1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/moduleparam.h> 7 #include <linux/vmalloc.h> 8 #include <linux/device.h> 9 #include <linux/ndctl.h> 10 #include <linux/slab.h> 11 #include <linux/io.h> 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include "nd-core.h" 15 #include "label.h" 16 #include "pmem.h" 17 #include "nd.h" 18 19 static DEFINE_IDA(dimm_ida); 20 21 static bool noblk; 22 module_param(noblk, bool, 0444); 23 MODULE_PARM_DESC(noblk, "force disable BLK / local alias support"); 24 25 /* 26 * Retrieve bus and dimm handle and return if this bus supports 27 * get_config_data commands 28 */ 29 int nvdimm_check_config_data(struct device *dev) 30 { 31 struct nvdimm *nvdimm = to_nvdimm(dev); 32 33 if (!nvdimm->cmd_mask || 34 !test_bit(ND_CMD_GET_CONFIG_DATA, &nvdimm->cmd_mask)) { 35 if (test_bit(NDD_LABELING, &nvdimm->flags)) 36 return -ENXIO; 37 else 38 return -ENOTTY; 39 } 40 41 return 0; 42 } 43 44 static int validate_dimm(struct nvdimm_drvdata *ndd) 45 { 46 int rc; 47 48 if (!ndd) 49 return -EINVAL; 50 51 rc = nvdimm_check_config_data(ndd->dev); 52 if (rc) 53 dev_dbg(ndd->dev, "%ps: %s error: %d\n", 54 __builtin_return_address(0), __func__, rc); 55 return rc; 56 } 57 58 /** 59 * nvdimm_init_nsarea - determine the geometry of a dimm's namespace area 60 * @nvdimm: dimm to initialize 61 */ 62 int nvdimm_init_nsarea(struct nvdimm_drvdata *ndd) 63 { 64 struct nd_cmd_get_config_size *cmd = &ndd->nsarea; 65 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 66 struct nvdimm_bus_descriptor *nd_desc; 67 int rc = validate_dimm(ndd); 68 int cmd_rc = 0; 69 70 if (rc) 71 return rc; 72 73 if (cmd->config_size) 74 return 0; /* already valid */ 75 76 memset(cmd, 0, sizeof(*cmd)); 77 nd_desc = nvdimm_bus->nd_desc; 78 rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), 79 ND_CMD_GET_CONFIG_SIZE, cmd, sizeof(*cmd), &cmd_rc); 80 if (rc < 0) 81 return rc; 82 return cmd_rc; 83 } 84 85 int nvdimm_get_config_data(struct nvdimm_drvdata *ndd, void *buf, 86 size_t offset, size_t len) 87 { 88 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 89 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 90 int rc = validate_dimm(ndd), cmd_rc = 0; 91 struct nd_cmd_get_config_data_hdr *cmd; 92 size_t max_cmd_size, buf_offset; 93 94 if (rc) 95 return rc; 96 97 if (offset + len > ndd->nsarea.config_size) 98 return -ENXIO; 99 100 max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer); 101 cmd = kvzalloc(max_cmd_size + sizeof(*cmd), GFP_KERNEL); 102 if (!cmd) 103 return -ENOMEM; 104 105 for (buf_offset = 0; len; 106 len -= cmd->in_length, buf_offset += cmd->in_length) { 107 size_t cmd_size; 108 109 cmd->in_offset = offset + buf_offset; 110 cmd->in_length = min(max_cmd_size, len); 111 112 cmd_size = sizeof(*cmd) + cmd->in_length; 113 114 rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), 115 ND_CMD_GET_CONFIG_DATA, cmd, cmd_size, &cmd_rc); 116 if (rc < 0) 117 break; 118 if (cmd_rc < 0) { 119 rc = cmd_rc; 120 break; 121 } 122 123 /* out_buf should be valid, copy it into our output buffer */ 124 memcpy(buf + buf_offset, cmd->out_buf, cmd->in_length); 125 } 126 kvfree(cmd); 127 128 return rc; 129 } 130 131 int nvdimm_set_config_data(struct nvdimm_drvdata *ndd, size_t offset, 132 void *buf, size_t len) 133 { 134 size_t max_cmd_size, buf_offset; 135 struct nd_cmd_set_config_hdr *cmd; 136 int rc = validate_dimm(ndd), cmd_rc = 0; 137 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 138 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 139 140 if (rc) 141 return rc; 142 143 if (offset + len > ndd->nsarea.config_size) 144 return -ENXIO; 145 146 max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer); 147 cmd = kvzalloc(max_cmd_size + sizeof(*cmd) + sizeof(u32), GFP_KERNEL); 148 if (!cmd) 149 return -ENOMEM; 150 151 for (buf_offset = 0; len; len -= cmd->in_length, 152 buf_offset += cmd->in_length) { 153 size_t cmd_size; 154 155 cmd->in_offset = offset + buf_offset; 156 cmd->in_length = min(max_cmd_size, len); 157 memcpy(cmd->in_buf, buf + buf_offset, cmd->in_length); 158 159 /* status is output in the last 4-bytes of the command buffer */ 160 cmd_size = sizeof(*cmd) + cmd->in_length + sizeof(u32); 161 162 rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), 163 ND_CMD_SET_CONFIG_DATA, cmd, cmd_size, &cmd_rc); 164 if (rc < 0) 165 break; 166 if (cmd_rc < 0) { 167 rc = cmd_rc; 168 break; 169 } 170 } 171 kvfree(cmd); 172 173 return rc; 174 } 175 176 void nvdimm_set_labeling(struct device *dev) 177 { 178 struct nvdimm *nvdimm = to_nvdimm(dev); 179 180 set_bit(NDD_LABELING, &nvdimm->flags); 181 } 182 183 void nvdimm_set_locked(struct device *dev) 184 { 185 struct nvdimm *nvdimm = to_nvdimm(dev); 186 187 set_bit(NDD_LOCKED, &nvdimm->flags); 188 } 189 190 void nvdimm_clear_locked(struct device *dev) 191 { 192 struct nvdimm *nvdimm = to_nvdimm(dev); 193 194 clear_bit(NDD_LOCKED, &nvdimm->flags); 195 } 196 197 static void nvdimm_release(struct device *dev) 198 { 199 struct nvdimm *nvdimm = to_nvdimm(dev); 200 201 ida_simple_remove(&dimm_ida, nvdimm->id); 202 kfree(nvdimm); 203 } 204 205 struct nvdimm *to_nvdimm(struct device *dev) 206 { 207 struct nvdimm *nvdimm = container_of(dev, struct nvdimm, dev); 208 209 WARN_ON(!is_nvdimm(dev)); 210 return nvdimm; 211 } 212 EXPORT_SYMBOL_GPL(to_nvdimm); 213 214 struct nvdimm *nd_blk_region_to_dimm(struct nd_blk_region *ndbr) 215 { 216 struct nd_region *nd_region = &ndbr->nd_region; 217 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 218 219 return nd_mapping->nvdimm; 220 } 221 EXPORT_SYMBOL_GPL(nd_blk_region_to_dimm); 222 223 unsigned long nd_blk_memremap_flags(struct nd_blk_region *ndbr) 224 { 225 /* pmem mapping properties are private to libnvdimm */ 226 return ARCH_MEMREMAP_PMEM; 227 } 228 EXPORT_SYMBOL_GPL(nd_blk_memremap_flags); 229 230 struct nvdimm_drvdata *to_ndd(struct nd_mapping *nd_mapping) 231 { 232 struct nvdimm *nvdimm = nd_mapping->nvdimm; 233 234 WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev)); 235 236 return dev_get_drvdata(&nvdimm->dev); 237 } 238 EXPORT_SYMBOL(to_ndd); 239 240 void nvdimm_drvdata_release(struct kref *kref) 241 { 242 struct nvdimm_drvdata *ndd = container_of(kref, typeof(*ndd), kref); 243 struct device *dev = ndd->dev; 244 struct resource *res, *_r; 245 246 dev_dbg(dev, "trace\n"); 247 nvdimm_bus_lock(dev); 248 for_each_dpa_resource_safe(ndd, res, _r) 249 nvdimm_free_dpa(ndd, res); 250 nvdimm_bus_unlock(dev); 251 252 kvfree(ndd->data); 253 kfree(ndd); 254 put_device(dev); 255 } 256 257 void get_ndd(struct nvdimm_drvdata *ndd) 258 { 259 kref_get(&ndd->kref); 260 } 261 262 void put_ndd(struct nvdimm_drvdata *ndd) 263 { 264 if (ndd) 265 kref_put(&ndd->kref, nvdimm_drvdata_release); 266 } 267 268 const char *nvdimm_name(struct nvdimm *nvdimm) 269 { 270 return dev_name(&nvdimm->dev); 271 } 272 EXPORT_SYMBOL_GPL(nvdimm_name); 273 274 struct kobject *nvdimm_kobj(struct nvdimm *nvdimm) 275 { 276 return &nvdimm->dev.kobj; 277 } 278 EXPORT_SYMBOL_GPL(nvdimm_kobj); 279 280 unsigned long nvdimm_cmd_mask(struct nvdimm *nvdimm) 281 { 282 return nvdimm->cmd_mask; 283 } 284 EXPORT_SYMBOL_GPL(nvdimm_cmd_mask); 285 286 void *nvdimm_provider_data(struct nvdimm *nvdimm) 287 { 288 if (nvdimm) 289 return nvdimm->provider_data; 290 return NULL; 291 } 292 EXPORT_SYMBOL_GPL(nvdimm_provider_data); 293 294 static ssize_t commands_show(struct device *dev, 295 struct device_attribute *attr, char *buf) 296 { 297 struct nvdimm *nvdimm = to_nvdimm(dev); 298 int cmd, len = 0; 299 300 if (!nvdimm->cmd_mask) 301 return sprintf(buf, "\n"); 302 303 for_each_set_bit(cmd, &nvdimm->cmd_mask, BITS_PER_LONG) 304 len += sprintf(buf + len, "%s ", nvdimm_cmd_name(cmd)); 305 len += sprintf(buf + len, "\n"); 306 return len; 307 } 308 static DEVICE_ATTR_RO(commands); 309 310 static ssize_t flags_show(struct device *dev, 311 struct device_attribute *attr, char *buf) 312 { 313 struct nvdimm *nvdimm = to_nvdimm(dev); 314 315 return sprintf(buf, "%s%s%s\n", 316 test_bit(NDD_ALIASING, &nvdimm->flags) ? "alias " : "", 317 test_bit(NDD_LABELING, &nvdimm->flags) ? "label " : "", 318 test_bit(NDD_LOCKED, &nvdimm->flags) ? "lock " : ""); 319 } 320 static DEVICE_ATTR_RO(flags); 321 322 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 323 char *buf) 324 { 325 struct nvdimm *nvdimm = to_nvdimm(dev); 326 327 /* 328 * The state may be in the process of changing, userspace should 329 * quiesce probing if it wants a static answer 330 */ 331 nvdimm_bus_lock(dev); 332 nvdimm_bus_unlock(dev); 333 return sprintf(buf, "%s\n", atomic_read(&nvdimm->busy) 334 ? "active" : "idle"); 335 } 336 static DEVICE_ATTR_RO(state); 337 338 static ssize_t __available_slots_show(struct nvdimm_drvdata *ndd, char *buf) 339 { 340 struct device *dev; 341 ssize_t rc; 342 u32 nfree; 343 344 if (!ndd) 345 return -ENXIO; 346 347 dev = ndd->dev; 348 nvdimm_bus_lock(dev); 349 nfree = nd_label_nfree(ndd); 350 if (nfree - 1 > nfree) { 351 dev_WARN_ONCE(dev, 1, "we ate our last label?\n"); 352 nfree = 0; 353 } else 354 nfree--; 355 rc = sprintf(buf, "%d\n", nfree); 356 nvdimm_bus_unlock(dev); 357 return rc; 358 } 359 360 static ssize_t available_slots_show(struct device *dev, 361 struct device_attribute *attr, char *buf) 362 { 363 ssize_t rc; 364 365 nd_device_lock(dev); 366 rc = __available_slots_show(dev_get_drvdata(dev), buf); 367 nd_device_unlock(dev); 368 369 return rc; 370 } 371 static DEVICE_ATTR_RO(available_slots); 372 373 __weak ssize_t security_show(struct device *dev, 374 struct device_attribute *attr, char *buf) 375 { 376 struct nvdimm *nvdimm = to_nvdimm(dev); 377 378 if (test_bit(NVDIMM_SECURITY_OVERWRITE, &nvdimm->sec.flags)) 379 return sprintf(buf, "overwrite\n"); 380 if (test_bit(NVDIMM_SECURITY_DISABLED, &nvdimm->sec.flags)) 381 return sprintf(buf, "disabled\n"); 382 if (test_bit(NVDIMM_SECURITY_UNLOCKED, &nvdimm->sec.flags)) 383 return sprintf(buf, "unlocked\n"); 384 if (test_bit(NVDIMM_SECURITY_LOCKED, &nvdimm->sec.flags)) 385 return sprintf(buf, "locked\n"); 386 return -ENOTTY; 387 } 388 389 static ssize_t frozen_show(struct device *dev, 390 struct device_attribute *attr, char *buf) 391 { 392 struct nvdimm *nvdimm = to_nvdimm(dev); 393 394 return sprintf(buf, "%d\n", test_bit(NVDIMM_SECURITY_FROZEN, 395 &nvdimm->sec.flags)); 396 } 397 static DEVICE_ATTR_RO(frozen); 398 399 static ssize_t security_store(struct device *dev, 400 struct device_attribute *attr, const char *buf, size_t len) 401 402 { 403 ssize_t rc; 404 405 /* 406 * Require all userspace triggered security management to be 407 * done while probing is idle and the DIMM is not in active use 408 * in any region. 409 */ 410 nd_device_lock(dev); 411 nvdimm_bus_lock(dev); 412 wait_nvdimm_bus_probe_idle(dev); 413 rc = nvdimm_security_store(dev, buf, len); 414 nvdimm_bus_unlock(dev); 415 nd_device_unlock(dev); 416 417 return rc; 418 } 419 static DEVICE_ATTR_RW(security); 420 421 static struct attribute *nvdimm_attributes[] = { 422 &dev_attr_state.attr, 423 &dev_attr_flags.attr, 424 &dev_attr_commands.attr, 425 &dev_attr_available_slots.attr, 426 &dev_attr_security.attr, 427 &dev_attr_frozen.attr, 428 NULL, 429 }; 430 431 static umode_t nvdimm_visible(struct kobject *kobj, struct attribute *a, int n) 432 { 433 struct device *dev = container_of(kobj, typeof(*dev), kobj); 434 struct nvdimm *nvdimm = to_nvdimm(dev); 435 436 if (a != &dev_attr_security.attr && a != &dev_attr_frozen.attr) 437 return a->mode; 438 if (!nvdimm->sec.flags) 439 return 0; 440 441 if (a == &dev_attr_security.attr) { 442 /* Are there any state mutation ops (make writable)? */ 443 if (nvdimm->sec.ops->freeze || nvdimm->sec.ops->disable 444 || nvdimm->sec.ops->change_key 445 || nvdimm->sec.ops->erase 446 || nvdimm->sec.ops->overwrite) 447 return a->mode; 448 return 0444; 449 } 450 451 if (nvdimm->sec.ops->freeze) 452 return a->mode; 453 return 0; 454 } 455 456 static const struct attribute_group nvdimm_attribute_group = { 457 .attrs = nvdimm_attributes, 458 .is_visible = nvdimm_visible, 459 }; 460 461 static ssize_t result_show(struct device *dev, struct device_attribute *attr, char *buf) 462 { 463 struct nvdimm *nvdimm = to_nvdimm(dev); 464 enum nvdimm_fwa_result result; 465 466 if (!nvdimm->fw_ops) 467 return -EOPNOTSUPP; 468 469 nvdimm_bus_lock(dev); 470 result = nvdimm->fw_ops->activate_result(nvdimm); 471 nvdimm_bus_unlock(dev); 472 473 switch (result) { 474 case NVDIMM_FWA_RESULT_NONE: 475 return sprintf(buf, "none\n"); 476 case NVDIMM_FWA_RESULT_SUCCESS: 477 return sprintf(buf, "success\n"); 478 case NVDIMM_FWA_RESULT_FAIL: 479 return sprintf(buf, "fail\n"); 480 case NVDIMM_FWA_RESULT_NOTSTAGED: 481 return sprintf(buf, "not_staged\n"); 482 case NVDIMM_FWA_RESULT_NEEDRESET: 483 return sprintf(buf, "need_reset\n"); 484 default: 485 return -ENXIO; 486 } 487 } 488 static DEVICE_ATTR_ADMIN_RO(result); 489 490 static ssize_t activate_show(struct device *dev, struct device_attribute *attr, char *buf) 491 { 492 struct nvdimm *nvdimm = to_nvdimm(dev); 493 enum nvdimm_fwa_state state; 494 495 if (!nvdimm->fw_ops) 496 return -EOPNOTSUPP; 497 498 nvdimm_bus_lock(dev); 499 state = nvdimm->fw_ops->activate_state(nvdimm); 500 nvdimm_bus_unlock(dev); 501 502 switch (state) { 503 case NVDIMM_FWA_IDLE: 504 return sprintf(buf, "idle\n"); 505 case NVDIMM_FWA_BUSY: 506 return sprintf(buf, "busy\n"); 507 case NVDIMM_FWA_ARMED: 508 return sprintf(buf, "armed\n"); 509 default: 510 return -ENXIO; 511 } 512 } 513 514 static ssize_t activate_store(struct device *dev, struct device_attribute *attr, 515 const char *buf, size_t len) 516 { 517 struct nvdimm *nvdimm = to_nvdimm(dev); 518 enum nvdimm_fwa_trigger arg; 519 int rc; 520 521 if (!nvdimm->fw_ops) 522 return -EOPNOTSUPP; 523 524 if (sysfs_streq(buf, "arm")) 525 arg = NVDIMM_FWA_ARM; 526 else if (sysfs_streq(buf, "disarm")) 527 arg = NVDIMM_FWA_DISARM; 528 else 529 return -EINVAL; 530 531 nvdimm_bus_lock(dev); 532 rc = nvdimm->fw_ops->arm(nvdimm, arg); 533 nvdimm_bus_unlock(dev); 534 535 if (rc < 0) 536 return rc; 537 return len; 538 } 539 static DEVICE_ATTR_ADMIN_RW(activate); 540 541 static struct attribute *nvdimm_firmware_attributes[] = { 542 &dev_attr_activate.attr, 543 &dev_attr_result.attr, 544 NULL, 545 }; 546 547 static umode_t nvdimm_firmware_visible(struct kobject *kobj, struct attribute *a, int n) 548 { 549 struct device *dev = container_of(kobj, typeof(*dev), kobj); 550 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 551 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 552 struct nvdimm *nvdimm = to_nvdimm(dev); 553 enum nvdimm_fwa_capability cap; 554 555 if (!nd_desc->fw_ops) 556 return 0; 557 if (!nvdimm->fw_ops) 558 return 0; 559 560 nvdimm_bus_lock(dev); 561 cap = nd_desc->fw_ops->capability(nd_desc); 562 nvdimm_bus_unlock(dev); 563 564 if (cap < NVDIMM_FWA_CAP_QUIESCE) 565 return 0; 566 567 return a->mode; 568 } 569 570 static const struct attribute_group nvdimm_firmware_attribute_group = { 571 .name = "firmware", 572 .attrs = nvdimm_firmware_attributes, 573 .is_visible = nvdimm_firmware_visible, 574 }; 575 576 static const struct attribute_group *nvdimm_attribute_groups[] = { 577 &nd_device_attribute_group, 578 &nvdimm_attribute_group, 579 &nvdimm_firmware_attribute_group, 580 NULL, 581 }; 582 583 static const struct device_type nvdimm_device_type = { 584 .name = "nvdimm", 585 .release = nvdimm_release, 586 .groups = nvdimm_attribute_groups, 587 }; 588 589 bool is_nvdimm(struct device *dev) 590 { 591 return dev->type == &nvdimm_device_type; 592 } 593 594 struct nvdimm *__nvdimm_create(struct nvdimm_bus *nvdimm_bus, 595 void *provider_data, const struct attribute_group **groups, 596 unsigned long flags, unsigned long cmd_mask, int num_flush, 597 struct resource *flush_wpq, const char *dimm_id, 598 const struct nvdimm_security_ops *sec_ops, 599 const struct nvdimm_fw_ops *fw_ops) 600 { 601 struct nvdimm *nvdimm = kzalloc(sizeof(*nvdimm), GFP_KERNEL); 602 struct device *dev; 603 604 if (!nvdimm) 605 return NULL; 606 607 nvdimm->id = ida_simple_get(&dimm_ida, 0, 0, GFP_KERNEL); 608 if (nvdimm->id < 0) { 609 kfree(nvdimm); 610 return NULL; 611 } 612 613 nvdimm->dimm_id = dimm_id; 614 nvdimm->provider_data = provider_data; 615 if (noblk) 616 flags |= 1 << NDD_NOBLK; 617 nvdimm->flags = flags; 618 nvdimm->cmd_mask = cmd_mask; 619 nvdimm->num_flush = num_flush; 620 nvdimm->flush_wpq = flush_wpq; 621 atomic_set(&nvdimm->busy, 0); 622 dev = &nvdimm->dev; 623 dev_set_name(dev, "nmem%d", nvdimm->id); 624 dev->parent = &nvdimm_bus->dev; 625 dev->type = &nvdimm_device_type; 626 dev->devt = MKDEV(nvdimm_major, nvdimm->id); 627 dev->groups = groups; 628 nvdimm->sec.ops = sec_ops; 629 nvdimm->fw_ops = fw_ops; 630 nvdimm->sec.overwrite_tmo = 0; 631 INIT_DELAYED_WORK(&nvdimm->dwork, nvdimm_security_overwrite_query); 632 /* 633 * Security state must be initialized before device_add() for 634 * attribute visibility. 635 */ 636 /* get security state and extended (master) state */ 637 nvdimm->sec.flags = nvdimm_security_flags(nvdimm, NVDIMM_USER); 638 nvdimm->sec.ext_flags = nvdimm_security_flags(nvdimm, NVDIMM_MASTER); 639 nd_device_register(dev); 640 641 return nvdimm; 642 } 643 EXPORT_SYMBOL_GPL(__nvdimm_create); 644 645 static void shutdown_security_notify(void *data) 646 { 647 struct nvdimm *nvdimm = data; 648 649 sysfs_put(nvdimm->sec.overwrite_state); 650 } 651 652 int nvdimm_security_setup_events(struct device *dev) 653 { 654 struct nvdimm *nvdimm = to_nvdimm(dev); 655 656 if (!nvdimm->sec.flags || !nvdimm->sec.ops 657 || !nvdimm->sec.ops->overwrite) 658 return 0; 659 nvdimm->sec.overwrite_state = sysfs_get_dirent(dev->kobj.sd, "security"); 660 if (!nvdimm->sec.overwrite_state) 661 return -ENOMEM; 662 663 return devm_add_action_or_reset(dev, shutdown_security_notify, nvdimm); 664 } 665 EXPORT_SYMBOL_GPL(nvdimm_security_setup_events); 666 667 int nvdimm_in_overwrite(struct nvdimm *nvdimm) 668 { 669 return test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags); 670 } 671 EXPORT_SYMBOL_GPL(nvdimm_in_overwrite); 672 673 int nvdimm_security_freeze(struct nvdimm *nvdimm) 674 { 675 int rc; 676 677 WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev)); 678 679 if (!nvdimm->sec.ops || !nvdimm->sec.ops->freeze) 680 return -EOPNOTSUPP; 681 682 if (!nvdimm->sec.flags) 683 return -EIO; 684 685 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 686 dev_warn(&nvdimm->dev, "Overwrite operation in progress.\n"); 687 return -EBUSY; 688 } 689 690 rc = nvdimm->sec.ops->freeze(nvdimm); 691 nvdimm->sec.flags = nvdimm_security_flags(nvdimm, NVDIMM_USER); 692 693 return rc; 694 } 695 696 static unsigned long dpa_align(struct nd_region *nd_region) 697 { 698 struct device *dev = &nd_region->dev; 699 700 if (dev_WARN_ONCE(dev, !is_nvdimm_bus_locked(dev), 701 "bus lock required for capacity provision\n")) 702 return 0; 703 if (dev_WARN_ONCE(dev, !nd_region->ndr_mappings || nd_region->align 704 % nd_region->ndr_mappings, 705 "invalid region align %#lx mappings: %d\n", 706 nd_region->align, nd_region->ndr_mappings)) 707 return 0; 708 return nd_region->align / nd_region->ndr_mappings; 709 } 710 711 int alias_dpa_busy(struct device *dev, void *data) 712 { 713 resource_size_t map_end, blk_start, new; 714 struct blk_alloc_info *info = data; 715 struct nd_mapping *nd_mapping; 716 struct nd_region *nd_region; 717 struct nvdimm_drvdata *ndd; 718 struct resource *res; 719 unsigned long align; 720 int i; 721 722 if (!is_memory(dev)) 723 return 0; 724 725 nd_region = to_nd_region(dev); 726 for (i = 0; i < nd_region->ndr_mappings; i++) { 727 nd_mapping = &nd_region->mapping[i]; 728 if (nd_mapping->nvdimm == info->nd_mapping->nvdimm) 729 break; 730 } 731 732 if (i >= nd_region->ndr_mappings) 733 return 0; 734 735 ndd = to_ndd(nd_mapping); 736 map_end = nd_mapping->start + nd_mapping->size - 1; 737 blk_start = nd_mapping->start; 738 739 /* 740 * In the allocation case ->res is set to free space that we are 741 * looking to validate against PMEM aliasing collision rules 742 * (i.e. BLK is allocated after all aliased PMEM). 743 */ 744 if (info->res) { 745 if (info->res->start >= nd_mapping->start 746 && info->res->start < map_end) 747 /* pass */; 748 else 749 return 0; 750 } 751 752 retry: 753 /* 754 * Find the free dpa from the end of the last pmem allocation to 755 * the end of the interleave-set mapping. 756 */ 757 align = dpa_align(nd_region); 758 if (!align) 759 return 0; 760 761 for_each_dpa_resource(ndd, res) { 762 resource_size_t start, end; 763 764 if (strncmp(res->name, "pmem", 4) != 0) 765 continue; 766 767 start = ALIGN_DOWN(res->start, align); 768 end = ALIGN(res->end + 1, align) - 1; 769 if ((start >= blk_start && start < map_end) 770 || (end >= blk_start && end <= map_end)) { 771 new = max(blk_start, min(map_end, end) + 1); 772 if (new != blk_start) { 773 blk_start = new; 774 goto retry; 775 } 776 } 777 } 778 779 /* update the free space range with the probed blk_start */ 780 if (info->res && blk_start > info->res->start) { 781 info->res->start = max(info->res->start, blk_start); 782 if (info->res->start > info->res->end) 783 info->res->end = info->res->start - 1; 784 return 1; 785 } 786 787 info->available -= blk_start - nd_mapping->start; 788 789 return 0; 790 } 791 792 /** 793 * nd_blk_available_dpa - account the unused dpa of BLK region 794 * @nd_mapping: container of dpa-resource-root + labels 795 * 796 * Unlike PMEM, BLK namespaces can occupy discontiguous DPA ranges, but 797 * we arrange for them to never start at an lower dpa than the last 798 * PMEM allocation in an aliased region. 799 */ 800 resource_size_t nd_blk_available_dpa(struct nd_region *nd_region) 801 { 802 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 803 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 804 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 805 struct blk_alloc_info info = { 806 .nd_mapping = nd_mapping, 807 .available = nd_mapping->size, 808 .res = NULL, 809 }; 810 struct resource *res; 811 unsigned long align; 812 813 if (!ndd) 814 return 0; 815 816 device_for_each_child(&nvdimm_bus->dev, &info, alias_dpa_busy); 817 818 /* now account for busy blk allocations in unaliased dpa */ 819 align = dpa_align(nd_region); 820 if (!align) 821 return 0; 822 for_each_dpa_resource(ndd, res) { 823 resource_size_t start, end, size; 824 825 if (strncmp(res->name, "blk", 3) != 0) 826 continue; 827 start = ALIGN_DOWN(res->start, align); 828 end = ALIGN(res->end + 1, align) - 1; 829 size = end - start + 1; 830 if (size >= info.available) 831 return 0; 832 info.available -= size; 833 } 834 835 return info.available; 836 } 837 838 /** 839 * nd_pmem_max_contiguous_dpa - For the given dimm+region, return the max 840 * contiguous unallocated dpa range. 841 * @nd_region: constrain available space check to this reference region 842 * @nd_mapping: container of dpa-resource-root + labels 843 */ 844 resource_size_t nd_pmem_max_contiguous_dpa(struct nd_region *nd_region, 845 struct nd_mapping *nd_mapping) 846 { 847 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 848 struct nvdimm_bus *nvdimm_bus; 849 resource_size_t max = 0; 850 struct resource *res; 851 unsigned long align; 852 853 /* if a dimm is disabled the available capacity is zero */ 854 if (!ndd) 855 return 0; 856 857 align = dpa_align(nd_region); 858 if (!align) 859 return 0; 860 861 nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 862 if (__reserve_free_pmem(&nd_region->dev, nd_mapping->nvdimm)) 863 return 0; 864 for_each_dpa_resource(ndd, res) { 865 resource_size_t start, end; 866 867 if (strcmp(res->name, "pmem-reserve") != 0) 868 continue; 869 /* trim free space relative to current alignment setting */ 870 start = ALIGN(res->start, align); 871 end = ALIGN_DOWN(res->end + 1, align) - 1; 872 if (end < start) 873 continue; 874 if (end - start + 1 > max) 875 max = end - start + 1; 876 } 877 release_free_pmem(nvdimm_bus, nd_mapping); 878 return max; 879 } 880 881 /** 882 * nd_pmem_available_dpa - for the given dimm+region account unallocated dpa 883 * @nd_mapping: container of dpa-resource-root + labels 884 * @nd_region: constrain available space check to this reference region 885 * @overlap: calculate available space assuming this level of overlap 886 * 887 * Validate that a PMEM label, if present, aligns with the start of an 888 * interleave set and truncate the available size at the lowest BLK 889 * overlap point. 890 * 891 * The expectation is that this routine is called multiple times as it 892 * probes for the largest BLK encroachment for any single member DIMM of 893 * the interleave set. Once that value is determined the PMEM-limit for 894 * the set can be established. 895 */ 896 resource_size_t nd_pmem_available_dpa(struct nd_region *nd_region, 897 struct nd_mapping *nd_mapping, resource_size_t *overlap) 898 { 899 resource_size_t map_start, map_end, busy = 0, available, blk_start; 900 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 901 struct resource *res; 902 const char *reason; 903 unsigned long align; 904 905 if (!ndd) 906 return 0; 907 908 align = dpa_align(nd_region); 909 if (!align) 910 return 0; 911 912 map_start = nd_mapping->start; 913 map_end = map_start + nd_mapping->size - 1; 914 blk_start = max(map_start, map_end + 1 - *overlap); 915 for_each_dpa_resource(ndd, res) { 916 resource_size_t start, end; 917 918 start = ALIGN_DOWN(res->start, align); 919 end = ALIGN(res->end + 1, align) - 1; 920 if (start >= map_start && start < map_end) { 921 if (strncmp(res->name, "blk", 3) == 0) 922 blk_start = min(blk_start, 923 max(map_start, start)); 924 else if (end > map_end) { 925 reason = "misaligned to iset"; 926 goto err; 927 } else 928 busy += end - start + 1; 929 } else if (end >= map_start && end <= map_end) { 930 if (strncmp(res->name, "blk", 3) == 0) { 931 /* 932 * If a BLK allocation overlaps the start of 933 * PMEM the entire interleave set may now only 934 * be used for BLK. 935 */ 936 blk_start = map_start; 937 } else 938 busy += end - start + 1; 939 } else if (map_start > start && map_start < end) { 940 /* total eclipse of the mapping */ 941 busy += nd_mapping->size; 942 blk_start = map_start; 943 } 944 } 945 946 *overlap = map_end + 1 - blk_start; 947 available = blk_start - map_start; 948 if (busy < available) 949 return ALIGN_DOWN(available - busy, align); 950 return 0; 951 952 err: 953 nd_dbg_dpa(nd_region, ndd, res, "%s\n", reason); 954 return 0; 955 } 956 957 void nvdimm_free_dpa(struct nvdimm_drvdata *ndd, struct resource *res) 958 { 959 WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev)); 960 kfree(res->name); 961 __release_region(&ndd->dpa, res->start, resource_size(res)); 962 } 963 964 struct resource *nvdimm_allocate_dpa(struct nvdimm_drvdata *ndd, 965 struct nd_label_id *label_id, resource_size_t start, 966 resource_size_t n) 967 { 968 char *name = kmemdup(label_id, sizeof(*label_id), GFP_KERNEL); 969 struct resource *res; 970 971 if (!name) 972 return NULL; 973 974 WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev)); 975 res = __request_region(&ndd->dpa, start, n, name, 0); 976 if (!res) 977 kfree(name); 978 return res; 979 } 980 981 /** 982 * nvdimm_allocated_dpa - sum up the dpa currently allocated to this label_id 983 * @nvdimm: container of dpa-resource-root + labels 984 * @label_id: dpa resource name of the form {pmem|blk}-<human readable uuid> 985 */ 986 resource_size_t nvdimm_allocated_dpa(struct nvdimm_drvdata *ndd, 987 struct nd_label_id *label_id) 988 { 989 resource_size_t allocated = 0; 990 struct resource *res; 991 992 for_each_dpa_resource(ndd, res) 993 if (strcmp(res->name, label_id->id) == 0) 994 allocated += resource_size(res); 995 996 return allocated; 997 } 998 999 static int count_dimms(struct device *dev, void *c) 1000 { 1001 int *count = c; 1002 1003 if (is_nvdimm(dev)) 1004 (*count)++; 1005 return 0; 1006 } 1007 1008 int nvdimm_bus_check_dimm_count(struct nvdimm_bus *nvdimm_bus, int dimm_count) 1009 { 1010 int count = 0; 1011 /* Flush any possible dimm registration failures */ 1012 nd_synchronize(); 1013 1014 device_for_each_child(&nvdimm_bus->dev, &count, count_dimms); 1015 dev_dbg(&nvdimm_bus->dev, "count: %d\n", count); 1016 if (count != dimm_count) 1017 return -ENXIO; 1018 return 0; 1019 } 1020 EXPORT_SYMBOL_GPL(nvdimm_bus_check_dimm_count); 1021 1022 void __exit nvdimm_devs_exit(void) 1023 { 1024 ida_destroy(&dimm_ida); 1025 } 1026