xref: /linux/drivers/ntb/test/ntb_perf.c (revision 98f4e140264eeb52f22ff05be6b6dd48237255ac)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2015 Intel Corporation. All rights reserved.
8  *   Copyright(c) 2017 T-Platforms. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2015 Intel Corporation. All rights reserved.
17  *   Copyright(c) 2017 T-Platforms. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Perf Linux driver
46  */
47 
48 /*
49  * How to use this tool, by example.
50  *
51  * Assuming $DBG_DIR is something like:
52  * '/sys/kernel/debug/ntb_perf/0000:00:03.0'
53  * Suppose aside from local device there is at least one remote device
54  * connected to NTB with index 0.
55  *-----------------------------------------------------------------------------
56  * Eg: install driver with specified chunk/total orders and dma-enabled flag
57  *
58  * root@self# insmod ntb_perf.ko chunk_order=19 total_order=28 use_dma
59  *-----------------------------------------------------------------------------
60  * Eg: check NTB ports (index) and MW mapping information
61  *
62  * root@self# cat $DBG_DIR/info
63  *-----------------------------------------------------------------------------
64  * Eg: start performance test with peer (index 0) and get the test metrics
65  *
66  * root@self# echo 0 > $DBG_DIR/run
67  * root@self# cat $DBG_DIR/run
68  */
69 
70 #include <linux/init.h>
71 #include <linux/kernel.h>
72 #include <linux/module.h>
73 #include <linux/sched.h>
74 #include <linux/wait.h>
75 #include <linux/dma-mapping.h>
76 #include <linux/dmaengine.h>
77 #include <linux/pci.h>
78 #include <linux/ktime.h>
79 #include <linux/slab.h>
80 #include <linux/delay.h>
81 #include <linux/sizes.h>
82 #include <linux/workqueue.h>
83 #include <linux/debugfs.h>
84 #include <linux/random.h>
85 #include <linux/ntb.h>
86 
87 #define DRIVER_NAME		"ntb_perf"
88 #define DRIVER_VERSION		"2.0"
89 
90 MODULE_LICENSE("Dual BSD/GPL");
91 MODULE_VERSION(DRIVER_VERSION);
92 MODULE_AUTHOR("Dave Jiang <dave.jiang@intel.com>");
93 MODULE_DESCRIPTION("PCIe NTB Performance Measurement Tool");
94 
95 #define MAX_THREADS_CNT		32
96 #define DEF_THREADS_CNT		1
97 #define MAX_CHUNK_SIZE		SZ_1M
98 #define MAX_CHUNK_ORDER		20 /* no larger than 1M */
99 
100 #define DMA_TRIES		100
101 #define DMA_MDELAY		10
102 
103 #define MSG_TRIES		1000
104 #define MSG_UDELAY_LOW		1000
105 #define MSG_UDELAY_HIGH		2000
106 
107 #define PERF_BUF_LEN 1024
108 
109 static unsigned long max_mw_size;
110 module_param(max_mw_size, ulong, 0644);
111 MODULE_PARM_DESC(max_mw_size, "Upper limit of memory window size");
112 
113 static unsigned char chunk_order = 19; /* 512K */
114 module_param(chunk_order, byte, 0644);
115 MODULE_PARM_DESC(chunk_order, "Data chunk order [2^n] to transfer");
116 
117 static unsigned char total_order = 30; /* 1G */
118 module_param(total_order, byte, 0644);
119 MODULE_PARM_DESC(total_order, "Total data order [2^n] to transfer");
120 
121 static bool use_dma; /* default to 0 */
122 module_param(use_dma, bool, 0644);
123 MODULE_PARM_DESC(use_dma, "Use DMA engine to measure performance");
124 
125 /*==============================================================================
126  *                         Perf driver data definition
127  *==============================================================================
128  */
129 
130 enum perf_cmd {
131 	PERF_CMD_INVAL = -1,/* invalid spad command */
132 	PERF_CMD_SSIZE = 0, /* send out buffer size */
133 	PERF_CMD_RSIZE = 1, /* recv in  buffer size */
134 	PERF_CMD_SXLAT = 2, /* send in  buffer xlat */
135 	PERF_CMD_RXLAT = 3, /* recv out buffer xlat */
136 	PERF_CMD_CLEAR = 4, /* clear allocated memory */
137 	PERF_STS_DONE  = 5, /* init is done */
138 	PERF_STS_LNKUP = 6, /* link up state flag */
139 };
140 
141 struct perf_ctx;
142 
143 struct perf_peer {
144 	struct perf_ctx	*perf;
145 	int pidx;
146 	int gidx;
147 
148 	/* Outbound MW params */
149 	u64 outbuf_xlat;
150 	resource_size_t outbuf_size;
151 	void __iomem *outbuf;
152 	phys_addr_t out_phys_addr;
153 	dma_addr_t dma_dst_addr;
154 	/* Inbound MW params */
155 	dma_addr_t inbuf_xlat;
156 	resource_size_t inbuf_size;
157 	void		*inbuf;
158 
159 	/* NTB connection setup service */
160 	struct work_struct	service;
161 	unsigned long		sts;
162 };
163 #define to_peer_service(__work) \
164 	container_of(__work, struct perf_peer, service)
165 
166 struct perf_thread {
167 	struct perf_ctx *perf;
168 	int tidx;
169 
170 	/* DMA-based test sync parameters */
171 	atomic_t dma_sync;
172 	wait_queue_head_t dma_wait;
173 	struct dma_chan *dma_chan;
174 
175 	/* Data source and measured statistics */
176 	void *src;
177 	u64 copied;
178 	ktime_t duration;
179 	int status;
180 	struct work_struct work;
181 };
182 #define to_thread_work(__work) \
183 	container_of(__work, struct perf_thread, work)
184 
185 struct perf_ctx {
186 	struct ntb_dev *ntb;
187 
188 	/* Global device index and peers descriptors */
189 	int gidx;
190 	int pcnt;
191 	struct perf_peer *peers;
192 
193 	/* Performance measuring work-threads interface */
194 	unsigned long busy_flag;
195 	wait_queue_head_t twait;
196 	atomic_t tsync;
197 	u8 tcnt;
198 	struct perf_peer *test_peer;
199 	struct perf_thread threads[MAX_THREADS_CNT];
200 
201 	/* Scratchpad/Message IO operations */
202 	int (*cmd_send)(struct perf_peer *peer, enum perf_cmd cmd, u64 data);
203 	int (*cmd_recv)(struct perf_ctx *perf, int *pidx, enum perf_cmd *cmd,
204 			u64 *data);
205 
206 	struct dentry *dbgfs_dir;
207 };
208 
209 /*
210  * Scratchpads-base commands interface
211  */
212 #define PERF_SPAD_CNT(_pcnt) \
213 	(3*((_pcnt) + 1))
214 #define PERF_SPAD_CMD(_gidx) \
215 	(3*(_gidx))
216 #define PERF_SPAD_LDATA(_gidx) \
217 	(3*(_gidx) + 1)
218 #define PERF_SPAD_HDATA(_gidx) \
219 	(3*(_gidx) + 2)
220 #define PERF_SPAD_NOTIFY(_gidx) \
221 	(BIT_ULL(_gidx))
222 
223 /*
224  * Messages-base commands interface
225  */
226 #define PERF_MSG_CNT		3
227 #define PERF_MSG_CMD		0
228 #define PERF_MSG_LDATA		1
229 #define PERF_MSG_HDATA		2
230 
231 /*==============================================================================
232  *                           Static data declarations
233  *==============================================================================
234  */
235 
236 static struct dentry *perf_dbgfs_topdir;
237 
238 static struct workqueue_struct *perf_wq __read_mostly;
239 
240 /*==============================================================================
241  *                  NTB cross-link commands execution service
242  *==============================================================================
243  */
244 
245 static void perf_terminate_test(struct perf_ctx *perf);
246 
247 static inline bool perf_link_is_up(struct perf_peer *peer)
248 {
249 	u64 link;
250 
251 	link = ntb_link_is_up(peer->perf->ntb, NULL, NULL);
252 	return !!(link & BIT_ULL_MASK(peer->pidx));
253 }
254 
255 static int perf_spad_cmd_send(struct perf_peer *peer, enum perf_cmd cmd,
256 			      u64 data)
257 {
258 	struct perf_ctx *perf = peer->perf;
259 	int try;
260 	u32 sts;
261 
262 	dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data);
263 
264 	/*
265 	 * Perform predefined number of attempts before give up.
266 	 * We are sending the data to the port specific scratchpad, so
267 	 * to prevent a multi-port access race-condition. Additionally
268 	 * there is no need in local locking since only thread-safe
269 	 * service work is using this method.
270 	 */
271 	for (try = 0; try < MSG_TRIES; try++) {
272 		if (!perf_link_is_up(peer))
273 			return -ENOLINK;
274 
275 		sts = ntb_peer_spad_read(perf->ntb, peer->pidx,
276 					 PERF_SPAD_CMD(perf->gidx));
277 		if (sts != PERF_CMD_INVAL) {
278 			usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH);
279 			continue;
280 		}
281 
282 		ntb_peer_spad_write(perf->ntb, peer->pidx,
283 				    PERF_SPAD_LDATA(perf->gidx),
284 				    lower_32_bits(data));
285 		ntb_peer_spad_write(perf->ntb, peer->pidx,
286 				    PERF_SPAD_HDATA(perf->gidx),
287 				    upper_32_bits(data));
288 		ntb_peer_spad_write(perf->ntb, peer->pidx,
289 				    PERF_SPAD_CMD(perf->gidx),
290 				    cmd);
291 		ntb_peer_db_set(perf->ntb, PERF_SPAD_NOTIFY(peer->gidx));
292 
293 		dev_dbg(&perf->ntb->dev, "DB ring peer %#llx\n",
294 			PERF_SPAD_NOTIFY(peer->gidx));
295 
296 		break;
297 	}
298 
299 	return try < MSG_TRIES ? 0 : -EAGAIN;
300 }
301 
302 static int perf_spad_cmd_recv(struct perf_ctx *perf, int *pidx,
303 			      enum perf_cmd *cmd, u64 *data)
304 {
305 	struct perf_peer *peer;
306 	u32 val;
307 
308 	ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
309 
310 	/*
311 	 * We start scanning all over, since cleared DB may have been set
312 	 * by any peer. Yes, it makes peer with smaller index being
313 	 * serviced with greater priority, but it's convenient for spad
314 	 * and message code unification and simplicity.
315 	 */
316 	for (*pidx = 0; *pidx < perf->pcnt; (*pidx)++) {
317 		peer = &perf->peers[*pidx];
318 
319 		if (!perf_link_is_up(peer))
320 			continue;
321 
322 		val = ntb_spad_read(perf->ntb, PERF_SPAD_CMD(peer->gidx));
323 		if (val == PERF_CMD_INVAL)
324 			continue;
325 
326 		*cmd = val;
327 
328 		val = ntb_spad_read(perf->ntb, PERF_SPAD_LDATA(peer->gidx));
329 		*data = val;
330 
331 		val = ntb_spad_read(perf->ntb, PERF_SPAD_HDATA(peer->gidx));
332 		*data |= (u64)val << 32;
333 
334 		/* Next command can be retrieved from now */
335 		ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx),
336 			       PERF_CMD_INVAL);
337 
338 		dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data);
339 
340 		return 0;
341 	}
342 
343 	return -ENODATA;
344 }
345 
346 static int perf_msg_cmd_send(struct perf_peer *peer, enum perf_cmd cmd,
347 			     u64 data)
348 {
349 	struct perf_ctx *perf = peer->perf;
350 	int try, ret;
351 	u64 outbits;
352 
353 	dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data);
354 
355 	/*
356 	 * Perform predefined number of attempts before give up. Message
357 	 * registers are free of race-condition problem when accessed
358 	 * from different ports, so we don't need splitting registers
359 	 * by global device index. We also won't have local locking,
360 	 * since the method is used from service work only.
361 	 */
362 	outbits = ntb_msg_outbits(perf->ntb);
363 	for (try = 0; try < MSG_TRIES; try++) {
364 		if (!perf_link_is_up(peer))
365 			return -ENOLINK;
366 
367 		ret = ntb_msg_clear_sts(perf->ntb, outbits);
368 		if (ret)
369 			return ret;
370 
371 		ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_LDATA,
372 				   lower_32_bits(data));
373 
374 		if (ntb_msg_read_sts(perf->ntb) & outbits) {
375 			usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH);
376 			continue;
377 		}
378 
379 		ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_HDATA,
380 				   upper_32_bits(data));
381 
382 		/* This call shall trigger peer message event */
383 		ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_CMD, cmd);
384 
385 		break;
386 	}
387 
388 	return try < MSG_TRIES ? 0 : -EAGAIN;
389 }
390 
391 static int perf_msg_cmd_recv(struct perf_ctx *perf, int *pidx,
392 			     enum perf_cmd *cmd, u64 *data)
393 {
394 	u64 inbits;
395 	u32 val;
396 
397 	inbits = ntb_msg_inbits(perf->ntb);
398 
399 	if (hweight64(ntb_msg_read_sts(perf->ntb) & inbits) < 3)
400 		return -ENODATA;
401 
402 	val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_CMD);
403 	*cmd = val;
404 
405 	val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_LDATA);
406 	*data = val;
407 
408 	val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_HDATA);
409 	*data |= (u64)val << 32;
410 
411 	/* Next command can be retrieved from now */
412 	ntb_msg_clear_sts(perf->ntb, inbits);
413 
414 	dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data);
415 
416 	return 0;
417 }
418 
419 static int perf_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, u64 data)
420 {
421 	struct perf_ctx *perf = peer->perf;
422 
423 	if (cmd == PERF_CMD_SSIZE || cmd == PERF_CMD_SXLAT)
424 		return perf->cmd_send(peer, cmd, data);
425 
426 	dev_err(&perf->ntb->dev, "Send invalid command\n");
427 	return -EINVAL;
428 }
429 
430 static int perf_cmd_exec(struct perf_peer *peer, enum perf_cmd cmd)
431 {
432 	switch (cmd) {
433 	case PERF_CMD_SSIZE:
434 	case PERF_CMD_RSIZE:
435 	case PERF_CMD_SXLAT:
436 	case PERF_CMD_RXLAT:
437 	case PERF_CMD_CLEAR:
438 		break;
439 	default:
440 		dev_err(&peer->perf->ntb->dev, "Exec invalid command\n");
441 		return -EINVAL;
442 	}
443 
444 	/* No need of memory barrier, since bit ops have invernal lock */
445 	set_bit(cmd, &peer->sts);
446 
447 	dev_dbg(&peer->perf->ntb->dev, "CMD exec: %d\n", cmd);
448 
449 	(void)queue_work(system_highpri_wq, &peer->service);
450 
451 	return 0;
452 }
453 
454 static int perf_cmd_recv(struct perf_ctx *perf)
455 {
456 	struct perf_peer *peer;
457 	int ret, pidx, cmd;
458 	u64 data;
459 
460 	while (!(ret = perf->cmd_recv(perf, &pidx, &cmd, &data))) {
461 		peer = &perf->peers[pidx];
462 
463 		switch (cmd) {
464 		case PERF_CMD_SSIZE:
465 			peer->inbuf_size = data;
466 			return perf_cmd_exec(peer, PERF_CMD_RSIZE);
467 		case PERF_CMD_SXLAT:
468 			peer->outbuf_xlat = data;
469 			return perf_cmd_exec(peer, PERF_CMD_RXLAT);
470 		default:
471 			dev_err(&perf->ntb->dev, "Recv invalid command\n");
472 			return -EINVAL;
473 		}
474 	}
475 
476 	/* Return 0 if no data left to process, otherwise an error */
477 	return ret == -ENODATA ? 0 : ret;
478 }
479 
480 static void perf_link_event(void *ctx)
481 {
482 	struct perf_ctx *perf = ctx;
483 	struct perf_peer *peer;
484 	bool lnk_up;
485 	int pidx;
486 
487 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
488 		peer = &perf->peers[pidx];
489 
490 		lnk_up = perf_link_is_up(peer);
491 
492 		if (lnk_up &&
493 		    !test_and_set_bit(PERF_STS_LNKUP, &peer->sts)) {
494 			perf_cmd_exec(peer, PERF_CMD_SSIZE);
495 		} else if (!lnk_up &&
496 			   test_and_clear_bit(PERF_STS_LNKUP, &peer->sts)) {
497 			perf_cmd_exec(peer, PERF_CMD_CLEAR);
498 		}
499 	}
500 }
501 
502 static void perf_db_event(void *ctx, int vec)
503 {
504 	struct perf_ctx *perf = ctx;
505 
506 	dev_dbg(&perf->ntb->dev, "DB vec %d mask %#llx bits %#llx\n", vec,
507 		ntb_db_vector_mask(perf->ntb, vec), ntb_db_read(perf->ntb));
508 
509 	/* Just receive all available commands */
510 	(void)perf_cmd_recv(perf);
511 }
512 
513 static void perf_msg_event(void *ctx)
514 {
515 	struct perf_ctx *perf = ctx;
516 
517 	dev_dbg(&perf->ntb->dev, "Msg status bits %#llx\n",
518 		ntb_msg_read_sts(perf->ntb));
519 
520 	/* Messages are only sent one-by-one */
521 	(void)perf_cmd_recv(perf);
522 }
523 
524 static const struct ntb_ctx_ops perf_ops = {
525 	.link_event = perf_link_event,
526 	.db_event = perf_db_event,
527 	.msg_event = perf_msg_event
528 };
529 
530 static void perf_free_outbuf(struct perf_peer *peer)
531 {
532 	(void)ntb_peer_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx);
533 }
534 
535 static int perf_setup_outbuf(struct perf_peer *peer)
536 {
537 	struct perf_ctx *perf = peer->perf;
538 	int ret;
539 
540 	/* Outbuf size can be unaligned due to custom max_mw_size */
541 	ret = ntb_peer_mw_set_trans(perf->ntb, peer->pidx, peer->gidx,
542 				    peer->outbuf_xlat, peer->outbuf_size);
543 	if (ret) {
544 		dev_err(&perf->ntb->dev, "Failed to set outbuf translation\n");
545 		return ret;
546 	}
547 
548 	/* Initialization is finally done */
549 	set_bit(PERF_STS_DONE, &peer->sts);
550 
551 	return 0;
552 }
553 
554 static void perf_free_inbuf(struct perf_peer *peer)
555 {
556 	if (!peer->inbuf)
557 		return;
558 
559 	(void)ntb_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx);
560 	dma_free_coherent(&peer->perf->ntb->pdev->dev, peer->inbuf_size,
561 			  peer->inbuf, peer->inbuf_xlat);
562 	peer->inbuf = NULL;
563 }
564 
565 static int perf_setup_inbuf(struct perf_peer *peer)
566 {
567 	resource_size_t xlat_align, size_align, size_max;
568 	struct perf_ctx *perf = peer->perf;
569 	int ret;
570 
571 	/* Get inbound MW parameters */
572 	ret = ntb_mw_get_align(perf->ntb, peer->pidx, perf->gidx,
573 			       &xlat_align, &size_align, &size_max);
574 	if (ret) {
575 		dev_err(&perf->ntb->dev, "Couldn't get inbuf restrictions\n");
576 		return ret;
577 	}
578 
579 	if (peer->inbuf_size > size_max) {
580 		dev_err(&perf->ntb->dev, "Too big inbuf size %pa > %pa\n",
581 			&peer->inbuf_size, &size_max);
582 		return -EINVAL;
583 	}
584 
585 	peer->inbuf_size = round_up(peer->inbuf_size, size_align);
586 
587 	perf_free_inbuf(peer);
588 
589 	peer->inbuf = dma_alloc_coherent(&perf->ntb->pdev->dev,
590 					 peer->inbuf_size, &peer->inbuf_xlat,
591 					 GFP_KERNEL);
592 	if (!peer->inbuf) {
593 		dev_err(&perf->ntb->dev, "Failed to alloc inbuf of %pa\n",
594 			&peer->inbuf_size);
595 		return -ENOMEM;
596 	}
597 	if (!IS_ALIGNED(peer->inbuf_xlat, xlat_align)) {
598 		dev_err(&perf->ntb->dev, "Unaligned inbuf allocated\n");
599 		goto err_free_inbuf;
600 	}
601 
602 	ret = ntb_mw_set_trans(perf->ntb, peer->pidx, peer->gidx,
603 			       peer->inbuf_xlat, peer->inbuf_size);
604 	if (ret) {
605 		dev_err(&perf->ntb->dev, "Failed to set inbuf translation\n");
606 		goto err_free_inbuf;
607 	}
608 
609 	/*
610 	 * We submit inbuf xlat transmission cmd for execution here to follow
611 	 * the code architecture, even though this method is called from service
612 	 * work itself so the command will be executed right after it returns.
613 	 */
614 	(void)perf_cmd_exec(peer, PERF_CMD_SXLAT);
615 
616 	return 0;
617 
618 err_free_inbuf:
619 	perf_free_inbuf(peer);
620 
621 	return ret;
622 }
623 
624 static void perf_service_work(struct work_struct *work)
625 {
626 	struct perf_peer *peer = to_peer_service(work);
627 
628 	if (test_and_clear_bit(PERF_CMD_SSIZE, &peer->sts))
629 		perf_cmd_send(peer, PERF_CMD_SSIZE, peer->outbuf_size);
630 
631 	if (test_and_clear_bit(PERF_CMD_RSIZE, &peer->sts))
632 		perf_setup_inbuf(peer);
633 
634 	if (test_and_clear_bit(PERF_CMD_SXLAT, &peer->sts))
635 		perf_cmd_send(peer, PERF_CMD_SXLAT, peer->inbuf_xlat);
636 
637 	if (test_and_clear_bit(PERF_CMD_RXLAT, &peer->sts))
638 		perf_setup_outbuf(peer);
639 
640 	if (test_and_clear_bit(PERF_CMD_CLEAR, &peer->sts)) {
641 		clear_bit(PERF_STS_DONE, &peer->sts);
642 		if (test_bit(0, &peer->perf->busy_flag) &&
643 		    peer == peer->perf->test_peer) {
644 			dev_warn(&peer->perf->ntb->dev,
645 				"Freeing while test on-fly\n");
646 			perf_terminate_test(peer->perf);
647 		}
648 		perf_free_outbuf(peer);
649 		perf_free_inbuf(peer);
650 	}
651 }
652 
653 static int perf_init_service(struct perf_ctx *perf)
654 {
655 	u64 mask;
656 
657 	if (ntb_peer_mw_count(perf->ntb) < perf->pcnt + 1) {
658 		dev_err(&perf->ntb->dev, "Not enough memory windows\n");
659 		return -EINVAL;
660 	}
661 
662 	if (ntb_msg_count(perf->ntb) >= PERF_MSG_CNT) {
663 		perf->cmd_send = perf_msg_cmd_send;
664 		perf->cmd_recv = perf_msg_cmd_recv;
665 
666 		dev_dbg(&perf->ntb->dev, "Message service initialized\n");
667 
668 		return 0;
669 	}
670 
671 	dev_dbg(&perf->ntb->dev, "Message service unsupported\n");
672 
673 	mask = GENMASK_ULL(perf->pcnt, 0);
674 	if (ntb_spad_count(perf->ntb) >= PERF_SPAD_CNT(perf->pcnt) &&
675 	    (ntb_db_valid_mask(perf->ntb) & mask) == mask) {
676 		perf->cmd_send = perf_spad_cmd_send;
677 		perf->cmd_recv = perf_spad_cmd_recv;
678 
679 		dev_dbg(&perf->ntb->dev, "Scratchpad service initialized\n");
680 
681 		return 0;
682 	}
683 
684 	dev_dbg(&perf->ntb->dev, "Scratchpad service unsupported\n");
685 
686 	dev_err(&perf->ntb->dev, "Command services unsupported\n");
687 
688 	return -EINVAL;
689 }
690 
691 static int perf_enable_service(struct perf_ctx *perf)
692 {
693 	u64 mask, incmd_bit;
694 	int ret, sidx, scnt;
695 
696 	mask = ntb_db_valid_mask(perf->ntb);
697 	(void)ntb_db_set_mask(perf->ntb, mask);
698 
699 	ret = ntb_set_ctx(perf->ntb, perf, &perf_ops);
700 	if (ret)
701 		return ret;
702 
703 	if (perf->cmd_send == perf_msg_cmd_send) {
704 		u64 inbits, outbits;
705 
706 		inbits = ntb_msg_inbits(perf->ntb);
707 		outbits = ntb_msg_outbits(perf->ntb);
708 		(void)ntb_msg_set_mask(perf->ntb, inbits | outbits);
709 
710 		incmd_bit = BIT_ULL(__ffs64(inbits));
711 		ret = ntb_msg_clear_mask(perf->ntb, incmd_bit);
712 
713 		dev_dbg(&perf->ntb->dev, "MSG sts unmasked %#llx\n", incmd_bit);
714 	} else {
715 		scnt = ntb_spad_count(perf->ntb);
716 		for (sidx = 0; sidx < scnt; sidx++)
717 			ntb_spad_write(perf->ntb, sidx, PERF_CMD_INVAL);
718 		incmd_bit = PERF_SPAD_NOTIFY(perf->gidx);
719 		ret = ntb_db_clear_mask(perf->ntb, incmd_bit);
720 
721 		dev_dbg(&perf->ntb->dev, "DB bits unmasked %#llx\n", incmd_bit);
722 	}
723 	if (ret) {
724 		ntb_clear_ctx(perf->ntb);
725 		return ret;
726 	}
727 
728 	ntb_link_enable(perf->ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
729 	/* Might be not necessary */
730 	ntb_link_event(perf->ntb);
731 
732 	return 0;
733 }
734 
735 static void perf_disable_service(struct perf_ctx *perf)
736 {
737 	int pidx;
738 
739 	if (perf->cmd_send == perf_msg_cmd_send) {
740 		u64 inbits;
741 
742 		inbits = ntb_msg_inbits(perf->ntb);
743 		(void)ntb_msg_set_mask(perf->ntb, inbits);
744 	} else {
745 		(void)ntb_db_set_mask(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
746 	}
747 
748 	ntb_clear_ctx(perf->ntb);
749 
750 	for (pidx = 0; pidx < perf->pcnt; pidx++)
751 		perf_cmd_exec(&perf->peers[pidx], PERF_CMD_CLEAR);
752 
753 	for (pidx = 0; pidx < perf->pcnt; pidx++)
754 		flush_work(&perf->peers[pidx].service);
755 
756 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
757 		struct perf_peer *peer = &perf->peers[pidx];
758 
759 		ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx), 0);
760 	}
761 
762 	ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
763 
764 	ntb_link_disable(perf->ntb);
765 }
766 
767 /*==============================================================================
768  *                      Performance measuring work-thread
769  *==============================================================================
770  */
771 
772 static void perf_dma_copy_callback(void *data)
773 {
774 	struct perf_thread *pthr = data;
775 
776 	atomic_dec(&pthr->dma_sync);
777 	wake_up(&pthr->dma_wait);
778 }
779 
780 static int perf_copy_chunk(struct perf_thread *pthr,
781 			   void __iomem *dst, void *src, size_t len)
782 {
783 	struct dma_async_tx_descriptor *tx;
784 	struct dmaengine_unmap_data *unmap;
785 	struct device *dma_dev;
786 	int try = 0, ret = 0;
787 	struct perf_peer *peer = pthr->perf->test_peer;
788 	void __iomem *vbase;
789 	void __iomem *dst_vaddr;
790 	dma_addr_t dst_dma_addr;
791 
792 	if (!use_dma) {
793 		memcpy_toio(dst, src, len);
794 		goto ret_check_tsync;
795 	}
796 
797 	dma_dev = pthr->dma_chan->device->dev;
798 
799 	if (!is_dma_copy_aligned(pthr->dma_chan->device, offset_in_page(src),
800 				 offset_in_page(dst), len))
801 		return -EIO;
802 
803 	vbase = peer->outbuf;
804 	dst_vaddr = dst;
805 	dst_dma_addr = peer->dma_dst_addr + (dst_vaddr - vbase);
806 
807 	unmap = dmaengine_get_unmap_data(dma_dev, 2, GFP_NOWAIT);
808 	if (!unmap)
809 		return -ENOMEM;
810 
811 	unmap->len = len;
812 	unmap->addr[0] = dma_map_page(dma_dev, virt_to_page(src),
813 		offset_in_page(src), len, DMA_TO_DEVICE);
814 	if (dma_mapping_error(dma_dev, unmap->addr[0])) {
815 		ret = -EIO;
816 		goto err_free_resource;
817 	}
818 	unmap->to_cnt = 1;
819 
820 	unmap->addr[1] = dst_dma_addr;
821 	if (dma_mapping_error(dma_dev, unmap->addr[1])) {
822 		ret = -EIO;
823 		goto err_free_resource;
824 	}
825 	unmap->from_cnt = 1;
826 
827 	do {
828 		tx = dmaengine_prep_dma_memcpy(pthr->dma_chan, unmap->addr[1],
829 			unmap->addr[0], len, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
830 		if (!tx)
831 			msleep(DMA_MDELAY);
832 	} while (!tx && (try++ < DMA_TRIES));
833 
834 	if (!tx) {
835 		ret = -EIO;
836 		goto err_free_resource;
837 	}
838 
839 	tx->callback = perf_dma_copy_callback;
840 	tx->callback_param = pthr;
841 	dma_set_unmap(tx, unmap);
842 
843 	ret = dma_submit_error(dmaengine_submit(tx));
844 	if (ret) {
845 		dmaengine_unmap_put(unmap);
846 		goto err_free_resource;
847 	}
848 
849 	dmaengine_unmap_put(unmap);
850 
851 	atomic_inc(&pthr->dma_sync);
852 	dma_async_issue_pending(pthr->dma_chan);
853 
854 ret_check_tsync:
855 	return likely(atomic_read(&pthr->perf->tsync) > 0) ? 0 : -EINTR;
856 
857 err_free_resource:
858 	dmaengine_unmap_put(unmap);
859 
860 	return ret;
861 }
862 
863 static bool perf_dma_filter(struct dma_chan *chan, void *data)
864 {
865 	struct perf_ctx *perf = data;
866 	int node;
867 
868 	node = dev_to_node(&perf->ntb->dev);
869 
870 	return node == NUMA_NO_NODE || node == dev_to_node(chan->device->dev);
871 }
872 
873 static int perf_init_test(struct perf_thread *pthr)
874 {
875 	struct perf_ctx *perf = pthr->perf;
876 	dma_cap_mask_t dma_mask;
877 	struct perf_peer *peer = pthr->perf->test_peer;
878 
879 	pthr->src = kmalloc_node(perf->test_peer->outbuf_size, GFP_KERNEL,
880 				 dev_to_node(&perf->ntb->dev));
881 	if (!pthr->src)
882 		return -ENOMEM;
883 
884 	get_random_bytes(pthr->src, perf->test_peer->outbuf_size);
885 
886 	if (!use_dma)
887 		return 0;
888 
889 	dma_cap_zero(dma_mask);
890 	dma_cap_set(DMA_MEMCPY, dma_mask);
891 	pthr->dma_chan = dma_request_channel(dma_mask, perf_dma_filter, perf);
892 	if (!pthr->dma_chan) {
893 		dev_err(&perf->ntb->dev, "%d: Failed to get DMA channel\n",
894 			pthr->tidx);
895 		goto err_free;
896 	}
897 	peer->dma_dst_addr =
898 		dma_map_resource(pthr->dma_chan->device->dev,
899 				 peer->out_phys_addr, peer->outbuf_size,
900 				 DMA_FROM_DEVICE, 0);
901 	if (dma_mapping_error(pthr->dma_chan->device->dev,
902 			      peer->dma_dst_addr)) {
903 		dev_err(pthr->dma_chan->device->dev, "%d: Failed to map DMA addr\n",
904 			pthr->tidx);
905 		peer->dma_dst_addr = 0;
906 		dma_release_channel(pthr->dma_chan);
907 		goto err_free;
908 	}
909 	dev_dbg(pthr->dma_chan->device->dev, "%d: Map MMIO %pa to DMA addr %pad\n",
910 			pthr->tidx,
911 			&peer->out_phys_addr,
912 			&peer->dma_dst_addr);
913 
914 	atomic_set(&pthr->dma_sync, 0);
915 	return 0;
916 
917 err_free:
918 	atomic_dec(&perf->tsync);
919 	wake_up(&perf->twait);
920 	kfree(pthr->src);
921 	return -ENODEV;
922 }
923 
924 static int perf_run_test(struct perf_thread *pthr)
925 {
926 	struct perf_peer *peer = pthr->perf->test_peer;
927 	struct perf_ctx *perf = pthr->perf;
928 	void __iomem *flt_dst, *bnd_dst;
929 	u64 total_size, chunk_size;
930 	void *flt_src;
931 	int ret = 0;
932 
933 	total_size = 1ULL << total_order;
934 	chunk_size = 1ULL << chunk_order;
935 	chunk_size = min_t(u64, peer->outbuf_size, chunk_size);
936 
937 	flt_src = pthr->src;
938 	bnd_dst = peer->outbuf + peer->outbuf_size;
939 	flt_dst = peer->outbuf;
940 
941 	pthr->duration = ktime_get();
942 
943 	/* Copied field is cleared on test launch stage */
944 	while (pthr->copied < total_size) {
945 		ret = perf_copy_chunk(pthr, flt_dst, flt_src, chunk_size);
946 		if (ret) {
947 			dev_err(&perf->ntb->dev, "%d: Got error %d on test\n",
948 				pthr->tidx, ret);
949 			return ret;
950 		}
951 
952 		pthr->copied += chunk_size;
953 
954 		flt_dst += chunk_size;
955 		flt_src += chunk_size;
956 		if (flt_dst >= bnd_dst || flt_dst < peer->outbuf) {
957 			flt_dst = peer->outbuf;
958 			flt_src = pthr->src;
959 		}
960 
961 		/* Give up CPU to give a chance for other threads to use it */
962 		schedule();
963 	}
964 
965 	return 0;
966 }
967 
968 static int perf_sync_test(struct perf_thread *pthr)
969 {
970 	struct perf_ctx *perf = pthr->perf;
971 
972 	if (!use_dma)
973 		goto no_dma_ret;
974 
975 	wait_event(pthr->dma_wait,
976 		   (atomic_read(&pthr->dma_sync) == 0 ||
977 		    atomic_read(&perf->tsync) < 0));
978 
979 	if (atomic_read(&perf->tsync) < 0)
980 		return -EINTR;
981 
982 no_dma_ret:
983 	pthr->duration = ktime_sub(ktime_get(), pthr->duration);
984 
985 	dev_dbg(&perf->ntb->dev, "%d: copied %llu bytes\n",
986 		pthr->tidx, pthr->copied);
987 
988 	dev_dbg(&perf->ntb->dev, "%d: lasted %llu usecs\n",
989 		pthr->tidx, ktime_to_us(pthr->duration));
990 
991 	dev_dbg(&perf->ntb->dev, "%d: %llu MBytes/s\n", pthr->tidx,
992 		div64_u64(pthr->copied, ktime_to_us(pthr->duration)));
993 
994 	return 0;
995 }
996 
997 static void perf_clear_test(struct perf_thread *pthr)
998 {
999 	struct perf_ctx *perf = pthr->perf;
1000 
1001 	if (!use_dma)
1002 		goto no_dma_notify;
1003 
1004 	/*
1005 	 * If test finished without errors, termination isn't needed.
1006 	 * We call it anyway just to be sure of the transfers completion.
1007 	 */
1008 	(void)dmaengine_terminate_sync(pthr->dma_chan);
1009 	if (pthr->perf->test_peer->dma_dst_addr)
1010 		dma_unmap_resource(pthr->dma_chan->device->dev,
1011 				   pthr->perf->test_peer->dma_dst_addr,
1012 				   pthr->perf->test_peer->outbuf_size,
1013 				   DMA_FROM_DEVICE, 0);
1014 
1015 	dma_release_channel(pthr->dma_chan);
1016 
1017 no_dma_notify:
1018 	atomic_dec(&perf->tsync);
1019 	wake_up(&perf->twait);
1020 	kfree(pthr->src);
1021 }
1022 
1023 static void perf_thread_work(struct work_struct *work)
1024 {
1025 	struct perf_thread *pthr = to_thread_work(work);
1026 	int ret;
1027 
1028 	/*
1029 	 * Perform stages in compliance with use_dma flag value.
1030 	 * Test status is changed only if error happened, otherwise
1031 	 * status -ENODATA is kept while test is on-fly. Results
1032 	 * synchronization is performed only if test fininshed
1033 	 * without an error or interruption.
1034 	 */
1035 	ret = perf_init_test(pthr);
1036 	if (ret) {
1037 		pthr->status = ret;
1038 		return;
1039 	}
1040 
1041 	ret = perf_run_test(pthr);
1042 	if (ret) {
1043 		pthr->status = ret;
1044 		goto err_clear_test;
1045 	}
1046 
1047 	pthr->status = perf_sync_test(pthr);
1048 
1049 err_clear_test:
1050 	perf_clear_test(pthr);
1051 }
1052 
1053 static int perf_set_tcnt(struct perf_ctx *perf, u8 tcnt)
1054 {
1055 	if (tcnt == 0 || tcnt > MAX_THREADS_CNT)
1056 		return -EINVAL;
1057 
1058 	if (test_and_set_bit_lock(0, &perf->busy_flag))
1059 		return -EBUSY;
1060 
1061 	perf->tcnt = tcnt;
1062 
1063 	clear_bit_unlock(0, &perf->busy_flag);
1064 
1065 	return 0;
1066 }
1067 
1068 static void perf_terminate_test(struct perf_ctx *perf)
1069 {
1070 	int tidx;
1071 
1072 	atomic_set(&perf->tsync, -1);
1073 	wake_up(&perf->twait);
1074 
1075 	for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
1076 		wake_up(&perf->threads[tidx].dma_wait);
1077 		cancel_work_sync(&perf->threads[tidx].work);
1078 	}
1079 }
1080 
1081 static int perf_submit_test(struct perf_peer *peer)
1082 {
1083 	struct perf_ctx *perf = peer->perf;
1084 	struct perf_thread *pthr;
1085 	int tidx, ret;
1086 
1087 	if (!test_bit(PERF_STS_DONE, &peer->sts))
1088 		return -ENOLINK;
1089 
1090 	if (test_and_set_bit_lock(0, &perf->busy_flag))
1091 		return -EBUSY;
1092 
1093 	perf->test_peer = peer;
1094 	atomic_set(&perf->tsync, perf->tcnt);
1095 
1096 	for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
1097 		pthr = &perf->threads[tidx];
1098 
1099 		pthr->status = -ENODATA;
1100 		pthr->copied = 0;
1101 		pthr->duration = ktime_set(0, 0);
1102 		if (tidx < perf->tcnt)
1103 			(void)queue_work(perf_wq, &pthr->work);
1104 	}
1105 
1106 	ret = wait_event_interruptible(perf->twait,
1107 				       atomic_read(&perf->tsync) <= 0);
1108 	if (ret == -ERESTARTSYS) {
1109 		perf_terminate_test(perf);
1110 		ret = -EINTR;
1111 	}
1112 
1113 	clear_bit_unlock(0, &perf->busy_flag);
1114 
1115 	return ret;
1116 }
1117 
1118 static int perf_read_stats(struct perf_ctx *perf, char *buf,
1119 			   size_t size, ssize_t *pos)
1120 {
1121 	struct perf_thread *pthr;
1122 	int tidx;
1123 
1124 	if (test_and_set_bit_lock(0, &perf->busy_flag))
1125 		return -EBUSY;
1126 
1127 	(*pos) += scnprintf(buf + *pos, size - *pos,
1128 		"    Peer %d test statistics:\n", perf->test_peer->pidx);
1129 
1130 	for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
1131 		pthr = &perf->threads[tidx];
1132 
1133 		if (pthr->status == -ENODATA)
1134 			continue;
1135 
1136 		if (pthr->status) {
1137 			(*pos) += scnprintf(buf + *pos, size - *pos,
1138 				"%d: error status %d\n", tidx, pthr->status);
1139 			continue;
1140 		}
1141 
1142 		(*pos) += scnprintf(buf + *pos, size - *pos,
1143 			"%d: copied %llu bytes in %llu usecs, %llu MBytes/s\n",
1144 			tidx, pthr->copied, ktime_to_us(pthr->duration),
1145 			div64_u64(pthr->copied, ktime_to_us(pthr->duration)));
1146 	}
1147 
1148 	clear_bit_unlock(0, &perf->busy_flag);
1149 
1150 	return 0;
1151 }
1152 
1153 static void perf_init_threads(struct perf_ctx *perf)
1154 {
1155 	struct perf_thread *pthr;
1156 	int tidx;
1157 
1158 	perf->tcnt = DEF_THREADS_CNT;
1159 	perf->test_peer = &perf->peers[0];
1160 	init_waitqueue_head(&perf->twait);
1161 
1162 	for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
1163 		pthr = &perf->threads[tidx];
1164 
1165 		pthr->perf = perf;
1166 		pthr->tidx = tidx;
1167 		pthr->status = -ENODATA;
1168 		init_waitqueue_head(&pthr->dma_wait);
1169 		INIT_WORK(&pthr->work, perf_thread_work);
1170 	}
1171 }
1172 
1173 static void perf_clear_threads(struct perf_ctx *perf)
1174 {
1175 	perf_terminate_test(perf);
1176 }
1177 
1178 /*==============================================================================
1179  *                               DebugFS nodes
1180  *==============================================================================
1181  */
1182 
1183 static ssize_t perf_dbgfs_read_info(struct file *filep, char __user *ubuf,
1184 				    size_t size, loff_t *offp)
1185 {
1186 	struct perf_ctx *perf = filep->private_data;
1187 	struct perf_peer *peer;
1188 	size_t buf_size;
1189 	ssize_t pos = 0;
1190 	int ret, pidx;
1191 	char *buf;
1192 
1193 	buf_size = min_t(size_t, size, 0x1000U);
1194 
1195 	buf = kmalloc(buf_size, GFP_KERNEL);
1196 	if (!buf)
1197 		return -ENOMEM;
1198 
1199 	pos += scnprintf(buf + pos, buf_size - pos,
1200 		"    Performance measuring tool info:\n\n");
1201 
1202 	pos += scnprintf(buf + pos, buf_size - pos,
1203 		"Local port %d, Global index %d\n", ntb_port_number(perf->ntb),
1204 		perf->gidx);
1205 	pos += scnprintf(buf + pos, buf_size - pos, "Test status: ");
1206 	if (test_bit(0, &perf->busy_flag)) {
1207 		pos += scnprintf(buf + pos, buf_size - pos,
1208 			"on-fly with port %d (%d)\n",
1209 			ntb_peer_port_number(perf->ntb, perf->test_peer->pidx),
1210 			perf->test_peer->pidx);
1211 	} else {
1212 		pos += scnprintf(buf + pos, buf_size - pos, "idle\n");
1213 	}
1214 
1215 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
1216 		peer = &perf->peers[pidx];
1217 
1218 		pos += scnprintf(buf + pos, buf_size - pos,
1219 			"Port %d (%d), Global index %d:\n",
1220 			ntb_peer_port_number(perf->ntb, peer->pidx), peer->pidx,
1221 			peer->gidx);
1222 
1223 		pos += scnprintf(buf + pos, buf_size - pos,
1224 			"\tLink status: %s\n",
1225 			test_bit(PERF_STS_LNKUP, &peer->sts) ? "up" : "down");
1226 
1227 		pos += scnprintf(buf + pos, buf_size - pos,
1228 			"\tOut buffer addr 0x%pK\n", peer->outbuf);
1229 
1230 		pos += scnprintf(buf + pos, buf_size - pos,
1231 			"\tOut buff phys addr %pa[p]\n", &peer->out_phys_addr);
1232 
1233 		pos += scnprintf(buf + pos, buf_size - pos,
1234 			"\tOut buffer size %pa\n", &peer->outbuf_size);
1235 
1236 		pos += scnprintf(buf + pos, buf_size - pos,
1237 			"\tOut buffer xlat 0x%016llx[p]\n", peer->outbuf_xlat);
1238 
1239 		if (!peer->inbuf) {
1240 			pos += scnprintf(buf + pos, buf_size - pos,
1241 				"\tIn buffer addr: unallocated\n");
1242 			continue;
1243 		}
1244 
1245 		pos += scnprintf(buf + pos, buf_size - pos,
1246 			"\tIn buffer addr 0x%pK\n", peer->inbuf);
1247 
1248 		pos += scnprintf(buf + pos, buf_size - pos,
1249 			"\tIn buffer size %pa\n", &peer->inbuf_size);
1250 
1251 		pos += scnprintf(buf + pos, buf_size - pos,
1252 			"\tIn buffer xlat %pad[p]\n", &peer->inbuf_xlat);
1253 	}
1254 
1255 	ret = simple_read_from_buffer(ubuf, size, offp, buf, pos);
1256 	kfree(buf);
1257 
1258 	return ret;
1259 }
1260 
1261 static const struct file_operations perf_dbgfs_info = {
1262 	.open = simple_open,
1263 	.read = perf_dbgfs_read_info
1264 };
1265 
1266 static ssize_t perf_dbgfs_read_run(struct file *filep, char __user *ubuf,
1267 				   size_t size, loff_t *offp)
1268 {
1269 	struct perf_ctx *perf = filep->private_data;
1270 	ssize_t ret, pos = 0;
1271 	char *buf;
1272 
1273 	buf = kmalloc(PERF_BUF_LEN, GFP_KERNEL);
1274 	if (!buf)
1275 		return -ENOMEM;
1276 
1277 	ret = perf_read_stats(perf, buf, PERF_BUF_LEN, &pos);
1278 	if (ret)
1279 		goto err_free;
1280 
1281 	ret = simple_read_from_buffer(ubuf, size, offp, buf, pos);
1282 err_free:
1283 	kfree(buf);
1284 
1285 	return ret;
1286 }
1287 
1288 static ssize_t perf_dbgfs_write_run(struct file *filep, const char __user *ubuf,
1289 				    size_t size, loff_t *offp)
1290 {
1291 	struct perf_ctx *perf = filep->private_data;
1292 	struct perf_peer *peer;
1293 	int pidx, ret;
1294 
1295 	ret = kstrtoint_from_user(ubuf, size, 0, &pidx);
1296 	if (ret)
1297 		return ret;
1298 
1299 	if (pidx < 0 || pidx >= perf->pcnt)
1300 		return -EINVAL;
1301 
1302 	peer = &perf->peers[pidx];
1303 
1304 	ret = perf_submit_test(peer);
1305 	if (ret)
1306 		return ret;
1307 
1308 	return size;
1309 }
1310 
1311 static const struct file_operations perf_dbgfs_run = {
1312 	.open = simple_open,
1313 	.read = perf_dbgfs_read_run,
1314 	.write = perf_dbgfs_write_run
1315 };
1316 
1317 static ssize_t perf_dbgfs_read_tcnt(struct file *filep, char __user *ubuf,
1318 				    size_t size, loff_t *offp)
1319 {
1320 	struct perf_ctx *perf = filep->private_data;
1321 	char buf[8];
1322 	ssize_t pos;
1323 
1324 	pos = scnprintf(buf, sizeof(buf), "%hhu\n", perf->tcnt);
1325 
1326 	return simple_read_from_buffer(ubuf, size, offp, buf, pos);
1327 }
1328 
1329 static ssize_t perf_dbgfs_write_tcnt(struct file *filep,
1330 				     const char __user *ubuf,
1331 				     size_t size, loff_t *offp)
1332 {
1333 	struct perf_ctx *perf = filep->private_data;
1334 	int ret;
1335 	u8 val;
1336 
1337 	ret = kstrtou8_from_user(ubuf, size, 0, &val);
1338 	if (ret)
1339 		return ret;
1340 
1341 	ret = perf_set_tcnt(perf, val);
1342 	if (ret)
1343 		return ret;
1344 
1345 	return size;
1346 }
1347 
1348 static const struct file_operations perf_dbgfs_tcnt = {
1349 	.open = simple_open,
1350 	.read = perf_dbgfs_read_tcnt,
1351 	.write = perf_dbgfs_write_tcnt
1352 };
1353 
1354 static void perf_setup_dbgfs(struct perf_ctx *perf)
1355 {
1356 	struct pci_dev *pdev = perf->ntb->pdev;
1357 
1358 	perf->dbgfs_dir = debugfs_create_dir(pci_name(pdev), perf_dbgfs_topdir);
1359 	if (!perf->dbgfs_dir) {
1360 		dev_warn(&perf->ntb->dev, "DebugFS unsupported\n");
1361 		return;
1362 	}
1363 
1364 	debugfs_create_file("info", 0600, perf->dbgfs_dir, perf,
1365 			    &perf_dbgfs_info);
1366 
1367 	debugfs_create_file("run", 0600, perf->dbgfs_dir, perf,
1368 			    &perf_dbgfs_run);
1369 
1370 	debugfs_create_file("threads_count", 0600, perf->dbgfs_dir, perf,
1371 			    &perf_dbgfs_tcnt);
1372 
1373 	/* They are made read-only for test exec safety and integrity */
1374 	debugfs_create_u8("chunk_order", 0500, perf->dbgfs_dir, &chunk_order);
1375 
1376 	debugfs_create_u8("total_order", 0500, perf->dbgfs_dir, &total_order);
1377 
1378 	debugfs_create_bool("use_dma", 0500, perf->dbgfs_dir, &use_dma);
1379 }
1380 
1381 static void perf_clear_dbgfs(struct perf_ctx *perf)
1382 {
1383 	debugfs_remove_recursive(perf->dbgfs_dir);
1384 }
1385 
1386 /*==============================================================================
1387  *                        Basic driver initialization
1388  *==============================================================================
1389  */
1390 
1391 static struct perf_ctx *perf_create_data(struct ntb_dev *ntb)
1392 {
1393 	struct perf_ctx *perf;
1394 
1395 	perf = devm_kzalloc(&ntb->dev, sizeof(*perf), GFP_KERNEL);
1396 	if (!perf)
1397 		return ERR_PTR(-ENOMEM);
1398 
1399 	perf->pcnt = ntb_peer_port_count(ntb);
1400 	perf->peers = devm_kcalloc(&ntb->dev, perf->pcnt, sizeof(*perf->peers),
1401 				  GFP_KERNEL);
1402 	if (!perf->peers)
1403 		return ERR_PTR(-ENOMEM);
1404 
1405 	perf->ntb = ntb;
1406 
1407 	return perf;
1408 }
1409 
1410 static int perf_setup_peer_mw(struct perf_peer *peer)
1411 {
1412 	struct perf_ctx *perf = peer->perf;
1413 	phys_addr_t phys_addr;
1414 	int ret;
1415 
1416 	/* Get outbound MW parameters and map it */
1417 	ret = ntb_peer_mw_get_addr(perf->ntb, perf->gidx, &phys_addr,
1418 				   &peer->outbuf_size);
1419 	if (ret)
1420 		return ret;
1421 
1422 	peer->outbuf = devm_ioremap_wc(&perf->ntb->dev, phys_addr,
1423 					peer->outbuf_size);
1424 	if (!peer->outbuf)
1425 		return -ENOMEM;
1426 
1427 	peer->out_phys_addr = phys_addr;
1428 
1429 	if (max_mw_size && peer->outbuf_size > max_mw_size) {
1430 		peer->outbuf_size = max_mw_size;
1431 		dev_warn(&peer->perf->ntb->dev,
1432 			"Peer %d outbuf reduced to %pa\n", peer->pidx,
1433 			&peer->outbuf_size);
1434 	}
1435 
1436 	return 0;
1437 }
1438 
1439 static int perf_init_peers(struct perf_ctx *perf)
1440 {
1441 	struct perf_peer *peer;
1442 	int pidx, lport, ret;
1443 
1444 	lport = ntb_port_number(perf->ntb);
1445 	perf->gidx = -1;
1446 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
1447 		peer = &perf->peers[pidx];
1448 
1449 		peer->perf = perf;
1450 		peer->pidx = pidx;
1451 		if (lport < ntb_peer_port_number(perf->ntb, pidx)) {
1452 			if (perf->gidx == -1)
1453 				perf->gidx = pidx;
1454 			peer->gidx = pidx + 1;
1455 		} else {
1456 			peer->gidx = pidx;
1457 		}
1458 		INIT_WORK(&peer->service, perf_service_work);
1459 	}
1460 	if (perf->gidx == -1)
1461 		perf->gidx = pidx;
1462 
1463 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
1464 		ret = perf_setup_peer_mw(&perf->peers[pidx]);
1465 		if (ret)
1466 			return ret;
1467 	}
1468 
1469 	dev_dbg(&perf->ntb->dev, "Global port index %d\n", perf->gidx);
1470 
1471 	return 0;
1472 }
1473 
1474 static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb)
1475 {
1476 	struct perf_ctx *perf;
1477 	int ret;
1478 
1479 	perf = perf_create_data(ntb);
1480 	if (IS_ERR(perf))
1481 		return PTR_ERR(perf);
1482 
1483 	ret = perf_init_peers(perf);
1484 	if (ret)
1485 		return ret;
1486 
1487 	perf_init_threads(perf);
1488 
1489 	ret = perf_init_service(perf);
1490 	if (ret)
1491 		return ret;
1492 
1493 	ret = perf_enable_service(perf);
1494 	if (ret)
1495 		return ret;
1496 
1497 	perf_setup_dbgfs(perf);
1498 
1499 	return 0;
1500 }
1501 
1502 static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb)
1503 {
1504 	struct perf_ctx *perf = ntb->ctx;
1505 
1506 	perf_clear_dbgfs(perf);
1507 
1508 	perf_disable_service(perf);
1509 
1510 	perf_clear_threads(perf);
1511 }
1512 
1513 static struct ntb_client perf_client = {
1514 	.ops = {
1515 		.probe = perf_probe,
1516 		.remove = perf_remove
1517 	}
1518 };
1519 
1520 static int __init perf_init(void)
1521 {
1522 	int ret;
1523 
1524 	if (chunk_order > MAX_CHUNK_ORDER) {
1525 		chunk_order = MAX_CHUNK_ORDER;
1526 		pr_info("Chunk order reduced to %hhu\n", chunk_order);
1527 	}
1528 
1529 	if (total_order < chunk_order) {
1530 		total_order = chunk_order;
1531 		pr_info("Total data order reduced to %hhu\n", total_order);
1532 	}
1533 
1534 	perf_wq = alloc_workqueue("perf_wq", WQ_UNBOUND | WQ_SYSFS, 0);
1535 	if (!perf_wq)
1536 		return -ENOMEM;
1537 
1538 	if (debugfs_initialized())
1539 		perf_dbgfs_topdir = debugfs_create_dir(KBUILD_MODNAME, NULL);
1540 
1541 	ret = ntb_register_client(&perf_client);
1542 	if (ret) {
1543 		debugfs_remove_recursive(perf_dbgfs_topdir);
1544 		destroy_workqueue(perf_wq);
1545 	}
1546 
1547 	return ret;
1548 }
1549 module_init(perf_init);
1550 
1551 static void __exit perf_exit(void)
1552 {
1553 	ntb_unregister_client(&perf_client);
1554 	debugfs_remove_recursive(perf_dbgfs_topdir);
1555 	destroy_workqueue(perf_wq);
1556 }
1557 module_exit(perf_exit);
1558