xref: /linux/drivers/ntb/test/ntb_perf.c (revision 74cc09fd8d04c56b652cfb332adb61f10bc2c199)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2015 Intel Corporation. All rights reserved.
8  *   Copyright(c) 2017 T-Platforms. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2015 Intel Corporation. All rights reserved.
17  *   Copyright(c) 2017 T-Platforms. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Perf Linux driver
46  */
47 
48 /*
49  * How to use this tool, by example.
50  *
51  * Assuming $DBG_DIR is something like:
52  * '/sys/kernel/debug/ntb_perf/0000:00:03.0'
53  * Suppose aside from local device there is at least one remote device
54  * connected to NTB with index 0.
55  *-----------------------------------------------------------------------------
56  * Eg: install driver with specified chunk/total orders and dma-enabled flag
57  *
58  * root@self# insmod ntb_perf.ko chunk_order=19 total_order=28 use_dma
59  *-----------------------------------------------------------------------------
60  * Eg: check NTB ports (index) and MW mapping information
61  *
62  * root@self# cat $DBG_DIR/info
63  *-----------------------------------------------------------------------------
64  * Eg: start performance test with peer (index 0) and get the test metrics
65  *
66  * root@self# echo 0 > $DBG_DIR/run
67  * root@self# cat $DBG_DIR/run
68  */
69 
70 #include <linux/init.h>
71 #include <linux/kernel.h>
72 #include <linux/module.h>
73 #include <linux/sched.h>
74 #include <linux/wait.h>
75 #include <linux/dma-mapping.h>
76 #include <linux/dmaengine.h>
77 #include <linux/pci.h>
78 #include <linux/ktime.h>
79 #include <linux/slab.h>
80 #include <linux/delay.h>
81 #include <linux/sizes.h>
82 #include <linux/workqueue.h>
83 #include <linux/debugfs.h>
84 #include <linux/random.h>
85 #include <linux/ntb.h>
86 
87 #define DRIVER_NAME		"ntb_perf"
88 #define DRIVER_VERSION		"2.0"
89 
90 MODULE_LICENSE("Dual BSD/GPL");
91 MODULE_VERSION(DRIVER_VERSION);
92 MODULE_AUTHOR("Dave Jiang <dave.jiang@intel.com>");
93 MODULE_DESCRIPTION("PCIe NTB Performance Measurement Tool");
94 
95 #define MAX_THREADS_CNT		32
96 #define DEF_THREADS_CNT		1
97 #define MAX_CHUNK_SIZE		SZ_1M
98 #define MAX_CHUNK_ORDER		20 /* no larger than 1M */
99 
100 #define DMA_TRIES		100
101 #define DMA_MDELAY		10
102 
103 #define MSG_TRIES		1000
104 #define MSG_UDELAY_LOW		1000000
105 #define MSG_UDELAY_HIGH		2000000
106 
107 #define PERF_BUF_LEN 1024
108 
109 static unsigned long max_mw_size;
110 module_param(max_mw_size, ulong, 0644);
111 MODULE_PARM_DESC(max_mw_size, "Upper limit of memory window size");
112 
113 static unsigned char chunk_order = 19; /* 512K */
114 module_param(chunk_order, byte, 0644);
115 MODULE_PARM_DESC(chunk_order, "Data chunk order [2^n] to transfer");
116 
117 static unsigned char total_order = 30; /* 1G */
118 module_param(total_order, byte, 0644);
119 MODULE_PARM_DESC(total_order, "Total data order [2^n] to transfer");
120 
121 static bool use_dma; /* default to 0 */
122 module_param(use_dma, bool, 0644);
123 MODULE_PARM_DESC(use_dma, "Use DMA engine to measure performance");
124 
125 /*==============================================================================
126  *                         Perf driver data definition
127  *==============================================================================
128  */
129 
130 enum perf_cmd {
131 	PERF_CMD_INVAL = -1,/* invalid spad command */
132 	PERF_CMD_SSIZE = 0, /* send out buffer size */
133 	PERF_CMD_RSIZE = 1, /* recv in  buffer size */
134 	PERF_CMD_SXLAT = 2, /* send in  buffer xlat */
135 	PERF_CMD_RXLAT = 3, /* recv out buffer xlat */
136 	PERF_CMD_CLEAR = 4, /* clear allocated memory */
137 	PERF_STS_DONE  = 5, /* init is done */
138 	PERF_STS_LNKUP = 6, /* link up state flag */
139 };
140 
141 struct perf_ctx;
142 
143 struct perf_peer {
144 	struct perf_ctx	*perf;
145 	int pidx;
146 	int gidx;
147 
148 	/* Outbound MW params */
149 	u64 outbuf_xlat;
150 	resource_size_t outbuf_size;
151 	void __iomem *outbuf;
152 	phys_addr_t out_phys_addr;
153 	dma_addr_t dma_dst_addr;
154 	/* Inbound MW params */
155 	dma_addr_t inbuf_xlat;
156 	resource_size_t inbuf_size;
157 	void		*inbuf;
158 
159 	/* NTB connection setup service */
160 	struct work_struct	service;
161 	unsigned long		sts;
162 
163 	struct completion init_comp;
164 };
165 #define to_peer_service(__work) \
166 	container_of(__work, struct perf_peer, service)
167 
168 struct perf_thread {
169 	struct perf_ctx *perf;
170 	int tidx;
171 
172 	/* DMA-based test sync parameters */
173 	atomic_t dma_sync;
174 	wait_queue_head_t dma_wait;
175 	struct dma_chan *dma_chan;
176 
177 	/* Data source and measured statistics */
178 	void *src;
179 	u64 copied;
180 	ktime_t duration;
181 	int status;
182 	struct work_struct work;
183 };
184 #define to_thread_work(__work) \
185 	container_of(__work, struct perf_thread, work)
186 
187 struct perf_ctx {
188 	struct ntb_dev *ntb;
189 
190 	/* Global device index and peers descriptors */
191 	int gidx;
192 	int pcnt;
193 	struct perf_peer *peers;
194 
195 	/* Performance measuring work-threads interface */
196 	unsigned long busy_flag;
197 	wait_queue_head_t twait;
198 	atomic_t tsync;
199 	u8 tcnt;
200 	struct perf_peer *test_peer;
201 	struct perf_thread threads[MAX_THREADS_CNT];
202 
203 	/* Scratchpad/Message IO operations */
204 	int (*cmd_send)(struct perf_peer *peer, enum perf_cmd cmd, u64 data);
205 	int (*cmd_recv)(struct perf_ctx *perf, int *pidx, enum perf_cmd *cmd,
206 			u64 *data);
207 
208 	struct dentry *dbgfs_dir;
209 };
210 
211 /*
212  * Scratchpads-base commands interface
213  */
214 #define PERF_SPAD_CNT(_pcnt) \
215 	(3*((_pcnt) + 1))
216 #define PERF_SPAD_CMD(_gidx) \
217 	(3*(_gidx))
218 #define PERF_SPAD_LDATA(_gidx) \
219 	(3*(_gidx) + 1)
220 #define PERF_SPAD_HDATA(_gidx) \
221 	(3*(_gidx) + 2)
222 #define PERF_SPAD_NOTIFY(_gidx) \
223 	(BIT_ULL(_gidx))
224 
225 /*
226  * Messages-base commands interface
227  */
228 #define PERF_MSG_CNT		3
229 #define PERF_MSG_CMD		0
230 #define PERF_MSG_LDATA		1
231 #define PERF_MSG_HDATA		2
232 
233 /*==============================================================================
234  *                           Static data declarations
235  *==============================================================================
236  */
237 
238 static struct dentry *perf_dbgfs_topdir;
239 
240 static struct workqueue_struct *perf_wq __read_mostly;
241 
242 /*==============================================================================
243  *                  NTB cross-link commands execution service
244  *==============================================================================
245  */
246 
247 static void perf_terminate_test(struct perf_ctx *perf);
248 
249 static inline bool perf_link_is_up(struct perf_peer *peer)
250 {
251 	u64 link;
252 
253 	link = ntb_link_is_up(peer->perf->ntb, NULL, NULL);
254 	return !!(link & BIT_ULL_MASK(peer->pidx));
255 }
256 
257 static int perf_spad_cmd_send(struct perf_peer *peer, enum perf_cmd cmd,
258 			      u64 data)
259 {
260 	struct perf_ctx *perf = peer->perf;
261 	int try;
262 	u32 sts;
263 
264 	dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data);
265 
266 	/*
267 	 * Perform predefined number of attempts before give up.
268 	 * We are sending the data to the port specific scratchpad, so
269 	 * to prevent a multi-port access race-condition. Additionally
270 	 * there is no need in local locking since only thread-safe
271 	 * service work is using this method.
272 	 */
273 	for (try = 0; try < MSG_TRIES; try++) {
274 		if (!perf_link_is_up(peer))
275 			return -ENOLINK;
276 
277 		sts = ntb_peer_spad_read(perf->ntb, peer->pidx,
278 					 PERF_SPAD_CMD(perf->gidx));
279 		if (sts != PERF_CMD_INVAL) {
280 			usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH);
281 			continue;
282 		}
283 
284 		ntb_peer_spad_write(perf->ntb, peer->pidx,
285 				    PERF_SPAD_LDATA(perf->gidx),
286 				    lower_32_bits(data));
287 		ntb_peer_spad_write(perf->ntb, peer->pidx,
288 				    PERF_SPAD_HDATA(perf->gidx),
289 				    upper_32_bits(data));
290 		ntb_peer_spad_write(perf->ntb, peer->pidx,
291 				    PERF_SPAD_CMD(perf->gidx),
292 				    cmd);
293 		ntb_peer_db_set(perf->ntb, PERF_SPAD_NOTIFY(peer->gidx));
294 
295 		dev_dbg(&perf->ntb->dev, "DB ring peer %#llx\n",
296 			PERF_SPAD_NOTIFY(peer->gidx));
297 
298 		break;
299 	}
300 
301 	return try < MSG_TRIES ? 0 : -EAGAIN;
302 }
303 
304 static int perf_spad_cmd_recv(struct perf_ctx *perf, int *pidx,
305 			      enum perf_cmd *cmd, u64 *data)
306 {
307 	struct perf_peer *peer;
308 	u32 val;
309 
310 	ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
311 
312 	/*
313 	 * We start scanning all over, since cleared DB may have been set
314 	 * by any peer. Yes, it makes peer with smaller index being
315 	 * serviced with greater priority, but it's convenient for spad
316 	 * and message code unification and simplicity.
317 	 */
318 	for (*pidx = 0; *pidx < perf->pcnt; (*pidx)++) {
319 		peer = &perf->peers[*pidx];
320 
321 		if (!perf_link_is_up(peer))
322 			continue;
323 
324 		val = ntb_spad_read(perf->ntb, PERF_SPAD_CMD(peer->gidx));
325 		if (val == PERF_CMD_INVAL)
326 			continue;
327 
328 		*cmd = val;
329 
330 		val = ntb_spad_read(perf->ntb, PERF_SPAD_LDATA(peer->gidx));
331 		*data = val;
332 
333 		val = ntb_spad_read(perf->ntb, PERF_SPAD_HDATA(peer->gidx));
334 		*data |= (u64)val << 32;
335 
336 		/* Next command can be retrieved from now */
337 		ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx),
338 			       PERF_CMD_INVAL);
339 
340 		dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data);
341 
342 		return 0;
343 	}
344 
345 	return -ENODATA;
346 }
347 
348 static int perf_msg_cmd_send(struct perf_peer *peer, enum perf_cmd cmd,
349 			     u64 data)
350 {
351 	struct perf_ctx *perf = peer->perf;
352 	int try, ret;
353 	u64 outbits;
354 
355 	dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data);
356 
357 	/*
358 	 * Perform predefined number of attempts before give up. Message
359 	 * registers are free of race-condition problem when accessed
360 	 * from different ports, so we don't need splitting registers
361 	 * by global device index. We also won't have local locking,
362 	 * since the method is used from service work only.
363 	 */
364 	outbits = ntb_msg_outbits(perf->ntb);
365 	for (try = 0; try < MSG_TRIES; try++) {
366 		if (!perf_link_is_up(peer))
367 			return -ENOLINK;
368 
369 		ret = ntb_msg_clear_sts(perf->ntb, outbits);
370 		if (ret)
371 			return ret;
372 
373 		ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_LDATA,
374 				   lower_32_bits(data));
375 
376 		if (ntb_msg_read_sts(perf->ntb) & outbits) {
377 			usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH);
378 			continue;
379 		}
380 
381 		ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_HDATA,
382 				   upper_32_bits(data));
383 
384 		/* This call shall trigger peer message event */
385 		ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_CMD, cmd);
386 
387 		break;
388 	}
389 
390 	return try < MSG_TRIES ? 0 : -EAGAIN;
391 }
392 
393 static int perf_msg_cmd_recv(struct perf_ctx *perf, int *pidx,
394 			     enum perf_cmd *cmd, u64 *data)
395 {
396 	u64 inbits;
397 	u32 val;
398 
399 	inbits = ntb_msg_inbits(perf->ntb);
400 
401 	if (hweight64(ntb_msg_read_sts(perf->ntb) & inbits) < 3)
402 		return -ENODATA;
403 
404 	val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_CMD);
405 	*cmd = val;
406 
407 	val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_LDATA);
408 	*data = val;
409 
410 	val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_HDATA);
411 	*data |= (u64)val << 32;
412 
413 	/* Next command can be retrieved from now */
414 	ntb_msg_clear_sts(perf->ntb, inbits);
415 
416 	dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data);
417 
418 	return 0;
419 }
420 
421 static int perf_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, u64 data)
422 {
423 	struct perf_ctx *perf = peer->perf;
424 
425 	if (cmd == PERF_CMD_SSIZE || cmd == PERF_CMD_SXLAT)
426 		return perf->cmd_send(peer, cmd, data);
427 
428 	dev_err(&perf->ntb->dev, "Send invalid command\n");
429 	return -EINVAL;
430 }
431 
432 static int perf_cmd_exec(struct perf_peer *peer, enum perf_cmd cmd)
433 {
434 	switch (cmd) {
435 	case PERF_CMD_SSIZE:
436 	case PERF_CMD_RSIZE:
437 	case PERF_CMD_SXLAT:
438 	case PERF_CMD_RXLAT:
439 	case PERF_CMD_CLEAR:
440 		break;
441 	default:
442 		dev_err(&peer->perf->ntb->dev, "Exec invalid command\n");
443 		return -EINVAL;
444 	}
445 
446 	/* No need of memory barrier, since bit ops have invernal lock */
447 	set_bit(cmd, &peer->sts);
448 
449 	dev_dbg(&peer->perf->ntb->dev, "CMD exec: %d\n", cmd);
450 
451 	(void)queue_work(system_highpri_wq, &peer->service);
452 
453 	return 0;
454 }
455 
456 static int perf_cmd_recv(struct perf_ctx *perf)
457 {
458 	struct perf_peer *peer;
459 	int ret, pidx, cmd;
460 	u64 data;
461 
462 	while (!(ret = perf->cmd_recv(perf, &pidx, &cmd, &data))) {
463 		peer = &perf->peers[pidx];
464 
465 		switch (cmd) {
466 		case PERF_CMD_SSIZE:
467 			peer->inbuf_size = data;
468 			return perf_cmd_exec(peer, PERF_CMD_RSIZE);
469 		case PERF_CMD_SXLAT:
470 			peer->outbuf_xlat = data;
471 			return perf_cmd_exec(peer, PERF_CMD_RXLAT);
472 		default:
473 			dev_err(&perf->ntb->dev, "Recv invalid command\n");
474 			return -EINVAL;
475 		}
476 	}
477 
478 	/* Return 0 if no data left to process, otherwise an error */
479 	return ret == -ENODATA ? 0 : ret;
480 }
481 
482 static void perf_link_event(void *ctx)
483 {
484 	struct perf_ctx *perf = ctx;
485 	struct perf_peer *peer;
486 	bool lnk_up;
487 	int pidx;
488 
489 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
490 		peer = &perf->peers[pidx];
491 
492 		lnk_up = perf_link_is_up(peer);
493 
494 		if (lnk_up &&
495 		    !test_and_set_bit(PERF_STS_LNKUP, &peer->sts)) {
496 			perf_cmd_exec(peer, PERF_CMD_SSIZE);
497 		} else if (!lnk_up &&
498 			   test_and_clear_bit(PERF_STS_LNKUP, &peer->sts)) {
499 			perf_cmd_exec(peer, PERF_CMD_CLEAR);
500 		}
501 	}
502 }
503 
504 static void perf_db_event(void *ctx, int vec)
505 {
506 	struct perf_ctx *perf = ctx;
507 
508 	dev_dbg(&perf->ntb->dev, "DB vec %d mask %#llx bits %#llx\n", vec,
509 		ntb_db_vector_mask(perf->ntb, vec), ntb_db_read(perf->ntb));
510 
511 	/* Just receive all available commands */
512 	(void)perf_cmd_recv(perf);
513 }
514 
515 static void perf_msg_event(void *ctx)
516 {
517 	struct perf_ctx *perf = ctx;
518 
519 	dev_dbg(&perf->ntb->dev, "Msg status bits %#llx\n",
520 		ntb_msg_read_sts(perf->ntb));
521 
522 	/* Messages are only sent one-by-one */
523 	(void)perf_cmd_recv(perf);
524 }
525 
526 static const struct ntb_ctx_ops perf_ops = {
527 	.link_event = perf_link_event,
528 	.db_event = perf_db_event,
529 	.msg_event = perf_msg_event
530 };
531 
532 static void perf_free_outbuf(struct perf_peer *peer)
533 {
534 	(void)ntb_peer_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx);
535 }
536 
537 static int perf_setup_outbuf(struct perf_peer *peer)
538 {
539 	struct perf_ctx *perf = peer->perf;
540 	int ret;
541 
542 	/* Outbuf size can be unaligned due to custom max_mw_size */
543 	ret = ntb_peer_mw_set_trans(perf->ntb, peer->pidx, peer->gidx,
544 				    peer->outbuf_xlat, peer->outbuf_size);
545 	if (ret) {
546 		dev_err(&perf->ntb->dev, "Failed to set outbuf translation\n");
547 		return ret;
548 	}
549 
550 	/* Initialization is finally done */
551 	set_bit(PERF_STS_DONE, &peer->sts);
552 	complete_all(&peer->init_comp);
553 
554 	return 0;
555 }
556 
557 static void perf_free_inbuf(struct perf_peer *peer)
558 {
559 	if (!peer->inbuf)
560 		return;
561 
562 	(void)ntb_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx);
563 	dma_free_coherent(&peer->perf->ntb->pdev->dev, peer->inbuf_size,
564 			  peer->inbuf, peer->inbuf_xlat);
565 	peer->inbuf = NULL;
566 }
567 
568 static int perf_setup_inbuf(struct perf_peer *peer)
569 {
570 	resource_size_t xlat_align, size_align, size_max;
571 	struct perf_ctx *perf = peer->perf;
572 	int ret;
573 
574 	/* Get inbound MW parameters */
575 	ret = ntb_mw_get_align(perf->ntb, peer->pidx, perf->gidx,
576 			       &xlat_align, &size_align, &size_max);
577 	if (ret) {
578 		dev_err(&perf->ntb->dev, "Couldn't get inbuf restrictions\n");
579 		return ret;
580 	}
581 
582 	if (peer->inbuf_size > size_max) {
583 		dev_err(&perf->ntb->dev, "Too big inbuf size %pa > %pa\n",
584 			&peer->inbuf_size, &size_max);
585 		return -EINVAL;
586 	}
587 
588 	peer->inbuf_size = round_up(peer->inbuf_size, size_align);
589 
590 	perf_free_inbuf(peer);
591 
592 	peer->inbuf = dma_alloc_coherent(&perf->ntb->pdev->dev,
593 					 peer->inbuf_size, &peer->inbuf_xlat,
594 					 GFP_KERNEL);
595 	if (!peer->inbuf) {
596 		dev_err(&perf->ntb->dev, "Failed to alloc inbuf of %pa\n",
597 			&peer->inbuf_size);
598 		return -ENOMEM;
599 	}
600 	if (!IS_ALIGNED(peer->inbuf_xlat, xlat_align)) {
601 		dev_err(&perf->ntb->dev, "Unaligned inbuf allocated\n");
602 		goto err_free_inbuf;
603 	}
604 
605 	ret = ntb_mw_set_trans(perf->ntb, peer->pidx, peer->gidx,
606 			       peer->inbuf_xlat, peer->inbuf_size);
607 	if (ret) {
608 		dev_err(&perf->ntb->dev, "Failed to set inbuf translation\n");
609 		goto err_free_inbuf;
610 	}
611 
612 	/*
613 	 * We submit inbuf xlat transmission cmd for execution here to follow
614 	 * the code architecture, even though this method is called from service
615 	 * work itself so the command will be executed right after it returns.
616 	 */
617 	(void)perf_cmd_exec(peer, PERF_CMD_SXLAT);
618 
619 	return 0;
620 
621 err_free_inbuf:
622 	perf_free_inbuf(peer);
623 
624 	return ret;
625 }
626 
627 static void perf_service_work(struct work_struct *work)
628 {
629 	struct perf_peer *peer = to_peer_service(work);
630 
631 	if (test_and_clear_bit(PERF_CMD_SSIZE, &peer->sts))
632 		perf_cmd_send(peer, PERF_CMD_SSIZE, peer->outbuf_size);
633 
634 	if (test_and_clear_bit(PERF_CMD_RSIZE, &peer->sts))
635 		perf_setup_inbuf(peer);
636 
637 	if (test_and_clear_bit(PERF_CMD_SXLAT, &peer->sts))
638 		perf_cmd_send(peer, PERF_CMD_SXLAT, peer->inbuf_xlat);
639 
640 	if (test_and_clear_bit(PERF_CMD_RXLAT, &peer->sts))
641 		perf_setup_outbuf(peer);
642 
643 	if (test_and_clear_bit(PERF_CMD_CLEAR, &peer->sts)) {
644 		init_completion(&peer->init_comp);
645 		clear_bit(PERF_STS_DONE, &peer->sts);
646 		if (test_bit(0, &peer->perf->busy_flag) &&
647 		    peer == peer->perf->test_peer) {
648 			dev_warn(&peer->perf->ntb->dev,
649 				"Freeing while test on-fly\n");
650 			perf_terminate_test(peer->perf);
651 		}
652 		perf_free_outbuf(peer);
653 		perf_free_inbuf(peer);
654 	}
655 }
656 
657 static int perf_init_service(struct perf_ctx *perf)
658 {
659 	u64 mask;
660 
661 	if (ntb_peer_mw_count(perf->ntb) < perf->pcnt) {
662 		dev_err(&perf->ntb->dev, "Not enough memory windows\n");
663 		return -EINVAL;
664 	}
665 
666 	if (ntb_msg_count(perf->ntb) >= PERF_MSG_CNT) {
667 		perf->cmd_send = perf_msg_cmd_send;
668 		perf->cmd_recv = perf_msg_cmd_recv;
669 
670 		dev_dbg(&perf->ntb->dev, "Message service initialized\n");
671 
672 		return 0;
673 	}
674 
675 	dev_dbg(&perf->ntb->dev, "Message service unsupported\n");
676 
677 	mask = GENMASK_ULL(perf->pcnt, 0);
678 	if (ntb_spad_count(perf->ntb) >= PERF_SPAD_CNT(perf->pcnt) &&
679 	    (ntb_db_valid_mask(perf->ntb) & mask) == mask) {
680 		perf->cmd_send = perf_spad_cmd_send;
681 		perf->cmd_recv = perf_spad_cmd_recv;
682 
683 		dev_dbg(&perf->ntb->dev, "Scratchpad service initialized\n");
684 
685 		return 0;
686 	}
687 
688 	dev_dbg(&perf->ntb->dev, "Scratchpad service unsupported\n");
689 
690 	dev_err(&perf->ntb->dev, "Command services unsupported\n");
691 
692 	return -EINVAL;
693 }
694 
695 static int perf_enable_service(struct perf_ctx *perf)
696 {
697 	u64 mask, incmd_bit;
698 	int ret, sidx, scnt;
699 
700 	mask = ntb_db_valid_mask(perf->ntb);
701 	(void)ntb_db_set_mask(perf->ntb, mask);
702 
703 	ret = ntb_set_ctx(perf->ntb, perf, &perf_ops);
704 	if (ret)
705 		return ret;
706 
707 	if (perf->cmd_send == perf_msg_cmd_send) {
708 		u64 inbits, outbits;
709 
710 		inbits = ntb_msg_inbits(perf->ntb);
711 		outbits = ntb_msg_outbits(perf->ntb);
712 		(void)ntb_msg_set_mask(perf->ntb, inbits | outbits);
713 
714 		incmd_bit = BIT_ULL(__ffs64(inbits));
715 		ret = ntb_msg_clear_mask(perf->ntb, incmd_bit);
716 
717 		dev_dbg(&perf->ntb->dev, "MSG sts unmasked %#llx\n", incmd_bit);
718 	} else {
719 		scnt = ntb_spad_count(perf->ntb);
720 		for (sidx = 0; sidx < scnt; sidx++)
721 			ntb_spad_write(perf->ntb, sidx, PERF_CMD_INVAL);
722 		incmd_bit = PERF_SPAD_NOTIFY(perf->gidx);
723 		ret = ntb_db_clear_mask(perf->ntb, incmd_bit);
724 
725 		dev_dbg(&perf->ntb->dev, "DB bits unmasked %#llx\n", incmd_bit);
726 	}
727 	if (ret) {
728 		ntb_clear_ctx(perf->ntb);
729 		return ret;
730 	}
731 
732 	ntb_link_enable(perf->ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
733 	/* Might be not necessary */
734 	ntb_link_event(perf->ntb);
735 
736 	return 0;
737 }
738 
739 static void perf_disable_service(struct perf_ctx *perf)
740 {
741 	int pidx;
742 
743 	if (perf->cmd_send == perf_msg_cmd_send) {
744 		u64 inbits;
745 
746 		inbits = ntb_msg_inbits(perf->ntb);
747 		(void)ntb_msg_set_mask(perf->ntb, inbits);
748 	} else {
749 		(void)ntb_db_set_mask(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
750 	}
751 
752 	ntb_clear_ctx(perf->ntb);
753 
754 	for (pidx = 0; pidx < perf->pcnt; pidx++)
755 		perf_cmd_exec(&perf->peers[pidx], PERF_CMD_CLEAR);
756 
757 	for (pidx = 0; pidx < perf->pcnt; pidx++)
758 		flush_work(&perf->peers[pidx].service);
759 
760 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
761 		struct perf_peer *peer = &perf->peers[pidx];
762 
763 		ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx), 0);
764 	}
765 
766 	ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
767 
768 	ntb_link_disable(perf->ntb);
769 }
770 
771 /*==============================================================================
772  *                      Performance measuring work-thread
773  *==============================================================================
774  */
775 
776 static void perf_dma_copy_callback(void *data)
777 {
778 	struct perf_thread *pthr = data;
779 
780 	atomic_dec(&pthr->dma_sync);
781 	wake_up(&pthr->dma_wait);
782 }
783 
784 static int perf_copy_chunk(struct perf_thread *pthr,
785 			   void __iomem *dst, void *src, size_t len)
786 {
787 	struct dma_async_tx_descriptor *tx;
788 	struct dmaengine_unmap_data *unmap;
789 	struct device *dma_dev;
790 	int try = 0, ret = 0;
791 	struct perf_peer *peer = pthr->perf->test_peer;
792 	void __iomem *vbase;
793 	void __iomem *dst_vaddr;
794 	dma_addr_t dst_dma_addr;
795 
796 	if (!use_dma) {
797 		memcpy_toio(dst, src, len);
798 		goto ret_check_tsync;
799 	}
800 
801 	dma_dev = pthr->dma_chan->device->dev;
802 
803 	if (!is_dma_copy_aligned(pthr->dma_chan->device, offset_in_page(src),
804 				 offset_in_page(dst), len))
805 		return -EIO;
806 
807 	vbase = peer->outbuf;
808 	dst_vaddr = dst;
809 	dst_dma_addr = peer->dma_dst_addr + (dst_vaddr - vbase);
810 
811 	unmap = dmaengine_get_unmap_data(dma_dev, 1, GFP_NOWAIT);
812 	if (!unmap)
813 		return -ENOMEM;
814 
815 	unmap->len = len;
816 	unmap->addr[0] = dma_map_page(dma_dev, virt_to_page(src),
817 		offset_in_page(src), len, DMA_TO_DEVICE);
818 	if (dma_mapping_error(dma_dev, unmap->addr[0])) {
819 		ret = -EIO;
820 		goto err_free_resource;
821 	}
822 	unmap->to_cnt = 1;
823 
824 	do {
825 		tx = dmaengine_prep_dma_memcpy(pthr->dma_chan, dst_dma_addr,
826 			unmap->addr[0], len, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
827 		if (!tx)
828 			msleep(DMA_MDELAY);
829 	} while (!tx && (try++ < DMA_TRIES));
830 
831 	if (!tx) {
832 		ret = -EIO;
833 		goto err_free_resource;
834 	}
835 
836 	tx->callback = perf_dma_copy_callback;
837 	tx->callback_param = pthr;
838 	dma_set_unmap(tx, unmap);
839 
840 	ret = dma_submit_error(dmaengine_submit(tx));
841 	if (ret) {
842 		dmaengine_unmap_put(unmap);
843 		goto err_free_resource;
844 	}
845 
846 	dmaengine_unmap_put(unmap);
847 
848 	atomic_inc(&pthr->dma_sync);
849 	dma_async_issue_pending(pthr->dma_chan);
850 
851 ret_check_tsync:
852 	return likely(atomic_read(&pthr->perf->tsync) > 0) ? 0 : -EINTR;
853 
854 err_free_resource:
855 	dmaengine_unmap_put(unmap);
856 
857 	return ret;
858 }
859 
860 static bool perf_dma_filter(struct dma_chan *chan, void *data)
861 {
862 	struct perf_ctx *perf = data;
863 	int node;
864 
865 	node = dev_to_node(&perf->ntb->dev);
866 
867 	return node == NUMA_NO_NODE || node == dev_to_node(chan->device->dev);
868 }
869 
870 static int perf_init_test(struct perf_thread *pthr)
871 {
872 	struct perf_ctx *perf = pthr->perf;
873 	dma_cap_mask_t dma_mask;
874 	struct perf_peer *peer = pthr->perf->test_peer;
875 
876 	pthr->src = kmalloc_node(perf->test_peer->outbuf_size, GFP_KERNEL,
877 				 dev_to_node(&perf->ntb->dev));
878 	if (!pthr->src)
879 		return -ENOMEM;
880 
881 	get_random_bytes(pthr->src, perf->test_peer->outbuf_size);
882 
883 	if (!use_dma)
884 		return 0;
885 
886 	dma_cap_zero(dma_mask);
887 	dma_cap_set(DMA_MEMCPY, dma_mask);
888 	pthr->dma_chan = dma_request_channel(dma_mask, perf_dma_filter, perf);
889 	if (!pthr->dma_chan) {
890 		dev_err(&perf->ntb->dev, "%d: Failed to get DMA channel\n",
891 			pthr->tidx);
892 		goto err_free;
893 	}
894 	peer->dma_dst_addr =
895 		dma_map_resource(pthr->dma_chan->device->dev,
896 				 peer->out_phys_addr, peer->outbuf_size,
897 				 DMA_FROM_DEVICE, 0);
898 	if (dma_mapping_error(pthr->dma_chan->device->dev,
899 			      peer->dma_dst_addr)) {
900 		dev_err(pthr->dma_chan->device->dev, "%d: Failed to map DMA addr\n",
901 			pthr->tidx);
902 		peer->dma_dst_addr = 0;
903 		dma_release_channel(pthr->dma_chan);
904 		goto err_free;
905 	}
906 	dev_dbg(pthr->dma_chan->device->dev, "%d: Map MMIO %pa to DMA addr %pad\n",
907 			pthr->tidx,
908 			&peer->out_phys_addr,
909 			&peer->dma_dst_addr);
910 
911 	atomic_set(&pthr->dma_sync, 0);
912 	return 0;
913 
914 err_free:
915 	atomic_dec(&perf->tsync);
916 	wake_up(&perf->twait);
917 	kfree(pthr->src);
918 	return -ENODEV;
919 }
920 
921 static int perf_run_test(struct perf_thread *pthr)
922 {
923 	struct perf_peer *peer = pthr->perf->test_peer;
924 	struct perf_ctx *perf = pthr->perf;
925 	void __iomem *flt_dst, *bnd_dst;
926 	u64 total_size, chunk_size;
927 	void *flt_src;
928 	int ret = 0;
929 
930 	total_size = 1ULL << total_order;
931 	chunk_size = 1ULL << chunk_order;
932 	chunk_size = min_t(u64, peer->outbuf_size, chunk_size);
933 
934 	flt_src = pthr->src;
935 	bnd_dst = peer->outbuf + peer->outbuf_size;
936 	flt_dst = peer->outbuf;
937 
938 	pthr->duration = ktime_get();
939 
940 	/* Copied field is cleared on test launch stage */
941 	while (pthr->copied < total_size) {
942 		ret = perf_copy_chunk(pthr, flt_dst, flt_src, chunk_size);
943 		if (ret) {
944 			dev_err(&perf->ntb->dev, "%d: Got error %d on test\n",
945 				pthr->tidx, ret);
946 			return ret;
947 		}
948 
949 		pthr->copied += chunk_size;
950 
951 		flt_dst += chunk_size;
952 		flt_src += chunk_size;
953 		if (flt_dst >= bnd_dst || flt_dst < peer->outbuf) {
954 			flt_dst = peer->outbuf;
955 			flt_src = pthr->src;
956 		}
957 
958 		/* Give up CPU to give a chance for other threads to use it */
959 		schedule();
960 	}
961 
962 	return 0;
963 }
964 
965 static int perf_sync_test(struct perf_thread *pthr)
966 {
967 	struct perf_ctx *perf = pthr->perf;
968 
969 	if (!use_dma)
970 		goto no_dma_ret;
971 
972 	wait_event(pthr->dma_wait,
973 		   (atomic_read(&pthr->dma_sync) == 0 ||
974 		    atomic_read(&perf->tsync) < 0));
975 
976 	if (atomic_read(&perf->tsync) < 0)
977 		return -EINTR;
978 
979 no_dma_ret:
980 	pthr->duration = ktime_sub(ktime_get(), pthr->duration);
981 
982 	dev_dbg(&perf->ntb->dev, "%d: copied %llu bytes\n",
983 		pthr->tidx, pthr->copied);
984 
985 	dev_dbg(&perf->ntb->dev, "%d: lasted %llu usecs\n",
986 		pthr->tidx, ktime_to_us(pthr->duration));
987 
988 	dev_dbg(&perf->ntb->dev, "%d: %llu MBytes/s\n", pthr->tidx,
989 		div64_u64(pthr->copied, ktime_to_us(pthr->duration)));
990 
991 	return 0;
992 }
993 
994 static void perf_clear_test(struct perf_thread *pthr)
995 {
996 	struct perf_ctx *perf = pthr->perf;
997 
998 	if (!use_dma)
999 		goto no_dma_notify;
1000 
1001 	/*
1002 	 * If test finished without errors, termination isn't needed.
1003 	 * We call it anyway just to be sure of the transfers completion.
1004 	 */
1005 	(void)dmaengine_terminate_sync(pthr->dma_chan);
1006 	if (pthr->perf->test_peer->dma_dst_addr)
1007 		dma_unmap_resource(pthr->dma_chan->device->dev,
1008 				   pthr->perf->test_peer->dma_dst_addr,
1009 				   pthr->perf->test_peer->outbuf_size,
1010 				   DMA_FROM_DEVICE, 0);
1011 
1012 	dma_release_channel(pthr->dma_chan);
1013 
1014 no_dma_notify:
1015 	atomic_dec(&perf->tsync);
1016 	wake_up(&perf->twait);
1017 	kfree(pthr->src);
1018 }
1019 
1020 static void perf_thread_work(struct work_struct *work)
1021 {
1022 	struct perf_thread *pthr = to_thread_work(work);
1023 	int ret;
1024 
1025 	/*
1026 	 * Perform stages in compliance with use_dma flag value.
1027 	 * Test status is changed only if error happened, otherwise
1028 	 * status -ENODATA is kept while test is on-fly. Results
1029 	 * synchronization is performed only if test fininshed
1030 	 * without an error or interruption.
1031 	 */
1032 	ret = perf_init_test(pthr);
1033 	if (ret) {
1034 		pthr->status = ret;
1035 		return;
1036 	}
1037 
1038 	ret = perf_run_test(pthr);
1039 	if (ret) {
1040 		pthr->status = ret;
1041 		goto err_clear_test;
1042 	}
1043 
1044 	pthr->status = perf_sync_test(pthr);
1045 
1046 err_clear_test:
1047 	perf_clear_test(pthr);
1048 }
1049 
1050 static int perf_set_tcnt(struct perf_ctx *perf, u8 tcnt)
1051 {
1052 	if (tcnt == 0 || tcnt > MAX_THREADS_CNT)
1053 		return -EINVAL;
1054 
1055 	if (test_and_set_bit_lock(0, &perf->busy_flag))
1056 		return -EBUSY;
1057 
1058 	perf->tcnt = tcnt;
1059 
1060 	clear_bit_unlock(0, &perf->busy_flag);
1061 
1062 	return 0;
1063 }
1064 
1065 static void perf_terminate_test(struct perf_ctx *perf)
1066 {
1067 	int tidx;
1068 
1069 	atomic_set(&perf->tsync, -1);
1070 	wake_up(&perf->twait);
1071 
1072 	for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
1073 		wake_up(&perf->threads[tidx].dma_wait);
1074 		cancel_work_sync(&perf->threads[tidx].work);
1075 	}
1076 }
1077 
1078 static int perf_submit_test(struct perf_peer *peer)
1079 {
1080 	struct perf_ctx *perf = peer->perf;
1081 	struct perf_thread *pthr;
1082 	int tidx, ret;
1083 
1084 	ret = wait_for_completion_interruptible(&peer->init_comp);
1085 	if (ret < 0)
1086 		return ret;
1087 
1088 	if (test_and_set_bit_lock(0, &perf->busy_flag))
1089 		return -EBUSY;
1090 
1091 	perf->test_peer = peer;
1092 	atomic_set(&perf->tsync, perf->tcnt);
1093 
1094 	for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
1095 		pthr = &perf->threads[tidx];
1096 
1097 		pthr->status = -ENODATA;
1098 		pthr->copied = 0;
1099 		pthr->duration = ktime_set(0, 0);
1100 		if (tidx < perf->tcnt)
1101 			(void)queue_work(perf_wq, &pthr->work);
1102 	}
1103 
1104 	ret = wait_event_interruptible(perf->twait,
1105 				       atomic_read(&perf->tsync) <= 0);
1106 	if (ret == -ERESTARTSYS) {
1107 		perf_terminate_test(perf);
1108 		ret = -EINTR;
1109 	}
1110 
1111 	clear_bit_unlock(0, &perf->busy_flag);
1112 
1113 	return ret;
1114 }
1115 
1116 static int perf_read_stats(struct perf_ctx *perf, char *buf,
1117 			   size_t size, ssize_t *pos)
1118 {
1119 	struct perf_thread *pthr;
1120 	int tidx;
1121 
1122 	if (test_and_set_bit_lock(0, &perf->busy_flag))
1123 		return -EBUSY;
1124 
1125 	(*pos) += scnprintf(buf + *pos, size - *pos,
1126 		"    Peer %d test statistics:\n", perf->test_peer->pidx);
1127 
1128 	for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
1129 		pthr = &perf->threads[tidx];
1130 
1131 		if (pthr->status == -ENODATA)
1132 			continue;
1133 
1134 		if (pthr->status) {
1135 			(*pos) += scnprintf(buf + *pos, size - *pos,
1136 				"%d: error status %d\n", tidx, pthr->status);
1137 			continue;
1138 		}
1139 
1140 		(*pos) += scnprintf(buf + *pos, size - *pos,
1141 			"%d: copied %llu bytes in %llu usecs, %llu MBytes/s\n",
1142 			tidx, pthr->copied, ktime_to_us(pthr->duration),
1143 			div64_u64(pthr->copied, ktime_to_us(pthr->duration)));
1144 	}
1145 
1146 	clear_bit_unlock(0, &perf->busy_flag);
1147 
1148 	return 0;
1149 }
1150 
1151 static void perf_init_threads(struct perf_ctx *perf)
1152 {
1153 	struct perf_thread *pthr;
1154 	int tidx;
1155 
1156 	perf->tcnt = DEF_THREADS_CNT;
1157 	perf->test_peer = &perf->peers[0];
1158 	init_waitqueue_head(&perf->twait);
1159 
1160 	for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
1161 		pthr = &perf->threads[tidx];
1162 
1163 		pthr->perf = perf;
1164 		pthr->tidx = tidx;
1165 		pthr->status = -ENODATA;
1166 		init_waitqueue_head(&pthr->dma_wait);
1167 		INIT_WORK(&pthr->work, perf_thread_work);
1168 	}
1169 }
1170 
1171 static void perf_clear_threads(struct perf_ctx *perf)
1172 {
1173 	perf_terminate_test(perf);
1174 }
1175 
1176 /*==============================================================================
1177  *                               DebugFS nodes
1178  *==============================================================================
1179  */
1180 
1181 static ssize_t perf_dbgfs_read_info(struct file *filep, char __user *ubuf,
1182 				    size_t size, loff_t *offp)
1183 {
1184 	struct perf_ctx *perf = filep->private_data;
1185 	struct perf_peer *peer;
1186 	size_t buf_size;
1187 	ssize_t pos = 0;
1188 	int ret, pidx;
1189 	char *buf;
1190 
1191 	buf_size = min_t(size_t, size, 0x1000U);
1192 
1193 	buf = kmalloc(buf_size, GFP_KERNEL);
1194 	if (!buf)
1195 		return -ENOMEM;
1196 
1197 	pos += scnprintf(buf + pos, buf_size - pos,
1198 		"    Performance measuring tool info:\n\n");
1199 
1200 	pos += scnprintf(buf + pos, buf_size - pos,
1201 		"Local port %d, Global index %d\n", ntb_port_number(perf->ntb),
1202 		perf->gidx);
1203 	pos += scnprintf(buf + pos, buf_size - pos, "Test status: ");
1204 	if (test_bit(0, &perf->busy_flag)) {
1205 		pos += scnprintf(buf + pos, buf_size - pos,
1206 			"on-fly with port %d (%d)\n",
1207 			ntb_peer_port_number(perf->ntb, perf->test_peer->pidx),
1208 			perf->test_peer->pidx);
1209 	} else {
1210 		pos += scnprintf(buf + pos, buf_size - pos, "idle\n");
1211 	}
1212 
1213 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
1214 		peer = &perf->peers[pidx];
1215 
1216 		pos += scnprintf(buf + pos, buf_size - pos,
1217 			"Port %d (%d), Global index %d:\n",
1218 			ntb_peer_port_number(perf->ntb, peer->pidx), peer->pidx,
1219 			peer->gidx);
1220 
1221 		pos += scnprintf(buf + pos, buf_size - pos,
1222 			"\tLink status: %s\n",
1223 			test_bit(PERF_STS_LNKUP, &peer->sts) ? "up" : "down");
1224 
1225 		pos += scnprintf(buf + pos, buf_size - pos,
1226 			"\tOut buffer addr 0x%pK\n", peer->outbuf);
1227 
1228 		pos += scnprintf(buf + pos, buf_size - pos,
1229 			"\tOut buff phys addr %pa[p]\n", &peer->out_phys_addr);
1230 
1231 		pos += scnprintf(buf + pos, buf_size - pos,
1232 			"\tOut buffer size %pa\n", &peer->outbuf_size);
1233 
1234 		pos += scnprintf(buf + pos, buf_size - pos,
1235 			"\tOut buffer xlat 0x%016llx[p]\n", peer->outbuf_xlat);
1236 
1237 		if (!peer->inbuf) {
1238 			pos += scnprintf(buf + pos, buf_size - pos,
1239 				"\tIn buffer addr: unallocated\n");
1240 			continue;
1241 		}
1242 
1243 		pos += scnprintf(buf + pos, buf_size - pos,
1244 			"\tIn buffer addr 0x%pK\n", peer->inbuf);
1245 
1246 		pos += scnprintf(buf + pos, buf_size - pos,
1247 			"\tIn buffer size %pa\n", &peer->inbuf_size);
1248 
1249 		pos += scnprintf(buf + pos, buf_size - pos,
1250 			"\tIn buffer xlat %pad[p]\n", &peer->inbuf_xlat);
1251 	}
1252 
1253 	ret = simple_read_from_buffer(ubuf, size, offp, buf, pos);
1254 	kfree(buf);
1255 
1256 	return ret;
1257 }
1258 
1259 static const struct file_operations perf_dbgfs_info = {
1260 	.open = simple_open,
1261 	.read = perf_dbgfs_read_info
1262 };
1263 
1264 static ssize_t perf_dbgfs_read_run(struct file *filep, char __user *ubuf,
1265 				   size_t size, loff_t *offp)
1266 {
1267 	struct perf_ctx *perf = filep->private_data;
1268 	ssize_t ret, pos = 0;
1269 	char *buf;
1270 
1271 	buf = kmalloc(PERF_BUF_LEN, GFP_KERNEL);
1272 	if (!buf)
1273 		return -ENOMEM;
1274 
1275 	ret = perf_read_stats(perf, buf, PERF_BUF_LEN, &pos);
1276 	if (ret)
1277 		goto err_free;
1278 
1279 	ret = simple_read_from_buffer(ubuf, size, offp, buf, pos);
1280 err_free:
1281 	kfree(buf);
1282 
1283 	return ret;
1284 }
1285 
1286 static ssize_t perf_dbgfs_write_run(struct file *filep, const char __user *ubuf,
1287 				    size_t size, loff_t *offp)
1288 {
1289 	struct perf_ctx *perf = filep->private_data;
1290 	struct perf_peer *peer;
1291 	int pidx, ret;
1292 
1293 	ret = kstrtoint_from_user(ubuf, size, 0, &pidx);
1294 	if (ret)
1295 		return ret;
1296 
1297 	if (pidx < 0 || pidx >= perf->pcnt)
1298 		return -EINVAL;
1299 
1300 	peer = &perf->peers[pidx];
1301 
1302 	ret = perf_submit_test(peer);
1303 	if (ret)
1304 		return ret;
1305 
1306 	return size;
1307 }
1308 
1309 static const struct file_operations perf_dbgfs_run = {
1310 	.open = simple_open,
1311 	.read = perf_dbgfs_read_run,
1312 	.write = perf_dbgfs_write_run
1313 };
1314 
1315 static ssize_t perf_dbgfs_read_tcnt(struct file *filep, char __user *ubuf,
1316 				    size_t size, loff_t *offp)
1317 {
1318 	struct perf_ctx *perf = filep->private_data;
1319 	char buf[8];
1320 	ssize_t pos;
1321 
1322 	pos = scnprintf(buf, sizeof(buf), "%hhu\n", perf->tcnt);
1323 
1324 	return simple_read_from_buffer(ubuf, size, offp, buf, pos);
1325 }
1326 
1327 static ssize_t perf_dbgfs_write_tcnt(struct file *filep,
1328 				     const char __user *ubuf,
1329 				     size_t size, loff_t *offp)
1330 {
1331 	struct perf_ctx *perf = filep->private_data;
1332 	int ret;
1333 	u8 val;
1334 
1335 	ret = kstrtou8_from_user(ubuf, size, 0, &val);
1336 	if (ret)
1337 		return ret;
1338 
1339 	ret = perf_set_tcnt(perf, val);
1340 	if (ret)
1341 		return ret;
1342 
1343 	return size;
1344 }
1345 
1346 static const struct file_operations perf_dbgfs_tcnt = {
1347 	.open = simple_open,
1348 	.read = perf_dbgfs_read_tcnt,
1349 	.write = perf_dbgfs_write_tcnt
1350 };
1351 
1352 static void perf_setup_dbgfs(struct perf_ctx *perf)
1353 {
1354 	struct pci_dev *pdev = perf->ntb->pdev;
1355 
1356 	perf->dbgfs_dir = debugfs_create_dir(pci_name(pdev), perf_dbgfs_topdir);
1357 	if (!perf->dbgfs_dir) {
1358 		dev_warn(&perf->ntb->dev, "DebugFS unsupported\n");
1359 		return;
1360 	}
1361 
1362 	debugfs_create_file("info", 0600, perf->dbgfs_dir, perf,
1363 			    &perf_dbgfs_info);
1364 
1365 	debugfs_create_file("run", 0600, perf->dbgfs_dir, perf,
1366 			    &perf_dbgfs_run);
1367 
1368 	debugfs_create_file("threads_count", 0600, perf->dbgfs_dir, perf,
1369 			    &perf_dbgfs_tcnt);
1370 
1371 	/* They are made read-only for test exec safety and integrity */
1372 	debugfs_create_u8("chunk_order", 0500, perf->dbgfs_dir, &chunk_order);
1373 
1374 	debugfs_create_u8("total_order", 0500, perf->dbgfs_dir, &total_order);
1375 
1376 	debugfs_create_bool("use_dma", 0500, perf->dbgfs_dir, &use_dma);
1377 }
1378 
1379 static void perf_clear_dbgfs(struct perf_ctx *perf)
1380 {
1381 	debugfs_remove_recursive(perf->dbgfs_dir);
1382 }
1383 
1384 /*==============================================================================
1385  *                        Basic driver initialization
1386  *==============================================================================
1387  */
1388 
1389 static struct perf_ctx *perf_create_data(struct ntb_dev *ntb)
1390 {
1391 	struct perf_ctx *perf;
1392 
1393 	perf = devm_kzalloc(&ntb->dev, sizeof(*perf), GFP_KERNEL);
1394 	if (!perf)
1395 		return ERR_PTR(-ENOMEM);
1396 
1397 	perf->pcnt = ntb_peer_port_count(ntb);
1398 	perf->peers = devm_kcalloc(&ntb->dev, perf->pcnt, sizeof(*perf->peers),
1399 				  GFP_KERNEL);
1400 	if (!perf->peers)
1401 		return ERR_PTR(-ENOMEM);
1402 
1403 	perf->ntb = ntb;
1404 
1405 	return perf;
1406 }
1407 
1408 static int perf_setup_peer_mw(struct perf_peer *peer)
1409 {
1410 	struct perf_ctx *perf = peer->perf;
1411 	phys_addr_t phys_addr;
1412 	int ret;
1413 
1414 	/* Get outbound MW parameters and map it */
1415 	ret = ntb_peer_mw_get_addr(perf->ntb, perf->gidx, &phys_addr,
1416 				   &peer->outbuf_size);
1417 	if (ret)
1418 		return ret;
1419 
1420 	peer->outbuf = devm_ioremap_wc(&perf->ntb->dev, phys_addr,
1421 					peer->outbuf_size);
1422 	if (!peer->outbuf)
1423 		return -ENOMEM;
1424 
1425 	peer->out_phys_addr = phys_addr;
1426 
1427 	if (max_mw_size && peer->outbuf_size > max_mw_size) {
1428 		peer->outbuf_size = max_mw_size;
1429 		dev_warn(&peer->perf->ntb->dev,
1430 			"Peer %d outbuf reduced to %pa\n", peer->pidx,
1431 			&peer->outbuf_size);
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 static int perf_init_peers(struct perf_ctx *perf)
1438 {
1439 	struct perf_peer *peer;
1440 	int pidx, lport, ret;
1441 
1442 	lport = ntb_port_number(perf->ntb);
1443 	perf->gidx = -1;
1444 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
1445 		peer = &perf->peers[pidx];
1446 
1447 		peer->perf = perf;
1448 		peer->pidx = pidx;
1449 		if (lport < ntb_peer_port_number(perf->ntb, pidx)) {
1450 			if (perf->gidx == -1)
1451 				perf->gidx = pidx;
1452 			peer->gidx = pidx + 1;
1453 		} else {
1454 			peer->gidx = pidx;
1455 		}
1456 		INIT_WORK(&peer->service, perf_service_work);
1457 		init_completion(&peer->init_comp);
1458 	}
1459 	if (perf->gidx == -1)
1460 		perf->gidx = pidx;
1461 
1462 	/*
1463 	 * Hardware with only two ports may not have unique port
1464 	 * numbers. In this case, the gidxs should all be zero.
1465 	 */
1466 	if (perf->pcnt == 1 &&  ntb_port_number(perf->ntb) == 0 &&
1467 	    ntb_peer_port_number(perf->ntb, 0) == 0) {
1468 		perf->gidx = 0;
1469 		perf->peers[0].gidx = 0;
1470 	}
1471 
1472 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
1473 		ret = perf_setup_peer_mw(&perf->peers[pidx]);
1474 		if (ret)
1475 			return ret;
1476 	}
1477 
1478 	dev_dbg(&perf->ntb->dev, "Global port index %d\n", perf->gidx);
1479 
1480 	return 0;
1481 }
1482 
1483 static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb)
1484 {
1485 	struct perf_ctx *perf;
1486 	int ret;
1487 
1488 	perf = perf_create_data(ntb);
1489 	if (IS_ERR(perf))
1490 		return PTR_ERR(perf);
1491 
1492 	ret = perf_init_peers(perf);
1493 	if (ret)
1494 		return ret;
1495 
1496 	perf_init_threads(perf);
1497 
1498 	ret = perf_init_service(perf);
1499 	if (ret)
1500 		return ret;
1501 
1502 	ret = perf_enable_service(perf);
1503 	if (ret)
1504 		return ret;
1505 
1506 	perf_setup_dbgfs(perf);
1507 
1508 	return 0;
1509 }
1510 
1511 static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb)
1512 {
1513 	struct perf_ctx *perf = ntb->ctx;
1514 
1515 	perf_clear_dbgfs(perf);
1516 
1517 	perf_disable_service(perf);
1518 
1519 	perf_clear_threads(perf);
1520 }
1521 
1522 static struct ntb_client perf_client = {
1523 	.ops = {
1524 		.probe = perf_probe,
1525 		.remove = perf_remove
1526 	}
1527 };
1528 
1529 static int __init perf_init(void)
1530 {
1531 	int ret;
1532 
1533 	if (chunk_order > MAX_CHUNK_ORDER) {
1534 		chunk_order = MAX_CHUNK_ORDER;
1535 		pr_info("Chunk order reduced to %hhu\n", chunk_order);
1536 	}
1537 
1538 	if (total_order < chunk_order) {
1539 		total_order = chunk_order;
1540 		pr_info("Total data order reduced to %hhu\n", total_order);
1541 	}
1542 
1543 	perf_wq = alloc_workqueue("perf_wq", WQ_UNBOUND | WQ_SYSFS, 0);
1544 	if (!perf_wq)
1545 		return -ENOMEM;
1546 
1547 	if (debugfs_initialized())
1548 		perf_dbgfs_topdir = debugfs_create_dir(KBUILD_MODNAME, NULL);
1549 
1550 	ret = ntb_register_client(&perf_client);
1551 	if (ret) {
1552 		debugfs_remove_recursive(perf_dbgfs_topdir);
1553 		destroy_workqueue(perf_wq);
1554 	}
1555 
1556 	return ret;
1557 }
1558 module_init(perf_init);
1559 
1560 static void __exit perf_exit(void)
1561 {
1562 	ntb_unregister_client(&perf_client);
1563 	debugfs_remove_recursive(perf_dbgfs_topdir);
1564 	destroy_workqueue(perf_wq);
1565 }
1566 module_exit(perf_exit);
1567