1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Block Translation Table 4 * Copyright (c) 2014-2015, Intel Corporation. 5 */ 6 #include <linux/highmem.h> 7 #include <linux/debugfs.h> 8 #include <linux/blkdev.h> 9 #include <linux/module.h> 10 #include <linux/device.h> 11 #include <linux/mutex.h> 12 #include <linux/hdreg.h> 13 #include <linux/genhd.h> 14 #include <linux/sizes.h> 15 #include <linux/ndctl.h> 16 #include <linux/fs.h> 17 #include <linux/nd.h> 18 #include <linux/backing-dev.h> 19 #include "btt.h" 20 #include "nd.h" 21 22 enum log_ent_request { 23 LOG_NEW_ENT = 0, 24 LOG_OLD_ENT 25 }; 26 27 static struct device *to_dev(struct arena_info *arena) 28 { 29 return &arena->nd_btt->dev; 30 } 31 32 static u64 adjust_initial_offset(struct nd_btt *nd_btt, u64 offset) 33 { 34 return offset + nd_btt->initial_offset; 35 } 36 37 static int arena_read_bytes(struct arena_info *arena, resource_size_t offset, 38 void *buf, size_t n, unsigned long flags) 39 { 40 struct nd_btt *nd_btt = arena->nd_btt; 41 struct nd_namespace_common *ndns = nd_btt->ndns; 42 43 /* arena offsets may be shifted from the base of the device */ 44 offset = adjust_initial_offset(nd_btt, offset); 45 return nvdimm_read_bytes(ndns, offset, buf, n, flags); 46 } 47 48 static int arena_write_bytes(struct arena_info *arena, resource_size_t offset, 49 void *buf, size_t n, unsigned long flags) 50 { 51 struct nd_btt *nd_btt = arena->nd_btt; 52 struct nd_namespace_common *ndns = nd_btt->ndns; 53 54 /* arena offsets may be shifted from the base of the device */ 55 offset = adjust_initial_offset(nd_btt, offset); 56 return nvdimm_write_bytes(ndns, offset, buf, n, flags); 57 } 58 59 static int btt_info_write(struct arena_info *arena, struct btt_sb *super) 60 { 61 int ret; 62 63 /* 64 * infooff and info2off should always be at least 512B aligned. 65 * We rely on that to make sure rw_bytes does error clearing 66 * correctly, so make sure that is the case. 67 */ 68 dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->infooff, 512), 69 "arena->infooff: %#llx is unaligned\n", arena->infooff); 70 dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->info2off, 512), 71 "arena->info2off: %#llx is unaligned\n", arena->info2off); 72 73 ret = arena_write_bytes(arena, arena->info2off, super, 74 sizeof(struct btt_sb), 0); 75 if (ret) 76 return ret; 77 78 return arena_write_bytes(arena, arena->infooff, super, 79 sizeof(struct btt_sb), 0); 80 } 81 82 static int btt_info_read(struct arena_info *arena, struct btt_sb *super) 83 { 84 return arena_read_bytes(arena, arena->infooff, super, 85 sizeof(struct btt_sb), 0); 86 } 87 88 /* 89 * 'raw' version of btt_map write 90 * Assumptions: 91 * mapping is in little-endian 92 * mapping contains 'E' and 'Z' flags as desired 93 */ 94 static int __btt_map_write(struct arena_info *arena, u32 lba, __le32 mapping, 95 unsigned long flags) 96 { 97 u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE); 98 99 if (unlikely(lba >= arena->external_nlba)) 100 dev_err_ratelimited(to_dev(arena), 101 "%s: lba %#x out of range (max: %#x)\n", 102 __func__, lba, arena->external_nlba); 103 return arena_write_bytes(arena, ns_off, &mapping, MAP_ENT_SIZE, flags); 104 } 105 106 static int btt_map_write(struct arena_info *arena, u32 lba, u32 mapping, 107 u32 z_flag, u32 e_flag, unsigned long rwb_flags) 108 { 109 u32 ze; 110 __le32 mapping_le; 111 112 /* 113 * This 'mapping' is supposed to be just the LBA mapping, without 114 * any flags set, so strip the flag bits. 115 */ 116 mapping = ent_lba(mapping); 117 118 ze = (z_flag << 1) + e_flag; 119 switch (ze) { 120 case 0: 121 /* 122 * We want to set neither of the Z or E flags, and 123 * in the actual layout, this means setting the bit 124 * positions of both to '1' to indicate a 'normal' 125 * map entry 126 */ 127 mapping |= MAP_ENT_NORMAL; 128 break; 129 case 1: 130 mapping |= (1 << MAP_ERR_SHIFT); 131 break; 132 case 2: 133 mapping |= (1 << MAP_TRIM_SHIFT); 134 break; 135 default: 136 /* 137 * The case where Z and E are both sent in as '1' could be 138 * construed as a valid 'normal' case, but we decide not to, 139 * to avoid confusion 140 */ 141 dev_err_ratelimited(to_dev(arena), 142 "Invalid use of Z and E flags\n"); 143 return -EIO; 144 } 145 146 mapping_le = cpu_to_le32(mapping); 147 return __btt_map_write(arena, lba, mapping_le, rwb_flags); 148 } 149 150 static int btt_map_read(struct arena_info *arena, u32 lba, u32 *mapping, 151 int *trim, int *error, unsigned long rwb_flags) 152 { 153 int ret; 154 __le32 in; 155 u32 raw_mapping, postmap, ze, z_flag, e_flag; 156 u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE); 157 158 if (unlikely(lba >= arena->external_nlba)) 159 dev_err_ratelimited(to_dev(arena), 160 "%s: lba %#x out of range (max: %#x)\n", 161 __func__, lba, arena->external_nlba); 162 163 ret = arena_read_bytes(arena, ns_off, &in, MAP_ENT_SIZE, rwb_flags); 164 if (ret) 165 return ret; 166 167 raw_mapping = le32_to_cpu(in); 168 169 z_flag = ent_z_flag(raw_mapping); 170 e_flag = ent_e_flag(raw_mapping); 171 ze = (z_flag << 1) + e_flag; 172 postmap = ent_lba(raw_mapping); 173 174 /* Reuse the {z,e}_flag variables for *trim and *error */ 175 z_flag = 0; 176 e_flag = 0; 177 178 switch (ze) { 179 case 0: 180 /* Initial state. Return postmap = premap */ 181 *mapping = lba; 182 break; 183 case 1: 184 *mapping = postmap; 185 e_flag = 1; 186 break; 187 case 2: 188 *mapping = postmap; 189 z_flag = 1; 190 break; 191 case 3: 192 *mapping = postmap; 193 break; 194 default: 195 return -EIO; 196 } 197 198 if (trim) 199 *trim = z_flag; 200 if (error) 201 *error = e_flag; 202 203 return ret; 204 } 205 206 static int btt_log_group_read(struct arena_info *arena, u32 lane, 207 struct log_group *log) 208 { 209 return arena_read_bytes(arena, 210 arena->logoff + (lane * LOG_GRP_SIZE), log, 211 LOG_GRP_SIZE, 0); 212 } 213 214 static struct dentry *debugfs_root; 215 216 static void arena_debugfs_init(struct arena_info *a, struct dentry *parent, 217 int idx) 218 { 219 char dirname[32]; 220 struct dentry *d; 221 222 /* If for some reason, parent bttN was not created, exit */ 223 if (!parent) 224 return; 225 226 snprintf(dirname, 32, "arena%d", idx); 227 d = debugfs_create_dir(dirname, parent); 228 if (IS_ERR_OR_NULL(d)) 229 return; 230 a->debugfs_dir = d; 231 232 debugfs_create_x64("size", S_IRUGO, d, &a->size); 233 debugfs_create_x64("external_lba_start", S_IRUGO, d, 234 &a->external_lba_start); 235 debugfs_create_x32("internal_nlba", S_IRUGO, d, &a->internal_nlba); 236 debugfs_create_u32("internal_lbasize", S_IRUGO, d, 237 &a->internal_lbasize); 238 debugfs_create_x32("external_nlba", S_IRUGO, d, &a->external_nlba); 239 debugfs_create_u32("external_lbasize", S_IRUGO, d, 240 &a->external_lbasize); 241 debugfs_create_u32("nfree", S_IRUGO, d, &a->nfree); 242 debugfs_create_u16("version_major", S_IRUGO, d, &a->version_major); 243 debugfs_create_u16("version_minor", S_IRUGO, d, &a->version_minor); 244 debugfs_create_x64("nextoff", S_IRUGO, d, &a->nextoff); 245 debugfs_create_x64("infooff", S_IRUGO, d, &a->infooff); 246 debugfs_create_x64("dataoff", S_IRUGO, d, &a->dataoff); 247 debugfs_create_x64("mapoff", S_IRUGO, d, &a->mapoff); 248 debugfs_create_x64("logoff", S_IRUGO, d, &a->logoff); 249 debugfs_create_x64("info2off", S_IRUGO, d, &a->info2off); 250 debugfs_create_x32("flags", S_IRUGO, d, &a->flags); 251 debugfs_create_u32("log_index_0", S_IRUGO, d, &a->log_index[0]); 252 debugfs_create_u32("log_index_1", S_IRUGO, d, &a->log_index[1]); 253 } 254 255 static void btt_debugfs_init(struct btt *btt) 256 { 257 int i = 0; 258 struct arena_info *arena; 259 260 btt->debugfs_dir = debugfs_create_dir(dev_name(&btt->nd_btt->dev), 261 debugfs_root); 262 if (IS_ERR_OR_NULL(btt->debugfs_dir)) 263 return; 264 265 list_for_each_entry(arena, &btt->arena_list, list) { 266 arena_debugfs_init(arena, btt->debugfs_dir, i); 267 i++; 268 } 269 } 270 271 static u32 log_seq(struct log_group *log, int log_idx) 272 { 273 return le32_to_cpu(log->ent[log_idx].seq); 274 } 275 276 /* 277 * This function accepts two log entries, and uses the 278 * sequence number to find the 'older' entry. 279 * It also updates the sequence number in this old entry to 280 * make it the 'new' one if the mark_flag is set. 281 * Finally, it returns which of the entries was the older one. 282 * 283 * TODO The logic feels a bit kludge-y. make it better.. 284 */ 285 static int btt_log_get_old(struct arena_info *a, struct log_group *log) 286 { 287 int idx0 = a->log_index[0]; 288 int idx1 = a->log_index[1]; 289 int old; 290 291 /* 292 * the first ever time this is seen, the entry goes into [0] 293 * the next time, the following logic works out to put this 294 * (next) entry into [1] 295 */ 296 if (log_seq(log, idx0) == 0) { 297 log->ent[idx0].seq = cpu_to_le32(1); 298 return 0; 299 } 300 301 if (log_seq(log, idx0) == log_seq(log, idx1)) 302 return -EINVAL; 303 if (log_seq(log, idx0) + log_seq(log, idx1) > 5) 304 return -EINVAL; 305 306 if (log_seq(log, idx0) < log_seq(log, idx1)) { 307 if ((log_seq(log, idx1) - log_seq(log, idx0)) == 1) 308 old = 0; 309 else 310 old = 1; 311 } else { 312 if ((log_seq(log, idx0) - log_seq(log, idx1)) == 1) 313 old = 1; 314 else 315 old = 0; 316 } 317 318 return old; 319 } 320 321 /* 322 * This function copies the desired (old/new) log entry into ent if 323 * it is not NULL. It returns the sub-slot number (0 or 1) 324 * where the desired log entry was found. Negative return values 325 * indicate errors. 326 */ 327 static int btt_log_read(struct arena_info *arena, u32 lane, 328 struct log_entry *ent, int old_flag) 329 { 330 int ret; 331 int old_ent, ret_ent; 332 struct log_group log; 333 334 ret = btt_log_group_read(arena, lane, &log); 335 if (ret) 336 return -EIO; 337 338 old_ent = btt_log_get_old(arena, &log); 339 if (old_ent < 0 || old_ent > 1) { 340 dev_err(to_dev(arena), 341 "log corruption (%d): lane %d seq [%d, %d]\n", 342 old_ent, lane, log.ent[arena->log_index[0]].seq, 343 log.ent[arena->log_index[1]].seq); 344 /* TODO set error state? */ 345 return -EIO; 346 } 347 348 ret_ent = (old_flag ? old_ent : (1 - old_ent)); 349 350 if (ent != NULL) 351 memcpy(ent, &log.ent[arena->log_index[ret_ent]], LOG_ENT_SIZE); 352 353 return ret_ent; 354 } 355 356 /* 357 * This function commits a log entry to media 358 * It does _not_ prepare the freelist entry for the next write 359 * btt_flog_write is the wrapper for updating the freelist elements 360 */ 361 static int __btt_log_write(struct arena_info *arena, u32 lane, 362 u32 sub, struct log_entry *ent, unsigned long flags) 363 { 364 int ret; 365 u32 group_slot = arena->log_index[sub]; 366 unsigned int log_half = LOG_ENT_SIZE / 2; 367 void *src = ent; 368 u64 ns_off; 369 370 ns_off = arena->logoff + (lane * LOG_GRP_SIZE) + 371 (group_slot * LOG_ENT_SIZE); 372 /* split the 16B write into atomic, durable halves */ 373 ret = arena_write_bytes(arena, ns_off, src, log_half, flags); 374 if (ret) 375 return ret; 376 377 ns_off += log_half; 378 src += log_half; 379 return arena_write_bytes(arena, ns_off, src, log_half, flags); 380 } 381 382 static int btt_flog_write(struct arena_info *arena, u32 lane, u32 sub, 383 struct log_entry *ent) 384 { 385 int ret; 386 387 ret = __btt_log_write(arena, lane, sub, ent, NVDIMM_IO_ATOMIC); 388 if (ret) 389 return ret; 390 391 /* prepare the next free entry */ 392 arena->freelist[lane].sub = 1 - arena->freelist[lane].sub; 393 if (++(arena->freelist[lane].seq) == 4) 394 arena->freelist[lane].seq = 1; 395 if (ent_e_flag(ent->old_map)) 396 arena->freelist[lane].has_err = 1; 397 arena->freelist[lane].block = le32_to_cpu(ent_lba(ent->old_map)); 398 399 return ret; 400 } 401 402 /* 403 * This function initializes the BTT map to the initial state, which is 404 * all-zeroes, and indicates an identity mapping 405 */ 406 static int btt_map_init(struct arena_info *arena) 407 { 408 int ret = -EINVAL; 409 void *zerobuf; 410 size_t offset = 0; 411 size_t chunk_size = SZ_2M; 412 size_t mapsize = arena->logoff - arena->mapoff; 413 414 zerobuf = kzalloc(chunk_size, GFP_KERNEL); 415 if (!zerobuf) 416 return -ENOMEM; 417 418 /* 419 * mapoff should always be at least 512B aligned. We rely on that to 420 * make sure rw_bytes does error clearing correctly, so make sure that 421 * is the case. 422 */ 423 dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->mapoff, 512), 424 "arena->mapoff: %#llx is unaligned\n", arena->mapoff); 425 426 while (mapsize) { 427 size_t size = min(mapsize, chunk_size); 428 429 dev_WARN_ONCE(to_dev(arena), size < 512, 430 "chunk size: %#zx is unaligned\n", size); 431 ret = arena_write_bytes(arena, arena->mapoff + offset, zerobuf, 432 size, 0); 433 if (ret) 434 goto free; 435 436 offset += size; 437 mapsize -= size; 438 cond_resched(); 439 } 440 441 free: 442 kfree(zerobuf); 443 return ret; 444 } 445 446 /* 447 * This function initializes the BTT log with 'fake' entries pointing 448 * to the initial reserved set of blocks as being free 449 */ 450 static int btt_log_init(struct arena_info *arena) 451 { 452 size_t logsize = arena->info2off - arena->logoff; 453 size_t chunk_size = SZ_4K, offset = 0; 454 struct log_entry ent; 455 void *zerobuf; 456 int ret; 457 u32 i; 458 459 zerobuf = kzalloc(chunk_size, GFP_KERNEL); 460 if (!zerobuf) 461 return -ENOMEM; 462 /* 463 * logoff should always be at least 512B aligned. We rely on that to 464 * make sure rw_bytes does error clearing correctly, so make sure that 465 * is the case. 466 */ 467 dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->logoff, 512), 468 "arena->logoff: %#llx is unaligned\n", arena->logoff); 469 470 while (logsize) { 471 size_t size = min(logsize, chunk_size); 472 473 dev_WARN_ONCE(to_dev(arena), size < 512, 474 "chunk size: %#zx is unaligned\n", size); 475 ret = arena_write_bytes(arena, arena->logoff + offset, zerobuf, 476 size, 0); 477 if (ret) 478 goto free; 479 480 offset += size; 481 logsize -= size; 482 cond_resched(); 483 } 484 485 for (i = 0; i < arena->nfree; i++) { 486 ent.lba = cpu_to_le32(i); 487 ent.old_map = cpu_to_le32(arena->external_nlba + i); 488 ent.new_map = cpu_to_le32(arena->external_nlba + i); 489 ent.seq = cpu_to_le32(LOG_SEQ_INIT); 490 ret = __btt_log_write(arena, i, 0, &ent, 0); 491 if (ret) 492 goto free; 493 } 494 495 free: 496 kfree(zerobuf); 497 return ret; 498 } 499 500 static u64 to_namespace_offset(struct arena_info *arena, u64 lba) 501 { 502 return arena->dataoff + ((u64)lba * arena->internal_lbasize); 503 } 504 505 static int arena_clear_freelist_error(struct arena_info *arena, u32 lane) 506 { 507 int ret = 0; 508 509 if (arena->freelist[lane].has_err) { 510 void *zero_page = page_address(ZERO_PAGE(0)); 511 u32 lba = arena->freelist[lane].block; 512 u64 nsoff = to_namespace_offset(arena, lba); 513 unsigned long len = arena->sector_size; 514 515 mutex_lock(&arena->err_lock); 516 517 while (len) { 518 unsigned long chunk = min(len, PAGE_SIZE); 519 520 ret = arena_write_bytes(arena, nsoff, zero_page, 521 chunk, 0); 522 if (ret) 523 break; 524 len -= chunk; 525 nsoff += chunk; 526 if (len == 0) 527 arena->freelist[lane].has_err = 0; 528 } 529 mutex_unlock(&arena->err_lock); 530 } 531 return ret; 532 } 533 534 static int btt_freelist_init(struct arena_info *arena) 535 { 536 int new, ret; 537 struct log_entry log_new; 538 u32 i, map_entry, log_oldmap, log_newmap; 539 540 arena->freelist = kcalloc(arena->nfree, sizeof(struct free_entry), 541 GFP_KERNEL); 542 if (!arena->freelist) 543 return -ENOMEM; 544 545 for (i = 0; i < arena->nfree; i++) { 546 new = btt_log_read(arena, i, &log_new, LOG_NEW_ENT); 547 if (new < 0) 548 return new; 549 550 /* old and new map entries with any flags stripped out */ 551 log_oldmap = ent_lba(le32_to_cpu(log_new.old_map)); 552 log_newmap = ent_lba(le32_to_cpu(log_new.new_map)); 553 554 /* sub points to the next one to be overwritten */ 555 arena->freelist[i].sub = 1 - new; 556 arena->freelist[i].seq = nd_inc_seq(le32_to_cpu(log_new.seq)); 557 arena->freelist[i].block = log_oldmap; 558 559 /* 560 * FIXME: if error clearing fails during init, we want to make 561 * the BTT read-only 562 */ 563 if (ent_e_flag(log_new.old_map) && 564 !ent_normal(log_new.old_map)) { 565 arena->freelist[i].has_err = 1; 566 ret = arena_clear_freelist_error(arena, i); 567 if (ret) 568 dev_err_ratelimited(to_dev(arena), 569 "Unable to clear known errors\n"); 570 } 571 572 /* This implies a newly created or untouched flog entry */ 573 if (log_oldmap == log_newmap) 574 continue; 575 576 /* Check if map recovery is needed */ 577 ret = btt_map_read(arena, le32_to_cpu(log_new.lba), &map_entry, 578 NULL, NULL, 0); 579 if (ret) 580 return ret; 581 582 /* 583 * The map_entry from btt_read_map is stripped of any flag bits, 584 * so use the stripped out versions from the log as well for 585 * testing whether recovery is needed. For restoration, use the 586 * 'raw' version of the log entries as that captured what we 587 * were going to write originally. 588 */ 589 if ((log_newmap != map_entry) && (log_oldmap == map_entry)) { 590 /* 591 * Last transaction wrote the flog, but wasn't able 592 * to complete the map write. So fix up the map. 593 */ 594 ret = btt_map_write(arena, le32_to_cpu(log_new.lba), 595 le32_to_cpu(log_new.new_map), 0, 0, 0); 596 if (ret) 597 return ret; 598 } 599 } 600 601 return 0; 602 } 603 604 static bool ent_is_padding(struct log_entry *ent) 605 { 606 return (ent->lba == 0) && (ent->old_map == 0) && (ent->new_map == 0) 607 && (ent->seq == 0); 608 } 609 610 /* 611 * Detecting valid log indices: We read a log group (see the comments in btt.h 612 * for a description of a 'log_group' and its 'slots'), and iterate over its 613 * four slots. We expect that a padding slot will be all-zeroes, and use this 614 * to detect a padding slot vs. an actual entry. 615 * 616 * If a log_group is in the initial state, i.e. hasn't been used since the 617 * creation of this BTT layout, it will have three of the four slots with 618 * zeroes. We skip over these log_groups for the detection of log_index. If 619 * all log_groups are in the initial state (i.e. the BTT has never been 620 * written to), it is safe to assume the 'new format' of log entries in slots 621 * (0, 1). 622 */ 623 static int log_set_indices(struct arena_info *arena) 624 { 625 bool idx_set = false, initial_state = true; 626 int ret, log_index[2] = {-1, -1}; 627 u32 i, j, next_idx = 0; 628 struct log_group log; 629 u32 pad_count = 0; 630 631 for (i = 0; i < arena->nfree; i++) { 632 ret = btt_log_group_read(arena, i, &log); 633 if (ret < 0) 634 return ret; 635 636 for (j = 0; j < 4; j++) { 637 if (!idx_set) { 638 if (ent_is_padding(&log.ent[j])) { 639 pad_count++; 640 continue; 641 } else { 642 /* Skip if index has been recorded */ 643 if ((next_idx == 1) && 644 (j == log_index[0])) 645 continue; 646 /* valid entry, record index */ 647 log_index[next_idx] = j; 648 next_idx++; 649 } 650 if (next_idx == 2) { 651 /* two valid entries found */ 652 idx_set = true; 653 } else if (next_idx > 2) { 654 /* too many valid indices */ 655 return -ENXIO; 656 } 657 } else { 658 /* 659 * once the indices have been set, just verify 660 * that all subsequent log groups are either in 661 * their initial state or follow the same 662 * indices. 663 */ 664 if (j == log_index[0]) { 665 /* entry must be 'valid' */ 666 if (ent_is_padding(&log.ent[j])) 667 return -ENXIO; 668 } else if (j == log_index[1]) { 669 ; 670 /* 671 * log_index[1] can be padding if the 672 * lane never got used and it is still 673 * in the initial state (three 'padding' 674 * entries) 675 */ 676 } else { 677 /* entry must be invalid (padding) */ 678 if (!ent_is_padding(&log.ent[j])) 679 return -ENXIO; 680 } 681 } 682 } 683 /* 684 * If any of the log_groups have more than one valid, 685 * non-padding entry, then the we are no longer in the 686 * initial_state 687 */ 688 if (pad_count < 3) 689 initial_state = false; 690 pad_count = 0; 691 } 692 693 if (!initial_state && !idx_set) 694 return -ENXIO; 695 696 /* 697 * If all the entries in the log were in the initial state, 698 * assume new padding scheme 699 */ 700 if (initial_state) 701 log_index[1] = 1; 702 703 /* 704 * Only allow the known permutations of log/padding indices, 705 * i.e. (0, 1), and (0, 2) 706 */ 707 if ((log_index[0] == 0) && ((log_index[1] == 1) || (log_index[1] == 2))) 708 ; /* known index possibilities */ 709 else { 710 dev_err(to_dev(arena), "Found an unknown padding scheme\n"); 711 return -ENXIO; 712 } 713 714 arena->log_index[0] = log_index[0]; 715 arena->log_index[1] = log_index[1]; 716 dev_dbg(to_dev(arena), "log_index_0 = %d\n", log_index[0]); 717 dev_dbg(to_dev(arena), "log_index_1 = %d\n", log_index[1]); 718 return 0; 719 } 720 721 static int btt_rtt_init(struct arena_info *arena) 722 { 723 arena->rtt = kcalloc(arena->nfree, sizeof(u32), GFP_KERNEL); 724 if (arena->rtt == NULL) 725 return -ENOMEM; 726 727 return 0; 728 } 729 730 static int btt_maplocks_init(struct arena_info *arena) 731 { 732 u32 i; 733 734 arena->map_locks = kcalloc(arena->nfree, sizeof(struct aligned_lock), 735 GFP_KERNEL); 736 if (!arena->map_locks) 737 return -ENOMEM; 738 739 for (i = 0; i < arena->nfree; i++) 740 spin_lock_init(&arena->map_locks[i].lock); 741 742 return 0; 743 } 744 745 static struct arena_info *alloc_arena(struct btt *btt, size_t size, 746 size_t start, size_t arena_off) 747 { 748 struct arena_info *arena; 749 u64 logsize, mapsize, datasize; 750 u64 available = size; 751 752 arena = kzalloc(sizeof(struct arena_info), GFP_KERNEL); 753 if (!arena) 754 return NULL; 755 arena->nd_btt = btt->nd_btt; 756 arena->sector_size = btt->sector_size; 757 mutex_init(&arena->err_lock); 758 759 if (!size) 760 return arena; 761 762 arena->size = size; 763 arena->external_lba_start = start; 764 arena->external_lbasize = btt->lbasize; 765 arena->internal_lbasize = roundup(arena->external_lbasize, 766 INT_LBASIZE_ALIGNMENT); 767 arena->nfree = BTT_DEFAULT_NFREE; 768 arena->version_major = btt->nd_btt->version_major; 769 arena->version_minor = btt->nd_btt->version_minor; 770 771 if (available % BTT_PG_SIZE) 772 available -= (available % BTT_PG_SIZE); 773 774 /* Two pages are reserved for the super block and its copy */ 775 available -= 2 * BTT_PG_SIZE; 776 777 /* The log takes a fixed amount of space based on nfree */ 778 logsize = roundup(arena->nfree * LOG_GRP_SIZE, BTT_PG_SIZE); 779 available -= logsize; 780 781 /* Calculate optimal split between map and data area */ 782 arena->internal_nlba = div_u64(available - BTT_PG_SIZE, 783 arena->internal_lbasize + MAP_ENT_SIZE); 784 arena->external_nlba = arena->internal_nlba - arena->nfree; 785 786 mapsize = roundup((arena->external_nlba * MAP_ENT_SIZE), BTT_PG_SIZE); 787 datasize = available - mapsize; 788 789 /* 'Absolute' values, relative to start of storage space */ 790 arena->infooff = arena_off; 791 arena->dataoff = arena->infooff + BTT_PG_SIZE; 792 arena->mapoff = arena->dataoff + datasize; 793 arena->logoff = arena->mapoff + mapsize; 794 arena->info2off = arena->logoff + logsize; 795 796 /* Default log indices are (0,1) */ 797 arena->log_index[0] = 0; 798 arena->log_index[1] = 1; 799 return arena; 800 } 801 802 static void free_arenas(struct btt *btt) 803 { 804 struct arena_info *arena, *next; 805 806 list_for_each_entry_safe(arena, next, &btt->arena_list, list) { 807 list_del(&arena->list); 808 kfree(arena->rtt); 809 kfree(arena->map_locks); 810 kfree(arena->freelist); 811 debugfs_remove_recursive(arena->debugfs_dir); 812 kfree(arena); 813 } 814 } 815 816 /* 817 * This function reads an existing valid btt superblock and 818 * populates the corresponding arena_info struct 819 */ 820 static void parse_arena_meta(struct arena_info *arena, struct btt_sb *super, 821 u64 arena_off) 822 { 823 arena->internal_nlba = le32_to_cpu(super->internal_nlba); 824 arena->internal_lbasize = le32_to_cpu(super->internal_lbasize); 825 arena->external_nlba = le32_to_cpu(super->external_nlba); 826 arena->external_lbasize = le32_to_cpu(super->external_lbasize); 827 arena->nfree = le32_to_cpu(super->nfree); 828 arena->version_major = le16_to_cpu(super->version_major); 829 arena->version_minor = le16_to_cpu(super->version_minor); 830 831 arena->nextoff = (super->nextoff == 0) ? 0 : (arena_off + 832 le64_to_cpu(super->nextoff)); 833 arena->infooff = arena_off; 834 arena->dataoff = arena_off + le64_to_cpu(super->dataoff); 835 arena->mapoff = arena_off + le64_to_cpu(super->mapoff); 836 arena->logoff = arena_off + le64_to_cpu(super->logoff); 837 arena->info2off = arena_off + le64_to_cpu(super->info2off); 838 839 arena->size = (le64_to_cpu(super->nextoff) > 0) 840 ? (le64_to_cpu(super->nextoff)) 841 : (arena->info2off - arena->infooff + BTT_PG_SIZE); 842 843 arena->flags = le32_to_cpu(super->flags); 844 } 845 846 static int discover_arenas(struct btt *btt) 847 { 848 int ret = 0; 849 struct arena_info *arena; 850 struct btt_sb *super; 851 size_t remaining = btt->rawsize; 852 u64 cur_nlba = 0; 853 size_t cur_off = 0; 854 int num_arenas = 0; 855 856 super = kzalloc(sizeof(*super), GFP_KERNEL); 857 if (!super) 858 return -ENOMEM; 859 860 while (remaining) { 861 /* Alloc memory for arena */ 862 arena = alloc_arena(btt, 0, 0, 0); 863 if (!arena) { 864 ret = -ENOMEM; 865 goto out_super; 866 } 867 868 arena->infooff = cur_off; 869 ret = btt_info_read(arena, super); 870 if (ret) 871 goto out; 872 873 if (!nd_btt_arena_is_valid(btt->nd_btt, super)) { 874 if (remaining == btt->rawsize) { 875 btt->init_state = INIT_NOTFOUND; 876 dev_info(to_dev(arena), "No existing arenas\n"); 877 goto out; 878 } else { 879 dev_err(to_dev(arena), 880 "Found corrupted metadata!\n"); 881 ret = -ENODEV; 882 goto out; 883 } 884 } 885 886 arena->external_lba_start = cur_nlba; 887 parse_arena_meta(arena, super, cur_off); 888 889 ret = log_set_indices(arena); 890 if (ret) { 891 dev_err(to_dev(arena), 892 "Unable to deduce log/padding indices\n"); 893 goto out; 894 } 895 896 ret = btt_freelist_init(arena); 897 if (ret) 898 goto out; 899 900 ret = btt_rtt_init(arena); 901 if (ret) 902 goto out; 903 904 ret = btt_maplocks_init(arena); 905 if (ret) 906 goto out; 907 908 list_add_tail(&arena->list, &btt->arena_list); 909 910 remaining -= arena->size; 911 cur_off += arena->size; 912 cur_nlba += arena->external_nlba; 913 num_arenas++; 914 915 if (arena->nextoff == 0) 916 break; 917 } 918 btt->num_arenas = num_arenas; 919 btt->nlba = cur_nlba; 920 btt->init_state = INIT_READY; 921 922 kfree(super); 923 return ret; 924 925 out: 926 kfree(arena); 927 free_arenas(btt); 928 out_super: 929 kfree(super); 930 return ret; 931 } 932 933 static int create_arenas(struct btt *btt) 934 { 935 size_t remaining = btt->rawsize; 936 size_t cur_off = 0; 937 938 while (remaining) { 939 struct arena_info *arena; 940 size_t arena_size = min_t(u64, ARENA_MAX_SIZE, remaining); 941 942 remaining -= arena_size; 943 if (arena_size < ARENA_MIN_SIZE) 944 break; 945 946 arena = alloc_arena(btt, arena_size, btt->nlba, cur_off); 947 if (!arena) { 948 free_arenas(btt); 949 return -ENOMEM; 950 } 951 btt->nlba += arena->external_nlba; 952 if (remaining >= ARENA_MIN_SIZE) 953 arena->nextoff = arena->size; 954 else 955 arena->nextoff = 0; 956 cur_off += arena_size; 957 list_add_tail(&arena->list, &btt->arena_list); 958 } 959 960 return 0; 961 } 962 963 /* 964 * This function completes arena initialization by writing 965 * all the metadata. 966 * It is only called for an uninitialized arena when a write 967 * to that arena occurs for the first time. 968 */ 969 static int btt_arena_write_layout(struct arena_info *arena) 970 { 971 int ret; 972 u64 sum; 973 struct btt_sb *super; 974 struct nd_btt *nd_btt = arena->nd_btt; 975 const u8 *parent_uuid = nd_dev_to_uuid(&nd_btt->ndns->dev); 976 977 ret = btt_map_init(arena); 978 if (ret) 979 return ret; 980 981 ret = btt_log_init(arena); 982 if (ret) 983 return ret; 984 985 super = kzalloc(sizeof(struct btt_sb), GFP_NOIO); 986 if (!super) 987 return -ENOMEM; 988 989 strncpy(super->signature, BTT_SIG, BTT_SIG_LEN); 990 memcpy(super->uuid, nd_btt->uuid, 16); 991 memcpy(super->parent_uuid, parent_uuid, 16); 992 super->flags = cpu_to_le32(arena->flags); 993 super->version_major = cpu_to_le16(arena->version_major); 994 super->version_minor = cpu_to_le16(arena->version_minor); 995 super->external_lbasize = cpu_to_le32(arena->external_lbasize); 996 super->external_nlba = cpu_to_le32(arena->external_nlba); 997 super->internal_lbasize = cpu_to_le32(arena->internal_lbasize); 998 super->internal_nlba = cpu_to_le32(arena->internal_nlba); 999 super->nfree = cpu_to_le32(arena->nfree); 1000 super->infosize = cpu_to_le32(sizeof(struct btt_sb)); 1001 super->nextoff = cpu_to_le64(arena->nextoff); 1002 /* 1003 * Subtract arena->infooff (arena start) so numbers are relative 1004 * to 'this' arena 1005 */ 1006 super->dataoff = cpu_to_le64(arena->dataoff - arena->infooff); 1007 super->mapoff = cpu_to_le64(arena->mapoff - arena->infooff); 1008 super->logoff = cpu_to_le64(arena->logoff - arena->infooff); 1009 super->info2off = cpu_to_le64(arena->info2off - arena->infooff); 1010 1011 super->flags = 0; 1012 sum = nd_sb_checksum((struct nd_gen_sb *) super); 1013 super->checksum = cpu_to_le64(sum); 1014 1015 ret = btt_info_write(arena, super); 1016 1017 kfree(super); 1018 return ret; 1019 } 1020 1021 /* 1022 * This function completes the initialization for the BTT namespace 1023 * such that it is ready to accept IOs 1024 */ 1025 static int btt_meta_init(struct btt *btt) 1026 { 1027 int ret = 0; 1028 struct arena_info *arena; 1029 1030 mutex_lock(&btt->init_lock); 1031 list_for_each_entry(arena, &btt->arena_list, list) { 1032 ret = btt_arena_write_layout(arena); 1033 if (ret) 1034 goto unlock; 1035 1036 ret = btt_freelist_init(arena); 1037 if (ret) 1038 goto unlock; 1039 1040 ret = btt_rtt_init(arena); 1041 if (ret) 1042 goto unlock; 1043 1044 ret = btt_maplocks_init(arena); 1045 if (ret) 1046 goto unlock; 1047 } 1048 1049 btt->init_state = INIT_READY; 1050 1051 unlock: 1052 mutex_unlock(&btt->init_lock); 1053 return ret; 1054 } 1055 1056 static u32 btt_meta_size(struct btt *btt) 1057 { 1058 return btt->lbasize - btt->sector_size; 1059 } 1060 1061 /* 1062 * This function calculates the arena in which the given LBA lies 1063 * by doing a linear walk. This is acceptable since we expect only 1064 * a few arenas. If we have backing devices that get much larger, 1065 * we can construct a balanced binary tree of arenas at init time 1066 * so that this range search becomes faster. 1067 */ 1068 static int lba_to_arena(struct btt *btt, sector_t sector, __u32 *premap, 1069 struct arena_info **arena) 1070 { 1071 struct arena_info *arena_list; 1072 __u64 lba = div_u64(sector << SECTOR_SHIFT, btt->sector_size); 1073 1074 list_for_each_entry(arena_list, &btt->arena_list, list) { 1075 if (lba < arena_list->external_nlba) { 1076 *arena = arena_list; 1077 *premap = lba; 1078 return 0; 1079 } 1080 lba -= arena_list->external_nlba; 1081 } 1082 1083 return -EIO; 1084 } 1085 1086 /* 1087 * The following (lock_map, unlock_map) are mostly just to improve 1088 * readability, since they index into an array of locks 1089 */ 1090 static void lock_map(struct arena_info *arena, u32 premap) 1091 __acquires(&arena->map_locks[idx].lock) 1092 { 1093 u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree; 1094 1095 spin_lock(&arena->map_locks[idx].lock); 1096 } 1097 1098 static void unlock_map(struct arena_info *arena, u32 premap) 1099 __releases(&arena->map_locks[idx].lock) 1100 { 1101 u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree; 1102 1103 spin_unlock(&arena->map_locks[idx].lock); 1104 } 1105 1106 static int btt_data_read(struct arena_info *arena, struct page *page, 1107 unsigned int off, u32 lba, u32 len) 1108 { 1109 int ret; 1110 u64 nsoff = to_namespace_offset(arena, lba); 1111 void *mem = kmap_atomic(page); 1112 1113 ret = arena_read_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC); 1114 kunmap_atomic(mem); 1115 1116 return ret; 1117 } 1118 1119 static int btt_data_write(struct arena_info *arena, u32 lba, 1120 struct page *page, unsigned int off, u32 len) 1121 { 1122 int ret; 1123 u64 nsoff = to_namespace_offset(arena, lba); 1124 void *mem = kmap_atomic(page); 1125 1126 ret = arena_write_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC); 1127 kunmap_atomic(mem); 1128 1129 return ret; 1130 } 1131 1132 static void zero_fill_data(struct page *page, unsigned int off, u32 len) 1133 { 1134 void *mem = kmap_atomic(page); 1135 1136 memset(mem + off, 0, len); 1137 kunmap_atomic(mem); 1138 } 1139 1140 #ifdef CONFIG_BLK_DEV_INTEGRITY 1141 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip, 1142 struct arena_info *arena, u32 postmap, int rw) 1143 { 1144 unsigned int len = btt_meta_size(btt); 1145 u64 meta_nsoff; 1146 int ret = 0; 1147 1148 if (bip == NULL) 1149 return 0; 1150 1151 meta_nsoff = to_namespace_offset(arena, postmap) + btt->sector_size; 1152 1153 while (len) { 1154 unsigned int cur_len; 1155 struct bio_vec bv; 1156 void *mem; 1157 1158 bv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1159 /* 1160 * The 'bv' obtained from bvec_iter_bvec has its .bv_len and 1161 * .bv_offset already adjusted for iter->bi_bvec_done, and we 1162 * can use those directly 1163 */ 1164 1165 cur_len = min(len, bv.bv_len); 1166 mem = kmap_atomic(bv.bv_page); 1167 if (rw) 1168 ret = arena_write_bytes(arena, meta_nsoff, 1169 mem + bv.bv_offset, cur_len, 1170 NVDIMM_IO_ATOMIC); 1171 else 1172 ret = arena_read_bytes(arena, meta_nsoff, 1173 mem + bv.bv_offset, cur_len, 1174 NVDIMM_IO_ATOMIC); 1175 1176 kunmap_atomic(mem); 1177 if (ret) 1178 return ret; 1179 1180 len -= cur_len; 1181 meta_nsoff += cur_len; 1182 if (!bvec_iter_advance(bip->bip_vec, &bip->bip_iter, cur_len)) 1183 return -EIO; 1184 } 1185 1186 return ret; 1187 } 1188 1189 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1190 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip, 1191 struct arena_info *arena, u32 postmap, int rw) 1192 { 1193 return 0; 1194 } 1195 #endif 1196 1197 static int btt_read_pg(struct btt *btt, struct bio_integrity_payload *bip, 1198 struct page *page, unsigned int off, sector_t sector, 1199 unsigned int len) 1200 { 1201 int ret = 0; 1202 int t_flag, e_flag; 1203 struct arena_info *arena = NULL; 1204 u32 lane = 0, premap, postmap; 1205 1206 while (len) { 1207 u32 cur_len; 1208 1209 lane = nd_region_acquire_lane(btt->nd_region); 1210 1211 ret = lba_to_arena(btt, sector, &premap, &arena); 1212 if (ret) 1213 goto out_lane; 1214 1215 cur_len = min(btt->sector_size, len); 1216 1217 ret = btt_map_read(arena, premap, &postmap, &t_flag, &e_flag, 1218 NVDIMM_IO_ATOMIC); 1219 if (ret) 1220 goto out_lane; 1221 1222 /* 1223 * We loop to make sure that the post map LBA didn't change 1224 * from under us between writing the RTT and doing the actual 1225 * read. 1226 */ 1227 while (1) { 1228 u32 new_map; 1229 int new_t, new_e; 1230 1231 if (t_flag) { 1232 zero_fill_data(page, off, cur_len); 1233 goto out_lane; 1234 } 1235 1236 if (e_flag) { 1237 ret = -EIO; 1238 goto out_lane; 1239 } 1240 1241 arena->rtt[lane] = RTT_VALID | postmap; 1242 /* 1243 * Barrier to make sure this write is not reordered 1244 * to do the verification map_read before the RTT store 1245 */ 1246 barrier(); 1247 1248 ret = btt_map_read(arena, premap, &new_map, &new_t, 1249 &new_e, NVDIMM_IO_ATOMIC); 1250 if (ret) 1251 goto out_rtt; 1252 1253 if ((postmap == new_map) && (t_flag == new_t) && 1254 (e_flag == new_e)) 1255 break; 1256 1257 postmap = new_map; 1258 t_flag = new_t; 1259 e_flag = new_e; 1260 } 1261 1262 ret = btt_data_read(arena, page, off, postmap, cur_len); 1263 if (ret) { 1264 int rc; 1265 1266 /* Media error - set the e_flag */ 1267 rc = btt_map_write(arena, premap, postmap, 0, 1, 1268 NVDIMM_IO_ATOMIC); 1269 goto out_rtt; 1270 } 1271 1272 if (bip) { 1273 ret = btt_rw_integrity(btt, bip, arena, postmap, READ); 1274 if (ret) 1275 goto out_rtt; 1276 } 1277 1278 arena->rtt[lane] = RTT_INVALID; 1279 nd_region_release_lane(btt->nd_region, lane); 1280 1281 len -= cur_len; 1282 off += cur_len; 1283 sector += btt->sector_size >> SECTOR_SHIFT; 1284 } 1285 1286 return 0; 1287 1288 out_rtt: 1289 arena->rtt[lane] = RTT_INVALID; 1290 out_lane: 1291 nd_region_release_lane(btt->nd_region, lane); 1292 return ret; 1293 } 1294 1295 /* 1296 * Normally, arena_{read,write}_bytes will take care of the initial offset 1297 * adjustment, but in the case of btt_is_badblock, where we query is_bad_pmem, 1298 * we need the final, raw namespace offset here 1299 */ 1300 static bool btt_is_badblock(struct btt *btt, struct arena_info *arena, 1301 u32 postmap) 1302 { 1303 u64 nsoff = adjust_initial_offset(arena->nd_btt, 1304 to_namespace_offset(arena, postmap)); 1305 sector_t phys_sector = nsoff >> 9; 1306 1307 return is_bad_pmem(btt->phys_bb, phys_sector, arena->internal_lbasize); 1308 } 1309 1310 static int btt_write_pg(struct btt *btt, struct bio_integrity_payload *bip, 1311 sector_t sector, struct page *page, unsigned int off, 1312 unsigned int len) 1313 { 1314 int ret = 0; 1315 struct arena_info *arena = NULL; 1316 u32 premap = 0, old_postmap, new_postmap, lane = 0, i; 1317 struct log_entry log; 1318 int sub; 1319 1320 while (len) { 1321 u32 cur_len; 1322 int e_flag; 1323 1324 retry: 1325 lane = nd_region_acquire_lane(btt->nd_region); 1326 1327 ret = lba_to_arena(btt, sector, &premap, &arena); 1328 if (ret) 1329 goto out_lane; 1330 cur_len = min(btt->sector_size, len); 1331 1332 if ((arena->flags & IB_FLAG_ERROR_MASK) != 0) { 1333 ret = -EIO; 1334 goto out_lane; 1335 } 1336 1337 if (btt_is_badblock(btt, arena, arena->freelist[lane].block)) 1338 arena->freelist[lane].has_err = 1; 1339 1340 if (mutex_is_locked(&arena->err_lock) 1341 || arena->freelist[lane].has_err) { 1342 nd_region_release_lane(btt->nd_region, lane); 1343 1344 ret = arena_clear_freelist_error(arena, lane); 1345 if (ret) 1346 return ret; 1347 1348 /* OK to acquire a different lane/free block */ 1349 goto retry; 1350 } 1351 1352 new_postmap = arena->freelist[lane].block; 1353 1354 /* Wait if the new block is being read from */ 1355 for (i = 0; i < arena->nfree; i++) 1356 while (arena->rtt[i] == (RTT_VALID | new_postmap)) 1357 cpu_relax(); 1358 1359 1360 if (new_postmap >= arena->internal_nlba) { 1361 ret = -EIO; 1362 goto out_lane; 1363 } 1364 1365 ret = btt_data_write(arena, new_postmap, page, off, cur_len); 1366 if (ret) 1367 goto out_lane; 1368 1369 if (bip) { 1370 ret = btt_rw_integrity(btt, bip, arena, new_postmap, 1371 WRITE); 1372 if (ret) 1373 goto out_lane; 1374 } 1375 1376 lock_map(arena, premap); 1377 ret = btt_map_read(arena, premap, &old_postmap, NULL, &e_flag, 1378 NVDIMM_IO_ATOMIC); 1379 if (ret) 1380 goto out_map; 1381 if (old_postmap >= arena->internal_nlba) { 1382 ret = -EIO; 1383 goto out_map; 1384 } 1385 if (e_flag) 1386 set_e_flag(old_postmap); 1387 1388 log.lba = cpu_to_le32(premap); 1389 log.old_map = cpu_to_le32(old_postmap); 1390 log.new_map = cpu_to_le32(new_postmap); 1391 log.seq = cpu_to_le32(arena->freelist[lane].seq); 1392 sub = arena->freelist[lane].sub; 1393 ret = btt_flog_write(arena, lane, sub, &log); 1394 if (ret) 1395 goto out_map; 1396 1397 ret = btt_map_write(arena, premap, new_postmap, 0, 0, 1398 NVDIMM_IO_ATOMIC); 1399 if (ret) 1400 goto out_map; 1401 1402 unlock_map(arena, premap); 1403 nd_region_release_lane(btt->nd_region, lane); 1404 1405 if (e_flag) { 1406 ret = arena_clear_freelist_error(arena, lane); 1407 if (ret) 1408 return ret; 1409 } 1410 1411 len -= cur_len; 1412 off += cur_len; 1413 sector += btt->sector_size >> SECTOR_SHIFT; 1414 } 1415 1416 return 0; 1417 1418 out_map: 1419 unlock_map(arena, premap); 1420 out_lane: 1421 nd_region_release_lane(btt->nd_region, lane); 1422 return ret; 1423 } 1424 1425 static int btt_do_bvec(struct btt *btt, struct bio_integrity_payload *bip, 1426 struct page *page, unsigned int len, unsigned int off, 1427 unsigned int op, sector_t sector) 1428 { 1429 int ret; 1430 1431 if (!op_is_write(op)) { 1432 ret = btt_read_pg(btt, bip, page, off, sector, len); 1433 flush_dcache_page(page); 1434 } else { 1435 flush_dcache_page(page); 1436 ret = btt_write_pg(btt, bip, sector, page, off, len); 1437 } 1438 1439 return ret; 1440 } 1441 1442 static blk_qc_t btt_make_request(struct request_queue *q, struct bio *bio) 1443 { 1444 struct bio_integrity_payload *bip = bio_integrity(bio); 1445 struct btt *btt = q->queuedata; 1446 struct bvec_iter iter; 1447 unsigned long start; 1448 struct bio_vec bvec; 1449 int err = 0; 1450 bool do_acct; 1451 1452 if (!bio_integrity_prep(bio)) 1453 return BLK_QC_T_NONE; 1454 1455 do_acct = nd_iostat_start(bio, &start); 1456 bio_for_each_segment(bvec, bio, iter) { 1457 unsigned int len = bvec.bv_len; 1458 1459 if (len > PAGE_SIZE || len < btt->sector_size || 1460 len % btt->sector_size) { 1461 dev_err_ratelimited(&btt->nd_btt->dev, 1462 "unaligned bio segment (len: %d)\n", len); 1463 bio->bi_status = BLK_STS_IOERR; 1464 break; 1465 } 1466 1467 err = btt_do_bvec(btt, bip, bvec.bv_page, len, bvec.bv_offset, 1468 bio_op(bio), iter.bi_sector); 1469 if (err) { 1470 dev_err(&btt->nd_btt->dev, 1471 "io error in %s sector %lld, len %d,\n", 1472 (op_is_write(bio_op(bio))) ? "WRITE" : 1473 "READ", 1474 (unsigned long long) iter.bi_sector, len); 1475 bio->bi_status = errno_to_blk_status(err); 1476 break; 1477 } 1478 } 1479 if (do_acct) 1480 nd_iostat_end(bio, start); 1481 1482 bio_endio(bio); 1483 return BLK_QC_T_NONE; 1484 } 1485 1486 static int btt_rw_page(struct block_device *bdev, sector_t sector, 1487 struct page *page, unsigned int op) 1488 { 1489 struct btt *btt = bdev->bd_disk->private_data; 1490 int rc; 1491 unsigned int len; 1492 1493 len = hpage_nr_pages(page) * PAGE_SIZE; 1494 rc = btt_do_bvec(btt, NULL, page, len, 0, op, sector); 1495 if (rc == 0) 1496 page_endio(page, op_is_write(op), 0); 1497 1498 return rc; 1499 } 1500 1501 1502 static int btt_getgeo(struct block_device *bd, struct hd_geometry *geo) 1503 { 1504 /* some standard values */ 1505 geo->heads = 1 << 6; 1506 geo->sectors = 1 << 5; 1507 geo->cylinders = get_capacity(bd->bd_disk) >> 11; 1508 return 0; 1509 } 1510 1511 static const struct block_device_operations btt_fops = { 1512 .owner = THIS_MODULE, 1513 .rw_page = btt_rw_page, 1514 .getgeo = btt_getgeo, 1515 .revalidate_disk = nvdimm_revalidate_disk, 1516 }; 1517 1518 static int btt_blk_init(struct btt *btt) 1519 { 1520 struct nd_btt *nd_btt = btt->nd_btt; 1521 struct nd_namespace_common *ndns = nd_btt->ndns; 1522 1523 /* create a new disk and request queue for btt */ 1524 btt->btt_queue = blk_alloc_queue(GFP_KERNEL); 1525 if (!btt->btt_queue) 1526 return -ENOMEM; 1527 1528 btt->btt_disk = alloc_disk(0); 1529 if (!btt->btt_disk) { 1530 blk_cleanup_queue(btt->btt_queue); 1531 return -ENOMEM; 1532 } 1533 1534 nvdimm_namespace_disk_name(ndns, btt->btt_disk->disk_name); 1535 btt->btt_disk->first_minor = 0; 1536 btt->btt_disk->fops = &btt_fops; 1537 btt->btt_disk->private_data = btt; 1538 btt->btt_disk->queue = btt->btt_queue; 1539 btt->btt_disk->flags = GENHD_FL_EXT_DEVT; 1540 btt->btt_disk->queue->backing_dev_info->capabilities |= 1541 BDI_CAP_SYNCHRONOUS_IO; 1542 1543 blk_queue_make_request(btt->btt_queue, btt_make_request); 1544 blk_queue_logical_block_size(btt->btt_queue, btt->sector_size); 1545 blk_queue_max_hw_sectors(btt->btt_queue, UINT_MAX); 1546 blk_queue_flag_set(QUEUE_FLAG_NONROT, btt->btt_queue); 1547 btt->btt_queue->queuedata = btt; 1548 1549 if (btt_meta_size(btt)) { 1550 int rc = nd_integrity_init(btt->btt_disk, btt_meta_size(btt)); 1551 1552 if (rc) { 1553 del_gendisk(btt->btt_disk); 1554 put_disk(btt->btt_disk); 1555 blk_cleanup_queue(btt->btt_queue); 1556 return rc; 1557 } 1558 } 1559 set_capacity(btt->btt_disk, btt->nlba * btt->sector_size >> 9); 1560 device_add_disk(&btt->nd_btt->dev, btt->btt_disk, NULL); 1561 btt->nd_btt->size = btt->nlba * (u64)btt->sector_size; 1562 revalidate_disk(btt->btt_disk); 1563 1564 return 0; 1565 } 1566 1567 static void btt_blk_cleanup(struct btt *btt) 1568 { 1569 del_gendisk(btt->btt_disk); 1570 put_disk(btt->btt_disk); 1571 blk_cleanup_queue(btt->btt_queue); 1572 } 1573 1574 /** 1575 * btt_init - initialize a block translation table for the given device 1576 * @nd_btt: device with BTT geometry and backing device info 1577 * @rawsize: raw size in bytes of the backing device 1578 * @lbasize: lba size of the backing device 1579 * @uuid: A uuid for the backing device - this is stored on media 1580 * @maxlane: maximum number of parallel requests the device can handle 1581 * 1582 * Initialize a Block Translation Table on a backing device to provide 1583 * single sector power fail atomicity. 1584 * 1585 * Context: 1586 * Might sleep. 1587 * 1588 * Returns: 1589 * Pointer to a new struct btt on success, NULL on failure. 1590 */ 1591 static struct btt *btt_init(struct nd_btt *nd_btt, unsigned long long rawsize, 1592 u32 lbasize, u8 *uuid, struct nd_region *nd_region) 1593 { 1594 int ret; 1595 struct btt *btt; 1596 struct nd_namespace_io *nsio; 1597 struct device *dev = &nd_btt->dev; 1598 1599 btt = devm_kzalloc(dev, sizeof(struct btt), GFP_KERNEL); 1600 if (!btt) 1601 return NULL; 1602 1603 btt->nd_btt = nd_btt; 1604 btt->rawsize = rawsize; 1605 btt->lbasize = lbasize; 1606 btt->sector_size = ((lbasize >= 4096) ? 4096 : 512); 1607 INIT_LIST_HEAD(&btt->arena_list); 1608 mutex_init(&btt->init_lock); 1609 btt->nd_region = nd_region; 1610 nsio = to_nd_namespace_io(&nd_btt->ndns->dev); 1611 btt->phys_bb = &nsio->bb; 1612 1613 ret = discover_arenas(btt); 1614 if (ret) { 1615 dev_err(dev, "init: error in arena_discover: %d\n", ret); 1616 return NULL; 1617 } 1618 1619 if (btt->init_state != INIT_READY && nd_region->ro) { 1620 dev_warn(dev, "%s is read-only, unable to init btt metadata\n", 1621 dev_name(&nd_region->dev)); 1622 return NULL; 1623 } else if (btt->init_state != INIT_READY) { 1624 btt->num_arenas = (rawsize / ARENA_MAX_SIZE) + 1625 ((rawsize % ARENA_MAX_SIZE) ? 1 : 0); 1626 dev_dbg(dev, "init: %d arenas for %llu rawsize\n", 1627 btt->num_arenas, rawsize); 1628 1629 ret = create_arenas(btt); 1630 if (ret) { 1631 dev_info(dev, "init: create_arenas: %d\n", ret); 1632 return NULL; 1633 } 1634 1635 ret = btt_meta_init(btt); 1636 if (ret) { 1637 dev_err(dev, "init: error in meta_init: %d\n", ret); 1638 return NULL; 1639 } 1640 } 1641 1642 ret = btt_blk_init(btt); 1643 if (ret) { 1644 dev_err(dev, "init: error in blk_init: %d\n", ret); 1645 return NULL; 1646 } 1647 1648 btt_debugfs_init(btt); 1649 1650 return btt; 1651 } 1652 1653 /** 1654 * btt_fini - de-initialize a BTT 1655 * @btt: the BTT handle that was generated by btt_init 1656 * 1657 * De-initialize a Block Translation Table on device removal 1658 * 1659 * Context: 1660 * Might sleep. 1661 */ 1662 static void btt_fini(struct btt *btt) 1663 { 1664 if (btt) { 1665 btt_blk_cleanup(btt); 1666 free_arenas(btt); 1667 debugfs_remove_recursive(btt->debugfs_dir); 1668 } 1669 } 1670 1671 int nvdimm_namespace_attach_btt(struct nd_namespace_common *ndns) 1672 { 1673 struct nd_btt *nd_btt = to_nd_btt(ndns->claim); 1674 struct nd_region *nd_region; 1675 struct btt_sb *btt_sb; 1676 struct btt *btt; 1677 size_t rawsize; 1678 1679 if (!nd_btt->uuid || !nd_btt->ndns || !nd_btt->lbasize) { 1680 dev_dbg(&nd_btt->dev, "incomplete btt configuration\n"); 1681 return -ENODEV; 1682 } 1683 1684 btt_sb = devm_kzalloc(&nd_btt->dev, sizeof(*btt_sb), GFP_KERNEL); 1685 if (!btt_sb) 1686 return -ENOMEM; 1687 1688 /* 1689 * If this returns < 0, that is ok as it just means there wasn't 1690 * an existing BTT, and we're creating a new one. We still need to 1691 * call this as we need the version dependent fields in nd_btt to be 1692 * set correctly based on the holder class 1693 */ 1694 nd_btt_version(nd_btt, ndns, btt_sb); 1695 1696 rawsize = nvdimm_namespace_capacity(ndns) - nd_btt->initial_offset; 1697 if (rawsize < ARENA_MIN_SIZE) { 1698 dev_dbg(&nd_btt->dev, "%s must be at least %ld bytes\n", 1699 dev_name(&ndns->dev), 1700 ARENA_MIN_SIZE + nd_btt->initial_offset); 1701 return -ENXIO; 1702 } 1703 nd_region = to_nd_region(nd_btt->dev.parent); 1704 btt = btt_init(nd_btt, rawsize, nd_btt->lbasize, nd_btt->uuid, 1705 nd_region); 1706 if (!btt) 1707 return -ENOMEM; 1708 nd_btt->btt = btt; 1709 1710 return 0; 1711 } 1712 EXPORT_SYMBOL(nvdimm_namespace_attach_btt); 1713 1714 int nvdimm_namespace_detach_btt(struct nd_btt *nd_btt) 1715 { 1716 struct btt *btt = nd_btt->btt; 1717 1718 btt_fini(btt); 1719 nd_btt->btt = NULL; 1720 1721 return 0; 1722 } 1723 EXPORT_SYMBOL(nvdimm_namespace_detach_btt); 1724 1725 static int __init nd_btt_init(void) 1726 { 1727 int rc = 0; 1728 1729 debugfs_root = debugfs_create_dir("btt", NULL); 1730 if (IS_ERR_OR_NULL(debugfs_root)) 1731 rc = -ENXIO; 1732 1733 return rc; 1734 } 1735 1736 static void __exit nd_btt_exit(void) 1737 { 1738 debugfs_remove_recursive(debugfs_root); 1739 } 1740 1741 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_BTT); 1742 MODULE_AUTHOR("Vishal Verma <vishal.l.verma@linux.intel.com>"); 1743 MODULE_LICENSE("GPL v2"); 1744 module_init(nd_btt_init); 1745 module_exit(nd_btt_exit); 1746