a btt, pfn, or dax
826 	 * instance.
827 	 */
828 	if (val == 0 && id != 0 && nd_region->ns_seed != dev && !ndns->claim)
829 		nd_device_unregister(dev, ND_ASYNC);
830 
831 	return rc;
832 }
833 
834 static ssize_t size_store(struct device *dev,
835 		struct device_attribute *attr, const char *buf, size_t len)
836 {
837 	struct nd_region *nd_region = to_nd_region(dev->parent);
838 	unsigned long long val;
839 	int rc;
840 
841 	rc = kstrtoull(buf, 0, &val);
842 	if (rc)
843 		return rc;
844 
845 	device_lock(dev);
846 	nvdimm_bus_lock(dev);
847 	wait_nvdimm_bus_probe_idle(dev);
848 	rc = __size_store(dev, val);
849 	if (rc >= 0)
850 		rc = nd_namespace_label_update(nd_region, dev);
851 
852 	/* setting size zero == 'delete namespace' */
853 	if (rc == 0 && val == 0 && is_namespace_pmem(dev)) {
854 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
855 
856 		kfree(nspm->uuid);
857 		nspm->uuid = NULL;
858 	}
859 
860 	dev_dbg(dev, "%llx %s (%d)\n", val, rc < 0 ? "fail" : "success", rc);
861 
862 	nvdimm_bus_unlock(dev);
863 	device_unlock(dev);
864 
865 	return rc < 0 ? rc : len;
866 }
867 
868 resource_size_t __nvdimm_namespace_capacity(struct nd_namespace_common *ndns)
869 {
870 	struct device *dev = &ndns->dev;
871 
872 	if (is_namespace_pmem(dev)) {
873 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
874 
875 		return resource_size(&nspm->nsio.res);
876 	} else if (is_namespace_io(dev)) {
877 		struct nd_namespace_io *nsio = to_nd_namespace_io(dev);
878 
879 		return resource_size(&nsio->res);
880 	} else
881 		WARN_ONCE(1, "unknown namespace type\n");
882 	return 0;
883 }
884 
885 resource_size_t nvdimm_namespace_capacity(struct nd_namespace_common *ndns)
886 {
887 	resource_size_t size;
888 
889 	nvdimm_bus_lock(&ndns->dev);
890 	size = __nvdimm_namespace_capacity(ndns);
891 	nvdimm_bus_unlock(&ndns->dev);
892 
893 	return size;
894 }
895 EXPORT_SYMBOL(nvdimm_namespace_capacity);
896 
897 bool nvdimm_namespace_locked(struct nd_namespace_common *ndns)
898 {
899 	int i;
900 	bool locked = false;
901 	struct device *dev = &ndns->dev;
902 	struct nd_region *nd_region = to_nd_region(dev->parent);
903 
904 	for (i = 0; i < nd_region->ndr_mappings; i++) {
905 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
906 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
907 
908 		if (test_bit(NDD_LOCKED, &nvdimm->flags)) {
909 			dev_dbg(dev, "%s locked\n", nvdimm_name(nvdimm));
910 			locked = true;
911 		}
912 	}
913 	return locked;
914 }
915 EXPORT_SYMBOL(nvdimm_namespace_locked);
916 
917 static ssize_t size_show(struct device *dev,
918 		struct device_attribute *attr, char *buf)
919 {
920 	return sprintf(buf, "%llu\n", (unsigned long long)
921 			nvdimm_namespace_capacity(to_ndns(dev)));
922 }
923 static DEVICE_ATTR(size, 0444, size_show, size_store);
924 
925 static uuid_t *namespace_to_uuid(struct device *dev)
926 {
927 	if (is_namespace_pmem(dev)) {
928 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
929 
930 		return nspm->uuid;
931 	}
932 	return ERR_PTR(-ENXIO);
933 }
934 
935 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
936 			 char *buf)
937 {
938 	uuid_t *uuid = namespace_to_uuid(dev);
939 
940 	if (IS_ERR(uuid))
941 		return PTR_ERR(uuid);
942 	if (uuid)
943 		return sprintf(buf, "%pUb\n", uuid);
944 	return sprintf(buf, "\n");
945 }
946 
947 /**
948  * namespace_update_uuid - check for a unique uuid and whether we're "renaming"
949  * @nd_region: parent region so we can updates all dimms in the set
950  * @dev: namespace type for generating label_id
951  * @new_uuid: incoming uuid
952  * @old_uuid: reference to the uuid storage location in the namespace object
953  */
954 static int namespace_update_uuid(struct nd_region *nd_region,
955 				 struct device *dev, uuid_t *new_uuid,
956 				 uuid_t **old_uuid)
957 {
958 	struct nd_label_id old_label_id;
959 	struct nd_label_id new_label_id;
960 	int i;
961 
962 	if (!nd_is_uuid_unique(dev, new_uuid))
963 		return -EINVAL;
964 
965 	if (*old_uuid == NULL)
966 		goto out;
967 
968 	/*
969 	 * If we've already written a label with this uuid, then it's
970 	 * too late to rename because we can't reliably update the uuid
971 	 * without losing the old namespace.  Userspace must delete this
972 	 * namespace to abandon the old uuid.
973 	 */
974 	for (i = 0; i < nd_region->ndr_mappings; i++) {
975 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
976 
977 		/*
978 		 * This check by itself is sufficient because old_uuid
979 		 * would be NULL above if this uuid did not exist in the
980 		 * currently written set.
981 		 *
982 		 * FIXME: can we delete uuid with zero dpa allocated?
983 		 */
984 		if (list_empty(&nd_mapping->labels))
985 			return -EBUSY;
986 	}
987 
988 	nd_label_gen_id(&old_label_id, *old_uuid, 0);
989 	nd_label_gen_id(&new_label_id, new_uuid, 0);
990 	for (i = 0; i < nd_region->ndr_mappings; i++) {
991 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
992 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
993 		struct nd_label_ent *label_ent;
994 		struct resource *res;
995 
996 		for_each_dpa_resource(ndd, res)
997 			if (strcmp(res->name, old_label_id.id) == 0)
998 				sprintf((void *) res->name, "%s",
999 						new_label_id.id);
1000 
1001 		mutex_lock(&nd_mapping->lock);
1002 		list_for_each_entry(label_ent, &nd_mapping->labels, list) {
1003 			struct nd_namespace_label *nd_label = label_ent->label;
1004 			struct nd_label_id label_id;
1005 			uuid_t uuid;
1006 
1007 			if (!nd_label)
1008 				continue;
1009 			nsl_get_uuid(ndd, nd_label, &uuid);
1010 			nd_label_gen_id(&label_id, &uuid,
1011 					nsl_get_flags(ndd, nd_label));
1012 			if (strcmp(old_label_id.id, label_id.id) == 0)
1013 				set_bit(ND_LABEL_REAP, &label_ent->flags);
1014 		}
1015 		mutex_unlock(&nd_mapping->lock);
1016 	}
1017 	kfree(*old_uuid);
1018  out:
1019 	*old_uuid = new_uuid;
1020 	return 0;
1021 }
1022 
1023 static ssize_t uuid_store(struct device *dev,
1024 		struct device_attribute *attr, const char *buf, size_t len)
1025 {
1026 	struct nd_region *nd_region = to_nd_region(dev->parent);
1027 	uuid_t *uuid = NULL;
1028 	uuid_t **ns_uuid;
1029 	ssize_t rc = 0;
1030 
1031 	if (is_namespace_pmem(dev)) {
1032 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
1033 
1034 		ns_uuid = &nspm->uuid;
1035 	} else
1036 		return -ENXIO;
1037 
1038 	device_lock(dev);
1039 	nvdimm_bus_lock(dev);
1040 	wait_nvdimm_bus_probe_idle(dev);
1041 	if (to_ndns(dev)->claim)
1042 		rc = -EBUSY;
1043 	if (rc >= 0)
1044 		rc = nd_uuid_store(dev, &uuid, buf, len);
1045 	if (rc >= 0)
1046 		rc = namespace_update_uuid(nd_region, dev, uuid, ns_uuid);
1047 	if (rc >= 0)
1048 		rc = nd_namespace_label_update(nd_region, dev);
1049 	else
1050 		kfree(uuid);
1051 	dev_dbg(dev, "result: %zd wrote: %s%s", rc, buf,
1052 			buf[len - 1] == '\n' ? "" : "\n");
1053 	nvdimm_bus_unlock(dev);
1054 	device_unlock(dev);
1055 
1056 	return rc < 0 ? rc : len;
1057 }
1058 static DEVICE_ATTR_RW(uuid);
1059 
1060 static ssize_t resource_show(struct device *dev,
1061 		struct device_attribute *attr, char *buf)
1062 {
1063 	struct resource *res;
1064 
1065 	if (is_namespace_pmem(dev)) {
1066 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
1067 
1068 		res = &nspm->nsio.res;
1069 	} else if (is_namespace_io(dev)) {
1070 		struct nd_namespace_io *nsio = to_nd_namespace_io(dev);
1071 
1072 		res = &nsio->res;
1073 	} else
1074 		return -ENXIO;
1075 
1076 	/* no address to convey if the namespace has no allocation */
1077 	if (resource_size(res) == 0)
1078 		return -ENXIO;
1079 	return sprintf(buf, "%#llx\n", (unsigned long long) res->start);
1080 }
1081 static DEVICE_ATTR_ADMIN_RO(resource);
1082 
1083 static const unsigned long pmem_lbasize_supported[] = { 512, 4096, 0 };
1084 
1085 static ssize_t sector_size_show(struct device *dev,
1086 		struct device_attribute *attr, char *buf)
1087 {
1088 	if (is_namespace_pmem(dev)) {
1089 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
1090 
1091 		return nd_size_select_show(nspm->lbasize,
1092 				pmem_lbasize_supported, buf);
1093 	}
1094 	return -ENXIO;
1095 }
1096 
1097 static ssize_t sector_size_store(struct device *dev,
1098 		struct device_attribute *attr, const char *buf, size_t len)
1099 {
1100 	struct nd_region *nd_region = to_nd_region(dev->parent);
1101 	const unsigned long *supported;
1102 	unsigned long *lbasize;
1103 	ssize_t rc = 0;
1104 
1105 	if (is_namespace_pmem(dev)) {
1106 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
1107 
1108 		lbasize = &nspm->lbasize;
1109 		supported = pmem_lbasize_supported;
1110 	} else
1111 		return -ENXIO;
1112 
1113 	device_lock(dev);
1114 	nvdimm_bus_lock(dev);
1115 	if (to_ndns(dev)->claim)
1116 		rc = -EBUSY;
1117 	if (rc >= 0)
1118 		rc = nd_size_select_store(dev, buf, lbasize, supported);
1119 	if (rc >= 0)
1120 		rc = nd_namespace_label_update(nd_region, dev);
1121 	dev_dbg(dev, "result: %zd %s: %s%s", rc, rc < 0 ? "tried" : "wrote",
1122 			buf, buf[len - 1] == '\n' ? "" : "\n");
1123 	nvdimm_bus_unlock(dev);
1124 	device_unlock(dev);
1125 
1126 	return rc ? rc : len;
1127 }
1128 static DEVICE_ATTR_RW(sector_size);
1129 
1130 static ssize_t dpa_extents_show(struct device *dev,
1131 		struct device_attribute *attr, char *buf)
1132 {
1133 	struct nd_region *nd_region = to_nd_region(dev->parent);
1134 	struct nd_label_id label_id;
1135 	uuid_t *uuid = NULL;
1136 	int count = 0, i;
1137 	u32 flags = 0;
1138 
1139 	nvdimm_bus_lock(dev);
1140 	if (is_namespace_pmem(dev)) {
1141 		struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
1142 
1143 		uuid = nspm->uuid;
1144 		flags = 0;
1145 	}
1146 
1147 	if (!uuid)
1148 		goto out;
1149 
1150 	nd_label_gen_id(&label_id, uuid, flags);
1151 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1152 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1153 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
1154 		struct resource *res;
1155 
1156 		for_each_dpa_resource(ndd, res)
1157 			if (strcmp(res->name, label_id.id) == 0)
1158 				count++;
1159 	}
1160  out:
1161 	nvdimm_bus_unlock(dev);
1162 
1163 	return sprintf(buf, "%d\n", count);
1164 }
1165 static DEVICE_ATTR_RO(dpa_extents);
1166 
1167 static int btt_claim_class(struct device *dev)
1168 {
1169 	struct nd_region *nd_region = to_nd_region(dev->parent);
1170 	int i, loop_bitmask = 0;
1171 
1172 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1173 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1174 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
1175 		struct nd_namespace_index *nsindex;
1176 
1177 		/*
1178 		 * If any of the DIMMs do not support labels the only
1179 		 * possible BTT format is v1.
1180 		 */
1181 		if (!ndd) {
1182 			loop_bitmask = 0;
1183 			break;
1184 		}
1185 
1186 		nsindex = to_namespace_index(ndd, ndd->ns_current);
1187 		if (nsindex == NULL)
1188 			loop_bitmask |= 1;
1189 		else {
1190 			/* check whether existing labels are v1.1 or v1.2 */
1191 			if (__le16_to_cpu(nsindex->major) == 1
1192 					&& __le16_to_cpu(nsindex->minor) == 1)
1193 				loop_bitmask |= 2;
1194 			else
1195 				loop_bitmask |= 4;
1196 		}
1197 	}
1198 	/*
1199 	 * If nsindex is null loop_bitmask's bit 0 will be set, and if an index
1200 	 * block is found, a v1.1 label for any mapping will set bit 1, and a
1201 	 * v1.2 label will set bit 2.
1202 	 *
1203 	 * At the end of the loop, at most one of the three bits must be set.
1204 	 * If multiple bits were set, it means the different mappings disagree
1205 	 * about their labels, and this must be cleaned up first.
1206 	 *
1207 	 * If all the label index blocks are found to agree, nsindex of NULL
1208 	 * implies labels haven't been initialized yet, and when they will,
1209 	 * they will be of the 1.2 format, so we can assume BTT2.0
1210 	 *
1211 	 * If 1.1 labels are found, we enforce BTT1.1, and if 1.2 labels are
1212 	 * found, we enforce BTT2.0
1213 	 *
1214 	 * If the loop was never entered, default to BTT1.1 (legacy namespaces)
1215 	 */
1216 	switch (loop_bitmask) {
1217 	case 0:
1218 	case 2:
1219 		return NVDIMM_CCLASS_BTT;
1220 	case 1:
1221 	case 4:
1222 		return NVDIMM_CCLASS_BTT2;
1223 	default:
1224 		return -ENXIO;
1225 	}
1226 }
1227 
1228 static ssize_t holder_show(struct device *dev,
1229 		struct device_attribute *attr, char *buf)
1230 {
1231 	struct nd_namespace_common *ndns = to_ndns(dev);
1232 	ssize_t rc;
1233 
1234 	device_lock(dev);
1235 	rc = sprintf(buf, "%s\n", ndns->claim ? dev_name(ndns->claim) : "");
1236 	device_unlock(dev);
1237 
1238 	return rc;
1239 }
1240 static DEVICE_ATTR_RO(holder);
1241 
1242 static int __holder_class_store(struct device *dev, const char *buf)
1243 {
1244 	struct nd_namespace_common *ndns = to_ndns(dev);
1245 
1246 	if (dev->driver || ndns->claim)
1247 		return -EBUSY;
1248 
1249 	if (sysfs_streq(buf, "btt")) {
1250 		int rc = btt_claim_class(dev);
1251 
1252 		if (rc < NVDIMM_CCLASS_NONE)
1253 			return rc;
1254 		ndns->claim_class = rc;
1255 	} else if (sysfs_streq(buf, "pfn"))
1256 		ndns->claim_class = NVDIMM_CCLASS_PFN;
1257 	else if (sysfs_streq(buf, "dax"))
1258 		ndns->claim_class = NVDIMM_CCLASS_DAX;
1259 	else if (sysfs_streq(buf, ""))
1260 		ndns->claim_class = NVDIMM_CCLASS_NONE;
1261 	else
1262 		return -EINVAL;
1263 
1264 	return 0;
1265 }
1266 
1267 static ssize_t holder_class_store(struct device *dev,
1268 		struct device_attribute *attr, const char *buf, size_t len)
1269 {
1270 	struct nd_region *nd_region = to_nd_region(dev->parent);
1271 	int rc;
1272 
1273 	device_lock(dev);
1274 	nvdimm_bus_lock(dev);
1275 	wait_nvdimm_bus_probe_idle(dev);
1276 	rc = __holder_class_store(dev, buf);
1277 	if (rc >= 0)
1278 		rc = nd_namespace_label_update(nd_region, dev);
1279 	dev_dbg(dev, "%s(%d)\n", rc < 0 ? "fail " : "", rc);
1280 	nvdimm_bus_unlock(dev);
1281 	device_unlock(dev);
1282 
1283 	return rc < 0 ? rc : len;
1284 }
1285 
1286 static ssize_t holder_class_show(struct device *dev,
1287 		struct device_attribute *attr, char *buf)
1288 {
1289 	struct nd_namespace_common *ndns = to_ndns(dev);
1290 	ssize_t rc;
1291 
1292 	device_lock(dev);
1293 	if (ndns->claim_class == NVDIMM_CCLASS_NONE)
1294 		rc = sprintf(buf, "\n");
1295 	else if ((ndns->claim_class == NVDIMM_CCLASS_BTT) ||
1296 			(ndns->claim_class == NVDIMM_CCLASS_BTT2))
1297 		rc = sprintf(buf, "btt\n");
1298 	else if (ndns->claim_class == NVDIMM_CCLASS_PFN)
1299 		rc = sprintf(buf, "pfn\n");
1300 	else if (ndns->claim_class == NVDIMM_CCLASS_DAX)
1301 		rc = sprintf(buf, "dax\n");
1302 	else
1303 		rc = sprintf(buf, "<unknown>\n");
1304 	device_unlock(dev);
1305 
1306 	return rc;
1307 }
1308 static DEVICE_ATTR_RW(holder_class);
1309 
1310 static ssize_t mode_show(struct device *dev,
1311 		struct device_attribute *attr, char *buf)
1312 {
1313 	struct nd_namespace_common *ndns = to_ndns(dev);
1314 	struct device *claim;
1315 	char *mode;
1316 	ssize_t rc;
1317 
1318 	device_lock(dev);
1319 	claim = ndns->claim;
1320 	if (claim && is_nd_btt(claim))
1321 		mode = "safe";
1322 	else if (claim && is_nd_pfn(claim))
1323 		mode = "memory";
1324 	else if (claim && is_nd_dax(claim))
1325 		mode = "dax";
1326 	else if (!claim && pmem_should_map_pages(dev))
1327 		mode = "memory";
1328 	else
1329 		mode = "raw";
1330 	rc = sprintf(buf, "%s\n", mode);
1331 	device_unlock(dev);
1332 
1333 	return rc;
1334 }
1335 static DEVICE_ATTR_RO(mode);
1336 
1337 static ssize_t force_raw_store(struct device *dev,
1338 		struct device_attribute *attr, const char *buf, size_t len)
1339 {
1340 	bool force_raw;
1341 	int rc = strtobool(buf, &force_raw);
1342 
1343 	if (rc)
1344 		return rc;
1345 
1346 	to_ndns(dev)->force_raw = force_raw;
1347 	return len;
1348 }
1349 
1350 static ssize_t force_raw_show(struct device *dev,
1351 		struct device_attribute *attr, char *buf)
1352 {
1353 	return sprintf(buf, "%d\n", to_ndns(dev)->force_raw);
1354 }
1355 static DEVICE_ATTR_RW(force_raw);
1356 
1357 static struct attribute *nd_namespace_attributes[] = {
1358 	&dev_attr_nstype.attr,
1359 	&dev_attr_size.attr,
1360 	&dev_attr_mode.attr,
1361 	&dev_attr_uuid.attr,
1362 	&dev_attr_holder.attr,
1363 	&dev_attr_resource.attr,
1364 	&dev_attr_alt_name.attr,
1365 	&dev_attr_force_raw.attr,
1366 	&dev_attr_sector_size.attr,
1367 	&dev_attr_dpa_extents.attr,
1368 	&dev_attr_holder_class.attr,
1369 	NULL,
1370 };
1371 
1372 static umode_t namespace_visible(struct kobject *kobj,
1373 		struct attribute *a, int n)
1374 {
1375 	struct device *dev = container_of(kobj, struct device, kobj);
1376 
1377 	if (is_namespace_pmem(dev)) {
1378 		if (a == &dev_attr_size.attr)
1379 			return 0644;
1380 
1381 		return a->mode;
1382 	}
1383 
1384 	/* base is_namespace_io() attributes */
1385 	if (a == &dev_attr_nstype.attr || a == &dev_attr_size.attr ||
1386 	    a == &dev_attr_holder.attr || a == &dev_attr_holder_class.attr ||
1387 	    a == &dev_attr_force_raw.attr || a == &dev_attr_mode.attr ||
1388 	    a == &dev_attr_resource.attr)
1389 		return a->mode;
1390 
1391 	return 0;
1392 }
1393 
1394 static struct attribute_group nd_namespace_attribute_group = {
1395 	.attrs = nd_namespace_attributes,
1396 	.is_visible = namespace_visible,
1397 };
1398 
1399 static const struct attribute_group *nd_namespace_attribute_groups[] = {
1400 	&nd_device_attribute_group,
1401 	&nd_namespace_attribute_group,
1402 	&nd_numa_attribute_group,
1403 	NULL,
1404 };
1405 
1406 static const struct device_type namespace_io_device_type = {
1407 	.name = "nd_namespace_io",
1408 	.release = namespace_io_release,
1409 	.groups = nd_namespace_attribute_groups,
1410 };
1411 
1412 static const struct device_type namespace_pmem_device_type = {
1413 	.name = "nd_namespace_pmem",
1414 	.release = namespace_pmem_release,
1415 	.groups = nd_namespace_attribute_groups,
1416 };
1417 
1418 static bool is_namespace_pmem(const struct device *dev)
1419 {
1420 	return dev ? dev->type == &namespace_pmem_device_type : false;
1421 }
1422 
1423 static bool is_namespace_io(const struct device *dev)
1424 {
1425 	return dev ? dev->type == &namespace_io_device_type : false;
1426 }
1427 
1428 struct nd_namespace_common *nvdimm_namespace_common_probe(struct device *dev)
1429 {
1430 	struct nd_btt *nd_btt = is_nd_btt(dev) ? to_nd_btt(dev) : NULL;
1431 	struct nd_pfn *nd_pfn = is_nd_pfn(dev) ? to_nd_pfn(dev) : NULL;
1432 	struct nd_dax *nd_dax = is_nd_dax(dev) ? to_nd_dax(dev) : NULL;
1433 	struct nd_namespace_common *ndns = NULL;
1434 	resource_size_t size;
1435 
1436 	if (nd_btt || nd_pfn || nd_dax) {
1437 		if (nd_btt)
1438 			ndns = nd_btt->ndns;
1439 		else if (nd_pfn)
1440 			ndns = nd_pfn->ndns;
1441 		else if (nd_dax)
1442 			ndns = nd_dax->nd_pfn.ndns;
1443 
1444 		if (!ndns)
1445 			return ERR_PTR(-ENODEV);
1446 
1447 		/*
1448 		 * Flush any in-progess probes / removals in the driver
1449 		 * for the raw personality of this namespace.
1450 		 */
1451 		device_lock(&ndns->dev);
1452 		device_unlock(&ndns->dev);
1453 		if (ndns->dev.driver) {
1454 			dev_dbg(&ndns->dev, "is active, can't bind %s\n",
1455 					dev_name(dev));
1456 			return ERR_PTR(-EBUSY);
1457 		}
1458 		if (dev_WARN_ONCE(&ndns->dev, ndns->claim != dev,
1459 					"host (%s) vs claim (%s) mismatch\n",
1460 					dev_name(dev),
1461 					dev_name(ndns->claim)))
1462 			return ERR_PTR(-ENXIO);
1463 	} else {
1464 		ndns = to_ndns(dev);
1465 		if (ndns->claim) {
1466 			dev_dbg(dev, "claimed by %s, failing probe\n",
1467 				dev_name(ndns->claim));
1468 
1469 			return ERR_PTR(-ENXIO);
1470 		}
1471 	}
1472 
1473 	if (nvdimm_namespace_locked(ndns))
1474 		return ERR_PTR(-EACCES);
1475 
1476 	size = nvdimm_namespace_capacity(ndns);
1477 	if (size < ND_MIN_NAMESPACE_SIZE) {
1478 		dev_dbg(&ndns->dev, "%pa, too small must be at least %#x\n",
1479 				&size, ND_MIN_NAMESPACE_SIZE);
1480 		return ERR_PTR(-ENODEV);
1481 	}
1482 
1483 	/*
1484 	 * Note, alignment validation for fsdax and devdax mode
1485 	 * namespaces happens in nd_pfn_validate() where infoblock
1486 	 * padding parameters can be applied.
1487 	 */
1488 	if (pmem_should_map_pages(dev)) {
1489 		struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
1490 		struct resource *res = &nsio->res;
1491 
1492 		if (!IS_ALIGNED(res->start | (res->end + 1),
1493 					memremap_compat_align())) {
1494 			dev_err(&ndns->dev, "%pr misaligned, unable to map\n", res);
1495 			return ERR_PTR(-EOPNOTSUPP);
1496 		}
1497 	}
1498 
1499 	if (is_namespace_pmem(&ndns->dev)) {
1500 		struct nd_namespace_pmem *nspm;
1501 
1502 		nspm = to_nd_namespace_pmem(&ndns->dev);
1503 		if (uuid_not_set(nspm->uuid, &ndns->dev, __func__))
1504 			return ERR_PTR(-ENODEV);
1505 	}
1506 
1507 	return ndns;
1508 }
1509 EXPORT_SYMBOL(nvdimm_namespace_common_probe);
1510 
1511 int devm_namespace_enable(struct device *dev, struct nd_namespace_common *ndns,
1512 		resource_size_t size)
1513 {
1514 	return devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev), size);
1515 }
1516 EXPORT_SYMBOL_GPL(devm_namespace_enable);
1517 
1518 void devm_namespace_disable(struct device *dev, struct nd_namespace_common *ndns)
1519 {
1520 	devm_nsio_disable(dev, to_nd_namespace_io(&ndns->dev));
1521 }
1522 EXPORT_SYMBOL_GPL(devm_namespace_disable);
1523 
1524 static struct device **create_namespace_io(struct nd_region *nd_region)
1525 {
1526 	struct nd_namespace_io *nsio;
1527 	struct device *dev, **devs;
1528 	struct resource *res;
1529 
1530 	nsio = kzalloc(sizeof(*nsio), GFP_KERNEL);
1531 	if (!nsio)
1532 		return NULL;
1533 
1534 	devs = kcalloc(2, sizeof(struct device *), GFP_KERNEL);
1535 	if (!devs) {
1536 		kfree(nsio);
1537 		return NULL;
1538 	}
1539 
1540 	dev = &nsio->common.dev;
1541 	dev->type = &namespace_io_device_type;
1542 	dev->parent = &nd_region->dev;
1543 	res = &nsio->res;
1544 	res->name = dev_name(&nd_region->dev);
1545 	res->flags = IORESOURCE_MEM;
1546 	res->start = nd_region->ndr_start;
1547 	res->end = res->start + nd_region->ndr_size - 1;
1548 
1549 	devs[0] = dev;
1550 	return devs;
1551 }
1552 
1553 static bool has_uuid_at_pos(struct nd_region *nd_region, const uuid_t *uuid,
1554 			    u64 cookie, u16 pos)
1555 {
1556 	struct nd_namespace_label *found = NULL;
1557 	int i;
1558 
1559 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1560 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1561 		struct nd_interleave_set *nd_set = nd_region->nd_set;
1562 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
1563 		struct nd_label_ent *label_ent;
1564 		bool found_uuid = false;
1565 
1566 		list_for_each_entry(label_ent, &nd_mapping->labels, list) {
1567 			struct nd_namespace_label *nd_label = label_ent->label;
1568 			u16 position;
1569 
1570 			if (!nd_label)
1571 				continue;
1572 			position = nsl_get_position(ndd, nd_label);
1573 
1574 			if (!nsl_validate_isetcookie(ndd, nd_label, cookie))
1575 				continue;
1576 
1577 			if (!nsl_uuid_equal(ndd, nd_label, uuid))
1578 				continue;
1579 
1580 			if (!nsl_validate_type_guid(ndd, nd_label,
1581 						    &nd_set->type_guid))
1582 				continue;
1583 
1584 			if (found_uuid) {
1585 				dev_dbg(ndd->dev, "duplicate entry for uuid\n");
1586 				return false;
1587 			}
1588 			found_uuid = true;
1589 			if (!nsl_validate_nlabel(nd_region, ndd, nd_label))
1590 				continue;
1591 			if (position != pos)
1592 				continue;
1593 			found = nd_label;
1594 			break;
1595 		}
1596 		if (found)
1597 			break;
1598 	}
1599 	return found != NULL;
1600 }
1601 
1602 static int select_pmem_id(struct nd_region *nd_region, const uuid_t *pmem_id)
1603 {
1604 	int i;
1605 
1606 	if (!pmem_id)
1607 		return -ENODEV;
1608 
1609 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1610 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1611 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
1612 		struct nd_namespace_label *nd_label = NULL;
1613 		u64 hw_start, hw_end, pmem_start, pmem_end;
1614 		struct nd_label_ent *label_ent;
1615 
1616 		lockdep_assert_held(&nd_mapping->lock);
1617 		list_for_each_entry(label_ent, &nd_mapping->labels, list) {
1618 			nd_label = label_ent->label;
1619 			if (!nd_label)
1620 				continue;
1621 			if (nsl_uuid_equal(ndd, nd_label, pmem_id))
1622 				break;
1623 			nd_label = NULL;
1624 		}
1625 
1626 		if (!nd_label) {
1627 			WARN_ON(1);
1628 			return -EINVAL;
1629 		}
1630 
1631 		/*
1632 		 * Check that this label is compliant with the dpa
1633 		 * range published in NFIT
1634 		 */
1635 		hw_start = nd_mapping->start;
1636 		hw_end = hw_start + nd_mapping->size;
1637 		pmem_start = nsl_get_dpa(ndd, nd_label);
1638 		pmem_end = pmem_start + nsl_get_rawsize(ndd, nd_label);
1639 		if (pmem_start >= hw_start && pmem_start < hw_end
1640 				&& pmem_end <= hw_end && pmem_end > hw_start)
1641 			/* pass */;
1642 		else {
1643 			dev_dbg(&nd_region->dev, "%s invalid label for %pUb\n",
1644 				dev_name(ndd->dev),
1645 				nsl_uuid_raw(ndd, nd_label));
1646 			return -EINVAL;
1647 		}
1648 
1649 		/* move recently validated label to the front of the list */
1650 		list_move(&label_ent->list, &nd_mapping->labels);
1651 	}
1652 	return 0;
1653 }
1654 
1655 /**
1656  * create_namespace_pmem - validate interleave set labelling, retrieve label0
1657  * @nd_region: region with mappings to validate
1658  * @nspm: target namespace to create
1659  * @nd_label: target pmem namespace label to evaluate
1660  */
1661 static struct device *create_namespace_pmem(struct nd_region *nd_region,
1662 					    struct nd_mapping *nd_mapping,
1663 					    struct nd_namespace_label *nd_label)
1664 {
1665 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
1666 	struct nd_namespace_index *nsindex =
1667 		to_namespace_index(ndd, ndd->ns_current);
1668 	u64 cookie = nd_region_interleave_set_cookie(nd_region, nsindex);
1669 	u64 altcookie = nd_region_interleave_set_altcookie(nd_region);
1670 	struct nd_label_ent *label_ent;
1671 	struct nd_namespace_pmem *nspm;
1672 	resource_size_t size = 0;
1673 	struct resource *res;
1674 	struct device *dev;
1675 	uuid_t uuid;
1676 	int rc = 0;
1677 	u16 i;
1678 
1679 	if (cookie == 0) {
1680 		dev_dbg(&nd_region->dev, "invalid interleave-set-cookie\n");
1681 		return ERR_PTR(-ENXIO);
1682 	}
1683 
1684 	if (!nsl_validate_isetcookie(ndd, nd_label, cookie)) {
1685 		dev_dbg(&nd_region->dev, "invalid cookie in label: %pUb\n",
1686 			nsl_uuid_raw(ndd, nd_label));
1687 		if (!nsl_validate_isetcookie(ndd, nd_label, altcookie))
1688 			return ERR_PTR(-EAGAIN);
1689 
1690 		dev_dbg(&nd_region->dev, "valid altcookie in label: %pUb\n",
1691 			nsl_uuid_raw(ndd, nd_label));
1692 	}
1693 
1694 	nspm = kzalloc(sizeof(*nspm), GFP_KERNEL);
1695 	if (!nspm)
1696 		return ERR_PTR(-ENOMEM);
1697 
1698 	nspm->id = -1;
1699 	dev = &nspm->nsio.common.dev;
1700 	dev->type = &namespace_pmem_device_type;
1701 	dev->parent = &nd_region->dev;
1702 	res = &nspm->nsio.res;
1703 	res->name = dev_name(&nd_region->dev);
1704 	res->flags = IORESOURCE_MEM;
1705 
1706 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1707 		nsl_get_uuid(ndd, nd_label, &uuid);
1708 		if (has_uuid_at_pos(nd_region, &uuid, cookie, i))
1709 			continue;
1710 		if (has_uuid_at_pos(nd_region, &uuid, altcookie, i))
1711 			continue;
1712 		break;
1713 	}
1714 
1715 	if (i < nd_region->ndr_mappings) {
1716 		struct nvdimm *nvdimm = nd_region->mapping[i].nvdimm;
1717 
1718 		/*
1719 		 * Give up if we don't find an instance of a uuid at each
1720 		 * position (from 0 to nd_region->ndr_mappings - 1), or if we
1721 		 * find a dimm with two instances of the same uuid.
1722 		 */
1723 		dev_err(&nd_region->dev, "%s missing label for %pUb\n",
1724 			nvdimm_name(nvdimm), nsl_uuid_raw(ndd, nd_label));
1725 		rc = -EINVAL;
1726 		goto err;
1727 	}
1728 
1729 	/*
1730 	 * Fix up each mapping's 'labels' to have the validated pmem label for
1731 	 * that position at labels[0], and NULL at labels[1].  In the process,
1732 	 * check that the namespace aligns with interleave-set.
1733 	 */
1734 	nsl_get_uuid(ndd, nd_label, &uuid);
1735 	rc = select_pmem_id(nd_region, &uuid);
1736 	if (rc)
1737 		goto err;
1738 
1739 	/* Calculate total size and populate namespace properties from label0 */
1740 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1741 		struct nd_namespace_label *label0;
1742 		struct nvdimm_drvdata *ndd;
1743 
1744 		nd_mapping = &nd_region->mapping[i];
1745 		label_ent = list_first_entry_or_null(&nd_mapping->labels,
1746 				typeof(*label_ent), list);
1747 		label0 = label_ent ? label_ent->label : NULL;
1748 
1749 		if (!label0) {
1750 			WARN_ON(1);
1751 			continue;
1752 		}
1753 
1754 		ndd = to_ndd(nd_mapping);
1755 		size += nsl_get_rawsize(ndd, label0);
1756 		if (nsl_get_position(ndd, label0) != 0)
1757 			continue;
1758 		WARN_ON(nspm->alt_name || nspm->uuid);
1759 		nspm->alt_name = kmemdup(nsl_ref_name(ndd, label0),
1760 					 NSLABEL_NAME_LEN, GFP_KERNEL);
1761 		nsl_get_uuid(ndd, label0, &uuid);
1762 		nspm->uuid = kmemdup(&uuid, sizeof(uuid_t), GFP_KERNEL);
1763 		nspm->lbasize = nsl_get_lbasize(ndd, label0);
1764 		nspm->nsio.common.claim_class =
1765 			nsl_get_claim_class(ndd, label0);
1766 	}
1767 
1768 	if (!nspm->alt_name || !nspm->uuid) {
1769 		rc = -ENOMEM;
1770 		goto err;
1771 	}
1772 
1773 	nd_namespace_pmem_set_resource(nd_region, nspm, size);
1774 
1775 	return dev;
1776  err:
1777 	namespace_pmem_release(dev);
1778 	switch (rc) {
1779 	case -EINVAL:
1780 		dev_dbg(&nd_region->dev, "invalid label(s)\n");
1781 		break;
1782 	case -ENODEV:
1783 		dev_dbg(&nd_region->dev, "label not found\n");
1784 		break;
1785 	default:
1786 		dev_dbg(&nd_region->dev, "unexpected err: %d\n", rc);
1787 		break;
1788 	}
1789 	return ERR_PTR(rc);
1790 }
1791 
1792 static struct device *nd_namespace_pmem_create(struct nd_region *nd_region)
1793 {
1794 	struct nd_namespace_pmem *nspm;
1795 	struct resource *res;
1796 	struct device *dev;
1797 
1798 	if (!is_memory(&nd_region->dev))
1799 		return NULL;
1800 
1801 	nspm = kzalloc(sizeof(*nspm), GFP_KERNEL);
1802 	if (!nspm)
1803 		return NULL;
1804 
1805 	dev = &nspm->nsio.common.dev;
1806 	dev->type = &namespace_pmem_device_type;
1807 	dev->parent = &nd_region->dev;
1808 	res = &nspm->nsio.res;
1809 	res->name = dev_name(&nd_region->dev);
1810 	res->flags = IORESOURCE_MEM;
1811 
1812 	nspm->id = ida_simple_get(&nd_region->ns_ida, 0, 0, GFP_KERNEL);
1813 	if (nspm->id < 0) {
1814 		kfree(nspm);
1815 		return NULL;
1816 	}
1817 	dev_set_name(dev, "namespace%d.%d", nd_region->id, nspm->id);
1818 	nd_namespace_pmem_set_resource(nd_region, nspm, 0);
1819 
1820 	return dev;
1821 }
1822 
1823 static struct lock_class_key nvdimm_namespace_key;
1824 
1825 void nd_region_create_ns_seed(struct nd_region *nd_region)
1826 {
1827 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
1828 
1829 	if (nd_region_to_nstype(nd_region) == ND_DEVICE_NAMESPACE_IO)
1830 		return;
1831 
1832 	nd_region->ns_seed = nd_namespace_pmem_create(nd_region);
1833 
1834 	/*
1835 	 * Seed creation failures are not fatal, provisioning is simply
1836 	 * disabled until memory becomes available
1837 	 */
1838 	if (!nd_region->ns_seed)
1839 		dev_err(&nd_region->dev, "failed to create namespace\n");
1840 	else {
1841 		device_initialize(nd_region->ns_seed);
1842 		lockdep_set_class(&nd_region->ns_seed->mutex,
1843 				  &nvdimm_namespace_key);
1844 		nd_device_register(nd_region->ns_seed);
1845 	}
1846 }
1847 
1848 void nd_region_create_dax_seed(struct nd_region *nd_region)
1849 {
1850 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
1851 	nd_region->dax_seed = nd_dax_create(nd_region);
1852 	/*
1853 	 * Seed creation failures are not fatal, provisioning is simply
1854 	 * disabled until memory becomes available
1855 	 */
1856 	if (!nd_region->dax_seed)
1857 		dev_err(&nd_region->dev, "failed to create dax namespace\n");
1858 }
1859 
1860 void nd_region_create_pfn_seed(struct nd_region *nd_region)
1861 {
1862 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
1863 	nd_region->pfn_seed = nd_pfn_create(nd_region);
1864 	/*
1865 	 * Seed creation failures are not fatal, provisioning is simply
1866 	 * disabled until memory becomes available
1867 	 */
1868 	if (!nd_region->pfn_seed)
1869 		dev_err(&nd_region->dev, "failed to create pfn namespace\n");
1870 }
1871 
1872 void nd_region_create_btt_seed(struct nd_region *nd_region)
1873 {
1874 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
1875 	nd_region->btt_seed = nd_btt_create(nd_region);
1876 	/*
1877 	 * Seed creation failures are not fatal, provisioning is simply
1878 	 * disabled until memory becomes available
1879 	 */
1880 	if (!nd_region->btt_seed)
1881 		dev_err(&nd_region->dev, "failed to create btt namespace\n");
1882 }
1883 
1884 static int add_namespace_resource(struct nd_region *nd_region,
1885 		struct nd_namespace_label *nd_label, struct device **devs,
1886 		int count)
1887 {
1888 	struct nd_mapping *nd_mapping = &nd_region->mapping[0];
1889 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
1890 	int i;
1891 
1892 	for (i = 0; i < count; i++) {
1893 		uuid_t *uuid = namespace_to_uuid(devs[i]);
1894 
1895 		if (IS_ERR(uuid)) {
1896 			WARN_ON(1);
1897 			continue;
1898 		}
1899 
1900 		if (!nsl_uuid_equal(ndd, nd_label, uuid))
1901 			continue;
1902 		dev_err(&nd_region->dev,
1903 			"error: conflicting extents for uuid: %pUb\n", uuid);
1904 		return -ENXIO;
1905 	}
1906 
1907 	return i;
1908 }
1909 
1910 static int cmp_dpa(const void *a, const void *b)
1911 {
1912 	const struct device *dev_a = *(const struct device **) a;
1913 	const struct device *dev_b = *(const struct device **) b;
1914 	struct nd_namespace_pmem *nspm_a, *nspm_b;
1915 
1916 	if (is_namespace_io(dev_a))
1917 		return 0;
1918 
1919 	nspm_a = to_nd_namespace_pmem(dev_a);
1920 	nspm_b = to_nd_namespace_pmem(dev_b);
1921 
1922 	return memcmp(&nspm_a->nsio.res.start, &nspm_b->nsio.res.start,
1923 			sizeof(resource_size_t));
1924 }
1925 
1926 static struct device **scan_labels(struct nd_region *nd_region)
1927 {
1928 	int i, count = 0;
1929 	struct device *dev, **devs = NULL;
1930 	struct nd_label_ent *label_ent, *e;
1931 	struct nd_mapping *nd_mapping = &nd_region->mapping[0];
1932 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
1933 	resource_size_t map_end = nd_mapping->start + nd_mapping->size - 1;
1934 
1935 	/* "safe" because create_namespace_pmem() might list_move() label_ent */
1936 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
1937 		struct nd_namespace_label *nd_label = label_ent->label;
1938 		struct device **__devs;
1939 
1940 		if (!nd_label)
1941 			continue;
1942 
1943 		/* skip labels that describe extents outside of the region */
1944 		if (nsl_get_dpa(ndd, nd_label) < nd_mapping->start ||
1945 		    nsl_get_dpa(ndd, nd_label) > map_end)
1946 			continue;
1947 
1948 		i = add_namespace_resource(nd_region, nd_label, devs, count);
1949 		if (i < 0)
1950 			goto err;
1951 		if (i < count)
1952 			continue;
1953 		__devs = kcalloc(count + 2, sizeof(dev), GFP_KERNEL);
1954 		if (!__devs)
1955 			goto err;
1956 		memcpy(__devs, devs, sizeof(dev) * count);
1957 		kfree(devs);
1958 		devs = __devs;
1959 
1960 		dev = create_namespace_pmem(nd_region, nd_mapping, nd_label);
1961 		if (IS_ERR(dev)) {
1962 			switch (PTR_ERR(dev)) {
1963 			case -EAGAIN:
1964 				/* skip invalid labels */
1965 				continue;
1966 			case -ENODEV:
1967 				/* fallthrough to seed creation */
1968 				break;
1969 			default:
1970 				goto err;
1971 			}
1972 		} else
1973 			devs[count++] = dev;
1974 
1975 	}
1976 
1977 	dev_dbg(&nd_region->dev, "discovered %d namespace%s\n", count,
1978 		count == 1 ? "" : "s");
1979 
1980 	if (count == 0) {
1981 		struct nd_namespace_pmem *nspm;
1982 
1983 		/* Publish a zero-sized namespace for userspace to configure. */
1984 		nd_mapping_free_labels(nd_mapping);
1985 
1986 		devs = kcalloc(2, sizeof(dev), GFP_KERNEL);
1987 		if (!devs)
1988 			goto err;
1989 
1990 		nspm = kzalloc(sizeof(*nspm), GFP_KERNEL);
1991 		if (!nspm)
1992 			goto err;
1993 		dev = &nspm->nsio.common.dev;
1994 		dev->type = &namespace_pmem_device_type;
1995 		nd_namespace_pmem_set_resource(nd_region, nspm, 0);
1996 		dev->parent = &nd_region->dev;
1997 		devs[count++] = dev;
1998 	} else if (is_memory(&nd_region->dev)) {
1999 		/* clean unselected labels */
2000 		for (i = 0; i < nd_region->ndr_mappings; i++) {
2001 			struct list_head *l, *e;
2002 			LIST_HEAD(list);
2003 			int j;
2004 
2005 			nd_mapping = &nd_region->mapping[i];
2006 			if (list_empty(&nd_mapping->labels)) {
2007 				WARN_ON(1);
2008 				continue;
2009 			}
2010 
2011 			j = count;
2012 			list_for_each_safe(l, e, &nd_mapping->labels) {
2013 				if (!j--)
2014 					break;
2015 				list_move_tail(l, &list);
2016 			}
2017 			nd_mapping_free_labels(nd_mapping);
2018 			list_splice_init(&list, &nd_mapping->labels);
2019 		}
2020 	}
2021 
2022 	if (count > 1)
2023 		sort(devs, count, sizeof(struct device *), cmp_dpa, NULL);
2024 
2025 	return devs;
2026 
2027  err:
2028 	if (devs) {
2029 		for (i = 0; devs[i]; i++)
2030 			namespace_pmem_release(devs[i]);
2031 		kfree(devs);
2032 	}
2033 	return NULL;
2034 }
2035 
2036 static struct device **create_namespaces(struct nd_region *nd_region)
2037 {
2038 	struct nd_mapping *nd_mapping;
2039 	struct device **devs;
2040 	int i;
2041 
2042 	if (nd_region->ndr_mappings == 0)
2043 		return NULL;
2044 
2045 	/* lock down all mappings while we scan labels */
2046 	for (i = 0; i < nd_region->ndr_mappings; i++) {
2047 		nd_mapping = &nd_region->mapping[i];
2048 		mutex_lock_nested(&nd_mapping->lock, i);
2049 	}
2050 
2051 	devs = scan_labels(nd_region);
2052 
2053 	for (i = 0; i < nd_region->ndr_mappings; i++) {
2054 		int reverse = nd_region->ndr_mappings - 1 - i;
2055 
2056 		nd_mapping = &nd_region->mapping[reverse];
2057 		mutex_unlock(&nd_mapping->lock);
2058 	}
2059 
2060 	return devs;
2061 }
2062 
2063 static void deactivate_labels(void *region)
2064 {
2065 	struct nd_region *nd_region = region;
2066 	int i;
2067 
2068 	for (i = 0; i < nd_region->ndr_mappings; i++) {
2069 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
2070 		struct nvdimm_drvdata *ndd = nd_mapping->ndd;
2071 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
2072 
2073 		mutex_lock(&nd_mapping->lock);
2074 		nd_mapping_free_labels(nd_mapping);
2075 		mutex_unlock(&nd_mapping->lock);
2076 
2077 		put_ndd(ndd);
2078 		nd_mapping->ndd = NULL;
2079 		if (ndd)
2080 			atomic_dec(&nvdimm->busy);
2081 	}
2082 }
2083 
2084 static int init_active_labels(struct nd_region *nd_region)
2085 {
2086 	int i, rc = 0;
2087 
2088 	for (i = 0; i < nd_region->ndr_mappings; i++) {
2089 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
2090 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
2091 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
2092 		struct nd_label_ent *label_ent;
2093 		int count, j;
2094 
2095 		/*
2096 		 * If the dimm is disabled then we may need to prevent
2097 		 * the region from being activated.
2098 		 */
2099 		if (!ndd) {
2100 			if (test_bit(NDD_LOCKED, &nvdimm->flags))
2101 				/* fail, label data may be unreadable */;
2102 			else if (test_bit(NDD_LABELING, &nvdimm->flags))
2103 				/* fail, labels needed to disambiguate dpa */;
2104 			else
2105 				continue;
2106 
2107 			dev_err(&nd_region->dev, "%s: is %s, failing probe\n",
2108 					dev_name(&nd_mapping->nvdimm->dev),
2109 					test_bit(NDD_LOCKED, &nvdimm->flags)
2110 					? "locked" : "disabled");
2111 			rc = -ENXIO;
2112 			goto out;
2113 		}
2114 		nd_mapping->ndd = ndd;
2115 		atomic_inc(&nvdimm->busy);
2116 		get_ndd(ndd);
2117 
2118 		count = nd_label_active_count(ndd);
2119 		dev_dbg(ndd->dev, "count: %d\n", count);
2120 		if (!count)
2121 			continue;
2122 		for (j = 0; j < count; j++) {
2123 			struct nd_namespace_label *label;
2124 
2125 			label_ent = kzalloc(sizeof(*label_ent), GFP_KERNEL);
2126 			if (!label_ent)
2127 				break;
2128 			label = nd_label_active(ndd, j);
2129 			label_ent->label = label;
2130 
2131 			mutex_lock(&nd_mapping->lock);
2132 			list_add_tail(&label_ent->list, &nd_mapping->labels);
2133 			mutex_unlock(&nd_mapping->lock);
2134 		}
2135 
2136 		if (j < count)
2137 			break;
2138 	}
2139 
2140 	if (i < nd_region->ndr_mappings)
2141 		rc = -ENOMEM;
2142 
2143 out:
2144 	if (rc) {
2145 		deactivate_labels(nd_region);
2146 		return rc;
2147 	}
2148 
2149 	return devm_add_action_or_reset(&nd_region->dev, deactivate_labels,
2150 					nd_region);
2151 }
2152 
2153 int nd_region_register_namespaces(struct nd_region *nd_region, int *err)
2154 {
2155 	struct device **devs = NULL;
2156 	int i, rc = 0, type;
2157 
2158 	*err = 0;
2159 	nvdimm_bus_lock(&nd_region->dev);
2160 	rc = init_active_labels(nd_region);
2161 	if (rc) {
2162 		nvdimm_bus_unlock(&nd_region->dev);
2163 		return rc;
2164 	}
2165 
2166 	type = nd_region_to_nstype(nd_region);
2167 	switch (type) {
2168 	case ND_DEVICE_NAMESPACE_IO:
2169 		devs = create_namespace_io(nd_region);
2170 		break;
2171 	case ND_DEVICE_NAMESPACE_PMEM:
2172 		devs = create_namespaces(nd_region);
2173 		break;
2174 	default:
2175 		break;
2176 	}
2177 	nvdimm_bus_unlock(&nd_region->dev);
2178 
2179 	if (!devs)
2180 		return -ENODEV;
2181 
2182 	for (i = 0; devs[i]; i++) {
2183 		struct device *dev = devs[i];
2184 		int id;
2185 
2186 		if (type == ND_DEVICE_NAMESPACE_PMEM) {
2187 			struct nd_namespace_pmem *nspm;
2188 
2189 			nspm = to_nd_namespace_pmem(dev);
2190 			id = ida_simple_get(&nd_region->ns_ida, 0, 0,
2191 					    GFP_KERNEL);
2192 			nspm->id = id;
2193 		} else
2194 			id = i;
2195 
2196 		if (id < 0)
2197 			break;
2198 		dev_set_name(dev, "namespace%d.%d", nd_region->id, id);
2199 		device_initialize(dev);
2200 		lockdep_set_class(&dev->mutex, &nvdimm_namespace_key);
2201 		nd_device_register(dev);
2202 	}
2203 	if (i)
2204 		nd_region->ns_seed = devs[0];
2205 
2206 	if (devs[i]) {
2207 		int j;
2208 
2209 		for (j = i; devs[j]; j++) {
2210 			struct device *dev = devs[j];
2211 
2212 			device_initialize(dev);
2213 			put_device(dev);
2214 		}
2215 		*err = j - i;
2216 		/*
2217 		 * All of the namespaces we tried to register failed, so
2218 		 * fail region activation.
2219 		 */
2220 		if (*err == 0)
2221 			rc = -ENODEV;
2222 	}
2223 	kfree(devs);
2224 
2225 	if (rc == -ENODEV)
2226 		return rc;
2227 
2228 	return i;
2229 }
2230