xref: /linux/drivers/nvdimm/btt.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Block Translation Table
4  * Copyright (c) 2014-2015, Intel Corporation.
5  */
6 #include <linux/highmem.h>
7 #include <linux/debugfs.h>
8 #include <linux/blkdev.h>
9 #include <linux/pagemap.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/mutex.h>
13 #include <linux/hdreg.h>
14 #include <linux/sizes.h>
15 #include <linux/ndctl.h>
16 #include <linux/fs.h>
17 #include <linux/nd.h>
18 #include <linux/backing-dev.h>
19 #include <linux/cleanup.h>
20 #include "btt.h"
21 #include "nd.h"
22 
23 enum log_ent_request {
24 	LOG_NEW_ENT = 0,
25 	LOG_OLD_ENT
26 };
27 
28 static struct device *to_dev(struct arena_info *arena)
29 {
30 	return &arena->nd_btt->dev;
31 }
32 
33 static u64 adjust_initial_offset(struct nd_btt *nd_btt, u64 offset)
34 {
35 	return offset + nd_btt->initial_offset;
36 }
37 
38 static int arena_read_bytes(struct arena_info *arena, resource_size_t offset,
39 		void *buf, size_t n, unsigned long flags)
40 {
41 	struct nd_btt *nd_btt = arena->nd_btt;
42 	struct nd_namespace_common *ndns = nd_btt->ndns;
43 
44 	/* arena offsets may be shifted from the base of the device */
45 	offset = adjust_initial_offset(nd_btt, offset);
46 	return nvdimm_read_bytes(ndns, offset, buf, n, flags);
47 }
48 
49 static int arena_write_bytes(struct arena_info *arena, resource_size_t offset,
50 		void *buf, size_t n, unsigned long flags)
51 {
52 	struct nd_btt *nd_btt = arena->nd_btt;
53 	struct nd_namespace_common *ndns = nd_btt->ndns;
54 
55 	/* arena offsets may be shifted from the base of the device */
56 	offset = adjust_initial_offset(nd_btt, offset);
57 	return nvdimm_write_bytes(ndns, offset, buf, n, flags);
58 }
59 
60 static int btt_info_write(struct arena_info *arena, struct btt_sb *super)
61 {
62 	int ret;
63 
64 	/*
65 	 * infooff and info2off should always be at least 512B aligned.
66 	 * We rely on that to make sure rw_bytes does error clearing
67 	 * correctly, so make sure that is the case.
68 	 */
69 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->infooff, 512),
70 		"arena->infooff: %#llx is unaligned\n", arena->infooff);
71 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->info2off, 512),
72 		"arena->info2off: %#llx is unaligned\n", arena->info2off);
73 
74 	ret = arena_write_bytes(arena, arena->info2off, super,
75 			sizeof(struct btt_sb), 0);
76 	if (ret)
77 		return ret;
78 
79 	return arena_write_bytes(arena, arena->infooff, super,
80 			sizeof(struct btt_sb), 0);
81 }
82 
83 static int btt_info_read(struct arena_info *arena, struct btt_sb *super)
84 {
85 	return arena_read_bytes(arena, arena->infooff, super,
86 			sizeof(struct btt_sb), 0);
87 }
88 
89 /*
90  * 'raw' version of btt_map write
91  * Assumptions:
92  *   mapping is in little-endian
93  *   mapping contains 'E' and 'Z' flags as desired
94  */
95 static int __btt_map_write(struct arena_info *arena, u32 lba, __le32 mapping,
96 		unsigned long flags)
97 {
98 	u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE);
99 
100 	if (unlikely(lba >= arena->external_nlba))
101 		dev_err_ratelimited(to_dev(arena),
102 			"%s: lba %#x out of range (max: %#x)\n",
103 			__func__, lba, arena->external_nlba);
104 	return arena_write_bytes(arena, ns_off, &mapping, MAP_ENT_SIZE, flags);
105 }
106 
107 static int btt_map_write(struct arena_info *arena, u32 lba, u32 mapping,
108 			u32 z_flag, u32 e_flag, unsigned long rwb_flags)
109 {
110 	u32 ze;
111 	__le32 mapping_le;
112 
113 	/*
114 	 * This 'mapping' is supposed to be just the LBA mapping, without
115 	 * any flags set, so strip the flag bits.
116 	 */
117 	mapping = ent_lba(mapping);
118 
119 	ze = (z_flag << 1) + e_flag;
120 	switch (ze) {
121 	case 0:
122 		/*
123 		 * We want to set neither of the Z or E flags, and
124 		 * in the actual layout, this means setting the bit
125 		 * positions of both to '1' to indicate a 'normal'
126 		 * map entry
127 		 */
128 		mapping |= MAP_ENT_NORMAL;
129 		break;
130 	case 1:
131 		mapping |= (1 << MAP_ERR_SHIFT);
132 		break;
133 	case 2:
134 		mapping |= (1 << MAP_TRIM_SHIFT);
135 		break;
136 	default:
137 		/*
138 		 * The case where Z and E are both sent in as '1' could be
139 		 * construed as a valid 'normal' case, but we decide not to,
140 		 * to avoid confusion
141 		 */
142 		dev_err_ratelimited(to_dev(arena),
143 			"Invalid use of Z and E flags\n");
144 		return -EIO;
145 	}
146 
147 	mapping_le = cpu_to_le32(mapping);
148 	return __btt_map_write(arena, lba, mapping_le, rwb_flags);
149 }
150 
151 static int btt_map_read(struct arena_info *arena, u32 lba, u32 *mapping,
152 			int *trim, int *error, unsigned long rwb_flags)
153 {
154 	int ret;
155 	__le32 in;
156 	u32 raw_mapping, postmap, ze, z_flag, e_flag;
157 	u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE);
158 
159 	if (unlikely(lba >= arena->external_nlba))
160 		dev_err_ratelimited(to_dev(arena),
161 			"%s: lba %#x out of range (max: %#x)\n",
162 			__func__, lba, arena->external_nlba);
163 
164 	ret = arena_read_bytes(arena, ns_off, &in, MAP_ENT_SIZE, rwb_flags);
165 	if (ret)
166 		return ret;
167 
168 	raw_mapping = le32_to_cpu(in);
169 
170 	z_flag = ent_z_flag(raw_mapping);
171 	e_flag = ent_e_flag(raw_mapping);
172 	ze = (z_flag << 1) + e_flag;
173 	postmap = ent_lba(raw_mapping);
174 
175 	/* Reuse the {z,e}_flag variables for *trim and *error */
176 	z_flag = 0;
177 	e_flag = 0;
178 
179 	switch (ze) {
180 	case 0:
181 		/* Initial state. Return postmap = premap */
182 		*mapping = lba;
183 		break;
184 	case 1:
185 		*mapping = postmap;
186 		e_flag = 1;
187 		break;
188 	case 2:
189 		*mapping = postmap;
190 		z_flag = 1;
191 		break;
192 	case 3:
193 		*mapping = postmap;
194 		break;
195 	default:
196 		return -EIO;
197 	}
198 
199 	if (trim)
200 		*trim = z_flag;
201 	if (error)
202 		*error = e_flag;
203 
204 	return ret;
205 }
206 
207 static int btt_log_group_read(struct arena_info *arena, u32 lane,
208 			struct log_group *log)
209 {
210 	return arena_read_bytes(arena,
211 			arena->logoff + (lane * LOG_GRP_SIZE), log,
212 			LOG_GRP_SIZE, 0);
213 }
214 
215 static struct dentry *debugfs_root;
216 
217 static void arena_debugfs_init(struct arena_info *a, struct dentry *parent,
218 				int idx)
219 {
220 	char dirname[32];
221 	struct dentry *d;
222 
223 	/* If for some reason, parent bttN was not created, exit */
224 	if (!parent)
225 		return;
226 
227 	snprintf(dirname, 32, "arena%d", idx);
228 	d = debugfs_create_dir(dirname, parent);
229 	if (IS_ERR_OR_NULL(d))
230 		return;
231 	a->debugfs_dir = d;
232 
233 	debugfs_create_x64("size", S_IRUGO, d, &a->size);
234 	debugfs_create_x64("external_lba_start", S_IRUGO, d,
235 				&a->external_lba_start);
236 	debugfs_create_x32("internal_nlba", S_IRUGO, d, &a->internal_nlba);
237 	debugfs_create_u32("internal_lbasize", S_IRUGO, d,
238 				&a->internal_lbasize);
239 	debugfs_create_x32("external_nlba", S_IRUGO, d, &a->external_nlba);
240 	debugfs_create_u32("external_lbasize", S_IRUGO, d,
241 				&a->external_lbasize);
242 	debugfs_create_u32("nfree", S_IRUGO, d, &a->nfree);
243 	debugfs_create_u16("version_major", S_IRUGO, d, &a->version_major);
244 	debugfs_create_u16("version_minor", S_IRUGO, d, &a->version_minor);
245 	debugfs_create_x64("nextoff", S_IRUGO, d, &a->nextoff);
246 	debugfs_create_x64("infooff", S_IRUGO, d, &a->infooff);
247 	debugfs_create_x64("dataoff", S_IRUGO, d, &a->dataoff);
248 	debugfs_create_x64("mapoff", S_IRUGO, d, &a->mapoff);
249 	debugfs_create_x64("logoff", S_IRUGO, d, &a->logoff);
250 	debugfs_create_x64("info2off", S_IRUGO, d, &a->info2off);
251 	debugfs_create_x32("flags", S_IRUGO, d, &a->flags);
252 	debugfs_create_u32("log_index_0", S_IRUGO, d, &a->log_index[0]);
253 	debugfs_create_u32("log_index_1", S_IRUGO, d, &a->log_index[1]);
254 }
255 
256 static void btt_debugfs_init(struct btt *btt)
257 {
258 	int i = 0;
259 	struct arena_info *arena;
260 
261 	btt->debugfs_dir = debugfs_create_dir(dev_name(&btt->nd_btt->dev),
262 						debugfs_root);
263 	if (IS_ERR_OR_NULL(btt->debugfs_dir))
264 		return;
265 
266 	list_for_each_entry(arena, &btt->arena_list, list) {
267 		arena_debugfs_init(arena, btt->debugfs_dir, i);
268 		i++;
269 	}
270 }
271 
272 static u32 log_seq(struct log_group *log, int log_idx)
273 {
274 	return le32_to_cpu(log->ent[log_idx].seq);
275 }
276 
277 /*
278  * This function accepts two log entries, and uses the
279  * sequence number to find the 'older' entry.
280  * It also updates the sequence number in this old entry to
281  * make it the 'new' one if the mark_flag is set.
282  * Finally, it returns which of the entries was the older one.
283  *
284  * TODO The logic feels a bit kludge-y. make it better..
285  */
286 static int btt_log_get_old(struct arena_info *a, struct log_group *log)
287 {
288 	int idx0 = a->log_index[0];
289 	int idx1 = a->log_index[1];
290 	int old;
291 
292 	/*
293 	 * the first ever time this is seen, the entry goes into [0]
294 	 * the next time, the following logic works out to put this
295 	 * (next) entry into [1]
296 	 */
297 	if (log_seq(log, idx0) == 0) {
298 		log->ent[idx0].seq = cpu_to_le32(1);
299 		return 0;
300 	}
301 
302 	if (log_seq(log, idx0) == log_seq(log, idx1))
303 		return -EINVAL;
304 	if (log_seq(log, idx0) + log_seq(log, idx1) > 5)
305 		return -EINVAL;
306 
307 	if (log_seq(log, idx0) < log_seq(log, idx1)) {
308 		if ((log_seq(log, idx1) - log_seq(log, idx0)) == 1)
309 			old = 0;
310 		else
311 			old = 1;
312 	} else {
313 		if ((log_seq(log, idx0) - log_seq(log, idx1)) == 1)
314 			old = 1;
315 		else
316 			old = 0;
317 	}
318 
319 	return old;
320 }
321 
322 /*
323  * This function copies the desired (old/new) log entry into ent if
324  * it is not NULL. It returns the sub-slot number (0 or 1)
325  * where the desired log entry was found. Negative return values
326  * indicate errors.
327  */
328 static int btt_log_read(struct arena_info *arena, u32 lane,
329 			struct log_entry *ent, int old_flag)
330 {
331 	int ret;
332 	int old_ent, ret_ent;
333 	struct log_group log;
334 
335 	ret = btt_log_group_read(arena, lane, &log);
336 	if (ret)
337 		return -EIO;
338 
339 	old_ent = btt_log_get_old(arena, &log);
340 	if (old_ent < 0 || old_ent > 1) {
341 		dev_err(to_dev(arena),
342 				"log corruption (%d): lane %d seq [%d, %d]\n",
343 				old_ent, lane, log.ent[arena->log_index[0]].seq,
344 				log.ent[arena->log_index[1]].seq);
345 		/* TODO set error state? */
346 		return -EIO;
347 	}
348 
349 	ret_ent = (old_flag ? old_ent : (1 - old_ent));
350 
351 	if (ent != NULL)
352 		memcpy(ent, &log.ent[arena->log_index[ret_ent]], LOG_ENT_SIZE);
353 
354 	return ret_ent;
355 }
356 
357 /*
358  * This function commits a log entry to media
359  * It does _not_ prepare the freelist entry for the next write
360  * btt_flog_write is the wrapper for updating the freelist elements
361  */
362 static int __btt_log_write(struct arena_info *arena, u32 lane,
363 			u32 sub, struct log_entry *ent, unsigned long flags)
364 {
365 	int ret;
366 	u32 group_slot = arena->log_index[sub];
367 	unsigned int log_half = LOG_ENT_SIZE / 2;
368 	void *src = ent;
369 	u64 ns_off;
370 
371 	ns_off = arena->logoff + (lane * LOG_GRP_SIZE) +
372 		(group_slot * LOG_ENT_SIZE);
373 	/* split the 16B write into atomic, durable halves */
374 	ret = arena_write_bytes(arena, ns_off, src, log_half, flags);
375 	if (ret)
376 		return ret;
377 
378 	ns_off += log_half;
379 	src += log_half;
380 	return arena_write_bytes(arena, ns_off, src, log_half, flags);
381 }
382 
383 static int btt_flog_write(struct arena_info *arena, u32 lane, u32 sub,
384 			struct log_entry *ent)
385 {
386 	int ret;
387 
388 	ret = __btt_log_write(arena, lane, sub, ent, NVDIMM_IO_ATOMIC);
389 	if (ret)
390 		return ret;
391 
392 	/* prepare the next free entry */
393 	arena->freelist[lane].sub = 1 - arena->freelist[lane].sub;
394 	if (++(arena->freelist[lane].seq) == 4)
395 		arena->freelist[lane].seq = 1;
396 	if (ent_e_flag(le32_to_cpu(ent->old_map)))
397 		arena->freelist[lane].has_err = 1;
398 	arena->freelist[lane].block = ent_lba(le32_to_cpu(ent->old_map));
399 
400 	return ret;
401 }
402 
403 /*
404  * This function initializes the BTT map to the initial state, which is
405  * all-zeroes, and indicates an identity mapping
406  */
407 static int btt_map_init(struct arena_info *arena)
408 {
409 	int ret = -EINVAL;
410 	void *zerobuf;
411 	size_t offset = 0;
412 	size_t chunk_size = SZ_2M;
413 	size_t mapsize = arena->logoff - arena->mapoff;
414 
415 	zerobuf = kzalloc(chunk_size, GFP_KERNEL);
416 	if (!zerobuf)
417 		return -ENOMEM;
418 
419 	/*
420 	 * mapoff should always be at least 512B  aligned. We rely on that to
421 	 * make sure rw_bytes does error clearing correctly, so make sure that
422 	 * is the case.
423 	 */
424 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->mapoff, 512),
425 		"arena->mapoff: %#llx is unaligned\n", arena->mapoff);
426 
427 	while (mapsize) {
428 		size_t size = min(mapsize, chunk_size);
429 
430 		dev_WARN_ONCE(to_dev(arena), size < 512,
431 			"chunk size: %#zx is unaligned\n", size);
432 		ret = arena_write_bytes(arena, arena->mapoff + offset, zerobuf,
433 				size, 0);
434 		if (ret)
435 			goto free;
436 
437 		offset += size;
438 		mapsize -= size;
439 		cond_resched();
440 	}
441 
442  free:
443 	kfree(zerobuf);
444 	return ret;
445 }
446 
447 /*
448  * This function initializes the BTT log with 'fake' entries pointing
449  * to the initial reserved set of blocks as being free
450  */
451 static int btt_log_init(struct arena_info *arena)
452 {
453 	size_t logsize = arena->info2off - arena->logoff;
454 	size_t chunk_size = SZ_4K, offset = 0;
455 	struct log_entry ent;
456 	void *zerobuf;
457 	int ret;
458 	u32 i;
459 
460 	zerobuf = kzalloc(chunk_size, GFP_KERNEL);
461 	if (!zerobuf)
462 		return -ENOMEM;
463 	/*
464 	 * logoff should always be at least 512B  aligned. We rely on that to
465 	 * make sure rw_bytes does error clearing correctly, so make sure that
466 	 * is the case.
467 	 */
468 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->logoff, 512),
469 		"arena->logoff: %#llx is unaligned\n", arena->logoff);
470 
471 	while (logsize) {
472 		size_t size = min(logsize, chunk_size);
473 
474 		dev_WARN_ONCE(to_dev(arena), size < 512,
475 			"chunk size: %#zx is unaligned\n", size);
476 		ret = arena_write_bytes(arena, arena->logoff + offset, zerobuf,
477 				size, 0);
478 		if (ret)
479 			goto free;
480 
481 		offset += size;
482 		logsize -= size;
483 		cond_resched();
484 	}
485 
486 	for (i = 0; i < arena->nfree; i++) {
487 		ent.lba = cpu_to_le32(i);
488 		ent.old_map = cpu_to_le32(arena->external_nlba + i);
489 		ent.new_map = cpu_to_le32(arena->external_nlba + i);
490 		ent.seq = cpu_to_le32(LOG_SEQ_INIT);
491 		ret = __btt_log_write(arena, i, 0, &ent, 0);
492 		if (ret)
493 			goto free;
494 	}
495 
496  free:
497 	kfree(zerobuf);
498 	return ret;
499 }
500 
501 static u64 to_namespace_offset(struct arena_info *arena, u64 lba)
502 {
503 	return arena->dataoff + ((u64)lba * arena->internal_lbasize);
504 }
505 
506 static int arena_clear_freelist_error(struct arena_info *arena, u32 lane)
507 {
508 	int ret = 0;
509 
510 	if (arena->freelist[lane].has_err) {
511 		void *zero_page = page_address(ZERO_PAGE(0));
512 		u32 lba = arena->freelist[lane].block;
513 		u64 nsoff = to_namespace_offset(arena, lba);
514 		unsigned long len = arena->sector_size;
515 
516 		mutex_lock(&arena->err_lock);
517 
518 		while (len) {
519 			unsigned long chunk = min(len, PAGE_SIZE);
520 
521 			ret = arena_write_bytes(arena, nsoff, zero_page,
522 				chunk, 0);
523 			if (ret)
524 				break;
525 			len -= chunk;
526 			nsoff += chunk;
527 			if (len == 0)
528 				arena->freelist[lane].has_err = 0;
529 		}
530 		mutex_unlock(&arena->err_lock);
531 	}
532 	return ret;
533 }
534 
535 static int btt_freelist_init(struct arena_info *arena)
536 {
537 	int new, ret;
538 	struct log_entry log_new;
539 	u32 i, map_entry, log_oldmap, log_newmap;
540 
541 	arena->freelist = kcalloc(arena->nfree, sizeof(struct free_entry),
542 					GFP_KERNEL);
543 	if (!arena->freelist)
544 		return -ENOMEM;
545 
546 	for (i = 0; i < arena->nfree; i++) {
547 		new = btt_log_read(arena, i, &log_new, LOG_NEW_ENT);
548 		if (new < 0)
549 			return new;
550 
551 		/* old and new map entries with any flags stripped out */
552 		log_oldmap = ent_lba(le32_to_cpu(log_new.old_map));
553 		log_newmap = ent_lba(le32_to_cpu(log_new.new_map));
554 
555 		/* sub points to the next one to be overwritten */
556 		arena->freelist[i].sub = 1 - new;
557 		arena->freelist[i].seq = nd_inc_seq(le32_to_cpu(log_new.seq));
558 		arena->freelist[i].block = log_oldmap;
559 
560 		/*
561 		 * FIXME: if error clearing fails during init, we want to make
562 		 * the BTT read-only
563 		 */
564 		if (ent_e_flag(le32_to_cpu(log_new.old_map)) &&
565 		    !ent_normal(le32_to_cpu(log_new.old_map))) {
566 			arena->freelist[i].has_err = 1;
567 			ret = arena_clear_freelist_error(arena, i);
568 			if (ret)
569 				dev_err_ratelimited(to_dev(arena),
570 					"Unable to clear known errors\n");
571 		}
572 
573 		/* This implies a newly created or untouched flog entry */
574 		if (log_oldmap == log_newmap)
575 			continue;
576 
577 		/* Check if map recovery is needed */
578 		ret = btt_map_read(arena, le32_to_cpu(log_new.lba), &map_entry,
579 				NULL, NULL, 0);
580 		if (ret)
581 			return ret;
582 
583 		/*
584 		 * The map_entry from btt_read_map is stripped of any flag bits,
585 		 * so use the stripped out versions from the log as well for
586 		 * testing whether recovery is needed. For restoration, use the
587 		 * 'raw' version of the log entries as that captured what we
588 		 * were going to write originally.
589 		 */
590 		if ((log_newmap != map_entry) && (log_oldmap == map_entry)) {
591 			/*
592 			 * Last transaction wrote the flog, but wasn't able
593 			 * to complete the map write. So fix up the map.
594 			 */
595 			ret = btt_map_write(arena, le32_to_cpu(log_new.lba),
596 					le32_to_cpu(log_new.new_map), 0, 0, 0);
597 			if (ret)
598 				return ret;
599 		}
600 	}
601 
602 	return 0;
603 }
604 
605 static bool ent_is_padding(struct log_entry *ent)
606 {
607 	return (ent->lba == 0) && (ent->old_map == 0) && (ent->new_map == 0)
608 		&& (ent->seq == 0);
609 }
610 
611 /*
612  * Detecting valid log indices: We read a log group (see the comments in btt.h
613  * for a description of a 'log_group' and its 'slots'), and iterate over its
614  * four slots. We expect that a padding slot will be all-zeroes, and use this
615  * to detect a padding slot vs. an actual entry.
616  *
617  * If a log_group is in the initial state, i.e. hasn't been used since the
618  * creation of this BTT layout, it will have three of the four slots with
619  * zeroes. We skip over these log_groups for the detection of log_index. If
620  * all log_groups are in the initial state (i.e. the BTT has never been
621  * written to), it is safe to assume the 'new format' of log entries in slots
622  * (0, 1).
623  */
624 static int log_set_indices(struct arena_info *arena)
625 {
626 	bool idx_set = false, initial_state = true;
627 	int ret, log_index[2] = {-1, -1};
628 	u32 i, j, next_idx = 0;
629 	struct log_group log;
630 	u32 pad_count = 0;
631 
632 	for (i = 0; i < arena->nfree; i++) {
633 		ret = btt_log_group_read(arena, i, &log);
634 		if (ret < 0)
635 			return ret;
636 
637 		for (j = 0; j < 4; j++) {
638 			if (!idx_set) {
639 				if (ent_is_padding(&log.ent[j])) {
640 					pad_count++;
641 					continue;
642 				} else {
643 					/* Skip if index has been recorded */
644 					if ((next_idx == 1) &&
645 						(j == log_index[0]))
646 						continue;
647 					/* valid entry, record index */
648 					log_index[next_idx] = j;
649 					next_idx++;
650 				}
651 				if (next_idx == 2) {
652 					/* two valid entries found */
653 					idx_set = true;
654 				} else if (next_idx > 2) {
655 					/* too many valid indices */
656 					return -ENXIO;
657 				}
658 			} else {
659 				/*
660 				 * once the indices have been set, just verify
661 				 * that all subsequent log groups are either in
662 				 * their initial state or follow the same
663 				 * indices.
664 				 */
665 				if (j == log_index[0]) {
666 					/* entry must be 'valid' */
667 					if (ent_is_padding(&log.ent[j]))
668 						return -ENXIO;
669 				} else if (j == log_index[1]) {
670 					;
671 					/*
672 					 * log_index[1] can be padding if the
673 					 * lane never got used and it is still
674 					 * in the initial state (three 'padding'
675 					 * entries)
676 					 */
677 				} else {
678 					/* entry must be invalid (padding) */
679 					if (!ent_is_padding(&log.ent[j]))
680 						return -ENXIO;
681 				}
682 			}
683 		}
684 		/*
685 		 * If any of the log_groups have more than one valid,
686 		 * non-padding entry, then the we are no longer in the
687 		 * initial_state
688 		 */
689 		if (pad_count < 3)
690 			initial_state = false;
691 		pad_count = 0;
692 	}
693 
694 	if (!initial_state && !idx_set)
695 		return -ENXIO;
696 
697 	/*
698 	 * If all the entries in the log were in the initial state,
699 	 * assume new padding scheme
700 	 */
701 	if (initial_state)
702 		log_index[1] = 1;
703 
704 	/*
705 	 * Only allow the known permutations of log/padding indices,
706 	 * i.e. (0, 1), and (0, 2)
707 	 */
708 	if ((log_index[0] == 0) && ((log_index[1] == 1) || (log_index[1] == 2)))
709 		; /* known index possibilities */
710 	else {
711 		dev_err(to_dev(arena), "Found an unknown padding scheme\n");
712 		return -ENXIO;
713 	}
714 
715 	arena->log_index[0] = log_index[0];
716 	arena->log_index[1] = log_index[1];
717 	dev_dbg(to_dev(arena), "log_index_0 = %d\n", log_index[0]);
718 	dev_dbg(to_dev(arena), "log_index_1 = %d\n", log_index[1]);
719 	return 0;
720 }
721 
722 static int btt_rtt_init(struct arena_info *arena)
723 {
724 	arena->rtt = kcalloc(arena->nfree, sizeof(u32), GFP_KERNEL);
725 	if (arena->rtt == NULL)
726 		return -ENOMEM;
727 
728 	return 0;
729 }
730 
731 static int btt_maplocks_init(struct arena_info *arena)
732 {
733 	u32 i;
734 
735 	arena->map_locks = kcalloc(arena->nfree, sizeof(struct aligned_lock),
736 				GFP_KERNEL);
737 	if (!arena->map_locks)
738 		return -ENOMEM;
739 
740 	for (i = 0; i < arena->nfree; i++)
741 		spin_lock_init(&arena->map_locks[i].lock);
742 
743 	return 0;
744 }
745 
746 static struct arena_info *alloc_arena(struct btt *btt, size_t size,
747 				size_t start, size_t arena_off)
748 {
749 	struct arena_info *arena;
750 	u64 logsize, mapsize, datasize;
751 	u64 available = size;
752 
753 	arena = kzalloc(sizeof(struct arena_info), GFP_KERNEL);
754 	if (!arena)
755 		return NULL;
756 	arena->nd_btt = btt->nd_btt;
757 	arena->sector_size = btt->sector_size;
758 	mutex_init(&arena->err_lock);
759 
760 	if (!size)
761 		return arena;
762 
763 	arena->size = size;
764 	arena->external_lba_start = start;
765 	arena->external_lbasize = btt->lbasize;
766 	arena->internal_lbasize = roundup(arena->external_lbasize,
767 					INT_LBASIZE_ALIGNMENT);
768 	arena->nfree = BTT_DEFAULT_NFREE;
769 	arena->version_major = btt->nd_btt->version_major;
770 	arena->version_minor = btt->nd_btt->version_minor;
771 
772 	if (available % BTT_PG_SIZE)
773 		available -= (available % BTT_PG_SIZE);
774 
775 	/* Two pages are reserved for the super block and its copy */
776 	available -= 2 * BTT_PG_SIZE;
777 
778 	/* The log takes a fixed amount of space based on nfree */
779 	logsize = roundup(arena->nfree * LOG_GRP_SIZE, BTT_PG_SIZE);
780 	available -= logsize;
781 
782 	/* Calculate optimal split between map and data area */
783 	arena->internal_nlba = div_u64(available - BTT_PG_SIZE,
784 			arena->internal_lbasize + MAP_ENT_SIZE);
785 	arena->external_nlba = arena->internal_nlba - arena->nfree;
786 
787 	mapsize = roundup((arena->external_nlba * MAP_ENT_SIZE), BTT_PG_SIZE);
788 	datasize = available - mapsize;
789 
790 	/* 'Absolute' values, relative to start of storage space */
791 	arena->infooff = arena_off;
792 	arena->dataoff = arena->infooff + BTT_PG_SIZE;
793 	arena->mapoff = arena->dataoff + datasize;
794 	arena->logoff = arena->mapoff + mapsize;
795 	arena->info2off = arena->logoff + logsize;
796 
797 	/* Default log indices are (0,1) */
798 	arena->log_index[0] = 0;
799 	arena->log_index[1] = 1;
800 	return arena;
801 }
802 
803 static void free_arenas(struct btt *btt)
804 {
805 	struct arena_info *arena, *next;
806 
807 	list_for_each_entry_safe(arena, next, &btt->arena_list, list) {
808 		list_del(&arena->list);
809 		kfree(arena->rtt);
810 		kfree(arena->map_locks);
811 		kfree(arena->freelist);
812 		debugfs_remove_recursive(arena->debugfs_dir);
813 		kfree(arena);
814 	}
815 }
816 
817 /*
818  * This function reads an existing valid btt superblock and
819  * populates the corresponding arena_info struct
820  */
821 static void parse_arena_meta(struct arena_info *arena, struct btt_sb *super,
822 				u64 arena_off)
823 {
824 	arena->internal_nlba = le32_to_cpu(super->internal_nlba);
825 	arena->internal_lbasize = le32_to_cpu(super->internal_lbasize);
826 	arena->external_nlba = le32_to_cpu(super->external_nlba);
827 	arena->external_lbasize = le32_to_cpu(super->external_lbasize);
828 	arena->nfree = le32_to_cpu(super->nfree);
829 	arena->version_major = le16_to_cpu(super->version_major);
830 	arena->version_minor = le16_to_cpu(super->version_minor);
831 
832 	arena->nextoff = (super->nextoff == 0) ? 0 : (arena_off +
833 			le64_to_cpu(super->nextoff));
834 	arena->infooff = arena_off;
835 	arena->dataoff = arena_off + le64_to_cpu(super->dataoff);
836 	arena->mapoff = arena_off + le64_to_cpu(super->mapoff);
837 	arena->logoff = arena_off + le64_to_cpu(super->logoff);
838 	arena->info2off = arena_off + le64_to_cpu(super->info2off);
839 
840 	arena->size = (le64_to_cpu(super->nextoff) > 0)
841 		? (le64_to_cpu(super->nextoff))
842 		: (arena->info2off - arena->infooff + BTT_PG_SIZE);
843 
844 	arena->flags = le32_to_cpu(super->flags);
845 }
846 
847 static int discover_arenas(struct btt *btt)
848 {
849 	int ret = 0;
850 	struct arena_info *arena;
851 	size_t remaining = btt->rawsize;
852 	u64 cur_nlba = 0;
853 	size_t cur_off = 0;
854 	int num_arenas = 0;
855 
856 	struct btt_sb *super __free(kfree) = kzalloc(sizeof(*super), GFP_KERNEL);
857 	if (!super)
858 		return -ENOMEM;
859 
860 	while (remaining) {
861 		/* Alloc memory for arena */
862 		arena = alloc_arena(btt, 0, 0, 0);
863 		if (!arena)
864 			return -ENOMEM;
865 
866 		arena->infooff = cur_off;
867 		ret = btt_info_read(arena, super);
868 		if (ret)
869 			goto out;
870 
871 		if (!nd_btt_arena_is_valid(btt->nd_btt, super)) {
872 			if (remaining == btt->rawsize) {
873 				btt->init_state = INIT_NOTFOUND;
874 				dev_info(to_dev(arena), "No existing arenas\n");
875 				goto out;
876 			} else {
877 				dev_err(to_dev(arena),
878 						"Found corrupted metadata!\n");
879 				ret = -ENODEV;
880 				goto out;
881 			}
882 		}
883 
884 		arena->external_lba_start = cur_nlba;
885 		parse_arena_meta(arena, super, cur_off);
886 
887 		ret = log_set_indices(arena);
888 		if (ret) {
889 			dev_err(to_dev(arena),
890 				"Unable to deduce log/padding indices\n");
891 			goto out;
892 		}
893 
894 		ret = btt_freelist_init(arena);
895 		if (ret)
896 			goto out;
897 
898 		ret = btt_rtt_init(arena);
899 		if (ret)
900 			goto out;
901 
902 		ret = btt_maplocks_init(arena);
903 		if (ret)
904 			goto out;
905 
906 		list_add_tail(&arena->list, &btt->arena_list);
907 
908 		remaining -= arena->size;
909 		cur_off += arena->size;
910 		cur_nlba += arena->external_nlba;
911 		num_arenas++;
912 
913 		if (arena->nextoff == 0)
914 			break;
915 	}
916 	btt->num_arenas = num_arenas;
917 	btt->nlba = cur_nlba;
918 	btt->init_state = INIT_READY;
919 
920 	return ret;
921 
922  out:
923 	kfree(arena);
924 	free_arenas(btt);
925 	return ret;
926 }
927 
928 static int create_arenas(struct btt *btt)
929 {
930 	size_t remaining = btt->rawsize;
931 	size_t cur_off = 0;
932 
933 	while (remaining) {
934 		struct arena_info *arena;
935 		size_t arena_size = min_t(u64, ARENA_MAX_SIZE, remaining);
936 
937 		remaining -= arena_size;
938 		if (arena_size < ARENA_MIN_SIZE)
939 			break;
940 
941 		arena = alloc_arena(btt, arena_size, btt->nlba, cur_off);
942 		if (!arena) {
943 			free_arenas(btt);
944 			return -ENOMEM;
945 		}
946 		btt->nlba += arena->external_nlba;
947 		if (remaining >= ARENA_MIN_SIZE)
948 			arena->nextoff = arena->size;
949 		else
950 			arena->nextoff = 0;
951 		cur_off += arena_size;
952 		list_add_tail(&arena->list, &btt->arena_list);
953 	}
954 
955 	return 0;
956 }
957 
958 /*
959  * This function completes arena initialization by writing
960  * all the metadata.
961  * It is only called for an uninitialized arena when a write
962  * to that arena occurs for the first time.
963  */
964 static int btt_arena_write_layout(struct arena_info *arena)
965 {
966 	int ret;
967 	u64 sum;
968 	struct btt_sb *super;
969 	struct nd_btt *nd_btt = arena->nd_btt;
970 	const uuid_t *parent_uuid = nd_dev_to_uuid(&nd_btt->ndns->dev);
971 
972 	ret = btt_map_init(arena);
973 	if (ret)
974 		return ret;
975 
976 	ret = btt_log_init(arena);
977 	if (ret)
978 		return ret;
979 
980 	super = kzalloc(sizeof(struct btt_sb), GFP_NOIO);
981 	if (!super)
982 		return -ENOMEM;
983 
984 	strscpy(super->signature, BTT_SIG, sizeof(super->signature));
985 	export_uuid(super->uuid, nd_btt->uuid);
986 	export_uuid(super->parent_uuid, parent_uuid);
987 	super->flags = cpu_to_le32(arena->flags);
988 	super->version_major = cpu_to_le16(arena->version_major);
989 	super->version_minor = cpu_to_le16(arena->version_minor);
990 	super->external_lbasize = cpu_to_le32(arena->external_lbasize);
991 	super->external_nlba = cpu_to_le32(arena->external_nlba);
992 	super->internal_lbasize = cpu_to_le32(arena->internal_lbasize);
993 	super->internal_nlba = cpu_to_le32(arena->internal_nlba);
994 	super->nfree = cpu_to_le32(arena->nfree);
995 	super->infosize = cpu_to_le32(sizeof(struct btt_sb));
996 	super->nextoff = cpu_to_le64(arena->nextoff);
997 	/*
998 	 * Subtract arena->infooff (arena start) so numbers are relative
999 	 * to 'this' arena
1000 	 */
1001 	super->dataoff = cpu_to_le64(arena->dataoff - arena->infooff);
1002 	super->mapoff = cpu_to_le64(arena->mapoff - arena->infooff);
1003 	super->logoff = cpu_to_le64(arena->logoff - arena->infooff);
1004 	super->info2off = cpu_to_le64(arena->info2off - arena->infooff);
1005 
1006 	super->flags = 0;
1007 	sum = nd_sb_checksum((struct nd_gen_sb *) super);
1008 	super->checksum = cpu_to_le64(sum);
1009 
1010 	ret = btt_info_write(arena, super);
1011 
1012 	kfree(super);
1013 	return ret;
1014 }
1015 
1016 /*
1017  * This function completes the initialization for the BTT namespace
1018  * such that it is ready to accept IOs
1019  */
1020 static int btt_meta_init(struct btt *btt)
1021 {
1022 	int ret = 0;
1023 	struct arena_info *arena;
1024 
1025 	mutex_lock(&btt->init_lock);
1026 	list_for_each_entry(arena, &btt->arena_list, list) {
1027 		ret = btt_arena_write_layout(arena);
1028 		if (ret)
1029 			goto unlock;
1030 
1031 		ret = btt_freelist_init(arena);
1032 		if (ret)
1033 			goto unlock;
1034 
1035 		ret = btt_rtt_init(arena);
1036 		if (ret)
1037 			goto unlock;
1038 
1039 		ret = btt_maplocks_init(arena);
1040 		if (ret)
1041 			goto unlock;
1042 	}
1043 
1044 	btt->init_state = INIT_READY;
1045 
1046  unlock:
1047 	mutex_unlock(&btt->init_lock);
1048 	return ret;
1049 }
1050 
1051 static u32 btt_meta_size(struct btt *btt)
1052 {
1053 	return btt->lbasize - btt->sector_size;
1054 }
1055 
1056 /*
1057  * This function calculates the arena in which the given LBA lies
1058  * by doing a linear walk. This is acceptable since we expect only
1059  * a few arenas. If we have backing devices that get much larger,
1060  * we can construct a balanced binary tree of arenas at init time
1061  * so that this range search becomes faster.
1062  */
1063 static int lba_to_arena(struct btt *btt, sector_t sector, __u32 *premap,
1064 				struct arena_info **arena)
1065 {
1066 	struct arena_info *arena_list;
1067 	__u64 lba = div_u64(sector << SECTOR_SHIFT, btt->sector_size);
1068 
1069 	list_for_each_entry(arena_list, &btt->arena_list, list) {
1070 		if (lba < arena_list->external_nlba) {
1071 			*arena = arena_list;
1072 			*premap = lba;
1073 			return 0;
1074 		}
1075 		lba -= arena_list->external_nlba;
1076 	}
1077 
1078 	return -EIO;
1079 }
1080 
1081 /*
1082  * The following (lock_map, unlock_map) are mostly just to improve
1083  * readability, since they index into an array of locks
1084  */
1085 static void lock_map(struct arena_info *arena, u32 premap)
1086 		__acquires(&arena->map_locks[idx].lock)
1087 {
1088 	u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree;
1089 
1090 	spin_lock(&arena->map_locks[idx].lock);
1091 }
1092 
1093 static void unlock_map(struct arena_info *arena, u32 premap)
1094 		__releases(&arena->map_locks[idx].lock)
1095 {
1096 	u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree;
1097 
1098 	spin_unlock(&arena->map_locks[idx].lock);
1099 }
1100 
1101 static int btt_data_read(struct arena_info *arena, struct page *page,
1102 			unsigned int off, u32 lba, u32 len)
1103 {
1104 	int ret;
1105 	u64 nsoff = to_namespace_offset(arena, lba);
1106 	void *mem = kmap_atomic(page);
1107 
1108 	ret = arena_read_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC);
1109 	kunmap_atomic(mem);
1110 
1111 	return ret;
1112 }
1113 
1114 static int btt_data_write(struct arena_info *arena, u32 lba,
1115 			struct page *page, unsigned int off, u32 len)
1116 {
1117 	int ret;
1118 	u64 nsoff = to_namespace_offset(arena, lba);
1119 	void *mem = kmap_atomic(page);
1120 
1121 	ret = arena_write_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC);
1122 	kunmap_atomic(mem);
1123 
1124 	return ret;
1125 }
1126 
1127 static void zero_fill_data(struct page *page, unsigned int off, u32 len)
1128 {
1129 	void *mem = kmap_atomic(page);
1130 
1131 	memset(mem + off, 0, len);
1132 	kunmap_atomic(mem);
1133 }
1134 
1135 #ifdef CONFIG_BLK_DEV_INTEGRITY
1136 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip,
1137 			struct arena_info *arena, u32 postmap, int rw)
1138 {
1139 	unsigned int len = btt_meta_size(btt);
1140 	u64 meta_nsoff;
1141 	int ret = 0;
1142 
1143 	if (bip == NULL)
1144 		return 0;
1145 
1146 	meta_nsoff = to_namespace_offset(arena, postmap) + btt->sector_size;
1147 
1148 	while (len) {
1149 		unsigned int cur_len;
1150 		struct bio_vec bv;
1151 		void *mem;
1152 
1153 		bv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1154 		/*
1155 		 * The 'bv' obtained from bvec_iter_bvec has its .bv_len and
1156 		 * .bv_offset already adjusted for iter->bi_bvec_done, and we
1157 		 * can use those directly
1158 		 */
1159 
1160 		cur_len = min(len, bv.bv_len);
1161 		mem = bvec_kmap_local(&bv);
1162 		if (rw)
1163 			ret = arena_write_bytes(arena, meta_nsoff, mem, cur_len,
1164 					NVDIMM_IO_ATOMIC);
1165 		else
1166 			ret = arena_read_bytes(arena, meta_nsoff, mem, cur_len,
1167 					NVDIMM_IO_ATOMIC);
1168 
1169 		kunmap_local(mem);
1170 		if (ret)
1171 			return ret;
1172 
1173 		len -= cur_len;
1174 		meta_nsoff += cur_len;
1175 		if (!bvec_iter_advance(bip->bip_vec, &bip->bip_iter, cur_len))
1176 			return -EIO;
1177 	}
1178 
1179 	return ret;
1180 }
1181 
1182 #else /* CONFIG_BLK_DEV_INTEGRITY */
1183 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip,
1184 			struct arena_info *arena, u32 postmap, int rw)
1185 {
1186 	return 0;
1187 }
1188 #endif
1189 
1190 static int btt_read_pg(struct btt *btt, struct bio_integrity_payload *bip,
1191 			struct page *page, unsigned int off, sector_t sector,
1192 			unsigned int len)
1193 {
1194 	int ret = 0;
1195 	int t_flag, e_flag;
1196 	struct arena_info *arena = NULL;
1197 	u32 lane = 0, premap, postmap;
1198 
1199 	while (len) {
1200 		u32 cur_len;
1201 
1202 		lane = nd_region_acquire_lane(btt->nd_region);
1203 
1204 		ret = lba_to_arena(btt, sector, &premap, &arena);
1205 		if (ret)
1206 			goto out_lane;
1207 
1208 		cur_len = min(btt->sector_size, len);
1209 
1210 		ret = btt_map_read(arena, premap, &postmap, &t_flag, &e_flag,
1211 				NVDIMM_IO_ATOMIC);
1212 		if (ret)
1213 			goto out_lane;
1214 
1215 		/*
1216 		 * We loop to make sure that the post map LBA didn't change
1217 		 * from under us between writing the RTT and doing the actual
1218 		 * read.
1219 		 */
1220 		while (1) {
1221 			u32 new_map;
1222 			int new_t, new_e;
1223 
1224 			if (t_flag) {
1225 				zero_fill_data(page, off, cur_len);
1226 				goto out_lane;
1227 			}
1228 
1229 			if (e_flag) {
1230 				ret = -EIO;
1231 				goto out_lane;
1232 			}
1233 
1234 			arena->rtt[lane] = RTT_VALID | postmap;
1235 			/*
1236 			 * Barrier to make sure this write is not reordered
1237 			 * to do the verification map_read before the RTT store
1238 			 */
1239 			barrier();
1240 
1241 			ret = btt_map_read(arena, premap, &new_map, &new_t,
1242 						&new_e, NVDIMM_IO_ATOMIC);
1243 			if (ret)
1244 				goto out_rtt;
1245 
1246 			if ((postmap == new_map) && (t_flag == new_t) &&
1247 					(e_flag == new_e))
1248 				break;
1249 
1250 			postmap = new_map;
1251 			t_flag = new_t;
1252 			e_flag = new_e;
1253 		}
1254 
1255 		ret = btt_data_read(arena, page, off, postmap, cur_len);
1256 		if (ret) {
1257 			/* Media error - set the e_flag */
1258 			if (btt_map_write(arena, premap, postmap, 0, 1, NVDIMM_IO_ATOMIC))
1259 				dev_warn_ratelimited(to_dev(arena),
1260 					"Error persistently tracking bad blocks at %#x\n",
1261 					premap);
1262 			goto out_rtt;
1263 		}
1264 
1265 		if (bip) {
1266 			ret = btt_rw_integrity(btt, bip, arena, postmap, READ);
1267 			if (ret)
1268 				goto out_rtt;
1269 		}
1270 
1271 		arena->rtt[lane] = RTT_INVALID;
1272 		nd_region_release_lane(btt->nd_region, lane);
1273 
1274 		len -= cur_len;
1275 		off += cur_len;
1276 		sector += btt->sector_size >> SECTOR_SHIFT;
1277 	}
1278 
1279 	return 0;
1280 
1281  out_rtt:
1282 	arena->rtt[lane] = RTT_INVALID;
1283  out_lane:
1284 	nd_region_release_lane(btt->nd_region, lane);
1285 	return ret;
1286 }
1287 
1288 /*
1289  * Normally, arena_{read,write}_bytes will take care of the initial offset
1290  * adjustment, but in the case of btt_is_badblock, where we query is_bad_pmem,
1291  * we need the final, raw namespace offset here
1292  */
1293 static bool btt_is_badblock(struct btt *btt, struct arena_info *arena,
1294 		u32 postmap)
1295 {
1296 	u64 nsoff = adjust_initial_offset(arena->nd_btt,
1297 			to_namespace_offset(arena, postmap));
1298 	sector_t phys_sector = nsoff >> 9;
1299 
1300 	return is_bad_pmem(btt->phys_bb, phys_sector, arena->internal_lbasize);
1301 }
1302 
1303 static int btt_write_pg(struct btt *btt, struct bio_integrity_payload *bip,
1304 			sector_t sector, struct page *page, unsigned int off,
1305 			unsigned int len)
1306 {
1307 	int ret = 0;
1308 	struct arena_info *arena = NULL;
1309 	u32 premap = 0, old_postmap, new_postmap, lane = 0, i;
1310 	struct log_entry log;
1311 	int sub;
1312 
1313 	while (len) {
1314 		u32 cur_len;
1315 		int e_flag;
1316 
1317  retry:
1318 		lane = nd_region_acquire_lane(btt->nd_region);
1319 
1320 		ret = lba_to_arena(btt, sector, &premap, &arena);
1321 		if (ret)
1322 			goto out_lane;
1323 		cur_len = min(btt->sector_size, len);
1324 
1325 		if ((arena->flags & IB_FLAG_ERROR_MASK) != 0) {
1326 			ret = -EIO;
1327 			goto out_lane;
1328 		}
1329 
1330 		if (btt_is_badblock(btt, arena, arena->freelist[lane].block))
1331 			arena->freelist[lane].has_err = 1;
1332 
1333 		if (mutex_is_locked(&arena->err_lock)
1334 				|| arena->freelist[lane].has_err) {
1335 			nd_region_release_lane(btt->nd_region, lane);
1336 
1337 			ret = arena_clear_freelist_error(arena, lane);
1338 			if (ret)
1339 				return ret;
1340 
1341 			/* OK to acquire a different lane/free block */
1342 			goto retry;
1343 		}
1344 
1345 		new_postmap = arena->freelist[lane].block;
1346 
1347 		/* Wait if the new block is being read from */
1348 		for (i = 0; i < arena->nfree; i++)
1349 			while (arena->rtt[i] == (RTT_VALID | new_postmap))
1350 				cpu_relax();
1351 
1352 
1353 		if (new_postmap >= arena->internal_nlba) {
1354 			ret = -EIO;
1355 			goto out_lane;
1356 		}
1357 
1358 		ret = btt_data_write(arena, new_postmap, page, off, cur_len);
1359 		if (ret)
1360 			goto out_lane;
1361 
1362 		if (bip) {
1363 			ret = btt_rw_integrity(btt, bip, arena, new_postmap,
1364 						WRITE);
1365 			if (ret)
1366 				goto out_lane;
1367 		}
1368 
1369 		lock_map(arena, premap);
1370 		ret = btt_map_read(arena, premap, &old_postmap, NULL, &e_flag,
1371 				NVDIMM_IO_ATOMIC);
1372 		if (ret)
1373 			goto out_map;
1374 		if (old_postmap >= arena->internal_nlba) {
1375 			ret = -EIO;
1376 			goto out_map;
1377 		}
1378 		if (e_flag)
1379 			set_e_flag(old_postmap);
1380 
1381 		log.lba = cpu_to_le32(premap);
1382 		log.old_map = cpu_to_le32(old_postmap);
1383 		log.new_map = cpu_to_le32(new_postmap);
1384 		log.seq = cpu_to_le32(arena->freelist[lane].seq);
1385 		sub = arena->freelist[lane].sub;
1386 		ret = btt_flog_write(arena, lane, sub, &log);
1387 		if (ret)
1388 			goto out_map;
1389 
1390 		ret = btt_map_write(arena, premap, new_postmap, 0, 0,
1391 			NVDIMM_IO_ATOMIC);
1392 		if (ret)
1393 			goto out_map;
1394 
1395 		unlock_map(arena, premap);
1396 		nd_region_release_lane(btt->nd_region, lane);
1397 
1398 		if (e_flag) {
1399 			ret = arena_clear_freelist_error(arena, lane);
1400 			if (ret)
1401 				return ret;
1402 		}
1403 
1404 		len -= cur_len;
1405 		off += cur_len;
1406 		sector += btt->sector_size >> SECTOR_SHIFT;
1407 	}
1408 
1409 	return 0;
1410 
1411  out_map:
1412 	unlock_map(arena, premap);
1413  out_lane:
1414 	nd_region_release_lane(btt->nd_region, lane);
1415 	return ret;
1416 }
1417 
1418 static int btt_do_bvec(struct btt *btt, struct bio_integrity_payload *bip,
1419 			struct page *page, unsigned int len, unsigned int off,
1420 			enum req_op op, sector_t sector)
1421 {
1422 	int ret;
1423 
1424 	if (!op_is_write(op)) {
1425 		ret = btt_read_pg(btt, bip, page, off, sector, len);
1426 		flush_dcache_page(page);
1427 	} else {
1428 		flush_dcache_page(page);
1429 		ret = btt_write_pg(btt, bip, sector, page, off, len);
1430 	}
1431 
1432 	return ret;
1433 }
1434 
1435 static void btt_submit_bio(struct bio *bio)
1436 {
1437 	struct bio_integrity_payload *bip = bio_integrity(bio);
1438 	struct btt *btt = bio->bi_bdev->bd_disk->private_data;
1439 	struct bvec_iter iter;
1440 	unsigned long start;
1441 	struct bio_vec bvec;
1442 	int err = 0;
1443 	bool do_acct;
1444 
1445 	if (!bio_integrity_prep(bio))
1446 		return;
1447 
1448 	do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
1449 	if (do_acct)
1450 		start = bio_start_io_acct(bio);
1451 	bio_for_each_segment(bvec, bio, iter) {
1452 		unsigned int len = bvec.bv_len;
1453 
1454 		if (len > PAGE_SIZE || len < btt->sector_size ||
1455 				len % btt->sector_size) {
1456 			dev_err_ratelimited(&btt->nd_btt->dev,
1457 				"unaligned bio segment (len: %d)\n", len);
1458 			bio->bi_status = BLK_STS_IOERR;
1459 			break;
1460 		}
1461 
1462 		err = btt_do_bvec(btt, bip, bvec.bv_page, len, bvec.bv_offset,
1463 				  bio_op(bio), iter.bi_sector);
1464 		if (err) {
1465 			dev_err(&btt->nd_btt->dev,
1466 					"io error in %s sector %lld, len %d,\n",
1467 					(op_is_write(bio_op(bio))) ? "WRITE" :
1468 					"READ",
1469 					(unsigned long long) iter.bi_sector, len);
1470 			bio->bi_status = errno_to_blk_status(err);
1471 			break;
1472 		}
1473 	}
1474 	if (do_acct)
1475 		bio_end_io_acct(bio, start);
1476 
1477 	bio_endio(bio);
1478 }
1479 
1480 static int btt_getgeo(struct block_device *bd, struct hd_geometry *geo)
1481 {
1482 	/* some standard values */
1483 	geo->heads = 1 << 6;
1484 	geo->sectors = 1 << 5;
1485 	geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1486 	return 0;
1487 }
1488 
1489 static const struct block_device_operations btt_fops = {
1490 	.owner =		THIS_MODULE,
1491 	.submit_bio =		btt_submit_bio,
1492 	.getgeo =		btt_getgeo,
1493 };
1494 
1495 static int btt_blk_init(struct btt *btt)
1496 {
1497 	struct nd_btt *nd_btt = btt->nd_btt;
1498 	struct nd_namespace_common *ndns = nd_btt->ndns;
1499 	struct queue_limits lim = {
1500 		.logical_block_size	= btt->sector_size,
1501 		.max_hw_sectors		= UINT_MAX,
1502 	};
1503 	int rc;
1504 
1505 	btt->btt_disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
1506 	if (IS_ERR(btt->btt_disk))
1507 		return PTR_ERR(btt->btt_disk);
1508 
1509 	nvdimm_namespace_disk_name(ndns, btt->btt_disk->disk_name);
1510 	btt->btt_disk->first_minor = 0;
1511 	btt->btt_disk->fops = &btt_fops;
1512 	btt->btt_disk->private_data = btt;
1513 
1514 	blk_queue_flag_set(QUEUE_FLAG_NONROT, btt->btt_disk->queue);
1515 	blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, btt->btt_disk->queue);
1516 
1517 	if (btt_meta_size(btt)) {
1518 		rc = nd_integrity_init(btt->btt_disk, btt_meta_size(btt));
1519 		if (rc)
1520 			goto out_cleanup_disk;
1521 	}
1522 
1523 	set_capacity(btt->btt_disk, btt->nlba * btt->sector_size >> 9);
1524 	rc = device_add_disk(&btt->nd_btt->dev, btt->btt_disk, NULL);
1525 	if (rc)
1526 		goto out_cleanup_disk;
1527 
1528 	btt->nd_btt->size = btt->nlba * (u64)btt->sector_size;
1529 	nvdimm_check_and_set_ro(btt->btt_disk);
1530 
1531 	return 0;
1532 
1533 out_cleanup_disk:
1534 	put_disk(btt->btt_disk);
1535 	return rc;
1536 }
1537 
1538 static void btt_blk_cleanup(struct btt *btt)
1539 {
1540 	del_gendisk(btt->btt_disk);
1541 	put_disk(btt->btt_disk);
1542 }
1543 
1544 /**
1545  * btt_init - initialize a block translation table for the given device
1546  * @nd_btt:	device with BTT geometry and backing device info
1547  * @rawsize:	raw size in bytes of the backing device
1548  * @lbasize:	lba size of the backing device
1549  * @uuid:	A uuid for the backing device - this is stored on media
1550  * @nd_region:	&struct nd_region for the REGION device
1551  *
1552  * Initialize a Block Translation Table on a backing device to provide
1553  * single sector power fail atomicity.
1554  *
1555  * Context:
1556  * Might sleep.
1557  *
1558  * Returns:
1559  * Pointer to a new struct btt on success, NULL on failure.
1560  */
1561 static struct btt *btt_init(struct nd_btt *nd_btt, unsigned long long rawsize,
1562 			    u32 lbasize, uuid_t *uuid,
1563 			    struct nd_region *nd_region)
1564 {
1565 	int ret;
1566 	struct btt *btt;
1567 	struct nd_namespace_io *nsio;
1568 	struct device *dev = &nd_btt->dev;
1569 
1570 	btt = devm_kzalloc(dev, sizeof(struct btt), GFP_KERNEL);
1571 	if (!btt)
1572 		return NULL;
1573 
1574 	btt->nd_btt = nd_btt;
1575 	btt->rawsize = rawsize;
1576 	btt->lbasize = lbasize;
1577 	btt->sector_size = ((lbasize >= 4096) ? 4096 : 512);
1578 	INIT_LIST_HEAD(&btt->arena_list);
1579 	mutex_init(&btt->init_lock);
1580 	btt->nd_region = nd_region;
1581 	nsio = to_nd_namespace_io(&nd_btt->ndns->dev);
1582 	btt->phys_bb = &nsio->bb;
1583 
1584 	ret = discover_arenas(btt);
1585 	if (ret) {
1586 		dev_err(dev, "init: error in arena_discover: %d\n", ret);
1587 		return NULL;
1588 	}
1589 
1590 	if (btt->init_state != INIT_READY && nd_region->ro) {
1591 		dev_warn(dev, "%s is read-only, unable to init btt metadata\n",
1592 				dev_name(&nd_region->dev));
1593 		return NULL;
1594 	} else if (btt->init_state != INIT_READY) {
1595 		btt->num_arenas = (rawsize / ARENA_MAX_SIZE) +
1596 			((rawsize % ARENA_MAX_SIZE) ? 1 : 0);
1597 		dev_dbg(dev, "init: %d arenas for %llu rawsize\n",
1598 				btt->num_arenas, rawsize);
1599 
1600 		ret = create_arenas(btt);
1601 		if (ret) {
1602 			dev_info(dev, "init: create_arenas: %d\n", ret);
1603 			return NULL;
1604 		}
1605 
1606 		ret = btt_meta_init(btt);
1607 		if (ret) {
1608 			dev_err(dev, "init: error in meta_init: %d\n", ret);
1609 			return NULL;
1610 		}
1611 	}
1612 
1613 	ret = btt_blk_init(btt);
1614 	if (ret) {
1615 		dev_err(dev, "init: error in blk_init: %d\n", ret);
1616 		return NULL;
1617 	}
1618 
1619 	btt_debugfs_init(btt);
1620 
1621 	return btt;
1622 }
1623 
1624 /**
1625  * btt_fini - de-initialize a BTT
1626  * @btt:	the BTT handle that was generated by btt_init
1627  *
1628  * De-initialize a Block Translation Table on device removal
1629  *
1630  * Context:
1631  * Might sleep.
1632  */
1633 static void btt_fini(struct btt *btt)
1634 {
1635 	if (btt) {
1636 		btt_blk_cleanup(btt);
1637 		free_arenas(btt);
1638 		debugfs_remove_recursive(btt->debugfs_dir);
1639 	}
1640 }
1641 
1642 int nvdimm_namespace_attach_btt(struct nd_namespace_common *ndns)
1643 {
1644 	struct nd_btt *nd_btt = to_nd_btt(ndns->claim);
1645 	struct nd_region *nd_region;
1646 	struct btt_sb *btt_sb;
1647 	struct btt *btt;
1648 	size_t size, rawsize;
1649 	int rc;
1650 
1651 	if (!nd_btt->uuid || !nd_btt->ndns || !nd_btt->lbasize) {
1652 		dev_dbg(&nd_btt->dev, "incomplete btt configuration\n");
1653 		return -ENODEV;
1654 	}
1655 
1656 	btt_sb = devm_kzalloc(&nd_btt->dev, sizeof(*btt_sb), GFP_KERNEL);
1657 	if (!btt_sb)
1658 		return -ENOMEM;
1659 
1660 	size = nvdimm_namespace_capacity(ndns);
1661 	rc = devm_namespace_enable(&nd_btt->dev, ndns, size);
1662 	if (rc)
1663 		return rc;
1664 
1665 	/*
1666 	 * If this returns < 0, that is ok as it just means there wasn't
1667 	 * an existing BTT, and we're creating a new one. We still need to
1668 	 * call this as we need the version dependent fields in nd_btt to be
1669 	 * set correctly based on the holder class
1670 	 */
1671 	nd_btt_version(nd_btt, ndns, btt_sb);
1672 
1673 	rawsize = size - nd_btt->initial_offset;
1674 	if (rawsize < ARENA_MIN_SIZE) {
1675 		dev_dbg(&nd_btt->dev, "%s must be at least %ld bytes\n",
1676 				dev_name(&ndns->dev),
1677 				ARENA_MIN_SIZE + nd_btt->initial_offset);
1678 		return -ENXIO;
1679 	}
1680 	nd_region = to_nd_region(nd_btt->dev.parent);
1681 	btt = btt_init(nd_btt, rawsize, nd_btt->lbasize, nd_btt->uuid,
1682 		       nd_region);
1683 	if (!btt)
1684 		return -ENOMEM;
1685 	nd_btt->btt = btt;
1686 
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL(nvdimm_namespace_attach_btt);
1690 
1691 int nvdimm_namespace_detach_btt(struct nd_btt *nd_btt)
1692 {
1693 	struct btt *btt = nd_btt->btt;
1694 
1695 	btt_fini(btt);
1696 	nd_btt->btt = NULL;
1697 
1698 	return 0;
1699 }
1700 EXPORT_SYMBOL(nvdimm_namespace_detach_btt);
1701 
1702 static int __init nd_btt_init(void)
1703 {
1704 	int rc = 0;
1705 
1706 	debugfs_root = debugfs_create_dir("btt", NULL);
1707 	if (IS_ERR_OR_NULL(debugfs_root))
1708 		rc = -ENXIO;
1709 
1710 	return rc;
1711 }
1712 
1713 static void __exit nd_btt_exit(void)
1714 {
1715 	debugfs_remove_recursive(debugfs_root);
1716 }
1717 
1718 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_BTT);
1719 MODULE_AUTHOR("Vishal Verma <vishal.l.verma@linux.intel.com>");
1720 MODULE_LICENSE("GPL v2");
1721 module_init(nd_btt_init);
1722 module_exit(nd_btt_exit);
1723