1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2015 Intel Corporation. All rights reserved. 8 * Copyright(c) 2017 T-Platforms. All Rights Reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * BSD LICENSE 15 * 16 * Copyright(c) 2015 Intel Corporation. All rights reserved. 17 * Copyright(c) 2017 T-Platforms. All Rights Reserved. 18 * 19 * Redistribution and use in source and binary forms, with or without 20 * modification, are permitted provided that the following conditions 21 * are met: 22 * 23 * * Redistributions of source code must retain the above copyright 24 * notice, this list of conditions and the following disclaimer. 25 * * Redistributions in binary form must reproduce the above copy 26 * notice, this list of conditions and the following disclaimer in 27 * the documentation and/or other materials provided with the 28 * distribution. 29 * * Neither the name of Intel Corporation nor the names of its 30 * contributors may be used to endorse or promote products derived 31 * from this software without specific prior written permission. 32 * 33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 44 * 45 * PCIe NTB Perf Linux driver 46 */ 47 48 /* 49 * How to use this tool, by example. 50 * 51 * Assuming $DBG_DIR is something like: 52 * '/sys/kernel/debug/ntb_perf/0000:00:03.0' 53 * Suppose aside from local device there is at least one remote device 54 * connected to NTB with index 0. 55 *----------------------------------------------------------------------------- 56 * Eg: install driver with specified chunk/total orders and dma-enabled flag 57 * 58 * root@self# insmod ntb_perf.ko chunk_order=19 total_order=28 use_dma 59 *----------------------------------------------------------------------------- 60 * Eg: check NTB ports (index) and MW mapping information 61 * 62 * root@self# cat $DBG_DIR/info 63 *----------------------------------------------------------------------------- 64 * Eg: start performance test with peer (index 0) and get the test metrics 65 * 66 * root@self# echo 0 > $DBG_DIR/run 67 * root@self# cat $DBG_DIR/run 68 */ 69 70 #include <linux/init.h> 71 #include <linux/kernel.h> 72 #include <linux/module.h> 73 #include <linux/sched.h> 74 #include <linux/wait.h> 75 #include <linux/dma-mapping.h> 76 #include <linux/dmaengine.h> 77 #include <linux/pci.h> 78 #include <linux/ktime.h> 79 #include <linux/slab.h> 80 #include <linux/delay.h> 81 #include <linux/sizes.h> 82 #include <linux/workqueue.h> 83 #include <linux/debugfs.h> 84 #include <linux/random.h> 85 #include <linux/ntb.h> 86 87 #define DRIVER_NAME "ntb_perf" 88 #define DRIVER_VERSION "2.0" 89 90 MODULE_LICENSE("Dual BSD/GPL"); 91 MODULE_VERSION(DRIVER_VERSION); 92 MODULE_AUTHOR("Dave Jiang <dave.jiang@intel.com>"); 93 MODULE_DESCRIPTION("PCIe NTB Performance Measurement Tool"); 94 95 #define MAX_THREADS_CNT 32 96 #define DEF_THREADS_CNT 1 97 #define MAX_CHUNK_SIZE SZ_1M 98 #define MAX_CHUNK_ORDER 20 /* no larger than 1M */ 99 100 #define DMA_TRIES 100 101 #define DMA_MDELAY 10 102 103 #define MSG_TRIES 1000 104 #define MSG_UDELAY_LOW 1000000 105 #define MSG_UDELAY_HIGH 2000000 106 107 #define PERF_BUF_LEN 1024 108 109 static unsigned long max_mw_size; 110 module_param(max_mw_size, ulong, 0644); 111 MODULE_PARM_DESC(max_mw_size, "Upper limit of memory window size"); 112 113 static unsigned char chunk_order = 19; /* 512K */ 114 module_param(chunk_order, byte, 0644); 115 MODULE_PARM_DESC(chunk_order, "Data chunk order [2^n] to transfer"); 116 117 static unsigned char total_order = 30; /* 1G */ 118 module_param(total_order, byte, 0644); 119 MODULE_PARM_DESC(total_order, "Total data order [2^n] to transfer"); 120 121 static bool use_dma; /* default to 0 */ 122 module_param(use_dma, bool, 0644); 123 MODULE_PARM_DESC(use_dma, "Use DMA engine to measure performance"); 124 125 /*============================================================================== 126 * Perf driver data definition 127 *============================================================================== 128 */ 129 130 enum perf_cmd { 131 PERF_CMD_INVAL = -1,/* invalid spad command */ 132 PERF_CMD_SSIZE = 0, /* send out buffer size */ 133 PERF_CMD_RSIZE = 1, /* recv in buffer size */ 134 PERF_CMD_SXLAT = 2, /* send in buffer xlat */ 135 PERF_CMD_RXLAT = 3, /* recv out buffer xlat */ 136 PERF_CMD_CLEAR = 4, /* clear allocated memory */ 137 PERF_STS_DONE = 5, /* init is done */ 138 PERF_STS_LNKUP = 6, /* link up state flag */ 139 }; 140 141 struct perf_ctx; 142 143 struct perf_peer { 144 struct perf_ctx *perf; 145 int pidx; 146 int gidx; 147 148 /* Outbound MW params */ 149 u64 outbuf_xlat; 150 resource_size_t outbuf_size; 151 void __iomem *outbuf; 152 phys_addr_t out_phys_addr; 153 dma_addr_t dma_dst_addr; 154 /* Inbound MW params */ 155 dma_addr_t inbuf_xlat; 156 resource_size_t inbuf_size; 157 void *inbuf; 158 159 /* NTB connection setup service */ 160 struct work_struct service; 161 unsigned long sts; 162 163 struct completion init_comp; 164 }; 165 #define to_peer_service(__work) \ 166 container_of(__work, struct perf_peer, service) 167 168 struct perf_thread { 169 struct perf_ctx *perf; 170 int tidx; 171 172 /* DMA-based test sync parameters */ 173 atomic_t dma_sync; 174 wait_queue_head_t dma_wait; 175 struct dma_chan *dma_chan; 176 177 /* Data source and measured statistics */ 178 void *src; 179 u64 copied; 180 ktime_t duration; 181 int status; 182 struct work_struct work; 183 }; 184 #define to_thread_work(__work) \ 185 container_of(__work, struct perf_thread, work) 186 187 struct perf_ctx { 188 struct ntb_dev *ntb; 189 190 /* Global device index and peers descriptors */ 191 int gidx; 192 int pcnt; 193 struct perf_peer *peers; 194 195 /* Performance measuring work-threads interface */ 196 unsigned long busy_flag; 197 wait_queue_head_t twait; 198 atomic_t tsync; 199 u8 tcnt; 200 struct perf_peer *test_peer; 201 struct perf_thread threads[MAX_THREADS_CNT]; 202 203 /* Scratchpad/Message IO operations */ 204 int (*cmd_send)(struct perf_peer *peer, enum perf_cmd cmd, u64 data); 205 int (*cmd_recv)(struct perf_ctx *perf, int *pidx, enum perf_cmd *cmd, 206 u64 *data); 207 208 struct dentry *dbgfs_dir; 209 }; 210 211 /* 212 * Scratchpads-base commands interface 213 */ 214 #define PERF_SPAD_CNT(_pcnt) \ 215 (3*((_pcnt) + 1)) 216 #define PERF_SPAD_CMD(_gidx) \ 217 (3*(_gidx)) 218 #define PERF_SPAD_LDATA(_gidx) \ 219 (3*(_gidx) + 1) 220 #define PERF_SPAD_HDATA(_gidx) \ 221 (3*(_gidx) + 2) 222 #define PERF_SPAD_NOTIFY(_gidx) \ 223 (BIT_ULL(_gidx)) 224 225 /* 226 * Messages-base commands interface 227 */ 228 #define PERF_MSG_CNT 3 229 #define PERF_MSG_CMD 0 230 #define PERF_MSG_LDATA 1 231 #define PERF_MSG_HDATA 2 232 233 /*============================================================================== 234 * Static data declarations 235 *============================================================================== 236 */ 237 238 static struct dentry *perf_dbgfs_topdir; 239 240 static struct workqueue_struct *perf_wq __read_mostly; 241 242 /*============================================================================== 243 * NTB cross-link commands execution service 244 *============================================================================== 245 */ 246 247 static void perf_terminate_test(struct perf_ctx *perf); 248 249 static inline bool perf_link_is_up(struct perf_peer *peer) 250 { 251 u64 link; 252 253 link = ntb_link_is_up(peer->perf->ntb, NULL, NULL); 254 return !!(link & BIT_ULL_MASK(peer->pidx)); 255 } 256 257 static int perf_spad_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, 258 u64 data) 259 { 260 struct perf_ctx *perf = peer->perf; 261 int try; 262 u32 sts; 263 264 dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data); 265 266 /* 267 * Perform predefined number of attempts before give up. 268 * We are sending the data to the port specific scratchpad, so 269 * to prevent a multi-port access race-condition. Additionally 270 * there is no need in local locking since only thread-safe 271 * service work is using this method. 272 */ 273 for (try = 0; try < MSG_TRIES; try++) { 274 if (!perf_link_is_up(peer)) 275 return -ENOLINK; 276 277 sts = ntb_peer_spad_read(perf->ntb, peer->pidx, 278 PERF_SPAD_CMD(perf->gidx)); 279 if (sts != PERF_CMD_INVAL) { 280 usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH); 281 continue; 282 } 283 284 ntb_peer_spad_write(perf->ntb, peer->pidx, 285 PERF_SPAD_LDATA(perf->gidx), 286 lower_32_bits(data)); 287 ntb_peer_spad_write(perf->ntb, peer->pidx, 288 PERF_SPAD_HDATA(perf->gidx), 289 upper_32_bits(data)); 290 ntb_peer_spad_write(perf->ntb, peer->pidx, 291 PERF_SPAD_CMD(perf->gidx), 292 cmd); 293 ntb_peer_db_set(perf->ntb, PERF_SPAD_NOTIFY(peer->gidx)); 294 295 dev_dbg(&perf->ntb->dev, "DB ring peer %#llx\n", 296 PERF_SPAD_NOTIFY(peer->gidx)); 297 298 break; 299 } 300 301 return try < MSG_TRIES ? 0 : -EAGAIN; 302 } 303 304 static int perf_spad_cmd_recv(struct perf_ctx *perf, int *pidx, 305 enum perf_cmd *cmd, u64 *data) 306 { 307 struct perf_peer *peer; 308 u32 val; 309 310 ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx)); 311 312 /* 313 * We start scanning all over, since cleared DB may have been set 314 * by any peer. Yes, it makes peer with smaller index being 315 * serviced with greater priority, but it's convenient for spad 316 * and message code unification and simplicity. 317 */ 318 for (*pidx = 0; *pidx < perf->pcnt; (*pidx)++) { 319 peer = &perf->peers[*pidx]; 320 321 if (!perf_link_is_up(peer)) 322 continue; 323 324 val = ntb_spad_read(perf->ntb, PERF_SPAD_CMD(peer->gidx)); 325 if (val == PERF_CMD_INVAL) 326 continue; 327 328 *cmd = val; 329 330 val = ntb_spad_read(perf->ntb, PERF_SPAD_LDATA(peer->gidx)); 331 *data = val; 332 333 val = ntb_spad_read(perf->ntb, PERF_SPAD_HDATA(peer->gidx)); 334 *data |= (u64)val << 32; 335 336 /* Next command can be retrieved from now */ 337 ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx), 338 PERF_CMD_INVAL); 339 340 dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data); 341 342 return 0; 343 } 344 345 return -ENODATA; 346 } 347 348 static int perf_msg_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, 349 u64 data) 350 { 351 struct perf_ctx *perf = peer->perf; 352 int try, ret; 353 u64 outbits; 354 355 dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data); 356 357 /* 358 * Perform predefined number of attempts before give up. Message 359 * registers are free of race-condition problem when accessed 360 * from different ports, so we don't need splitting registers 361 * by global device index. We also won't have local locking, 362 * since the method is used from service work only. 363 */ 364 outbits = ntb_msg_outbits(perf->ntb); 365 for (try = 0; try < MSG_TRIES; try++) { 366 if (!perf_link_is_up(peer)) 367 return -ENOLINK; 368 369 ret = ntb_msg_clear_sts(perf->ntb, outbits); 370 if (ret) 371 return ret; 372 373 ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_LDATA, 374 lower_32_bits(data)); 375 376 if (ntb_msg_read_sts(perf->ntb) & outbits) { 377 usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH); 378 continue; 379 } 380 381 ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_HDATA, 382 upper_32_bits(data)); 383 384 /* This call shall trigger peer message event */ 385 ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_CMD, cmd); 386 387 break; 388 } 389 390 return try < MSG_TRIES ? 0 : -EAGAIN; 391 } 392 393 static int perf_msg_cmd_recv(struct perf_ctx *perf, int *pidx, 394 enum perf_cmd *cmd, u64 *data) 395 { 396 u64 inbits; 397 u32 val; 398 399 inbits = ntb_msg_inbits(perf->ntb); 400 401 if (hweight64(ntb_msg_read_sts(perf->ntb) & inbits) < 3) 402 return -ENODATA; 403 404 val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_CMD); 405 *cmd = val; 406 407 val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_LDATA); 408 *data = val; 409 410 val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_HDATA); 411 *data |= (u64)val << 32; 412 413 /* Next command can be retrieved from now */ 414 ntb_msg_clear_sts(perf->ntb, inbits); 415 416 dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data); 417 418 return 0; 419 } 420 421 static int perf_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, u64 data) 422 { 423 struct perf_ctx *perf = peer->perf; 424 425 if (cmd == PERF_CMD_SSIZE || cmd == PERF_CMD_SXLAT) 426 return perf->cmd_send(peer, cmd, data); 427 428 dev_err(&perf->ntb->dev, "Send invalid command\n"); 429 return -EINVAL; 430 } 431 432 static int perf_cmd_exec(struct perf_peer *peer, enum perf_cmd cmd) 433 { 434 switch (cmd) { 435 case PERF_CMD_SSIZE: 436 case PERF_CMD_RSIZE: 437 case PERF_CMD_SXLAT: 438 case PERF_CMD_RXLAT: 439 case PERF_CMD_CLEAR: 440 break; 441 default: 442 dev_err(&peer->perf->ntb->dev, "Exec invalid command\n"); 443 return -EINVAL; 444 } 445 446 /* No need of memory barrier, since bit ops have invernal lock */ 447 set_bit(cmd, &peer->sts); 448 449 dev_dbg(&peer->perf->ntb->dev, "CMD exec: %d\n", cmd); 450 451 (void)queue_work(system_highpri_wq, &peer->service); 452 453 return 0; 454 } 455 456 static int perf_cmd_recv(struct perf_ctx *perf) 457 { 458 struct perf_peer *peer; 459 int ret, pidx, cmd; 460 u64 data; 461 462 while (!(ret = perf->cmd_recv(perf, &pidx, &cmd, &data))) { 463 peer = &perf->peers[pidx]; 464 465 switch (cmd) { 466 case PERF_CMD_SSIZE: 467 peer->inbuf_size = data; 468 return perf_cmd_exec(peer, PERF_CMD_RSIZE); 469 case PERF_CMD_SXLAT: 470 peer->outbuf_xlat = data; 471 return perf_cmd_exec(peer, PERF_CMD_RXLAT); 472 default: 473 dev_err(&perf->ntb->dev, "Recv invalid command\n"); 474 return -EINVAL; 475 } 476 } 477 478 /* Return 0 if no data left to process, otherwise an error */ 479 return ret == -ENODATA ? 0 : ret; 480 } 481 482 static void perf_link_event(void *ctx) 483 { 484 struct perf_ctx *perf = ctx; 485 struct perf_peer *peer; 486 bool lnk_up; 487 int pidx; 488 489 for (pidx = 0; pidx < perf->pcnt; pidx++) { 490 peer = &perf->peers[pidx]; 491 492 lnk_up = perf_link_is_up(peer); 493 494 if (lnk_up && 495 !test_and_set_bit(PERF_STS_LNKUP, &peer->sts)) { 496 perf_cmd_exec(peer, PERF_CMD_SSIZE); 497 } else if (!lnk_up && 498 test_and_clear_bit(PERF_STS_LNKUP, &peer->sts)) { 499 perf_cmd_exec(peer, PERF_CMD_CLEAR); 500 } 501 } 502 } 503 504 static void perf_db_event(void *ctx, int vec) 505 { 506 struct perf_ctx *perf = ctx; 507 508 dev_dbg(&perf->ntb->dev, "DB vec %d mask %#llx bits %#llx\n", vec, 509 ntb_db_vector_mask(perf->ntb, vec), ntb_db_read(perf->ntb)); 510 511 /* Just receive all available commands */ 512 (void)perf_cmd_recv(perf); 513 } 514 515 static void perf_msg_event(void *ctx) 516 { 517 struct perf_ctx *perf = ctx; 518 519 dev_dbg(&perf->ntb->dev, "Msg status bits %#llx\n", 520 ntb_msg_read_sts(perf->ntb)); 521 522 /* Messages are only sent one-by-one */ 523 (void)perf_cmd_recv(perf); 524 } 525 526 static const struct ntb_ctx_ops perf_ops = { 527 .link_event = perf_link_event, 528 .db_event = perf_db_event, 529 .msg_event = perf_msg_event 530 }; 531 532 static void perf_free_outbuf(struct perf_peer *peer) 533 { 534 (void)ntb_peer_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx); 535 } 536 537 static int perf_setup_outbuf(struct perf_peer *peer) 538 { 539 struct perf_ctx *perf = peer->perf; 540 int ret; 541 542 /* Outbuf size can be unaligned due to custom max_mw_size */ 543 ret = ntb_peer_mw_set_trans(perf->ntb, peer->pidx, peer->gidx, 544 peer->outbuf_xlat, peer->outbuf_size); 545 if (ret) { 546 dev_err(&perf->ntb->dev, "Failed to set outbuf translation\n"); 547 return ret; 548 } 549 550 /* Initialization is finally done */ 551 set_bit(PERF_STS_DONE, &peer->sts); 552 complete_all(&peer->init_comp); 553 554 return 0; 555 } 556 557 static void perf_free_inbuf(struct perf_peer *peer) 558 { 559 if (!peer->inbuf) 560 return; 561 562 (void)ntb_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx); 563 dma_free_coherent(&peer->perf->ntb->pdev->dev, peer->inbuf_size, 564 peer->inbuf, peer->inbuf_xlat); 565 peer->inbuf = NULL; 566 } 567 568 static int perf_setup_inbuf(struct perf_peer *peer) 569 { 570 resource_size_t xlat_align, size_align, size_max; 571 struct perf_ctx *perf = peer->perf; 572 int ret; 573 574 /* Get inbound MW parameters */ 575 ret = ntb_mw_get_align(perf->ntb, peer->pidx, perf->gidx, 576 &xlat_align, &size_align, &size_max); 577 if (ret) { 578 dev_err(&perf->ntb->dev, "Couldn't get inbuf restrictions\n"); 579 return ret; 580 } 581 582 if (peer->inbuf_size > size_max) { 583 dev_err(&perf->ntb->dev, "Too big inbuf size %pa > %pa\n", 584 &peer->inbuf_size, &size_max); 585 return -EINVAL; 586 } 587 588 peer->inbuf_size = round_up(peer->inbuf_size, size_align); 589 590 perf_free_inbuf(peer); 591 592 peer->inbuf = dma_alloc_coherent(&perf->ntb->pdev->dev, 593 peer->inbuf_size, &peer->inbuf_xlat, 594 GFP_KERNEL); 595 if (!peer->inbuf) { 596 dev_err(&perf->ntb->dev, "Failed to alloc inbuf of %pa\n", 597 &peer->inbuf_size); 598 return -ENOMEM; 599 } 600 if (!IS_ALIGNED(peer->inbuf_xlat, xlat_align)) { 601 ret = -EINVAL; 602 dev_err(&perf->ntb->dev, "Unaligned inbuf allocated\n"); 603 goto err_free_inbuf; 604 } 605 606 ret = ntb_mw_set_trans(perf->ntb, peer->pidx, peer->gidx, 607 peer->inbuf_xlat, peer->inbuf_size); 608 if (ret) { 609 dev_err(&perf->ntb->dev, "Failed to set inbuf translation\n"); 610 goto err_free_inbuf; 611 } 612 613 /* 614 * We submit inbuf xlat transmission cmd for execution here to follow 615 * the code architecture, even though this method is called from service 616 * work itself so the command will be executed right after it returns. 617 */ 618 (void)perf_cmd_exec(peer, PERF_CMD_SXLAT); 619 620 return 0; 621 622 err_free_inbuf: 623 perf_free_inbuf(peer); 624 625 return ret; 626 } 627 628 static void perf_service_work(struct work_struct *work) 629 { 630 struct perf_peer *peer = to_peer_service(work); 631 632 if (test_and_clear_bit(PERF_CMD_SSIZE, &peer->sts)) 633 perf_cmd_send(peer, PERF_CMD_SSIZE, peer->outbuf_size); 634 635 if (test_and_clear_bit(PERF_CMD_RSIZE, &peer->sts)) 636 perf_setup_inbuf(peer); 637 638 if (test_and_clear_bit(PERF_CMD_SXLAT, &peer->sts)) 639 perf_cmd_send(peer, PERF_CMD_SXLAT, peer->inbuf_xlat); 640 641 if (test_and_clear_bit(PERF_CMD_RXLAT, &peer->sts)) 642 perf_setup_outbuf(peer); 643 644 if (test_and_clear_bit(PERF_CMD_CLEAR, &peer->sts)) { 645 init_completion(&peer->init_comp); 646 clear_bit(PERF_STS_DONE, &peer->sts); 647 if (test_bit(0, &peer->perf->busy_flag) && 648 peer == peer->perf->test_peer) { 649 dev_warn(&peer->perf->ntb->dev, 650 "Freeing while test on-fly\n"); 651 perf_terminate_test(peer->perf); 652 } 653 perf_free_outbuf(peer); 654 perf_free_inbuf(peer); 655 } 656 } 657 658 static int perf_init_service(struct perf_ctx *perf) 659 { 660 u64 mask; 661 662 if (ntb_peer_mw_count(perf->ntb) < perf->pcnt) { 663 dev_err(&perf->ntb->dev, "Not enough memory windows\n"); 664 return -EINVAL; 665 } 666 667 if (ntb_msg_count(perf->ntb) >= PERF_MSG_CNT) { 668 perf->cmd_send = perf_msg_cmd_send; 669 perf->cmd_recv = perf_msg_cmd_recv; 670 671 dev_dbg(&perf->ntb->dev, "Message service initialized\n"); 672 673 return 0; 674 } 675 676 dev_dbg(&perf->ntb->dev, "Message service unsupported\n"); 677 678 mask = GENMASK_ULL(perf->pcnt, 0); 679 if (ntb_spad_count(perf->ntb) >= PERF_SPAD_CNT(perf->pcnt) && 680 (ntb_db_valid_mask(perf->ntb) & mask) == mask) { 681 perf->cmd_send = perf_spad_cmd_send; 682 perf->cmd_recv = perf_spad_cmd_recv; 683 684 dev_dbg(&perf->ntb->dev, "Scratchpad service initialized\n"); 685 686 return 0; 687 } 688 689 dev_dbg(&perf->ntb->dev, "Scratchpad service unsupported\n"); 690 691 dev_err(&perf->ntb->dev, "Command services unsupported\n"); 692 693 return -EINVAL; 694 } 695 696 static int perf_enable_service(struct perf_ctx *perf) 697 { 698 u64 mask, incmd_bit; 699 int ret, sidx, scnt; 700 701 mask = ntb_db_valid_mask(perf->ntb); 702 (void)ntb_db_set_mask(perf->ntb, mask); 703 704 ret = ntb_set_ctx(perf->ntb, perf, &perf_ops); 705 if (ret) 706 return ret; 707 708 if (perf->cmd_send == perf_msg_cmd_send) { 709 u64 inbits, outbits; 710 711 inbits = ntb_msg_inbits(perf->ntb); 712 outbits = ntb_msg_outbits(perf->ntb); 713 (void)ntb_msg_set_mask(perf->ntb, inbits | outbits); 714 715 incmd_bit = BIT_ULL(__ffs64(inbits)); 716 ret = ntb_msg_clear_mask(perf->ntb, incmd_bit); 717 718 dev_dbg(&perf->ntb->dev, "MSG sts unmasked %#llx\n", incmd_bit); 719 } else { 720 scnt = ntb_spad_count(perf->ntb); 721 for (sidx = 0; sidx < scnt; sidx++) 722 ntb_spad_write(perf->ntb, sidx, PERF_CMD_INVAL); 723 incmd_bit = PERF_SPAD_NOTIFY(perf->gidx); 724 ret = ntb_db_clear_mask(perf->ntb, incmd_bit); 725 726 dev_dbg(&perf->ntb->dev, "DB bits unmasked %#llx\n", incmd_bit); 727 } 728 if (ret) { 729 ntb_clear_ctx(perf->ntb); 730 return ret; 731 } 732 733 ntb_link_enable(perf->ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); 734 /* Might be not necessary */ 735 ntb_link_event(perf->ntb); 736 737 return 0; 738 } 739 740 static void perf_disable_service(struct perf_ctx *perf) 741 { 742 int pidx; 743 744 if (perf->cmd_send == perf_msg_cmd_send) { 745 u64 inbits; 746 747 inbits = ntb_msg_inbits(perf->ntb); 748 (void)ntb_msg_set_mask(perf->ntb, inbits); 749 } else { 750 (void)ntb_db_set_mask(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx)); 751 } 752 753 ntb_clear_ctx(perf->ntb); 754 755 for (pidx = 0; pidx < perf->pcnt; pidx++) 756 perf_cmd_exec(&perf->peers[pidx], PERF_CMD_CLEAR); 757 758 for (pidx = 0; pidx < perf->pcnt; pidx++) 759 flush_work(&perf->peers[pidx].service); 760 761 for (pidx = 0; pidx < perf->pcnt; pidx++) { 762 struct perf_peer *peer = &perf->peers[pidx]; 763 764 ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx), 0); 765 } 766 767 ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx)); 768 769 ntb_link_disable(perf->ntb); 770 } 771 772 /*============================================================================== 773 * Performance measuring work-thread 774 *============================================================================== 775 */ 776 777 static void perf_dma_copy_callback(void *data) 778 { 779 struct perf_thread *pthr = data; 780 781 atomic_dec(&pthr->dma_sync); 782 wake_up(&pthr->dma_wait); 783 } 784 785 static int perf_copy_chunk(struct perf_thread *pthr, 786 void __iomem *dst, void *src, size_t len) 787 { 788 struct dma_async_tx_descriptor *tx; 789 struct dmaengine_unmap_data *unmap; 790 struct device *dma_dev; 791 int try = 0, ret = 0; 792 struct perf_peer *peer = pthr->perf->test_peer; 793 void __iomem *vbase; 794 void __iomem *dst_vaddr; 795 dma_addr_t dst_dma_addr; 796 797 if (!use_dma) { 798 memcpy_toio(dst, src, len); 799 goto ret_check_tsync; 800 } 801 802 dma_dev = pthr->dma_chan->device->dev; 803 804 if (!is_dma_copy_aligned(pthr->dma_chan->device, offset_in_page(src), 805 offset_in_page(dst), len)) 806 return -EIO; 807 808 vbase = peer->outbuf; 809 dst_vaddr = dst; 810 dst_dma_addr = peer->dma_dst_addr + (dst_vaddr - vbase); 811 812 unmap = dmaengine_get_unmap_data(dma_dev, 1, GFP_NOWAIT); 813 if (!unmap) 814 return -ENOMEM; 815 816 unmap->len = len; 817 unmap->addr[0] = dma_map_page(dma_dev, virt_to_page(src), 818 offset_in_page(src), len, DMA_TO_DEVICE); 819 if (dma_mapping_error(dma_dev, unmap->addr[0])) { 820 ret = -EIO; 821 goto err_free_resource; 822 } 823 unmap->to_cnt = 1; 824 825 do { 826 tx = dmaengine_prep_dma_memcpy(pthr->dma_chan, dst_dma_addr, 827 unmap->addr[0], len, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 828 if (!tx) 829 msleep(DMA_MDELAY); 830 } while (!tx && (try++ < DMA_TRIES)); 831 832 if (!tx) { 833 ret = -EIO; 834 goto err_free_resource; 835 } 836 837 tx->callback = perf_dma_copy_callback; 838 tx->callback_param = pthr; 839 dma_set_unmap(tx, unmap); 840 841 ret = dma_submit_error(dmaengine_submit(tx)); 842 if (ret) 843 goto err_free_resource; 844 845 dmaengine_unmap_put(unmap); 846 847 atomic_inc(&pthr->dma_sync); 848 dma_async_issue_pending(pthr->dma_chan); 849 850 ret_check_tsync: 851 return likely(atomic_read(&pthr->perf->tsync) > 0) ? 0 : -EINTR; 852 853 err_free_resource: 854 dmaengine_unmap_put(unmap); 855 856 return ret; 857 } 858 859 static bool perf_dma_filter(struct dma_chan *chan, void *data) 860 { 861 struct perf_ctx *perf = data; 862 int node; 863 864 node = dev_to_node(&perf->ntb->dev); 865 866 return node == NUMA_NO_NODE || node == dev_to_node(chan->device->dev); 867 } 868 869 static int perf_init_test(struct perf_thread *pthr) 870 { 871 struct perf_ctx *perf = pthr->perf; 872 dma_cap_mask_t dma_mask; 873 struct perf_peer *peer = pthr->perf->test_peer; 874 875 pthr->src = kmalloc_node(perf->test_peer->outbuf_size, GFP_KERNEL, 876 dev_to_node(&perf->ntb->dev)); 877 if (!pthr->src) 878 return -ENOMEM; 879 880 get_random_bytes(pthr->src, perf->test_peer->outbuf_size); 881 882 if (!use_dma) 883 return 0; 884 885 dma_cap_zero(dma_mask); 886 dma_cap_set(DMA_MEMCPY, dma_mask); 887 pthr->dma_chan = dma_request_channel(dma_mask, perf_dma_filter, perf); 888 if (!pthr->dma_chan) { 889 dev_err(&perf->ntb->dev, "%d: Failed to get DMA channel\n", 890 pthr->tidx); 891 goto err_free; 892 } 893 peer->dma_dst_addr = 894 dma_map_resource(pthr->dma_chan->device->dev, 895 peer->out_phys_addr, peer->outbuf_size, 896 DMA_FROM_DEVICE, 0); 897 if (dma_mapping_error(pthr->dma_chan->device->dev, 898 peer->dma_dst_addr)) { 899 dev_err(pthr->dma_chan->device->dev, "%d: Failed to map DMA addr\n", 900 pthr->tidx); 901 peer->dma_dst_addr = 0; 902 dma_release_channel(pthr->dma_chan); 903 goto err_free; 904 } 905 dev_dbg(pthr->dma_chan->device->dev, "%d: Map MMIO %pa to DMA addr %pad\n", 906 pthr->tidx, 907 &peer->out_phys_addr, 908 &peer->dma_dst_addr); 909 910 atomic_set(&pthr->dma_sync, 0); 911 return 0; 912 913 err_free: 914 atomic_dec(&perf->tsync); 915 wake_up(&perf->twait); 916 kfree(pthr->src); 917 return -ENODEV; 918 } 919 920 static int perf_run_test(struct perf_thread *pthr) 921 { 922 struct perf_peer *peer = pthr->perf->test_peer; 923 struct perf_ctx *perf = pthr->perf; 924 void __iomem *flt_dst, *bnd_dst; 925 u64 total_size, chunk_size; 926 void *flt_src; 927 int ret = 0; 928 929 total_size = 1ULL << total_order; 930 chunk_size = 1ULL << chunk_order; 931 chunk_size = min_t(u64, peer->outbuf_size, chunk_size); 932 933 flt_src = pthr->src; 934 bnd_dst = peer->outbuf + peer->outbuf_size; 935 flt_dst = peer->outbuf; 936 937 pthr->duration = ktime_get(); 938 939 /* Copied field is cleared on test launch stage */ 940 while (pthr->copied < total_size) { 941 ret = perf_copy_chunk(pthr, flt_dst, flt_src, chunk_size); 942 if (ret) { 943 dev_err(&perf->ntb->dev, "%d: Got error %d on test\n", 944 pthr->tidx, ret); 945 return ret; 946 } 947 948 pthr->copied += chunk_size; 949 950 flt_dst += chunk_size; 951 flt_src += chunk_size; 952 if (flt_dst >= bnd_dst || flt_dst < peer->outbuf) { 953 flt_dst = peer->outbuf; 954 flt_src = pthr->src; 955 } 956 957 /* Give up CPU to give a chance for other threads to use it */ 958 schedule(); 959 } 960 961 return 0; 962 } 963 964 static int perf_sync_test(struct perf_thread *pthr) 965 { 966 struct perf_ctx *perf = pthr->perf; 967 968 if (!use_dma) 969 goto no_dma_ret; 970 971 wait_event(pthr->dma_wait, 972 (atomic_read(&pthr->dma_sync) == 0 || 973 atomic_read(&perf->tsync) < 0)); 974 975 if (atomic_read(&perf->tsync) < 0) 976 return -EINTR; 977 978 no_dma_ret: 979 pthr->duration = ktime_sub(ktime_get(), pthr->duration); 980 981 dev_dbg(&perf->ntb->dev, "%d: copied %llu bytes\n", 982 pthr->tidx, pthr->copied); 983 984 dev_dbg(&perf->ntb->dev, "%d: lasted %llu usecs\n", 985 pthr->tidx, ktime_to_us(pthr->duration)); 986 987 dev_dbg(&perf->ntb->dev, "%d: %llu MBytes/s\n", pthr->tidx, 988 div64_u64(pthr->copied, ktime_to_us(pthr->duration))); 989 990 return 0; 991 } 992 993 static void perf_clear_test(struct perf_thread *pthr) 994 { 995 struct perf_ctx *perf = pthr->perf; 996 997 if (!use_dma) 998 goto no_dma_notify; 999 1000 /* 1001 * If test finished without errors, termination isn't needed. 1002 * We call it anyway just to be sure of the transfers completion. 1003 */ 1004 (void)dmaengine_terminate_sync(pthr->dma_chan); 1005 if (pthr->perf->test_peer->dma_dst_addr) 1006 dma_unmap_resource(pthr->dma_chan->device->dev, 1007 pthr->perf->test_peer->dma_dst_addr, 1008 pthr->perf->test_peer->outbuf_size, 1009 DMA_FROM_DEVICE, 0); 1010 1011 dma_release_channel(pthr->dma_chan); 1012 1013 no_dma_notify: 1014 atomic_dec(&perf->tsync); 1015 wake_up(&perf->twait); 1016 kfree(pthr->src); 1017 } 1018 1019 static void perf_thread_work(struct work_struct *work) 1020 { 1021 struct perf_thread *pthr = to_thread_work(work); 1022 int ret; 1023 1024 /* 1025 * Perform stages in compliance with use_dma flag value. 1026 * Test status is changed only if error happened, otherwise 1027 * status -ENODATA is kept while test is on-fly. Results 1028 * synchronization is performed only if test fininshed 1029 * without an error or interruption. 1030 */ 1031 ret = perf_init_test(pthr); 1032 if (ret) { 1033 pthr->status = ret; 1034 return; 1035 } 1036 1037 ret = perf_run_test(pthr); 1038 if (ret) { 1039 pthr->status = ret; 1040 goto err_clear_test; 1041 } 1042 1043 pthr->status = perf_sync_test(pthr); 1044 1045 err_clear_test: 1046 perf_clear_test(pthr); 1047 } 1048 1049 static int perf_set_tcnt(struct perf_ctx *perf, u8 tcnt) 1050 { 1051 if (tcnt == 0 || tcnt > MAX_THREADS_CNT) 1052 return -EINVAL; 1053 1054 if (test_and_set_bit_lock(0, &perf->busy_flag)) 1055 return -EBUSY; 1056 1057 perf->tcnt = tcnt; 1058 1059 clear_bit_unlock(0, &perf->busy_flag); 1060 1061 return 0; 1062 } 1063 1064 static void perf_terminate_test(struct perf_ctx *perf) 1065 { 1066 int tidx; 1067 1068 atomic_set(&perf->tsync, -1); 1069 wake_up(&perf->twait); 1070 1071 for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) { 1072 wake_up(&perf->threads[tidx].dma_wait); 1073 cancel_work_sync(&perf->threads[tidx].work); 1074 } 1075 } 1076 1077 static int perf_submit_test(struct perf_peer *peer) 1078 { 1079 struct perf_ctx *perf = peer->perf; 1080 struct perf_thread *pthr; 1081 int tidx, ret; 1082 1083 ret = wait_for_completion_interruptible(&peer->init_comp); 1084 if (ret < 0) 1085 return ret; 1086 1087 if (test_and_set_bit_lock(0, &perf->busy_flag)) 1088 return -EBUSY; 1089 1090 perf->test_peer = peer; 1091 atomic_set(&perf->tsync, perf->tcnt); 1092 1093 for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) { 1094 pthr = &perf->threads[tidx]; 1095 1096 pthr->status = -ENODATA; 1097 pthr->copied = 0; 1098 pthr->duration = ktime_set(0, 0); 1099 if (tidx < perf->tcnt) 1100 (void)queue_work(perf_wq, &pthr->work); 1101 } 1102 1103 ret = wait_event_interruptible(perf->twait, 1104 atomic_read(&perf->tsync) <= 0); 1105 if (ret == -ERESTARTSYS) { 1106 perf_terminate_test(perf); 1107 ret = -EINTR; 1108 } 1109 1110 clear_bit_unlock(0, &perf->busy_flag); 1111 1112 return ret; 1113 } 1114 1115 static int perf_read_stats(struct perf_ctx *perf, char *buf, 1116 size_t size, ssize_t *pos) 1117 { 1118 struct perf_thread *pthr; 1119 int tidx; 1120 1121 if (test_and_set_bit_lock(0, &perf->busy_flag)) 1122 return -EBUSY; 1123 1124 (*pos) += scnprintf(buf + *pos, size - *pos, 1125 " Peer %d test statistics:\n", perf->test_peer->pidx); 1126 1127 for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) { 1128 pthr = &perf->threads[tidx]; 1129 1130 if (pthr->status == -ENODATA) 1131 continue; 1132 1133 if (pthr->status) { 1134 (*pos) += scnprintf(buf + *pos, size - *pos, 1135 "%d: error status %d\n", tidx, pthr->status); 1136 continue; 1137 } 1138 1139 (*pos) += scnprintf(buf + *pos, size - *pos, 1140 "%d: copied %llu bytes in %llu usecs, %llu MBytes/s\n", 1141 tidx, pthr->copied, ktime_to_us(pthr->duration), 1142 div64_u64(pthr->copied, ktime_to_us(pthr->duration))); 1143 } 1144 1145 clear_bit_unlock(0, &perf->busy_flag); 1146 1147 return 0; 1148 } 1149 1150 static void perf_init_threads(struct perf_ctx *perf) 1151 { 1152 struct perf_thread *pthr; 1153 int tidx; 1154 1155 perf->tcnt = DEF_THREADS_CNT; 1156 perf->test_peer = &perf->peers[0]; 1157 init_waitqueue_head(&perf->twait); 1158 1159 for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) { 1160 pthr = &perf->threads[tidx]; 1161 1162 pthr->perf = perf; 1163 pthr->tidx = tidx; 1164 pthr->status = -ENODATA; 1165 init_waitqueue_head(&pthr->dma_wait); 1166 INIT_WORK(&pthr->work, perf_thread_work); 1167 } 1168 } 1169 1170 static void perf_clear_threads(struct perf_ctx *perf) 1171 { 1172 perf_terminate_test(perf); 1173 } 1174 1175 /*============================================================================== 1176 * DebugFS nodes 1177 *============================================================================== 1178 */ 1179 1180 static ssize_t perf_dbgfs_read_info(struct file *filep, char __user *ubuf, 1181 size_t size, loff_t *offp) 1182 { 1183 struct perf_ctx *perf = filep->private_data; 1184 struct perf_peer *peer; 1185 size_t buf_size; 1186 ssize_t pos = 0; 1187 int ret, pidx; 1188 char *buf; 1189 1190 buf_size = min_t(size_t, size, 0x1000U); 1191 1192 buf = kmalloc(buf_size, GFP_KERNEL); 1193 if (!buf) 1194 return -ENOMEM; 1195 1196 pos += scnprintf(buf + pos, buf_size - pos, 1197 " Performance measuring tool info:\n\n"); 1198 1199 pos += scnprintf(buf + pos, buf_size - pos, 1200 "Local port %d, Global index %d\n", ntb_port_number(perf->ntb), 1201 perf->gidx); 1202 pos += scnprintf(buf + pos, buf_size - pos, "Test status: "); 1203 if (test_bit(0, &perf->busy_flag)) { 1204 pos += scnprintf(buf + pos, buf_size - pos, 1205 "on-fly with port %d (%d)\n", 1206 ntb_peer_port_number(perf->ntb, perf->test_peer->pidx), 1207 perf->test_peer->pidx); 1208 } else { 1209 pos += scnprintf(buf + pos, buf_size - pos, "idle\n"); 1210 } 1211 1212 for (pidx = 0; pidx < perf->pcnt; pidx++) { 1213 peer = &perf->peers[pidx]; 1214 1215 pos += scnprintf(buf + pos, buf_size - pos, 1216 "Port %d (%d), Global index %d:\n", 1217 ntb_peer_port_number(perf->ntb, peer->pidx), peer->pidx, 1218 peer->gidx); 1219 1220 pos += scnprintf(buf + pos, buf_size - pos, 1221 "\tLink status: %s\n", 1222 test_bit(PERF_STS_LNKUP, &peer->sts) ? "up" : "down"); 1223 1224 pos += scnprintf(buf + pos, buf_size - pos, 1225 "\tOut buffer addr 0x%pK\n", peer->outbuf); 1226 1227 pos += scnprintf(buf + pos, buf_size - pos, 1228 "\tOut buff phys addr %pap\n", &peer->out_phys_addr); 1229 1230 pos += scnprintf(buf + pos, buf_size - pos, 1231 "\tOut buffer size %pa\n", &peer->outbuf_size); 1232 1233 pos += scnprintf(buf + pos, buf_size - pos, 1234 "\tOut buffer xlat 0x%016llx[p]\n", peer->outbuf_xlat); 1235 1236 if (!peer->inbuf) { 1237 pos += scnprintf(buf + pos, buf_size - pos, 1238 "\tIn buffer addr: unallocated\n"); 1239 continue; 1240 } 1241 1242 pos += scnprintf(buf + pos, buf_size - pos, 1243 "\tIn buffer addr 0x%pK\n", peer->inbuf); 1244 1245 pos += scnprintf(buf + pos, buf_size - pos, 1246 "\tIn buffer size %pa\n", &peer->inbuf_size); 1247 1248 pos += scnprintf(buf + pos, buf_size - pos, 1249 "\tIn buffer xlat %pad[p]\n", &peer->inbuf_xlat); 1250 } 1251 1252 ret = simple_read_from_buffer(ubuf, size, offp, buf, pos); 1253 kfree(buf); 1254 1255 return ret; 1256 } 1257 1258 static const struct file_operations perf_dbgfs_info = { 1259 .open = simple_open, 1260 .read = perf_dbgfs_read_info 1261 }; 1262 1263 static ssize_t perf_dbgfs_read_run(struct file *filep, char __user *ubuf, 1264 size_t size, loff_t *offp) 1265 { 1266 struct perf_ctx *perf = filep->private_data; 1267 ssize_t ret, pos = 0; 1268 char *buf; 1269 1270 buf = kmalloc(PERF_BUF_LEN, GFP_KERNEL); 1271 if (!buf) 1272 return -ENOMEM; 1273 1274 ret = perf_read_stats(perf, buf, PERF_BUF_LEN, &pos); 1275 if (ret) 1276 goto err_free; 1277 1278 ret = simple_read_from_buffer(ubuf, size, offp, buf, pos); 1279 err_free: 1280 kfree(buf); 1281 1282 return ret; 1283 } 1284 1285 static ssize_t perf_dbgfs_write_run(struct file *filep, const char __user *ubuf, 1286 size_t size, loff_t *offp) 1287 { 1288 struct perf_ctx *perf = filep->private_data; 1289 struct perf_peer *peer; 1290 int pidx, ret; 1291 1292 ret = kstrtoint_from_user(ubuf, size, 0, &pidx); 1293 if (ret) 1294 return ret; 1295 1296 if (pidx < 0 || pidx >= perf->pcnt) 1297 return -EINVAL; 1298 1299 peer = &perf->peers[pidx]; 1300 1301 ret = perf_submit_test(peer); 1302 if (ret) 1303 return ret; 1304 1305 return size; 1306 } 1307 1308 static const struct file_operations perf_dbgfs_run = { 1309 .open = simple_open, 1310 .read = perf_dbgfs_read_run, 1311 .write = perf_dbgfs_write_run 1312 }; 1313 1314 static ssize_t perf_dbgfs_read_tcnt(struct file *filep, char __user *ubuf, 1315 size_t size, loff_t *offp) 1316 { 1317 struct perf_ctx *perf = filep->private_data; 1318 char buf[8]; 1319 ssize_t pos; 1320 1321 pos = scnprintf(buf, sizeof(buf), "%hhu\n", perf->tcnt); 1322 1323 return simple_read_from_buffer(ubuf, size, offp, buf, pos); 1324 } 1325 1326 static ssize_t perf_dbgfs_write_tcnt(struct file *filep, 1327 const char __user *ubuf, 1328 size_t size, loff_t *offp) 1329 { 1330 struct perf_ctx *perf = filep->private_data; 1331 int ret; 1332 u8 val; 1333 1334 ret = kstrtou8_from_user(ubuf, size, 0, &val); 1335 if (ret) 1336 return ret; 1337 1338 ret = perf_set_tcnt(perf, val); 1339 if (ret) 1340 return ret; 1341 1342 return size; 1343 } 1344 1345 static const struct file_operations perf_dbgfs_tcnt = { 1346 .open = simple_open, 1347 .read = perf_dbgfs_read_tcnt, 1348 .write = perf_dbgfs_write_tcnt 1349 }; 1350 1351 static void perf_setup_dbgfs(struct perf_ctx *perf) 1352 { 1353 struct pci_dev *pdev = perf->ntb->pdev; 1354 1355 perf->dbgfs_dir = debugfs_create_dir(pci_name(pdev), perf_dbgfs_topdir); 1356 if (IS_ERR(perf->dbgfs_dir)) { 1357 dev_warn(&perf->ntb->dev, "DebugFS unsupported\n"); 1358 return; 1359 } 1360 1361 debugfs_create_file("info", 0600, perf->dbgfs_dir, perf, 1362 &perf_dbgfs_info); 1363 1364 debugfs_create_file("run", 0600, perf->dbgfs_dir, perf, 1365 &perf_dbgfs_run); 1366 1367 debugfs_create_file("threads_count", 0600, perf->dbgfs_dir, perf, 1368 &perf_dbgfs_tcnt); 1369 1370 /* They are made read-only for test exec safety and integrity */ 1371 debugfs_create_u8("chunk_order", 0500, perf->dbgfs_dir, &chunk_order); 1372 1373 debugfs_create_u8("total_order", 0500, perf->dbgfs_dir, &total_order); 1374 1375 debugfs_create_bool("use_dma", 0500, perf->dbgfs_dir, &use_dma); 1376 } 1377 1378 static void perf_clear_dbgfs(struct perf_ctx *perf) 1379 { 1380 debugfs_remove_recursive(perf->dbgfs_dir); 1381 } 1382 1383 /*============================================================================== 1384 * Basic driver initialization 1385 *============================================================================== 1386 */ 1387 1388 static struct perf_ctx *perf_create_data(struct ntb_dev *ntb) 1389 { 1390 struct perf_ctx *perf; 1391 1392 perf = devm_kzalloc(&ntb->dev, sizeof(*perf), GFP_KERNEL); 1393 if (!perf) 1394 return ERR_PTR(-ENOMEM); 1395 1396 perf->pcnt = ntb_peer_port_count(ntb); 1397 perf->peers = devm_kcalloc(&ntb->dev, perf->pcnt, sizeof(*perf->peers), 1398 GFP_KERNEL); 1399 if (!perf->peers) 1400 return ERR_PTR(-ENOMEM); 1401 1402 perf->ntb = ntb; 1403 1404 return perf; 1405 } 1406 1407 static int perf_setup_peer_mw(struct perf_peer *peer) 1408 { 1409 struct perf_ctx *perf = peer->perf; 1410 phys_addr_t phys_addr; 1411 int ret; 1412 1413 /* Get outbound MW parameters and map it */ 1414 ret = ntb_peer_mw_get_addr(perf->ntb, perf->gidx, &phys_addr, 1415 &peer->outbuf_size); 1416 if (ret) 1417 return ret; 1418 1419 peer->outbuf = devm_ioremap_wc(&perf->ntb->dev, phys_addr, 1420 peer->outbuf_size); 1421 if (!peer->outbuf) 1422 return -ENOMEM; 1423 1424 peer->out_phys_addr = phys_addr; 1425 1426 if (max_mw_size && peer->outbuf_size > max_mw_size) { 1427 peer->outbuf_size = max_mw_size; 1428 dev_warn(&peer->perf->ntb->dev, 1429 "Peer %d outbuf reduced to %pa\n", peer->pidx, 1430 &peer->outbuf_size); 1431 } 1432 1433 return 0; 1434 } 1435 1436 static int perf_init_peers(struct perf_ctx *perf) 1437 { 1438 struct perf_peer *peer; 1439 int pidx, lport, ret; 1440 1441 lport = ntb_port_number(perf->ntb); 1442 perf->gidx = -1; 1443 for (pidx = 0; pidx < perf->pcnt; pidx++) { 1444 peer = &perf->peers[pidx]; 1445 1446 peer->perf = perf; 1447 peer->pidx = pidx; 1448 if (lport < ntb_peer_port_number(perf->ntb, pidx)) { 1449 if (perf->gidx == -1) 1450 perf->gidx = pidx; 1451 peer->gidx = pidx + 1; 1452 } else { 1453 peer->gidx = pidx; 1454 } 1455 INIT_WORK(&peer->service, perf_service_work); 1456 init_completion(&peer->init_comp); 1457 } 1458 if (perf->gidx == -1) 1459 perf->gidx = pidx; 1460 1461 /* 1462 * Hardware with only two ports may not have unique port 1463 * numbers. In this case, the gidxs should all be zero. 1464 */ 1465 if (perf->pcnt == 1 && ntb_port_number(perf->ntb) == 0 && 1466 ntb_peer_port_number(perf->ntb, 0) == 0) { 1467 perf->gidx = 0; 1468 perf->peers[0].gidx = 0; 1469 } 1470 1471 for (pidx = 0; pidx < perf->pcnt; pidx++) { 1472 ret = perf_setup_peer_mw(&perf->peers[pidx]); 1473 if (ret) 1474 return ret; 1475 } 1476 1477 dev_dbg(&perf->ntb->dev, "Global port index %d\n", perf->gidx); 1478 1479 return 0; 1480 } 1481 1482 static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb) 1483 { 1484 struct perf_ctx *perf; 1485 int ret; 1486 1487 perf = perf_create_data(ntb); 1488 if (IS_ERR(perf)) 1489 return PTR_ERR(perf); 1490 1491 ret = perf_init_peers(perf); 1492 if (ret) 1493 return ret; 1494 1495 perf_init_threads(perf); 1496 1497 ret = perf_init_service(perf); 1498 if (ret) 1499 return ret; 1500 1501 ret = perf_enable_service(perf); 1502 if (ret) 1503 return ret; 1504 1505 perf_setup_dbgfs(perf); 1506 1507 return 0; 1508 } 1509 1510 static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb) 1511 { 1512 struct perf_ctx *perf = ntb->ctx; 1513 1514 perf_clear_dbgfs(perf); 1515 1516 perf_disable_service(perf); 1517 1518 perf_clear_threads(perf); 1519 } 1520 1521 static struct ntb_client perf_client = { 1522 .ops = { 1523 .probe = perf_probe, 1524 .remove = perf_remove 1525 } 1526 }; 1527 1528 static int __init perf_init(void) 1529 { 1530 int ret; 1531 1532 if (chunk_order > MAX_CHUNK_ORDER) { 1533 chunk_order = MAX_CHUNK_ORDER; 1534 pr_info("Chunk order reduced to %hhu\n", chunk_order); 1535 } 1536 1537 if (total_order < chunk_order) { 1538 total_order = chunk_order; 1539 pr_info("Total data order reduced to %hhu\n", total_order); 1540 } 1541 1542 perf_wq = alloc_workqueue("perf_wq", WQ_UNBOUND | WQ_SYSFS, 0); 1543 if (!perf_wq) 1544 return -ENOMEM; 1545 1546 if (debugfs_initialized()) 1547 perf_dbgfs_topdir = debugfs_create_dir(KBUILD_MODNAME, NULL); 1548 1549 ret = ntb_register_client(&perf_client); 1550 if (ret) { 1551 debugfs_remove_recursive(perf_dbgfs_topdir); 1552 destroy_workqueue(perf_wq); 1553 } 1554 1555 return ret; 1556 } 1557 module_init(perf_init); 1558 1559 static void __exit perf_exit(void) 1560 { 1561 ntb_unregister_client(&perf_client); 1562 debugfs_remove_recursive(perf_dbgfs_topdir); 1563 destroy_workqueue(perf_wq); 1564 } 1565 module_exit(perf_exit); 1566