xref: /linux/drivers/nvdimm/btt.c (revision 7354eb7f1558466e92e926802d36e69e42938ea9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Block Translation Table
4  * Copyright (c) 2014-2015, Intel Corporation.
5  */
6 #include <linux/highmem.h>
7 #include <linux/debugfs.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/pagemap.h>
11 #include <linux/module.h>
12 #include <linux/device.h>
13 #include <linux/mutex.h>
14 #include <linux/hdreg.h>
15 #include <linux/sizes.h>
16 #include <linux/ndctl.h>
17 #include <linux/fs.h>
18 #include <linux/nd.h>
19 #include <linux/backing-dev.h>
20 #include <linux/cleanup.h>
21 #include "btt.h"
22 #include "nd.h"
23 
24 enum log_ent_request {
25 	LOG_NEW_ENT = 0,
26 	LOG_OLD_ENT
27 };
28 
29 static struct device *to_dev(struct arena_info *arena)
30 {
31 	return &arena->nd_btt->dev;
32 }
33 
34 static u64 adjust_initial_offset(struct nd_btt *nd_btt, u64 offset)
35 {
36 	return offset + nd_btt->initial_offset;
37 }
38 
39 static int arena_read_bytes(struct arena_info *arena, resource_size_t offset,
40 		void *buf, size_t n, unsigned long flags)
41 {
42 	struct nd_btt *nd_btt = arena->nd_btt;
43 	struct nd_namespace_common *ndns = nd_btt->ndns;
44 
45 	/* arena offsets may be shifted from the base of the device */
46 	offset = adjust_initial_offset(nd_btt, offset);
47 	return nvdimm_read_bytes(ndns, offset, buf, n, flags);
48 }
49 
50 static int arena_write_bytes(struct arena_info *arena, resource_size_t offset,
51 		void *buf, size_t n, unsigned long flags)
52 {
53 	struct nd_btt *nd_btt = arena->nd_btt;
54 	struct nd_namespace_common *ndns = nd_btt->ndns;
55 
56 	/* arena offsets may be shifted from the base of the device */
57 	offset = adjust_initial_offset(nd_btt, offset);
58 	return nvdimm_write_bytes(ndns, offset, buf, n, flags);
59 }
60 
61 static int btt_info_write(struct arena_info *arena, struct btt_sb *super)
62 {
63 	int ret;
64 
65 	/*
66 	 * infooff and info2off should always be at least 512B aligned.
67 	 * We rely on that to make sure rw_bytes does error clearing
68 	 * correctly, so make sure that is the case.
69 	 */
70 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->infooff, 512),
71 		"arena->infooff: %#llx is unaligned\n", arena->infooff);
72 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->info2off, 512),
73 		"arena->info2off: %#llx is unaligned\n", arena->info2off);
74 
75 	ret = arena_write_bytes(arena, arena->info2off, super,
76 			sizeof(struct btt_sb), 0);
77 	if (ret)
78 		return ret;
79 
80 	return arena_write_bytes(arena, arena->infooff, super,
81 			sizeof(struct btt_sb), 0);
82 }
83 
84 static int btt_info_read(struct arena_info *arena, struct btt_sb *super)
85 {
86 	return arena_read_bytes(arena, arena->infooff, super,
87 			sizeof(struct btt_sb), 0);
88 }
89 
90 /*
91  * 'raw' version of btt_map write
92  * Assumptions:
93  *   mapping is in little-endian
94  *   mapping contains 'E' and 'Z' flags as desired
95  */
96 static int __btt_map_write(struct arena_info *arena, u32 lba, __le32 mapping,
97 		unsigned long flags)
98 {
99 	u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE);
100 
101 	if (unlikely(lba >= arena->external_nlba))
102 		dev_err_ratelimited(to_dev(arena),
103 			"%s: lba %#x out of range (max: %#x)\n",
104 			__func__, lba, arena->external_nlba);
105 	return arena_write_bytes(arena, ns_off, &mapping, MAP_ENT_SIZE, flags);
106 }
107 
108 static int btt_map_write(struct arena_info *arena, u32 lba, u32 mapping,
109 			u32 z_flag, u32 e_flag, unsigned long rwb_flags)
110 {
111 	u32 ze;
112 	__le32 mapping_le;
113 
114 	/*
115 	 * This 'mapping' is supposed to be just the LBA mapping, without
116 	 * any flags set, so strip the flag bits.
117 	 */
118 	mapping = ent_lba(mapping);
119 
120 	ze = (z_flag << 1) + e_flag;
121 	switch (ze) {
122 	case 0:
123 		/*
124 		 * We want to set neither of the Z or E flags, and
125 		 * in the actual layout, this means setting the bit
126 		 * positions of both to '1' to indicate a 'normal'
127 		 * map entry
128 		 */
129 		mapping |= MAP_ENT_NORMAL;
130 		break;
131 	case 1:
132 		mapping |= (1 << MAP_ERR_SHIFT);
133 		break;
134 	case 2:
135 		mapping |= (1 << MAP_TRIM_SHIFT);
136 		break;
137 	default:
138 		/*
139 		 * The case where Z and E are both sent in as '1' could be
140 		 * construed as a valid 'normal' case, but we decide not to,
141 		 * to avoid confusion
142 		 */
143 		dev_err_ratelimited(to_dev(arena),
144 			"Invalid use of Z and E flags\n");
145 		return -EIO;
146 	}
147 
148 	mapping_le = cpu_to_le32(mapping);
149 	return __btt_map_write(arena, lba, mapping_le, rwb_flags);
150 }
151 
152 static int btt_map_read(struct arena_info *arena, u32 lba, u32 *mapping,
153 			int *trim, int *error, unsigned long rwb_flags)
154 {
155 	int ret;
156 	__le32 in;
157 	u32 raw_mapping, postmap, ze, z_flag, e_flag;
158 	u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE);
159 
160 	if (unlikely(lba >= arena->external_nlba))
161 		dev_err_ratelimited(to_dev(arena),
162 			"%s: lba %#x out of range (max: %#x)\n",
163 			__func__, lba, arena->external_nlba);
164 
165 	ret = arena_read_bytes(arena, ns_off, &in, MAP_ENT_SIZE, rwb_flags);
166 	if (ret)
167 		return ret;
168 
169 	raw_mapping = le32_to_cpu(in);
170 
171 	z_flag = ent_z_flag(raw_mapping);
172 	e_flag = ent_e_flag(raw_mapping);
173 	ze = (z_flag << 1) + e_flag;
174 	postmap = ent_lba(raw_mapping);
175 
176 	/* Reuse the {z,e}_flag variables for *trim and *error */
177 	z_flag = 0;
178 	e_flag = 0;
179 
180 	switch (ze) {
181 	case 0:
182 		/* Initial state. Return postmap = premap */
183 		*mapping = lba;
184 		break;
185 	case 1:
186 		*mapping = postmap;
187 		e_flag = 1;
188 		break;
189 	case 2:
190 		*mapping = postmap;
191 		z_flag = 1;
192 		break;
193 	case 3:
194 		*mapping = postmap;
195 		break;
196 	default:
197 		return -EIO;
198 	}
199 
200 	if (trim)
201 		*trim = z_flag;
202 	if (error)
203 		*error = e_flag;
204 
205 	return ret;
206 }
207 
208 static int btt_log_group_read(struct arena_info *arena, u32 lane,
209 			struct log_group *log)
210 {
211 	return arena_read_bytes(arena,
212 			arena->logoff + (lane * LOG_GRP_SIZE), log,
213 			LOG_GRP_SIZE, 0);
214 }
215 
216 static struct dentry *debugfs_root;
217 
218 static void arena_debugfs_init(struct arena_info *a, struct dentry *parent,
219 				int idx)
220 {
221 	char dirname[32];
222 	struct dentry *d;
223 
224 	/* If for some reason, parent bttN was not created, exit */
225 	if (!parent)
226 		return;
227 
228 	snprintf(dirname, 32, "arena%d", idx);
229 	d = debugfs_create_dir(dirname, parent);
230 	if (IS_ERR_OR_NULL(d))
231 		return;
232 	a->debugfs_dir = d;
233 
234 	debugfs_create_x64("size", S_IRUGO, d, &a->size);
235 	debugfs_create_x64("external_lba_start", S_IRUGO, d,
236 				&a->external_lba_start);
237 	debugfs_create_x32("internal_nlba", S_IRUGO, d, &a->internal_nlba);
238 	debugfs_create_u32("internal_lbasize", S_IRUGO, d,
239 				&a->internal_lbasize);
240 	debugfs_create_x32("external_nlba", S_IRUGO, d, &a->external_nlba);
241 	debugfs_create_u32("external_lbasize", S_IRUGO, d,
242 				&a->external_lbasize);
243 	debugfs_create_u32("nfree", S_IRUGO, d, &a->nfree);
244 	debugfs_create_u16("version_major", S_IRUGO, d, &a->version_major);
245 	debugfs_create_u16("version_minor", S_IRUGO, d, &a->version_minor);
246 	debugfs_create_x64("nextoff", S_IRUGO, d, &a->nextoff);
247 	debugfs_create_x64("infooff", S_IRUGO, d, &a->infooff);
248 	debugfs_create_x64("dataoff", S_IRUGO, d, &a->dataoff);
249 	debugfs_create_x64("mapoff", S_IRUGO, d, &a->mapoff);
250 	debugfs_create_x64("logoff", S_IRUGO, d, &a->logoff);
251 	debugfs_create_x64("info2off", S_IRUGO, d, &a->info2off);
252 	debugfs_create_x32("flags", S_IRUGO, d, &a->flags);
253 	debugfs_create_u32("log_index_0", S_IRUGO, d, &a->log_index[0]);
254 	debugfs_create_u32("log_index_1", S_IRUGO, d, &a->log_index[1]);
255 }
256 
257 static void btt_debugfs_init(struct btt *btt)
258 {
259 	int i = 0;
260 	struct arena_info *arena;
261 
262 	btt->debugfs_dir = debugfs_create_dir(dev_name(&btt->nd_btt->dev),
263 						debugfs_root);
264 	if (IS_ERR_OR_NULL(btt->debugfs_dir))
265 		return;
266 
267 	list_for_each_entry(arena, &btt->arena_list, list) {
268 		arena_debugfs_init(arena, btt->debugfs_dir, i);
269 		i++;
270 	}
271 }
272 
273 static u32 log_seq(struct log_group *log, int log_idx)
274 {
275 	return le32_to_cpu(log->ent[log_idx].seq);
276 }
277 
278 /*
279  * This function accepts two log entries, and uses the
280  * sequence number to find the 'older' entry.
281  * It also updates the sequence number in this old entry to
282  * make it the 'new' one if the mark_flag is set.
283  * Finally, it returns which of the entries was the older one.
284  *
285  * TODO The logic feels a bit kludge-y. make it better..
286  */
287 static int btt_log_get_old(struct arena_info *a, struct log_group *log)
288 {
289 	int idx0 = a->log_index[0];
290 	int idx1 = a->log_index[1];
291 	int old;
292 
293 	/*
294 	 * the first ever time this is seen, the entry goes into [0]
295 	 * the next time, the following logic works out to put this
296 	 * (next) entry into [1]
297 	 */
298 	if (log_seq(log, idx0) == 0) {
299 		log->ent[idx0].seq = cpu_to_le32(1);
300 		return 0;
301 	}
302 
303 	if (log_seq(log, idx0) == log_seq(log, idx1))
304 		return -EINVAL;
305 	if (log_seq(log, idx0) + log_seq(log, idx1) > 5)
306 		return -EINVAL;
307 
308 	if (log_seq(log, idx0) < log_seq(log, idx1)) {
309 		if ((log_seq(log, idx1) - log_seq(log, idx0)) == 1)
310 			old = 0;
311 		else
312 			old = 1;
313 	} else {
314 		if ((log_seq(log, idx0) - log_seq(log, idx1)) == 1)
315 			old = 1;
316 		else
317 			old = 0;
318 	}
319 
320 	return old;
321 }
322 
323 /*
324  * This function copies the desired (old/new) log entry into ent if
325  * it is not NULL. It returns the sub-slot number (0 or 1)
326  * where the desired log entry was found. Negative return values
327  * indicate errors.
328  */
329 static int btt_log_read(struct arena_info *arena, u32 lane,
330 			struct log_entry *ent, int old_flag)
331 {
332 	int ret;
333 	int old_ent, ret_ent;
334 	struct log_group log;
335 
336 	ret = btt_log_group_read(arena, lane, &log);
337 	if (ret)
338 		return -EIO;
339 
340 	old_ent = btt_log_get_old(arena, &log);
341 	if (old_ent < 0 || old_ent > 1) {
342 		dev_err(to_dev(arena),
343 				"log corruption (%d): lane %d seq [%d, %d]\n",
344 				old_ent, lane, log.ent[arena->log_index[0]].seq,
345 				log.ent[arena->log_index[1]].seq);
346 		/* TODO set error state? */
347 		return -EIO;
348 	}
349 
350 	ret_ent = (old_flag ? old_ent : (1 - old_ent));
351 
352 	if (ent != NULL)
353 		memcpy(ent, &log.ent[arena->log_index[ret_ent]], LOG_ENT_SIZE);
354 
355 	return ret_ent;
356 }
357 
358 /*
359  * This function commits a log entry to media
360  * It does _not_ prepare the freelist entry for the next write
361  * btt_flog_write is the wrapper for updating the freelist elements
362  */
363 static int __btt_log_write(struct arena_info *arena, u32 lane,
364 			u32 sub, struct log_entry *ent, unsigned long flags)
365 {
366 	int ret;
367 	u32 group_slot = arena->log_index[sub];
368 	unsigned int log_half = LOG_ENT_SIZE / 2;
369 	void *src = ent;
370 	u64 ns_off;
371 
372 	ns_off = arena->logoff + (lane * LOG_GRP_SIZE) +
373 		(group_slot * LOG_ENT_SIZE);
374 	/* split the 16B write into atomic, durable halves */
375 	ret = arena_write_bytes(arena, ns_off, src, log_half, flags);
376 	if (ret)
377 		return ret;
378 
379 	ns_off += log_half;
380 	src += log_half;
381 	return arena_write_bytes(arena, ns_off, src, log_half, flags);
382 }
383 
384 static int btt_flog_write(struct arena_info *arena, u32 lane, u32 sub,
385 			struct log_entry *ent)
386 {
387 	int ret;
388 
389 	ret = __btt_log_write(arena, lane, sub, ent, NVDIMM_IO_ATOMIC);
390 	if (ret)
391 		return ret;
392 
393 	/* prepare the next free entry */
394 	arena->freelist[lane].sub = 1 - arena->freelist[lane].sub;
395 	if (++(arena->freelist[lane].seq) == 4)
396 		arena->freelist[lane].seq = 1;
397 	if (ent_e_flag(le32_to_cpu(ent->old_map)))
398 		arena->freelist[lane].has_err = 1;
399 	arena->freelist[lane].block = ent_lba(le32_to_cpu(ent->old_map));
400 
401 	return ret;
402 }
403 
404 /*
405  * This function initializes the BTT map to the initial state, which is
406  * all-zeroes, and indicates an identity mapping
407  */
408 static int btt_map_init(struct arena_info *arena)
409 {
410 	int ret = -EINVAL;
411 	void *zerobuf;
412 	size_t offset = 0;
413 	size_t chunk_size = SZ_2M;
414 	size_t mapsize = arena->logoff - arena->mapoff;
415 
416 	zerobuf = kzalloc(chunk_size, GFP_KERNEL);
417 	if (!zerobuf)
418 		return -ENOMEM;
419 
420 	/*
421 	 * mapoff should always be at least 512B  aligned. We rely on that to
422 	 * make sure rw_bytes does error clearing correctly, so make sure that
423 	 * is the case.
424 	 */
425 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->mapoff, 512),
426 		"arena->mapoff: %#llx is unaligned\n", arena->mapoff);
427 
428 	while (mapsize) {
429 		size_t size = min(mapsize, chunk_size);
430 
431 		dev_WARN_ONCE(to_dev(arena), size < 512,
432 			"chunk size: %#zx is unaligned\n", size);
433 		ret = arena_write_bytes(arena, arena->mapoff + offset, zerobuf,
434 				size, 0);
435 		if (ret)
436 			goto free;
437 
438 		offset += size;
439 		mapsize -= size;
440 		cond_resched();
441 	}
442 
443  free:
444 	kfree(zerobuf);
445 	return ret;
446 }
447 
448 /*
449  * This function initializes the BTT log with 'fake' entries pointing
450  * to the initial reserved set of blocks as being free
451  */
452 static int btt_log_init(struct arena_info *arena)
453 {
454 	size_t logsize = arena->info2off - arena->logoff;
455 	size_t chunk_size = SZ_4K, offset = 0;
456 	struct log_entry ent;
457 	void *zerobuf;
458 	int ret;
459 	u32 i;
460 
461 	zerobuf = kzalloc(chunk_size, GFP_KERNEL);
462 	if (!zerobuf)
463 		return -ENOMEM;
464 	/*
465 	 * logoff should always be at least 512B  aligned. We rely on that to
466 	 * make sure rw_bytes does error clearing correctly, so make sure that
467 	 * is the case.
468 	 */
469 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->logoff, 512),
470 		"arena->logoff: %#llx is unaligned\n", arena->logoff);
471 
472 	while (logsize) {
473 		size_t size = min(logsize, chunk_size);
474 
475 		dev_WARN_ONCE(to_dev(arena), size < 512,
476 			"chunk size: %#zx is unaligned\n", size);
477 		ret = arena_write_bytes(arena, arena->logoff + offset, zerobuf,
478 				size, 0);
479 		if (ret)
480 			goto free;
481 
482 		offset += size;
483 		logsize -= size;
484 		cond_resched();
485 	}
486 
487 	for (i = 0; i < arena->nfree; i++) {
488 		ent.lba = cpu_to_le32(i);
489 		ent.old_map = cpu_to_le32(arena->external_nlba + i);
490 		ent.new_map = cpu_to_le32(arena->external_nlba + i);
491 		ent.seq = cpu_to_le32(LOG_SEQ_INIT);
492 		ret = __btt_log_write(arena, i, 0, &ent, 0);
493 		if (ret)
494 			goto free;
495 	}
496 
497  free:
498 	kfree(zerobuf);
499 	return ret;
500 }
501 
502 static u64 to_namespace_offset(struct arena_info *arena, u64 lba)
503 {
504 	return arena->dataoff + ((u64)lba * arena->internal_lbasize);
505 }
506 
507 static int arena_clear_freelist_error(struct arena_info *arena, u32 lane)
508 {
509 	int ret = 0;
510 
511 	if (arena->freelist[lane].has_err) {
512 		void *zero_page = page_address(ZERO_PAGE(0));
513 		u32 lba = arena->freelist[lane].block;
514 		u64 nsoff = to_namespace_offset(arena, lba);
515 		unsigned long len = arena->sector_size;
516 
517 		mutex_lock(&arena->err_lock);
518 
519 		while (len) {
520 			unsigned long chunk = min(len, PAGE_SIZE);
521 
522 			ret = arena_write_bytes(arena, nsoff, zero_page,
523 				chunk, 0);
524 			if (ret)
525 				break;
526 			len -= chunk;
527 			nsoff += chunk;
528 			if (len == 0)
529 				arena->freelist[lane].has_err = 0;
530 		}
531 		mutex_unlock(&arena->err_lock);
532 	}
533 	return ret;
534 }
535 
536 static int btt_freelist_init(struct arena_info *arena)
537 {
538 	int new, ret;
539 	struct log_entry log_new;
540 	u32 i, map_entry, log_oldmap, log_newmap;
541 
542 	arena->freelist = kcalloc(arena->nfree, sizeof(struct free_entry),
543 					GFP_KERNEL);
544 	if (!arena->freelist)
545 		return -ENOMEM;
546 
547 	for (i = 0; i < arena->nfree; i++) {
548 		new = btt_log_read(arena, i, &log_new, LOG_NEW_ENT);
549 		if (new < 0)
550 			return new;
551 
552 		/* old and new map entries with any flags stripped out */
553 		log_oldmap = ent_lba(le32_to_cpu(log_new.old_map));
554 		log_newmap = ent_lba(le32_to_cpu(log_new.new_map));
555 
556 		/* sub points to the next one to be overwritten */
557 		arena->freelist[i].sub = 1 - new;
558 		arena->freelist[i].seq = nd_inc_seq(le32_to_cpu(log_new.seq));
559 		arena->freelist[i].block = log_oldmap;
560 
561 		/*
562 		 * FIXME: if error clearing fails during init, we want to make
563 		 * the BTT read-only
564 		 */
565 		if (ent_e_flag(le32_to_cpu(log_new.old_map)) &&
566 		    !ent_normal(le32_to_cpu(log_new.old_map))) {
567 			arena->freelist[i].has_err = 1;
568 			ret = arena_clear_freelist_error(arena, i);
569 			if (ret)
570 				dev_err_ratelimited(to_dev(arena),
571 					"Unable to clear known errors\n");
572 		}
573 
574 		/* This implies a newly created or untouched flog entry */
575 		if (log_oldmap == log_newmap)
576 			continue;
577 
578 		/* Check if map recovery is needed */
579 		ret = btt_map_read(arena, le32_to_cpu(log_new.lba), &map_entry,
580 				NULL, NULL, 0);
581 		if (ret)
582 			return ret;
583 
584 		/*
585 		 * The map_entry from btt_read_map is stripped of any flag bits,
586 		 * so use the stripped out versions from the log as well for
587 		 * testing whether recovery is needed. For restoration, use the
588 		 * 'raw' version of the log entries as that captured what we
589 		 * were going to write originally.
590 		 */
591 		if ((log_newmap != map_entry) && (log_oldmap == map_entry)) {
592 			/*
593 			 * Last transaction wrote the flog, but wasn't able
594 			 * to complete the map write. So fix up the map.
595 			 */
596 			ret = btt_map_write(arena, le32_to_cpu(log_new.lba),
597 					le32_to_cpu(log_new.new_map), 0, 0, 0);
598 			if (ret)
599 				return ret;
600 		}
601 	}
602 
603 	return 0;
604 }
605 
606 static bool ent_is_padding(struct log_entry *ent)
607 {
608 	return (ent->lba == 0) && (ent->old_map == 0) && (ent->new_map == 0)
609 		&& (ent->seq == 0);
610 }
611 
612 /*
613  * Detecting valid log indices: We read a log group (see the comments in btt.h
614  * for a description of a 'log_group' and its 'slots'), and iterate over its
615  * four slots. We expect that a padding slot will be all-zeroes, and use this
616  * to detect a padding slot vs. an actual entry.
617  *
618  * If a log_group is in the initial state, i.e. hasn't been used since the
619  * creation of this BTT layout, it will have three of the four slots with
620  * zeroes. We skip over these log_groups for the detection of log_index. If
621  * all log_groups are in the initial state (i.e. the BTT has never been
622  * written to), it is safe to assume the 'new format' of log entries in slots
623  * (0, 1).
624  */
625 static int log_set_indices(struct arena_info *arena)
626 {
627 	bool idx_set = false, initial_state = true;
628 	int ret, log_index[2] = {-1, -1};
629 	u32 i, j, next_idx = 0;
630 	struct log_group log;
631 	u32 pad_count = 0;
632 
633 	for (i = 0; i < arena->nfree; i++) {
634 		ret = btt_log_group_read(arena, i, &log);
635 		if (ret < 0)
636 			return ret;
637 
638 		for (j = 0; j < 4; j++) {
639 			if (!idx_set) {
640 				if (ent_is_padding(&log.ent[j])) {
641 					pad_count++;
642 					continue;
643 				} else {
644 					/* Skip if index has been recorded */
645 					if ((next_idx == 1) &&
646 						(j == log_index[0]))
647 						continue;
648 					/* valid entry, record index */
649 					log_index[next_idx] = j;
650 					next_idx++;
651 				}
652 				if (next_idx == 2) {
653 					/* two valid entries found */
654 					idx_set = true;
655 				} else if (next_idx > 2) {
656 					/* too many valid indices */
657 					return -ENXIO;
658 				}
659 			} else {
660 				/*
661 				 * once the indices have been set, just verify
662 				 * that all subsequent log groups are either in
663 				 * their initial state or follow the same
664 				 * indices.
665 				 */
666 				if (j == log_index[0]) {
667 					/* entry must be 'valid' */
668 					if (ent_is_padding(&log.ent[j]))
669 						return -ENXIO;
670 				} else if (j == log_index[1]) {
671 					;
672 					/*
673 					 * log_index[1] can be padding if the
674 					 * lane never got used and it is still
675 					 * in the initial state (three 'padding'
676 					 * entries)
677 					 */
678 				} else {
679 					/* entry must be invalid (padding) */
680 					if (!ent_is_padding(&log.ent[j]))
681 						return -ENXIO;
682 				}
683 			}
684 		}
685 		/*
686 		 * If any of the log_groups have more than one valid,
687 		 * non-padding entry, then the we are no longer in the
688 		 * initial_state
689 		 */
690 		if (pad_count < 3)
691 			initial_state = false;
692 		pad_count = 0;
693 	}
694 
695 	if (!initial_state && !idx_set)
696 		return -ENXIO;
697 
698 	/*
699 	 * If all the entries in the log were in the initial state,
700 	 * assume new padding scheme
701 	 */
702 	if (initial_state)
703 		log_index[1] = 1;
704 
705 	/*
706 	 * Only allow the known permutations of log/padding indices,
707 	 * i.e. (0, 1), and (0, 2)
708 	 */
709 	if ((log_index[0] == 0) && ((log_index[1] == 1) || (log_index[1] == 2)))
710 		; /* known index possibilities */
711 	else {
712 		dev_err(to_dev(arena), "Found an unknown padding scheme\n");
713 		return -ENXIO;
714 	}
715 
716 	arena->log_index[0] = log_index[0];
717 	arena->log_index[1] = log_index[1];
718 	dev_dbg(to_dev(arena), "log_index_0 = %d\n", log_index[0]);
719 	dev_dbg(to_dev(arena), "log_index_1 = %d\n", log_index[1]);
720 	return 0;
721 }
722 
723 static int btt_rtt_init(struct arena_info *arena)
724 {
725 	arena->rtt = kcalloc(arena->nfree, sizeof(u32), GFP_KERNEL);
726 	if (arena->rtt == NULL)
727 		return -ENOMEM;
728 
729 	return 0;
730 }
731 
732 static int btt_maplocks_init(struct arena_info *arena)
733 {
734 	u32 i;
735 
736 	arena->map_locks = kcalloc(arena->nfree, sizeof(struct aligned_lock),
737 				GFP_KERNEL);
738 	if (!arena->map_locks)
739 		return -ENOMEM;
740 
741 	for (i = 0; i < arena->nfree; i++)
742 		spin_lock_init(&arena->map_locks[i].lock);
743 
744 	return 0;
745 }
746 
747 static struct arena_info *alloc_arena(struct btt *btt, size_t size,
748 				size_t start, size_t arena_off)
749 {
750 	struct arena_info *arena;
751 	u64 logsize, mapsize, datasize;
752 	u64 available = size;
753 
754 	arena = kzalloc(sizeof(*arena), GFP_KERNEL);
755 	if (!arena)
756 		return NULL;
757 	arena->nd_btt = btt->nd_btt;
758 	arena->sector_size = btt->sector_size;
759 	mutex_init(&arena->err_lock);
760 
761 	if (!size)
762 		return arena;
763 
764 	arena->size = size;
765 	arena->external_lba_start = start;
766 	arena->external_lbasize = btt->lbasize;
767 	arena->internal_lbasize = roundup(arena->external_lbasize,
768 					INT_LBASIZE_ALIGNMENT);
769 	arena->nfree = BTT_DEFAULT_NFREE;
770 	arena->version_major = btt->nd_btt->version_major;
771 	arena->version_minor = btt->nd_btt->version_minor;
772 
773 	if (available % BTT_PG_SIZE)
774 		available -= (available % BTT_PG_SIZE);
775 
776 	/* Two pages are reserved for the super block and its copy */
777 	available -= 2 * BTT_PG_SIZE;
778 
779 	/* The log takes a fixed amount of space based on nfree */
780 	logsize = roundup(arena->nfree * LOG_GRP_SIZE, BTT_PG_SIZE);
781 	available -= logsize;
782 
783 	/* Calculate optimal split between map and data area */
784 	arena->internal_nlba = div_u64(available - BTT_PG_SIZE,
785 			arena->internal_lbasize + MAP_ENT_SIZE);
786 	arena->external_nlba = arena->internal_nlba - arena->nfree;
787 
788 	mapsize = roundup((arena->external_nlba * MAP_ENT_SIZE), BTT_PG_SIZE);
789 	datasize = available - mapsize;
790 
791 	/* 'Absolute' values, relative to start of storage space */
792 	arena->infooff = arena_off;
793 	arena->dataoff = arena->infooff + BTT_PG_SIZE;
794 	arena->mapoff = arena->dataoff + datasize;
795 	arena->logoff = arena->mapoff + mapsize;
796 	arena->info2off = arena->logoff + logsize;
797 
798 	/* Default log indices are (0,1) */
799 	arena->log_index[0] = 0;
800 	arena->log_index[1] = 1;
801 	return arena;
802 }
803 
804 static void free_arenas(struct btt *btt)
805 {
806 	struct arena_info *arena, *next;
807 
808 	list_for_each_entry_safe(arena, next, &btt->arena_list, list) {
809 		list_del(&arena->list);
810 		kfree(arena->rtt);
811 		kfree(arena->map_locks);
812 		kfree(arena->freelist);
813 		debugfs_remove_recursive(arena->debugfs_dir);
814 		kfree(arena);
815 	}
816 }
817 
818 /*
819  * This function reads an existing valid btt superblock and
820  * populates the corresponding arena_info struct
821  */
822 static void parse_arena_meta(struct arena_info *arena, struct btt_sb *super,
823 				u64 arena_off)
824 {
825 	arena->internal_nlba = le32_to_cpu(super->internal_nlba);
826 	arena->internal_lbasize = le32_to_cpu(super->internal_lbasize);
827 	arena->external_nlba = le32_to_cpu(super->external_nlba);
828 	arena->external_lbasize = le32_to_cpu(super->external_lbasize);
829 	arena->nfree = le32_to_cpu(super->nfree);
830 	arena->version_major = le16_to_cpu(super->version_major);
831 	arena->version_minor = le16_to_cpu(super->version_minor);
832 
833 	arena->nextoff = (super->nextoff == 0) ? 0 : (arena_off +
834 			le64_to_cpu(super->nextoff));
835 	arena->infooff = arena_off;
836 	arena->dataoff = arena_off + le64_to_cpu(super->dataoff);
837 	arena->mapoff = arena_off + le64_to_cpu(super->mapoff);
838 	arena->logoff = arena_off + le64_to_cpu(super->logoff);
839 	arena->info2off = arena_off + le64_to_cpu(super->info2off);
840 
841 	arena->size = (le64_to_cpu(super->nextoff) > 0)
842 		? (le64_to_cpu(super->nextoff))
843 		: (arena->info2off - arena->infooff + BTT_PG_SIZE);
844 
845 	arena->flags = le32_to_cpu(super->flags);
846 }
847 
848 static int discover_arenas(struct btt *btt)
849 {
850 	int ret = 0;
851 	struct arena_info *arena;
852 	size_t remaining = btt->rawsize;
853 	u64 cur_nlba = 0;
854 	size_t cur_off = 0;
855 	int num_arenas = 0;
856 
857 	struct btt_sb *super __free(kfree) = kzalloc(sizeof(*super), GFP_KERNEL);
858 	if (!super)
859 		return -ENOMEM;
860 
861 	while (remaining) {
862 		/* Alloc memory for arena */
863 		arena = alloc_arena(btt, 0, 0, 0);
864 		if (!arena)
865 			return -ENOMEM;
866 
867 		arena->infooff = cur_off;
868 		ret = btt_info_read(arena, super);
869 		if (ret)
870 			goto out;
871 
872 		if (!nd_btt_arena_is_valid(btt->nd_btt, super)) {
873 			if (remaining == btt->rawsize) {
874 				btt->init_state = INIT_NOTFOUND;
875 				dev_info(to_dev(arena), "No existing arenas\n");
876 				goto out;
877 			} else {
878 				dev_err(to_dev(arena),
879 						"Found corrupted metadata!\n");
880 				ret = -ENODEV;
881 				goto out;
882 			}
883 		}
884 
885 		arena->external_lba_start = cur_nlba;
886 		parse_arena_meta(arena, super, cur_off);
887 
888 		ret = log_set_indices(arena);
889 		if (ret) {
890 			dev_err(to_dev(arena),
891 				"Unable to deduce log/padding indices\n");
892 			goto out;
893 		}
894 
895 		ret = btt_freelist_init(arena);
896 		if (ret)
897 			goto out;
898 
899 		ret = btt_rtt_init(arena);
900 		if (ret)
901 			goto out;
902 
903 		ret = btt_maplocks_init(arena);
904 		if (ret)
905 			goto out;
906 
907 		list_add_tail(&arena->list, &btt->arena_list);
908 
909 		remaining -= arena->size;
910 		cur_off += arena->size;
911 		cur_nlba += arena->external_nlba;
912 		num_arenas++;
913 
914 		if (arena->nextoff == 0)
915 			break;
916 	}
917 	btt->num_arenas = num_arenas;
918 	btt->nlba = cur_nlba;
919 	btt->init_state = INIT_READY;
920 
921 	return ret;
922 
923  out:
924 	kfree(arena);
925 	free_arenas(btt);
926 	return ret;
927 }
928 
929 static int create_arenas(struct btt *btt)
930 {
931 	size_t remaining = btt->rawsize;
932 	size_t cur_off = 0;
933 
934 	while (remaining) {
935 		struct arena_info *arena;
936 		size_t arena_size = min_t(u64, ARENA_MAX_SIZE, remaining);
937 
938 		remaining -= arena_size;
939 		if (arena_size < ARENA_MIN_SIZE)
940 			break;
941 
942 		arena = alloc_arena(btt, arena_size, btt->nlba, cur_off);
943 		if (!arena) {
944 			free_arenas(btt);
945 			return -ENOMEM;
946 		}
947 		btt->nlba += arena->external_nlba;
948 		if (remaining >= ARENA_MIN_SIZE)
949 			arena->nextoff = arena->size;
950 		else
951 			arena->nextoff = 0;
952 		cur_off += arena_size;
953 		list_add_tail(&arena->list, &btt->arena_list);
954 	}
955 
956 	return 0;
957 }
958 
959 /*
960  * This function completes arena initialization by writing
961  * all the metadata.
962  * It is only called for an uninitialized arena when a write
963  * to that arena occurs for the first time.
964  */
965 static int btt_arena_write_layout(struct arena_info *arena)
966 {
967 	int ret;
968 	u64 sum;
969 	struct btt_sb *super;
970 	struct nd_btt *nd_btt = arena->nd_btt;
971 	const uuid_t *parent_uuid = nd_dev_to_uuid(&nd_btt->ndns->dev);
972 
973 	ret = btt_map_init(arena);
974 	if (ret)
975 		return ret;
976 
977 	ret = btt_log_init(arena);
978 	if (ret)
979 		return ret;
980 
981 	super = kzalloc(sizeof(*super), GFP_NOIO);
982 	if (!super)
983 		return -ENOMEM;
984 
985 	strscpy(super->signature, BTT_SIG, sizeof(super->signature));
986 	export_uuid(super->uuid, nd_btt->uuid);
987 	export_uuid(super->parent_uuid, parent_uuid);
988 	super->flags = cpu_to_le32(arena->flags);
989 	super->version_major = cpu_to_le16(arena->version_major);
990 	super->version_minor = cpu_to_le16(arena->version_minor);
991 	super->external_lbasize = cpu_to_le32(arena->external_lbasize);
992 	super->external_nlba = cpu_to_le32(arena->external_nlba);
993 	super->internal_lbasize = cpu_to_le32(arena->internal_lbasize);
994 	super->internal_nlba = cpu_to_le32(arena->internal_nlba);
995 	super->nfree = cpu_to_le32(arena->nfree);
996 	super->infosize = cpu_to_le32(sizeof(struct btt_sb));
997 	super->nextoff = cpu_to_le64(arena->nextoff);
998 	/*
999 	 * Subtract arena->infooff (arena start) so numbers are relative
1000 	 * to 'this' arena
1001 	 */
1002 	super->dataoff = cpu_to_le64(arena->dataoff - arena->infooff);
1003 	super->mapoff = cpu_to_le64(arena->mapoff - arena->infooff);
1004 	super->logoff = cpu_to_le64(arena->logoff - arena->infooff);
1005 	super->info2off = cpu_to_le64(arena->info2off - arena->infooff);
1006 
1007 	super->flags = 0;
1008 	sum = nd_sb_checksum((struct nd_gen_sb *) super);
1009 	super->checksum = cpu_to_le64(sum);
1010 
1011 	ret = btt_info_write(arena, super);
1012 
1013 	kfree(super);
1014 	return ret;
1015 }
1016 
1017 /*
1018  * This function completes the initialization for the BTT namespace
1019  * such that it is ready to accept IOs
1020  */
1021 static int btt_meta_init(struct btt *btt)
1022 {
1023 	int ret = 0;
1024 	struct arena_info *arena;
1025 
1026 	mutex_lock(&btt->init_lock);
1027 	list_for_each_entry(arena, &btt->arena_list, list) {
1028 		ret = btt_arena_write_layout(arena);
1029 		if (ret)
1030 			goto unlock;
1031 
1032 		ret = btt_freelist_init(arena);
1033 		if (ret)
1034 			goto unlock;
1035 
1036 		ret = btt_rtt_init(arena);
1037 		if (ret)
1038 			goto unlock;
1039 
1040 		ret = btt_maplocks_init(arena);
1041 		if (ret)
1042 			goto unlock;
1043 	}
1044 
1045 	btt->init_state = INIT_READY;
1046 
1047  unlock:
1048 	mutex_unlock(&btt->init_lock);
1049 	return ret;
1050 }
1051 
1052 static u32 btt_meta_size(struct btt *btt)
1053 {
1054 	return btt->lbasize - btt->sector_size;
1055 }
1056 
1057 /*
1058  * This function calculates the arena in which the given LBA lies
1059  * by doing a linear walk. This is acceptable since we expect only
1060  * a few arenas. If we have backing devices that get much larger,
1061  * we can construct a balanced binary tree of arenas at init time
1062  * so that this range search becomes faster.
1063  */
1064 static int lba_to_arena(struct btt *btt, sector_t sector, __u32 *premap,
1065 				struct arena_info **arena)
1066 {
1067 	struct arena_info *arena_list;
1068 	__u64 lba = div_u64(sector << SECTOR_SHIFT, btt->sector_size);
1069 
1070 	list_for_each_entry(arena_list, &btt->arena_list, list) {
1071 		if (lba < arena_list->external_nlba) {
1072 			*arena = arena_list;
1073 			*premap = lba;
1074 			return 0;
1075 		}
1076 		lba -= arena_list->external_nlba;
1077 	}
1078 
1079 	return -EIO;
1080 }
1081 
1082 /*
1083  * The following (lock_map, unlock_map) are mostly just to improve
1084  * readability, since they index into an array of locks
1085  */
1086 static void lock_map(struct arena_info *arena, u32 premap)
1087 		__acquires(&arena->map_locks[idx].lock)
1088 {
1089 	u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree;
1090 
1091 	spin_lock(&arena->map_locks[idx].lock);
1092 }
1093 
1094 static void unlock_map(struct arena_info *arena, u32 premap)
1095 		__releases(&arena->map_locks[idx].lock)
1096 {
1097 	u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree;
1098 
1099 	spin_unlock(&arena->map_locks[idx].lock);
1100 }
1101 
1102 static int btt_data_read(struct arena_info *arena, struct page *page,
1103 			unsigned int off, u32 lba, u32 len)
1104 {
1105 	int ret;
1106 	u64 nsoff = to_namespace_offset(arena, lba);
1107 	void *mem = kmap_atomic(page);
1108 
1109 	ret = arena_read_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC);
1110 	kunmap_atomic(mem);
1111 
1112 	return ret;
1113 }
1114 
1115 static int btt_data_write(struct arena_info *arena, u32 lba,
1116 			struct page *page, unsigned int off, u32 len)
1117 {
1118 	int ret;
1119 	u64 nsoff = to_namespace_offset(arena, lba);
1120 	void *mem = kmap_atomic(page);
1121 
1122 	ret = arena_write_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC);
1123 	kunmap_atomic(mem);
1124 
1125 	return ret;
1126 }
1127 
1128 static void zero_fill_data(struct page *page, unsigned int off, u32 len)
1129 {
1130 	void *mem = kmap_atomic(page);
1131 
1132 	memset(mem + off, 0, len);
1133 	kunmap_atomic(mem);
1134 }
1135 
1136 #ifdef CONFIG_BLK_DEV_INTEGRITY
1137 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip,
1138 			struct arena_info *arena, u32 postmap, int rw)
1139 {
1140 	unsigned int len = btt_meta_size(btt);
1141 	u64 meta_nsoff;
1142 	int ret = 0;
1143 
1144 	if (bip == NULL)
1145 		return 0;
1146 
1147 	meta_nsoff = to_namespace_offset(arena, postmap) + btt->sector_size;
1148 
1149 	while (len) {
1150 		unsigned int cur_len;
1151 		struct bio_vec bv;
1152 		void *mem;
1153 
1154 		bv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1155 		/*
1156 		 * The 'bv' obtained from bvec_iter_bvec has its .bv_len and
1157 		 * .bv_offset already adjusted for iter->bi_bvec_done, and we
1158 		 * can use those directly
1159 		 */
1160 
1161 		cur_len = min(len, bv.bv_len);
1162 		mem = bvec_kmap_local(&bv);
1163 		if (rw)
1164 			ret = arena_write_bytes(arena, meta_nsoff, mem, cur_len,
1165 					NVDIMM_IO_ATOMIC);
1166 		else
1167 			ret = arena_read_bytes(arena, meta_nsoff, mem, cur_len,
1168 					NVDIMM_IO_ATOMIC);
1169 
1170 		kunmap_local(mem);
1171 		if (ret)
1172 			return ret;
1173 
1174 		len -= cur_len;
1175 		meta_nsoff += cur_len;
1176 		if (!bvec_iter_advance(bip->bip_vec, &bip->bip_iter, cur_len))
1177 			return -EIO;
1178 	}
1179 
1180 	return ret;
1181 }
1182 
1183 #else /* CONFIG_BLK_DEV_INTEGRITY */
1184 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip,
1185 			struct arena_info *arena, u32 postmap, int rw)
1186 {
1187 	return 0;
1188 }
1189 #endif
1190 
1191 static int btt_read_pg(struct btt *btt, struct bio_integrity_payload *bip,
1192 			struct page *page, unsigned int off, sector_t sector,
1193 			unsigned int len)
1194 {
1195 	int ret = 0;
1196 	int t_flag, e_flag;
1197 	struct arena_info *arena = NULL;
1198 	u32 lane = 0, premap, postmap;
1199 
1200 	while (len) {
1201 		u32 cur_len;
1202 
1203 		lane = nd_region_acquire_lane(btt->nd_region);
1204 
1205 		ret = lba_to_arena(btt, sector, &premap, &arena);
1206 		if (ret)
1207 			goto out_lane;
1208 
1209 		cur_len = min(btt->sector_size, len);
1210 
1211 		ret = btt_map_read(arena, premap, &postmap, &t_flag, &e_flag,
1212 				NVDIMM_IO_ATOMIC);
1213 		if (ret)
1214 			goto out_lane;
1215 
1216 		/*
1217 		 * We loop to make sure that the post map LBA didn't change
1218 		 * from under us between writing the RTT and doing the actual
1219 		 * read.
1220 		 */
1221 		while (1) {
1222 			u32 new_map;
1223 			int new_t, new_e;
1224 
1225 			if (t_flag) {
1226 				zero_fill_data(page, off, cur_len);
1227 				goto out_lane;
1228 			}
1229 
1230 			if (e_flag) {
1231 				ret = -EIO;
1232 				goto out_lane;
1233 			}
1234 
1235 			arena->rtt[lane] = RTT_VALID | postmap;
1236 			/*
1237 			 * Barrier to make sure this write is not reordered
1238 			 * to do the verification map_read before the RTT store
1239 			 */
1240 			barrier();
1241 
1242 			ret = btt_map_read(arena, premap, &new_map, &new_t,
1243 						&new_e, NVDIMM_IO_ATOMIC);
1244 			if (ret)
1245 				goto out_rtt;
1246 
1247 			if ((postmap == new_map) && (t_flag == new_t) &&
1248 					(e_flag == new_e))
1249 				break;
1250 
1251 			postmap = new_map;
1252 			t_flag = new_t;
1253 			e_flag = new_e;
1254 		}
1255 
1256 		ret = btt_data_read(arena, page, off, postmap, cur_len);
1257 		if (ret) {
1258 			/* Media error - set the e_flag */
1259 			if (btt_map_write(arena, premap, postmap, 0, 1, NVDIMM_IO_ATOMIC))
1260 				dev_warn_ratelimited(to_dev(arena),
1261 					"Error persistently tracking bad blocks at %#x\n",
1262 					premap);
1263 			goto out_rtt;
1264 		}
1265 
1266 		if (bip) {
1267 			ret = btt_rw_integrity(btt, bip, arena, postmap, READ);
1268 			if (ret)
1269 				goto out_rtt;
1270 		}
1271 
1272 		arena->rtt[lane] = RTT_INVALID;
1273 		nd_region_release_lane(btt->nd_region, lane);
1274 
1275 		len -= cur_len;
1276 		off += cur_len;
1277 		sector += btt->sector_size >> SECTOR_SHIFT;
1278 	}
1279 
1280 	return 0;
1281 
1282  out_rtt:
1283 	arena->rtt[lane] = RTT_INVALID;
1284  out_lane:
1285 	nd_region_release_lane(btt->nd_region, lane);
1286 	return ret;
1287 }
1288 
1289 /*
1290  * Normally, arena_{read,write}_bytes will take care of the initial offset
1291  * adjustment, but in the case of btt_is_badblock, where we query is_bad_pmem,
1292  * we need the final, raw namespace offset here
1293  */
1294 static bool btt_is_badblock(struct btt *btt, struct arena_info *arena,
1295 		u32 postmap)
1296 {
1297 	u64 nsoff = adjust_initial_offset(arena->nd_btt,
1298 			to_namespace_offset(arena, postmap));
1299 	sector_t phys_sector = nsoff >> 9;
1300 
1301 	return is_bad_pmem(btt->phys_bb, phys_sector, arena->internal_lbasize);
1302 }
1303 
1304 static int btt_write_pg(struct btt *btt, struct bio_integrity_payload *bip,
1305 			sector_t sector, struct page *page, unsigned int off,
1306 			unsigned int len)
1307 {
1308 	int ret = 0;
1309 	struct arena_info *arena = NULL;
1310 	u32 premap = 0, old_postmap, new_postmap, lane = 0, i;
1311 	struct log_entry log;
1312 	int sub;
1313 
1314 	while (len) {
1315 		u32 cur_len;
1316 		int e_flag;
1317 
1318  retry:
1319 		lane = nd_region_acquire_lane(btt->nd_region);
1320 
1321 		ret = lba_to_arena(btt, sector, &premap, &arena);
1322 		if (ret)
1323 			goto out_lane;
1324 		cur_len = min(btt->sector_size, len);
1325 
1326 		if ((arena->flags & IB_FLAG_ERROR_MASK) != 0) {
1327 			ret = -EIO;
1328 			goto out_lane;
1329 		}
1330 
1331 		if (btt_is_badblock(btt, arena, arena->freelist[lane].block))
1332 			arena->freelist[lane].has_err = 1;
1333 
1334 		if (mutex_is_locked(&arena->err_lock)
1335 				|| arena->freelist[lane].has_err) {
1336 			nd_region_release_lane(btt->nd_region, lane);
1337 
1338 			ret = arena_clear_freelist_error(arena, lane);
1339 			if (ret)
1340 				return ret;
1341 
1342 			/* OK to acquire a different lane/free block */
1343 			goto retry;
1344 		}
1345 
1346 		new_postmap = arena->freelist[lane].block;
1347 
1348 		/* Wait if the new block is being read from */
1349 		for (i = 0; i < arena->nfree; i++)
1350 			while (arena->rtt[i] == (RTT_VALID | new_postmap))
1351 				cpu_relax();
1352 
1353 
1354 		if (new_postmap >= arena->internal_nlba) {
1355 			ret = -EIO;
1356 			goto out_lane;
1357 		}
1358 
1359 		ret = btt_data_write(arena, new_postmap, page, off, cur_len);
1360 		if (ret)
1361 			goto out_lane;
1362 
1363 		if (bip) {
1364 			ret = btt_rw_integrity(btt, bip, arena, new_postmap,
1365 						WRITE);
1366 			if (ret)
1367 				goto out_lane;
1368 		}
1369 
1370 		lock_map(arena, premap);
1371 		ret = btt_map_read(arena, premap, &old_postmap, NULL, &e_flag,
1372 				NVDIMM_IO_ATOMIC);
1373 		if (ret)
1374 			goto out_map;
1375 		if (old_postmap >= arena->internal_nlba) {
1376 			ret = -EIO;
1377 			goto out_map;
1378 		}
1379 		if (e_flag)
1380 			set_e_flag(old_postmap);
1381 
1382 		log.lba = cpu_to_le32(premap);
1383 		log.old_map = cpu_to_le32(old_postmap);
1384 		log.new_map = cpu_to_le32(new_postmap);
1385 		log.seq = cpu_to_le32(arena->freelist[lane].seq);
1386 		sub = arena->freelist[lane].sub;
1387 		ret = btt_flog_write(arena, lane, sub, &log);
1388 		if (ret)
1389 			goto out_map;
1390 
1391 		ret = btt_map_write(arena, premap, new_postmap, 0, 0,
1392 			NVDIMM_IO_ATOMIC);
1393 		if (ret)
1394 			goto out_map;
1395 
1396 		unlock_map(arena, premap);
1397 		nd_region_release_lane(btt->nd_region, lane);
1398 
1399 		if (e_flag) {
1400 			ret = arena_clear_freelist_error(arena, lane);
1401 			if (ret)
1402 				return ret;
1403 		}
1404 
1405 		len -= cur_len;
1406 		off += cur_len;
1407 		sector += btt->sector_size >> SECTOR_SHIFT;
1408 	}
1409 
1410 	return 0;
1411 
1412  out_map:
1413 	unlock_map(arena, premap);
1414  out_lane:
1415 	nd_region_release_lane(btt->nd_region, lane);
1416 	return ret;
1417 }
1418 
1419 static int btt_do_bvec(struct btt *btt, struct bio_integrity_payload *bip,
1420 			struct page *page, unsigned int len, unsigned int off,
1421 			enum req_op op, sector_t sector)
1422 {
1423 	int ret;
1424 
1425 	if (!op_is_write(op)) {
1426 		ret = btt_read_pg(btt, bip, page, off, sector, len);
1427 		flush_dcache_page(page);
1428 	} else {
1429 		flush_dcache_page(page);
1430 		ret = btt_write_pg(btt, bip, sector, page, off, len);
1431 	}
1432 
1433 	return ret;
1434 }
1435 
1436 static void btt_submit_bio(struct bio *bio)
1437 {
1438 	struct bio_integrity_payload *bip = bio_integrity(bio);
1439 	struct btt *btt = bio->bi_bdev->bd_disk->private_data;
1440 	struct bvec_iter iter;
1441 	unsigned long start;
1442 	struct bio_vec bvec;
1443 	int err = 0;
1444 	bool do_acct;
1445 
1446 	if (!bio_integrity_prep(bio))
1447 		return;
1448 
1449 	do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
1450 	if (do_acct)
1451 		start = bio_start_io_acct(bio);
1452 	bio_for_each_segment(bvec, bio, iter) {
1453 		unsigned int len = bvec.bv_len;
1454 
1455 		if (len > PAGE_SIZE || len < btt->sector_size ||
1456 				len % btt->sector_size) {
1457 			dev_err_ratelimited(&btt->nd_btt->dev,
1458 				"unaligned bio segment (len: %d)\n", len);
1459 			bio->bi_status = BLK_STS_IOERR;
1460 			break;
1461 		}
1462 
1463 		err = btt_do_bvec(btt, bip, bvec.bv_page, len, bvec.bv_offset,
1464 				  bio_op(bio), iter.bi_sector);
1465 		if (err) {
1466 			dev_err(&btt->nd_btt->dev,
1467 					"io error in %s sector %lld, len %d,\n",
1468 					(op_is_write(bio_op(bio))) ? "WRITE" :
1469 					"READ",
1470 					(unsigned long long) iter.bi_sector, len);
1471 			bio->bi_status = errno_to_blk_status(err);
1472 			break;
1473 		}
1474 	}
1475 	if (do_acct)
1476 		bio_end_io_acct(bio, start);
1477 
1478 	bio_endio(bio);
1479 }
1480 
1481 static int btt_getgeo(struct block_device *bd, struct hd_geometry *geo)
1482 {
1483 	/* some standard values */
1484 	geo->heads = 1 << 6;
1485 	geo->sectors = 1 << 5;
1486 	geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1487 	return 0;
1488 }
1489 
1490 static const struct block_device_operations btt_fops = {
1491 	.owner =		THIS_MODULE,
1492 	.submit_bio =		btt_submit_bio,
1493 	.getgeo =		btt_getgeo,
1494 };
1495 
1496 static int btt_blk_init(struct btt *btt)
1497 {
1498 	struct nd_btt *nd_btt = btt->nd_btt;
1499 	struct nd_namespace_common *ndns = nd_btt->ndns;
1500 	struct queue_limits lim = {
1501 		.logical_block_size	= btt->sector_size,
1502 		.max_hw_sectors		= UINT_MAX,
1503 		.max_integrity_segments	= 1,
1504 		.features		= BLK_FEAT_SYNCHRONOUS,
1505 	};
1506 	int rc;
1507 
1508 	if (btt_meta_size(btt) && IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
1509 		lim.integrity.tuple_size = btt_meta_size(btt);
1510 		lim.integrity.tag_size = btt_meta_size(btt);
1511 	}
1512 
1513 	btt->btt_disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
1514 	if (IS_ERR(btt->btt_disk))
1515 		return PTR_ERR(btt->btt_disk);
1516 
1517 	nvdimm_namespace_disk_name(ndns, btt->btt_disk->disk_name);
1518 	btt->btt_disk->first_minor = 0;
1519 	btt->btt_disk->fops = &btt_fops;
1520 	btt->btt_disk->private_data = btt;
1521 
1522 	set_capacity(btt->btt_disk, btt->nlba * btt->sector_size >> 9);
1523 	rc = device_add_disk(&btt->nd_btt->dev, btt->btt_disk, NULL);
1524 	if (rc)
1525 		goto out_cleanup_disk;
1526 
1527 	btt->nd_btt->size = btt->nlba * (u64)btt->sector_size;
1528 	nvdimm_check_and_set_ro(btt->btt_disk);
1529 
1530 	return 0;
1531 
1532 out_cleanup_disk:
1533 	put_disk(btt->btt_disk);
1534 	return rc;
1535 }
1536 
1537 static void btt_blk_cleanup(struct btt *btt)
1538 {
1539 	del_gendisk(btt->btt_disk);
1540 	put_disk(btt->btt_disk);
1541 }
1542 
1543 /**
1544  * btt_init - initialize a block translation table for the given device
1545  * @nd_btt:	device with BTT geometry and backing device info
1546  * @rawsize:	raw size in bytes of the backing device
1547  * @lbasize:	lba size of the backing device
1548  * @uuid:	A uuid for the backing device - this is stored on media
1549  * @nd_region:	&struct nd_region for the REGION device
1550  *
1551  * Initialize a Block Translation Table on a backing device to provide
1552  * single sector power fail atomicity.
1553  *
1554  * Context:
1555  * Might sleep.
1556  *
1557  * Returns:
1558  * Pointer to a new struct btt on success, NULL on failure.
1559  */
1560 static struct btt *btt_init(struct nd_btt *nd_btt, unsigned long long rawsize,
1561 			    u32 lbasize, uuid_t *uuid,
1562 			    struct nd_region *nd_region)
1563 {
1564 	int ret;
1565 	struct btt *btt;
1566 	struct nd_namespace_io *nsio;
1567 	struct device *dev = &nd_btt->dev;
1568 
1569 	btt = devm_kzalloc(dev, sizeof(struct btt), GFP_KERNEL);
1570 	if (!btt)
1571 		return NULL;
1572 
1573 	btt->nd_btt = nd_btt;
1574 	btt->rawsize = rawsize;
1575 	btt->lbasize = lbasize;
1576 	btt->sector_size = ((lbasize >= 4096) ? 4096 : 512);
1577 	INIT_LIST_HEAD(&btt->arena_list);
1578 	mutex_init(&btt->init_lock);
1579 	btt->nd_region = nd_region;
1580 	nsio = to_nd_namespace_io(&nd_btt->ndns->dev);
1581 	btt->phys_bb = &nsio->bb;
1582 
1583 	ret = discover_arenas(btt);
1584 	if (ret) {
1585 		dev_err(dev, "init: error in arena_discover: %d\n", ret);
1586 		return NULL;
1587 	}
1588 
1589 	if (btt->init_state != INIT_READY && nd_region->ro) {
1590 		dev_warn(dev, "%s is read-only, unable to init btt metadata\n",
1591 				dev_name(&nd_region->dev));
1592 		return NULL;
1593 	} else if (btt->init_state != INIT_READY) {
1594 		btt->num_arenas = (rawsize / ARENA_MAX_SIZE) +
1595 			((rawsize % ARENA_MAX_SIZE) ? 1 : 0);
1596 		dev_dbg(dev, "init: %d arenas for %llu rawsize\n",
1597 				btt->num_arenas, rawsize);
1598 
1599 		ret = create_arenas(btt);
1600 		if (ret) {
1601 			dev_info(dev, "init: create_arenas: %d\n", ret);
1602 			return NULL;
1603 		}
1604 
1605 		ret = btt_meta_init(btt);
1606 		if (ret) {
1607 			dev_err(dev, "init: error in meta_init: %d\n", ret);
1608 			return NULL;
1609 		}
1610 	}
1611 
1612 	ret = btt_blk_init(btt);
1613 	if (ret) {
1614 		dev_err(dev, "init: error in blk_init: %d\n", ret);
1615 		return NULL;
1616 	}
1617 
1618 	btt_debugfs_init(btt);
1619 
1620 	return btt;
1621 }
1622 
1623 /**
1624  * btt_fini - de-initialize a BTT
1625  * @btt:	the BTT handle that was generated by btt_init
1626  *
1627  * De-initialize a Block Translation Table on device removal
1628  *
1629  * Context:
1630  * Might sleep.
1631  */
1632 static void btt_fini(struct btt *btt)
1633 {
1634 	if (btt) {
1635 		btt_blk_cleanup(btt);
1636 		free_arenas(btt);
1637 		debugfs_remove_recursive(btt->debugfs_dir);
1638 	}
1639 }
1640 
1641 int nvdimm_namespace_attach_btt(struct nd_namespace_common *ndns)
1642 {
1643 	struct nd_btt *nd_btt = to_nd_btt(ndns->claim);
1644 	struct nd_region *nd_region;
1645 	struct btt_sb *btt_sb;
1646 	struct btt *btt;
1647 	size_t size, rawsize;
1648 	int rc;
1649 
1650 	if (!nd_btt->uuid || !nd_btt->ndns || !nd_btt->lbasize) {
1651 		dev_dbg(&nd_btt->dev, "incomplete btt configuration\n");
1652 		return -ENODEV;
1653 	}
1654 
1655 	btt_sb = devm_kzalloc(&nd_btt->dev, sizeof(*btt_sb), GFP_KERNEL);
1656 	if (!btt_sb)
1657 		return -ENOMEM;
1658 
1659 	size = nvdimm_namespace_capacity(ndns);
1660 	rc = devm_namespace_enable(&nd_btt->dev, ndns, size);
1661 	if (rc)
1662 		return rc;
1663 
1664 	/*
1665 	 * If this returns < 0, that is ok as it just means there wasn't
1666 	 * an existing BTT, and we're creating a new one. We still need to
1667 	 * call this as we need the version dependent fields in nd_btt to be
1668 	 * set correctly based on the holder class
1669 	 */
1670 	nd_btt_version(nd_btt, ndns, btt_sb);
1671 
1672 	rawsize = size - nd_btt->initial_offset;
1673 	if (rawsize < ARENA_MIN_SIZE) {
1674 		dev_dbg(&nd_btt->dev, "%s must be at least %ld bytes\n",
1675 				dev_name(&ndns->dev),
1676 				ARENA_MIN_SIZE + nd_btt->initial_offset);
1677 		return -ENXIO;
1678 	}
1679 	nd_region = to_nd_region(nd_btt->dev.parent);
1680 	btt = btt_init(nd_btt, rawsize, nd_btt->lbasize, nd_btt->uuid,
1681 		       nd_region);
1682 	if (!btt)
1683 		return -ENOMEM;
1684 	nd_btt->btt = btt;
1685 
1686 	return 0;
1687 }
1688 EXPORT_SYMBOL(nvdimm_namespace_attach_btt);
1689 
1690 int nvdimm_namespace_detach_btt(struct nd_btt *nd_btt)
1691 {
1692 	struct btt *btt = nd_btt->btt;
1693 
1694 	btt_fini(btt);
1695 	nd_btt->btt = NULL;
1696 
1697 	return 0;
1698 }
1699 EXPORT_SYMBOL(nvdimm_namespace_detach_btt);
1700 
1701 static int __init nd_btt_init(void)
1702 {
1703 	int rc = 0;
1704 
1705 	debugfs_root = debugfs_create_dir("btt", NULL);
1706 	if (IS_ERR_OR_NULL(debugfs_root))
1707 		rc = -ENXIO;
1708 
1709 	return rc;
1710 }
1711 
1712 static void __exit nd_btt_exit(void)
1713 {
1714 	debugfs_remove_recursive(debugfs_root);
1715 }
1716 
1717 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_BTT);
1718 MODULE_AUTHOR("Vishal Verma <vishal.l.verma@linux.intel.com>");
1719 MODULE_DESCRIPTION("NVDIMM Block Translation Table");
1720 MODULE_LICENSE("GPL v2");
1721 module_init(nd_btt_init);
1722 module_exit(nd_btt_exit);
1723