xref: /linux/drivers/ntb/ntb_transport.c (revision db6d8d5fdf9537641c76ba7f32e02b4bcc600972)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64 
65 #define NTB_TRANSPORT_VERSION	4
66 #define NTB_TRANSPORT_VER	"4"
67 #define NTB_TRANSPORT_NAME	"ntb_transport"
68 #define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
69 
70 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
71 MODULE_VERSION(NTB_TRANSPORT_VER);
72 MODULE_LICENSE("Dual BSD/GPL");
73 MODULE_AUTHOR("Intel Corporation");
74 
75 static unsigned long max_mw_size;
76 module_param(max_mw_size, ulong, 0644);
77 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
78 
79 static unsigned int transport_mtu = 0x10000;
80 module_param(transport_mtu, uint, 0644);
81 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
82 
83 static unsigned char max_num_clients;
84 module_param(max_num_clients, byte, 0644);
85 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
86 
87 static unsigned int copy_bytes = 1024;
88 module_param(copy_bytes, uint, 0644);
89 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
90 
91 static bool use_dma;
92 module_param(use_dma, bool, 0644);
93 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
94 
95 static struct dentry *nt_debugfs_dir;
96 
97 struct ntb_queue_entry {
98 	/* ntb_queue list reference */
99 	struct list_head entry;
100 	/* pointers to data to be transferred */
101 	void *cb_data;
102 	void *buf;
103 	unsigned int len;
104 	unsigned int flags;
105 	int retries;
106 	int errors;
107 	unsigned int tx_index;
108 	unsigned int rx_index;
109 
110 	struct ntb_transport_qp *qp;
111 	union {
112 		struct ntb_payload_header __iomem *tx_hdr;
113 		struct ntb_payload_header *rx_hdr;
114 	};
115 };
116 
117 struct ntb_rx_info {
118 	unsigned int entry;
119 };
120 
121 struct ntb_transport_qp {
122 	struct ntb_transport_ctx *transport;
123 	struct ntb_dev *ndev;
124 	void *cb_data;
125 	struct dma_chan *tx_dma_chan;
126 	struct dma_chan *rx_dma_chan;
127 
128 	bool client_ready;
129 	bool link_is_up;
130 	bool active;
131 
132 	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
133 	u64 qp_bit;
134 
135 	struct ntb_rx_info __iomem *rx_info;
136 	struct ntb_rx_info *remote_rx_info;
137 
138 	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
139 			   void *data, int len);
140 	struct list_head tx_free_q;
141 	spinlock_t ntb_tx_free_q_lock;
142 	void __iomem *tx_mw;
143 	dma_addr_t tx_mw_phys;
144 	unsigned int tx_index;
145 	unsigned int tx_max_entry;
146 	unsigned int tx_max_frame;
147 
148 	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
149 			   void *data, int len);
150 	struct list_head rx_post_q;
151 	struct list_head rx_pend_q;
152 	struct list_head rx_free_q;
153 	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
154 	spinlock_t ntb_rx_q_lock;
155 	void *rx_buff;
156 	unsigned int rx_index;
157 	unsigned int rx_max_entry;
158 	unsigned int rx_max_frame;
159 	unsigned int rx_alloc_entry;
160 	dma_cookie_t last_cookie;
161 	struct tasklet_struct rxc_db_work;
162 
163 	void (*event_handler)(void *data, int status);
164 	struct delayed_work link_work;
165 	struct work_struct link_cleanup;
166 
167 	struct dentry *debugfs_dir;
168 	struct dentry *debugfs_stats;
169 
170 	/* Stats */
171 	u64 rx_bytes;
172 	u64 rx_pkts;
173 	u64 rx_ring_empty;
174 	u64 rx_err_no_buf;
175 	u64 rx_err_oflow;
176 	u64 rx_err_ver;
177 	u64 rx_memcpy;
178 	u64 rx_async;
179 	u64 dma_rx_prep_err;
180 	u64 tx_bytes;
181 	u64 tx_pkts;
182 	u64 tx_ring_full;
183 	u64 tx_err_no_buf;
184 	u64 tx_memcpy;
185 	u64 tx_async;
186 	u64 dma_tx_prep_err;
187 };
188 
189 struct ntb_transport_mw {
190 	phys_addr_t phys_addr;
191 	resource_size_t phys_size;
192 	resource_size_t xlat_align;
193 	resource_size_t xlat_align_size;
194 	void __iomem *vbase;
195 	size_t xlat_size;
196 	size_t buff_size;
197 	void *virt_addr;
198 	dma_addr_t dma_addr;
199 };
200 
201 struct ntb_transport_client_dev {
202 	struct list_head entry;
203 	struct ntb_transport_ctx *nt;
204 	struct device dev;
205 };
206 
207 struct ntb_transport_ctx {
208 	struct list_head entry;
209 	struct list_head client_devs;
210 
211 	struct ntb_dev *ndev;
212 
213 	struct ntb_transport_mw *mw_vec;
214 	struct ntb_transport_qp *qp_vec;
215 	unsigned int mw_count;
216 	unsigned int qp_count;
217 	u64 qp_bitmap;
218 	u64 qp_bitmap_free;
219 
220 	bool link_is_up;
221 	struct delayed_work link_work;
222 	struct work_struct link_cleanup;
223 
224 	struct dentry *debugfs_node_dir;
225 };
226 
227 enum {
228 	DESC_DONE_FLAG = BIT(0),
229 	LINK_DOWN_FLAG = BIT(1),
230 };
231 
232 struct ntb_payload_header {
233 	unsigned int ver;
234 	unsigned int len;
235 	unsigned int flags;
236 };
237 
238 enum {
239 	VERSION = 0,
240 	QP_LINKS,
241 	NUM_QPS,
242 	NUM_MWS,
243 	MW0_SZ_HIGH,
244 	MW0_SZ_LOW,
245 	MW1_SZ_HIGH,
246 	MW1_SZ_LOW,
247 	MAX_SPAD,
248 };
249 
250 #define dev_client_dev(__dev) \
251 	container_of((__dev), struct ntb_transport_client_dev, dev)
252 
253 #define drv_client(__drv) \
254 	container_of((__drv), struct ntb_transport_client, driver)
255 
256 #define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
257 #define NTB_QP_DEF_NUM_ENTRIES	100
258 #define NTB_LINK_DOWN_TIMEOUT	10
259 #define DMA_RETRIES		20
260 #define DMA_OUT_RESOURCE_TO	50
261 
262 static void ntb_transport_rxc_db(unsigned long data);
263 static const struct ntb_ctx_ops ntb_transport_ops;
264 static struct ntb_client ntb_transport_client;
265 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
266 			       struct ntb_queue_entry *entry);
267 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
268 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
269 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
270 
271 
272 static int ntb_transport_bus_match(struct device *dev,
273 				   struct device_driver *drv)
274 {
275 	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
276 }
277 
278 static int ntb_transport_bus_probe(struct device *dev)
279 {
280 	const struct ntb_transport_client *client;
281 	int rc = -EINVAL;
282 
283 	get_device(dev);
284 
285 	client = drv_client(dev->driver);
286 	rc = client->probe(dev);
287 	if (rc)
288 		put_device(dev);
289 
290 	return rc;
291 }
292 
293 static int ntb_transport_bus_remove(struct device *dev)
294 {
295 	const struct ntb_transport_client *client;
296 
297 	client = drv_client(dev->driver);
298 	client->remove(dev);
299 
300 	put_device(dev);
301 
302 	return 0;
303 }
304 
305 static struct bus_type ntb_transport_bus = {
306 	.name = "ntb_transport",
307 	.match = ntb_transport_bus_match,
308 	.probe = ntb_transport_bus_probe,
309 	.remove = ntb_transport_bus_remove,
310 };
311 
312 static LIST_HEAD(ntb_transport_list);
313 
314 static int ntb_bus_init(struct ntb_transport_ctx *nt)
315 {
316 	list_add_tail(&nt->entry, &ntb_transport_list);
317 	return 0;
318 }
319 
320 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
321 {
322 	struct ntb_transport_client_dev *client_dev, *cd;
323 
324 	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
325 		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
326 			dev_name(&client_dev->dev));
327 		list_del(&client_dev->entry);
328 		device_unregister(&client_dev->dev);
329 	}
330 
331 	list_del(&nt->entry);
332 }
333 
334 static void ntb_transport_client_release(struct device *dev)
335 {
336 	struct ntb_transport_client_dev *client_dev;
337 
338 	client_dev = dev_client_dev(dev);
339 	kfree(client_dev);
340 }
341 
342 /**
343  * ntb_transport_unregister_client_dev - Unregister NTB client device
344  * @device_name: Name of NTB client device
345  *
346  * Unregister an NTB client device with the NTB transport layer
347  */
348 void ntb_transport_unregister_client_dev(char *device_name)
349 {
350 	struct ntb_transport_client_dev *client, *cd;
351 	struct ntb_transport_ctx *nt;
352 
353 	list_for_each_entry(nt, &ntb_transport_list, entry)
354 		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
355 			if (!strncmp(dev_name(&client->dev), device_name,
356 				     strlen(device_name))) {
357 				list_del(&client->entry);
358 				device_unregister(&client->dev);
359 			}
360 }
361 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
362 
363 /**
364  * ntb_transport_register_client_dev - Register NTB client device
365  * @device_name: Name of NTB client device
366  *
367  * Register an NTB client device with the NTB transport layer
368  */
369 int ntb_transport_register_client_dev(char *device_name)
370 {
371 	struct ntb_transport_client_dev *client_dev;
372 	struct ntb_transport_ctx *nt;
373 	int node;
374 	int rc, i = 0;
375 
376 	if (list_empty(&ntb_transport_list))
377 		return -ENODEV;
378 
379 	list_for_each_entry(nt, &ntb_transport_list, entry) {
380 		struct device *dev;
381 
382 		node = dev_to_node(&nt->ndev->dev);
383 
384 		client_dev = kzalloc_node(sizeof(*client_dev),
385 					  GFP_KERNEL, node);
386 		if (!client_dev) {
387 			rc = -ENOMEM;
388 			goto err;
389 		}
390 
391 		dev = &client_dev->dev;
392 
393 		/* setup and register client devices */
394 		dev_set_name(dev, "%s%d", device_name, i);
395 		dev->bus = &ntb_transport_bus;
396 		dev->release = ntb_transport_client_release;
397 		dev->parent = &nt->ndev->dev;
398 
399 		rc = device_register(dev);
400 		if (rc) {
401 			kfree(client_dev);
402 			goto err;
403 		}
404 
405 		list_add_tail(&client_dev->entry, &nt->client_devs);
406 		i++;
407 	}
408 
409 	return 0;
410 
411 err:
412 	ntb_transport_unregister_client_dev(device_name);
413 
414 	return rc;
415 }
416 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
417 
418 /**
419  * ntb_transport_register_client - Register NTB client driver
420  * @drv: NTB client driver to be registered
421  *
422  * Register an NTB client driver with the NTB transport layer
423  *
424  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
425  */
426 int ntb_transport_register_client(struct ntb_transport_client *drv)
427 {
428 	drv->driver.bus = &ntb_transport_bus;
429 
430 	if (list_empty(&ntb_transport_list))
431 		return -ENODEV;
432 
433 	return driver_register(&drv->driver);
434 }
435 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
436 
437 /**
438  * ntb_transport_unregister_client - Unregister NTB client driver
439  * @drv: NTB client driver to be unregistered
440  *
441  * Unregister an NTB client driver with the NTB transport layer
442  *
443  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
444  */
445 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
446 {
447 	driver_unregister(&drv->driver);
448 }
449 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
450 
451 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
452 			    loff_t *offp)
453 {
454 	struct ntb_transport_qp *qp;
455 	char *buf;
456 	ssize_t ret, out_offset, out_count;
457 
458 	qp = filp->private_data;
459 
460 	if (!qp || !qp->link_is_up)
461 		return 0;
462 
463 	out_count = 1000;
464 
465 	buf = kmalloc(out_count, GFP_KERNEL);
466 	if (!buf)
467 		return -ENOMEM;
468 
469 	out_offset = 0;
470 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
471 			       "\nNTB QP stats:\n\n");
472 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
473 			       "rx_bytes - \t%llu\n", qp->rx_bytes);
474 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
475 			       "rx_pkts - \t%llu\n", qp->rx_pkts);
476 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
477 			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
478 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
479 			       "rx_async - \t%llu\n", qp->rx_async);
480 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
481 			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
482 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
483 			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
484 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
485 			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
486 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
487 			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
488 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
489 			       "rx_buff - \t0x%p\n", qp->rx_buff);
490 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
491 			       "rx_index - \t%u\n", qp->rx_index);
492 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
493 			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
494 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
495 			       "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
496 
497 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
498 			       "tx_bytes - \t%llu\n", qp->tx_bytes);
499 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
500 			       "tx_pkts - \t%llu\n", qp->tx_pkts);
501 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
502 			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
503 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
504 			       "tx_async - \t%llu\n", qp->tx_async);
505 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
506 			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
507 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
508 			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
509 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
510 			       "tx_mw - \t0x%p\n", qp->tx_mw);
511 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
512 			       "tx_index (H) - \t%u\n", qp->tx_index);
513 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
514 			       "RRI (T) - \t%u\n",
515 			       qp->remote_rx_info->entry);
516 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
517 			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
518 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
519 			       "free tx - \t%u\n",
520 			       ntb_transport_tx_free_entry(qp));
521 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
522 			       "DMA tx prep err - \t%llu\n",
523 			       qp->dma_tx_prep_err);
524 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
525 			       "DMA rx prep err - \t%llu\n",
526 			       qp->dma_rx_prep_err);
527 
528 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
529 			       "\n");
530 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
531 			       "Using TX DMA - \t%s\n",
532 			       qp->tx_dma_chan ? "Yes" : "No");
533 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
534 			       "Using RX DMA - \t%s\n",
535 			       qp->rx_dma_chan ? "Yes" : "No");
536 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
537 			       "QP Link - \t%s\n",
538 			       qp->link_is_up ? "Up" : "Down");
539 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
540 			       "\n");
541 
542 	if (out_offset > out_count)
543 		out_offset = out_count;
544 
545 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
546 	kfree(buf);
547 	return ret;
548 }
549 
550 static const struct file_operations ntb_qp_debugfs_stats = {
551 	.owner = THIS_MODULE,
552 	.open = simple_open,
553 	.read = debugfs_read,
554 };
555 
556 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
557 			 struct list_head *list)
558 {
559 	unsigned long flags;
560 
561 	spin_lock_irqsave(lock, flags);
562 	list_add_tail(entry, list);
563 	spin_unlock_irqrestore(lock, flags);
564 }
565 
566 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
567 					   struct list_head *list)
568 {
569 	struct ntb_queue_entry *entry;
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(lock, flags);
573 	if (list_empty(list)) {
574 		entry = NULL;
575 		goto out;
576 	}
577 	entry = list_first_entry(list, struct ntb_queue_entry, entry);
578 	list_del(&entry->entry);
579 
580 out:
581 	spin_unlock_irqrestore(lock, flags);
582 
583 	return entry;
584 }
585 
586 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
587 					   struct list_head *list,
588 					   struct list_head *to_list)
589 {
590 	struct ntb_queue_entry *entry;
591 	unsigned long flags;
592 
593 	spin_lock_irqsave(lock, flags);
594 
595 	if (list_empty(list)) {
596 		entry = NULL;
597 	} else {
598 		entry = list_first_entry(list, struct ntb_queue_entry, entry);
599 		list_move_tail(&entry->entry, to_list);
600 	}
601 
602 	spin_unlock_irqrestore(lock, flags);
603 
604 	return entry;
605 }
606 
607 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
608 				     unsigned int qp_num)
609 {
610 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
611 	struct ntb_transport_mw *mw;
612 	struct ntb_dev *ndev = nt->ndev;
613 	struct ntb_queue_entry *entry;
614 	unsigned int rx_size, num_qps_mw;
615 	unsigned int mw_num, mw_count, qp_count;
616 	unsigned int i;
617 	int node;
618 
619 	mw_count = nt->mw_count;
620 	qp_count = nt->qp_count;
621 
622 	mw_num = QP_TO_MW(nt, qp_num);
623 	mw = &nt->mw_vec[mw_num];
624 
625 	if (!mw->virt_addr)
626 		return -ENOMEM;
627 
628 	if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
629 		num_qps_mw = qp_count / mw_count + 1;
630 	else
631 		num_qps_mw = qp_count / mw_count;
632 
633 	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
634 	qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
635 	rx_size -= sizeof(struct ntb_rx_info);
636 
637 	qp->remote_rx_info = qp->rx_buff + rx_size;
638 
639 	/* Due to housekeeping, there must be atleast 2 buffs */
640 	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
641 	qp->rx_max_entry = rx_size / qp->rx_max_frame;
642 	qp->rx_index = 0;
643 
644 	/*
645 	 * Checking to see if we have more entries than the default.
646 	 * We should add additional entries if that is the case so we
647 	 * can be in sync with the transport frames.
648 	 */
649 	node = dev_to_node(&ndev->dev);
650 	for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
651 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
652 		if (!entry)
653 			return -ENOMEM;
654 
655 		entry->qp = qp;
656 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
657 			     &qp->rx_free_q);
658 		qp->rx_alloc_entry++;
659 	}
660 
661 	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
662 
663 	/* setup the hdr offsets with 0's */
664 	for (i = 0; i < qp->rx_max_entry; i++) {
665 		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
666 				sizeof(struct ntb_payload_header));
667 		memset(offset, 0, sizeof(struct ntb_payload_header));
668 	}
669 
670 	qp->rx_pkts = 0;
671 	qp->tx_pkts = 0;
672 	qp->tx_index = 0;
673 
674 	return 0;
675 }
676 
677 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
678 {
679 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
680 	struct pci_dev *pdev = nt->ndev->pdev;
681 
682 	if (!mw->virt_addr)
683 		return;
684 
685 	ntb_mw_clear_trans(nt->ndev, num_mw);
686 	dma_free_coherent(&pdev->dev, mw->buff_size,
687 			  mw->virt_addr, mw->dma_addr);
688 	mw->xlat_size = 0;
689 	mw->buff_size = 0;
690 	mw->virt_addr = NULL;
691 }
692 
693 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
694 		      resource_size_t size)
695 {
696 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
697 	struct pci_dev *pdev = nt->ndev->pdev;
698 	size_t xlat_size, buff_size;
699 	int rc;
700 
701 	if (!size)
702 		return -EINVAL;
703 
704 	xlat_size = round_up(size, mw->xlat_align_size);
705 	buff_size = round_up(size, mw->xlat_align);
706 
707 	/* No need to re-setup */
708 	if (mw->xlat_size == xlat_size)
709 		return 0;
710 
711 	if (mw->buff_size)
712 		ntb_free_mw(nt, num_mw);
713 
714 	/* Alloc memory for receiving data.  Must be aligned */
715 	mw->xlat_size = xlat_size;
716 	mw->buff_size = buff_size;
717 
718 	mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
719 					   &mw->dma_addr, GFP_KERNEL);
720 	if (!mw->virt_addr) {
721 		mw->xlat_size = 0;
722 		mw->buff_size = 0;
723 		dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
724 			buff_size);
725 		return -ENOMEM;
726 	}
727 
728 	/*
729 	 * we must ensure that the memory address allocated is BAR size
730 	 * aligned in order for the XLAT register to take the value. This
731 	 * is a requirement of the hardware. It is recommended to setup CMA
732 	 * for BAR sizes equal or greater than 4MB.
733 	 */
734 	if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
735 		dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
736 			&mw->dma_addr);
737 		ntb_free_mw(nt, num_mw);
738 		return -ENOMEM;
739 	}
740 
741 	/* Notify HW the memory location of the receive buffer */
742 	rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
743 	if (rc) {
744 		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
745 		ntb_free_mw(nt, num_mw);
746 		return -EIO;
747 	}
748 
749 	return 0;
750 }
751 
752 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
753 {
754 	qp->link_is_up = false;
755 	qp->active = false;
756 
757 	qp->tx_index = 0;
758 	qp->rx_index = 0;
759 	qp->rx_bytes = 0;
760 	qp->rx_pkts = 0;
761 	qp->rx_ring_empty = 0;
762 	qp->rx_err_no_buf = 0;
763 	qp->rx_err_oflow = 0;
764 	qp->rx_err_ver = 0;
765 	qp->rx_memcpy = 0;
766 	qp->rx_async = 0;
767 	qp->tx_bytes = 0;
768 	qp->tx_pkts = 0;
769 	qp->tx_ring_full = 0;
770 	qp->tx_err_no_buf = 0;
771 	qp->tx_memcpy = 0;
772 	qp->tx_async = 0;
773 	qp->dma_tx_prep_err = 0;
774 	qp->dma_rx_prep_err = 0;
775 }
776 
777 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
778 {
779 	struct ntb_transport_ctx *nt = qp->transport;
780 	struct pci_dev *pdev = nt->ndev->pdev;
781 
782 	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
783 
784 	cancel_delayed_work_sync(&qp->link_work);
785 	ntb_qp_link_down_reset(qp);
786 
787 	if (qp->event_handler)
788 		qp->event_handler(qp->cb_data, qp->link_is_up);
789 }
790 
791 static void ntb_qp_link_cleanup_work(struct work_struct *work)
792 {
793 	struct ntb_transport_qp *qp = container_of(work,
794 						   struct ntb_transport_qp,
795 						   link_cleanup);
796 	struct ntb_transport_ctx *nt = qp->transport;
797 
798 	ntb_qp_link_cleanup(qp);
799 
800 	if (nt->link_is_up)
801 		schedule_delayed_work(&qp->link_work,
802 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
803 }
804 
805 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
806 {
807 	schedule_work(&qp->link_cleanup);
808 }
809 
810 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
811 {
812 	struct ntb_transport_qp *qp;
813 	u64 qp_bitmap_alloc;
814 	int i;
815 
816 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
817 
818 	/* Pass along the info to any clients */
819 	for (i = 0; i < nt->qp_count; i++)
820 		if (qp_bitmap_alloc & BIT_ULL(i)) {
821 			qp = &nt->qp_vec[i];
822 			ntb_qp_link_cleanup(qp);
823 			cancel_work_sync(&qp->link_cleanup);
824 			cancel_delayed_work_sync(&qp->link_work);
825 		}
826 
827 	if (!nt->link_is_up)
828 		cancel_delayed_work_sync(&nt->link_work);
829 
830 	/* The scratchpad registers keep the values if the remote side
831 	 * goes down, blast them now to give them a sane value the next
832 	 * time they are accessed
833 	 */
834 	for (i = 0; i < MAX_SPAD; i++)
835 		ntb_spad_write(nt->ndev, i, 0);
836 }
837 
838 static void ntb_transport_link_cleanup_work(struct work_struct *work)
839 {
840 	struct ntb_transport_ctx *nt =
841 		container_of(work, struct ntb_transport_ctx, link_cleanup);
842 
843 	ntb_transport_link_cleanup(nt);
844 }
845 
846 static void ntb_transport_event_callback(void *data)
847 {
848 	struct ntb_transport_ctx *nt = data;
849 
850 	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
851 		schedule_delayed_work(&nt->link_work, 0);
852 	else
853 		schedule_work(&nt->link_cleanup);
854 }
855 
856 static void ntb_transport_link_work(struct work_struct *work)
857 {
858 	struct ntb_transport_ctx *nt =
859 		container_of(work, struct ntb_transport_ctx, link_work.work);
860 	struct ntb_dev *ndev = nt->ndev;
861 	struct pci_dev *pdev = ndev->pdev;
862 	resource_size_t size;
863 	u32 val;
864 	int rc = 0, i, spad;
865 
866 	/* send the local info, in the opposite order of the way we read it */
867 	for (i = 0; i < nt->mw_count; i++) {
868 		size = nt->mw_vec[i].phys_size;
869 
870 		if (max_mw_size && size > max_mw_size)
871 			size = max_mw_size;
872 
873 		spad = MW0_SZ_HIGH + (i * 2);
874 		ntb_peer_spad_write(ndev, spad, upper_32_bits(size));
875 
876 		spad = MW0_SZ_LOW + (i * 2);
877 		ntb_peer_spad_write(ndev, spad, lower_32_bits(size));
878 	}
879 
880 	ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
881 
882 	ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
883 
884 	ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
885 
886 	/* Query the remote side for its info */
887 	val = ntb_spad_read(ndev, VERSION);
888 	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
889 	if (val != NTB_TRANSPORT_VERSION)
890 		goto out;
891 
892 	val = ntb_spad_read(ndev, NUM_QPS);
893 	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
894 	if (val != nt->qp_count)
895 		goto out;
896 
897 	val = ntb_spad_read(ndev, NUM_MWS);
898 	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
899 	if (val != nt->mw_count)
900 		goto out;
901 
902 	for (i = 0; i < nt->mw_count; i++) {
903 		u64 val64;
904 
905 		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
906 		val64 = (u64)val << 32;
907 
908 		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
909 		val64 |= val;
910 
911 		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
912 
913 		rc = ntb_set_mw(nt, i, val64);
914 		if (rc)
915 			goto out1;
916 	}
917 
918 	nt->link_is_up = true;
919 
920 	for (i = 0; i < nt->qp_count; i++) {
921 		struct ntb_transport_qp *qp = &nt->qp_vec[i];
922 
923 		ntb_transport_setup_qp_mw(nt, i);
924 
925 		if (qp->client_ready)
926 			schedule_delayed_work(&qp->link_work, 0);
927 	}
928 
929 	return;
930 
931 out1:
932 	for (i = 0; i < nt->mw_count; i++)
933 		ntb_free_mw(nt, i);
934 
935 	/* if there's an actual failure, we should just bail */
936 	if (rc < 0) {
937 		ntb_link_disable(ndev);
938 		return;
939 	}
940 
941 out:
942 	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
943 		schedule_delayed_work(&nt->link_work,
944 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
945 }
946 
947 static void ntb_qp_link_work(struct work_struct *work)
948 {
949 	struct ntb_transport_qp *qp = container_of(work,
950 						   struct ntb_transport_qp,
951 						   link_work.work);
952 	struct pci_dev *pdev = qp->ndev->pdev;
953 	struct ntb_transport_ctx *nt = qp->transport;
954 	int val;
955 
956 	WARN_ON(!nt->link_is_up);
957 
958 	val = ntb_spad_read(nt->ndev, QP_LINKS);
959 
960 	ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
961 
962 	/* query remote spad for qp ready bits */
963 	ntb_peer_spad_read(nt->ndev, QP_LINKS);
964 	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
965 
966 	/* See if the remote side is up */
967 	if (val & BIT(qp->qp_num)) {
968 		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
969 		qp->link_is_up = true;
970 		qp->active = true;
971 
972 		if (qp->event_handler)
973 			qp->event_handler(qp->cb_data, qp->link_is_up);
974 
975 		if (qp->active)
976 			tasklet_schedule(&qp->rxc_db_work);
977 	} else if (nt->link_is_up)
978 		schedule_delayed_work(&qp->link_work,
979 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
980 }
981 
982 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
983 				    unsigned int qp_num)
984 {
985 	struct ntb_transport_qp *qp;
986 	phys_addr_t mw_base;
987 	resource_size_t mw_size;
988 	unsigned int num_qps_mw, tx_size;
989 	unsigned int mw_num, mw_count, qp_count;
990 	u64 qp_offset;
991 
992 	mw_count = nt->mw_count;
993 	qp_count = nt->qp_count;
994 
995 	mw_num = QP_TO_MW(nt, qp_num);
996 
997 	qp = &nt->qp_vec[qp_num];
998 	qp->qp_num = qp_num;
999 	qp->transport = nt;
1000 	qp->ndev = nt->ndev;
1001 	qp->client_ready = false;
1002 	qp->event_handler = NULL;
1003 	ntb_qp_link_down_reset(qp);
1004 
1005 	if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
1006 		num_qps_mw = qp_count / mw_count + 1;
1007 	else
1008 		num_qps_mw = qp_count / mw_count;
1009 
1010 	mw_base = nt->mw_vec[mw_num].phys_addr;
1011 	mw_size = nt->mw_vec[mw_num].phys_size;
1012 
1013 	tx_size = (unsigned int)mw_size / num_qps_mw;
1014 	qp_offset = tx_size * (qp_num / mw_count);
1015 
1016 	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1017 	if (!qp->tx_mw)
1018 		return -EINVAL;
1019 
1020 	qp->tx_mw_phys = mw_base + qp_offset;
1021 	if (!qp->tx_mw_phys)
1022 		return -EINVAL;
1023 
1024 	tx_size -= sizeof(struct ntb_rx_info);
1025 	qp->rx_info = qp->tx_mw + tx_size;
1026 
1027 	/* Due to housekeeping, there must be atleast 2 buffs */
1028 	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1029 	qp->tx_max_entry = tx_size / qp->tx_max_frame;
1030 
1031 	if (nt->debugfs_node_dir) {
1032 		char debugfs_name[4];
1033 
1034 		snprintf(debugfs_name, 4, "qp%d", qp_num);
1035 		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1036 						     nt->debugfs_node_dir);
1037 
1038 		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1039 							qp->debugfs_dir, qp,
1040 							&ntb_qp_debugfs_stats);
1041 	} else {
1042 		qp->debugfs_dir = NULL;
1043 		qp->debugfs_stats = NULL;
1044 	}
1045 
1046 	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1047 	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1048 
1049 	spin_lock_init(&qp->ntb_rx_q_lock);
1050 	spin_lock_init(&qp->ntb_tx_free_q_lock);
1051 
1052 	INIT_LIST_HEAD(&qp->rx_post_q);
1053 	INIT_LIST_HEAD(&qp->rx_pend_q);
1054 	INIT_LIST_HEAD(&qp->rx_free_q);
1055 	INIT_LIST_HEAD(&qp->tx_free_q);
1056 
1057 	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1058 		     (unsigned long)qp);
1059 
1060 	return 0;
1061 }
1062 
1063 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1064 {
1065 	struct ntb_transport_ctx *nt;
1066 	struct ntb_transport_mw *mw;
1067 	unsigned int mw_count, qp_count;
1068 	u64 qp_bitmap;
1069 	int node;
1070 	int rc, i;
1071 
1072 	mw_count = ntb_mw_count(ndev);
1073 	if (ntb_spad_count(ndev) < (NUM_MWS + 1 + mw_count * 2)) {
1074 		dev_err(&ndev->dev, "Not enough scratch pad registers for %s",
1075 			NTB_TRANSPORT_NAME);
1076 		return -EIO;
1077 	}
1078 
1079 	if (ntb_db_is_unsafe(ndev))
1080 		dev_dbg(&ndev->dev,
1081 			"doorbell is unsafe, proceed anyway...\n");
1082 	if (ntb_spad_is_unsafe(ndev))
1083 		dev_dbg(&ndev->dev,
1084 			"scratchpad is unsafe, proceed anyway...\n");
1085 
1086 	node = dev_to_node(&ndev->dev);
1087 
1088 	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1089 	if (!nt)
1090 		return -ENOMEM;
1091 
1092 	nt->ndev = ndev;
1093 
1094 	nt->mw_count = mw_count;
1095 
1096 	nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1097 				  GFP_KERNEL, node);
1098 	if (!nt->mw_vec) {
1099 		rc = -ENOMEM;
1100 		goto err;
1101 	}
1102 
1103 	for (i = 0; i < mw_count; i++) {
1104 		mw = &nt->mw_vec[i];
1105 
1106 		rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
1107 				      &mw->xlat_align, &mw->xlat_align_size);
1108 		if (rc)
1109 			goto err1;
1110 
1111 		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1112 		if (!mw->vbase) {
1113 			rc = -ENOMEM;
1114 			goto err1;
1115 		}
1116 
1117 		mw->buff_size = 0;
1118 		mw->xlat_size = 0;
1119 		mw->virt_addr = NULL;
1120 		mw->dma_addr = 0;
1121 	}
1122 
1123 	qp_bitmap = ntb_db_valid_mask(ndev);
1124 
1125 	qp_count = ilog2(qp_bitmap);
1126 	if (max_num_clients && max_num_clients < qp_count)
1127 		qp_count = max_num_clients;
1128 	else if (mw_count < qp_count)
1129 		qp_count = mw_count;
1130 
1131 	qp_bitmap &= BIT_ULL(qp_count) - 1;
1132 
1133 	nt->qp_count = qp_count;
1134 	nt->qp_bitmap = qp_bitmap;
1135 	nt->qp_bitmap_free = qp_bitmap;
1136 
1137 	nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1138 				  GFP_KERNEL, node);
1139 	if (!nt->qp_vec) {
1140 		rc = -ENOMEM;
1141 		goto err1;
1142 	}
1143 
1144 	if (nt_debugfs_dir) {
1145 		nt->debugfs_node_dir =
1146 			debugfs_create_dir(pci_name(ndev->pdev),
1147 					   nt_debugfs_dir);
1148 	}
1149 
1150 	for (i = 0; i < qp_count; i++) {
1151 		rc = ntb_transport_init_queue(nt, i);
1152 		if (rc)
1153 			goto err2;
1154 	}
1155 
1156 	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1157 	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1158 
1159 	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1160 	if (rc)
1161 		goto err2;
1162 
1163 	INIT_LIST_HEAD(&nt->client_devs);
1164 	rc = ntb_bus_init(nt);
1165 	if (rc)
1166 		goto err3;
1167 
1168 	nt->link_is_up = false;
1169 	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1170 	ntb_link_event(ndev);
1171 
1172 	return 0;
1173 
1174 err3:
1175 	ntb_clear_ctx(ndev);
1176 err2:
1177 	kfree(nt->qp_vec);
1178 err1:
1179 	while (i--) {
1180 		mw = &nt->mw_vec[i];
1181 		iounmap(mw->vbase);
1182 	}
1183 	kfree(nt->mw_vec);
1184 err:
1185 	kfree(nt);
1186 	return rc;
1187 }
1188 
1189 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1190 {
1191 	struct ntb_transport_ctx *nt = ndev->ctx;
1192 	struct ntb_transport_qp *qp;
1193 	u64 qp_bitmap_alloc;
1194 	int i;
1195 
1196 	ntb_transport_link_cleanup(nt);
1197 	cancel_work_sync(&nt->link_cleanup);
1198 	cancel_delayed_work_sync(&nt->link_work);
1199 
1200 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1201 
1202 	/* verify that all the qp's are freed */
1203 	for (i = 0; i < nt->qp_count; i++) {
1204 		qp = &nt->qp_vec[i];
1205 		if (qp_bitmap_alloc & BIT_ULL(i))
1206 			ntb_transport_free_queue(qp);
1207 		debugfs_remove_recursive(qp->debugfs_dir);
1208 	}
1209 
1210 	ntb_link_disable(ndev);
1211 	ntb_clear_ctx(ndev);
1212 
1213 	ntb_bus_remove(nt);
1214 
1215 	for (i = nt->mw_count; i--; ) {
1216 		ntb_free_mw(nt, i);
1217 		iounmap(nt->mw_vec[i].vbase);
1218 	}
1219 
1220 	kfree(nt->qp_vec);
1221 	kfree(nt->mw_vec);
1222 	kfree(nt);
1223 }
1224 
1225 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1226 {
1227 	struct ntb_queue_entry *entry;
1228 	void *cb_data;
1229 	unsigned int len;
1230 	unsigned long irqflags;
1231 
1232 	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1233 
1234 	while (!list_empty(&qp->rx_post_q)) {
1235 		entry = list_first_entry(&qp->rx_post_q,
1236 					 struct ntb_queue_entry, entry);
1237 		if (!(entry->flags & DESC_DONE_FLAG))
1238 			break;
1239 
1240 		entry->rx_hdr->flags = 0;
1241 		iowrite32(entry->rx_index, &qp->rx_info->entry);
1242 
1243 		cb_data = entry->cb_data;
1244 		len = entry->len;
1245 
1246 		list_move_tail(&entry->entry, &qp->rx_free_q);
1247 
1248 		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1249 
1250 		if (qp->rx_handler && qp->client_ready)
1251 			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1252 
1253 		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1254 	}
1255 
1256 	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1257 }
1258 
1259 static void ntb_rx_copy_callback(void *data,
1260 				 const struct dmaengine_result *res)
1261 {
1262 	struct ntb_queue_entry *entry = data;
1263 
1264 	/* we need to check DMA results if we are using DMA */
1265 	if (res) {
1266 		enum dmaengine_tx_result dma_err = res->result;
1267 
1268 		switch (dma_err) {
1269 		case DMA_TRANS_READ_FAILED:
1270 		case DMA_TRANS_WRITE_FAILED:
1271 			entry->errors++;
1272 		case DMA_TRANS_ABORTED:
1273 		{
1274 			struct ntb_transport_qp *qp = entry->qp;
1275 			void *offset = qp->rx_buff + qp->rx_max_frame *
1276 					qp->rx_index;
1277 
1278 			ntb_memcpy_rx(entry, offset);
1279 			qp->rx_memcpy++;
1280 			return;
1281 		}
1282 
1283 		case DMA_TRANS_NOERROR:
1284 		default:
1285 			break;
1286 		}
1287 	}
1288 
1289 	entry->flags |= DESC_DONE_FLAG;
1290 
1291 	ntb_complete_rxc(entry->qp);
1292 }
1293 
1294 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1295 {
1296 	void *buf = entry->buf;
1297 	size_t len = entry->len;
1298 
1299 	memcpy(buf, offset, len);
1300 
1301 	/* Ensure that the data is fully copied out before clearing the flag */
1302 	wmb();
1303 
1304 	ntb_rx_copy_callback(entry, NULL);
1305 }
1306 
1307 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1308 {
1309 	struct dma_async_tx_descriptor *txd;
1310 	struct ntb_transport_qp *qp = entry->qp;
1311 	struct dma_chan *chan = qp->rx_dma_chan;
1312 	struct dma_device *device;
1313 	size_t pay_off, buff_off, len;
1314 	struct dmaengine_unmap_data *unmap;
1315 	dma_cookie_t cookie;
1316 	void *buf = entry->buf;
1317 	int retries = 0;
1318 
1319 	len = entry->len;
1320 	device = chan->device;
1321 	pay_off = (size_t)offset & ~PAGE_MASK;
1322 	buff_off = (size_t)buf & ~PAGE_MASK;
1323 
1324 	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1325 		goto err;
1326 
1327 	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1328 	if (!unmap)
1329 		goto err;
1330 
1331 	unmap->len = len;
1332 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1333 				      pay_off, len, DMA_TO_DEVICE);
1334 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1335 		goto err_get_unmap;
1336 
1337 	unmap->to_cnt = 1;
1338 
1339 	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1340 				      buff_off, len, DMA_FROM_DEVICE);
1341 	if (dma_mapping_error(device->dev, unmap->addr[1]))
1342 		goto err_get_unmap;
1343 
1344 	unmap->from_cnt = 1;
1345 
1346 	for (retries = 0; retries < DMA_RETRIES; retries++) {
1347 		txd = device->device_prep_dma_memcpy(chan,
1348 						     unmap->addr[1],
1349 						     unmap->addr[0], len,
1350 						     DMA_PREP_INTERRUPT);
1351 		if (txd)
1352 			break;
1353 
1354 		set_current_state(TASK_INTERRUPTIBLE);
1355 		schedule_timeout(DMA_OUT_RESOURCE_TO);
1356 	}
1357 
1358 	if (!txd) {
1359 		qp->dma_rx_prep_err++;
1360 		goto err_get_unmap;
1361 	}
1362 
1363 	txd->callback_result = ntb_rx_copy_callback;
1364 	txd->callback_param = entry;
1365 	dma_set_unmap(txd, unmap);
1366 
1367 	cookie = dmaengine_submit(txd);
1368 	if (dma_submit_error(cookie))
1369 		goto err_set_unmap;
1370 
1371 	dmaengine_unmap_put(unmap);
1372 
1373 	qp->last_cookie = cookie;
1374 
1375 	qp->rx_async++;
1376 
1377 	return 0;
1378 
1379 err_set_unmap:
1380 	dmaengine_unmap_put(unmap);
1381 err_get_unmap:
1382 	dmaengine_unmap_put(unmap);
1383 err:
1384 	return -ENXIO;
1385 }
1386 
1387 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1388 {
1389 	struct ntb_transport_qp *qp = entry->qp;
1390 	struct dma_chan *chan = qp->rx_dma_chan;
1391 	int res;
1392 
1393 	if (!chan)
1394 		goto err;
1395 
1396 	if (entry->len < copy_bytes)
1397 		goto err;
1398 
1399 	res = ntb_async_rx_submit(entry, offset);
1400 	if (res < 0)
1401 		goto err;
1402 
1403 	if (!entry->retries)
1404 		qp->rx_async++;
1405 
1406 	return;
1407 
1408 err:
1409 	ntb_memcpy_rx(entry, offset);
1410 	qp->rx_memcpy++;
1411 }
1412 
1413 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1414 {
1415 	struct ntb_payload_header *hdr;
1416 	struct ntb_queue_entry *entry;
1417 	void *offset;
1418 
1419 	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1420 	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1421 
1422 	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1423 		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1424 
1425 	if (!(hdr->flags & DESC_DONE_FLAG)) {
1426 		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1427 		qp->rx_ring_empty++;
1428 		return -EAGAIN;
1429 	}
1430 
1431 	if (hdr->flags & LINK_DOWN_FLAG) {
1432 		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1433 		ntb_qp_link_down(qp);
1434 		hdr->flags = 0;
1435 		return -EAGAIN;
1436 	}
1437 
1438 	if (hdr->ver != (u32)qp->rx_pkts) {
1439 		dev_dbg(&qp->ndev->pdev->dev,
1440 			"version mismatch, expected %llu - got %u\n",
1441 			qp->rx_pkts, hdr->ver);
1442 		qp->rx_err_ver++;
1443 		return -EIO;
1444 	}
1445 
1446 	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1447 	if (!entry) {
1448 		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1449 		qp->rx_err_no_buf++;
1450 		return -EAGAIN;
1451 	}
1452 
1453 	entry->rx_hdr = hdr;
1454 	entry->rx_index = qp->rx_index;
1455 
1456 	if (hdr->len > entry->len) {
1457 		dev_dbg(&qp->ndev->pdev->dev,
1458 			"receive buffer overflow! Wanted %d got %d\n",
1459 			hdr->len, entry->len);
1460 		qp->rx_err_oflow++;
1461 
1462 		entry->len = -EIO;
1463 		entry->flags |= DESC_DONE_FLAG;
1464 
1465 		ntb_complete_rxc(qp);
1466 	} else {
1467 		dev_dbg(&qp->ndev->pdev->dev,
1468 			"RX OK index %u ver %u size %d into buf size %d\n",
1469 			qp->rx_index, hdr->ver, hdr->len, entry->len);
1470 
1471 		qp->rx_bytes += hdr->len;
1472 		qp->rx_pkts++;
1473 
1474 		entry->len = hdr->len;
1475 
1476 		ntb_async_rx(entry, offset);
1477 	}
1478 
1479 	qp->rx_index++;
1480 	qp->rx_index %= qp->rx_max_entry;
1481 
1482 	return 0;
1483 }
1484 
1485 static void ntb_transport_rxc_db(unsigned long data)
1486 {
1487 	struct ntb_transport_qp *qp = (void *)data;
1488 	int rc, i;
1489 
1490 	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1491 		__func__, qp->qp_num);
1492 
1493 	/* Limit the number of packets processed in a single interrupt to
1494 	 * provide fairness to others
1495 	 */
1496 	for (i = 0; i < qp->rx_max_entry; i++) {
1497 		rc = ntb_process_rxc(qp);
1498 		if (rc)
1499 			break;
1500 	}
1501 
1502 	if (i && qp->rx_dma_chan)
1503 		dma_async_issue_pending(qp->rx_dma_chan);
1504 
1505 	if (i == qp->rx_max_entry) {
1506 		/* there is more work to do */
1507 		if (qp->active)
1508 			tasklet_schedule(&qp->rxc_db_work);
1509 	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1510 		/* the doorbell bit is set: clear it */
1511 		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1512 		/* ntb_db_read ensures ntb_db_clear write is committed */
1513 		ntb_db_read(qp->ndev);
1514 
1515 		/* an interrupt may have arrived between finishing
1516 		 * ntb_process_rxc and clearing the doorbell bit:
1517 		 * there might be some more work to do.
1518 		 */
1519 		if (qp->active)
1520 			tasklet_schedule(&qp->rxc_db_work);
1521 	}
1522 }
1523 
1524 static void ntb_tx_copy_callback(void *data,
1525 				 const struct dmaengine_result *res)
1526 {
1527 	struct ntb_queue_entry *entry = data;
1528 	struct ntb_transport_qp *qp = entry->qp;
1529 	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1530 
1531 	/* we need to check DMA results if we are using DMA */
1532 	if (res) {
1533 		enum dmaengine_tx_result dma_err = res->result;
1534 
1535 		switch (dma_err) {
1536 		case DMA_TRANS_READ_FAILED:
1537 		case DMA_TRANS_WRITE_FAILED:
1538 			entry->errors++;
1539 		case DMA_TRANS_ABORTED:
1540 		{
1541 			void __iomem *offset =
1542 				qp->tx_mw + qp->tx_max_frame *
1543 				entry->tx_index;
1544 
1545 			/* resubmit via CPU */
1546 			ntb_memcpy_tx(entry, offset);
1547 			qp->tx_memcpy++;
1548 			return;
1549 		}
1550 
1551 		case DMA_TRANS_NOERROR:
1552 		default:
1553 			break;
1554 		}
1555 	}
1556 
1557 	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1558 
1559 	ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1560 
1561 	/* The entry length can only be zero if the packet is intended to be a
1562 	 * "link down" or similar.  Since no payload is being sent in these
1563 	 * cases, there is nothing to add to the completion queue.
1564 	 */
1565 	if (entry->len > 0) {
1566 		qp->tx_bytes += entry->len;
1567 
1568 		if (qp->tx_handler)
1569 			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1570 				       entry->len);
1571 	}
1572 
1573 	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1574 }
1575 
1576 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1577 {
1578 #ifdef ARCH_HAS_NOCACHE_UACCESS
1579 	/*
1580 	 * Using non-temporal mov to improve performance on non-cached
1581 	 * writes, even though we aren't actually copying from user space.
1582 	 */
1583 	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1584 #else
1585 	memcpy_toio(offset, entry->buf, entry->len);
1586 #endif
1587 
1588 	/* Ensure that the data is fully copied out before setting the flags */
1589 	wmb();
1590 
1591 	ntb_tx_copy_callback(entry, NULL);
1592 }
1593 
1594 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1595 			       struct ntb_queue_entry *entry)
1596 {
1597 	struct dma_async_tx_descriptor *txd;
1598 	struct dma_chan *chan = qp->tx_dma_chan;
1599 	struct dma_device *device;
1600 	size_t len = entry->len;
1601 	void *buf = entry->buf;
1602 	size_t dest_off, buff_off;
1603 	struct dmaengine_unmap_data *unmap;
1604 	dma_addr_t dest;
1605 	dma_cookie_t cookie;
1606 	int retries = 0;
1607 
1608 	device = chan->device;
1609 	dest = qp->tx_mw_phys + qp->tx_max_frame * entry->tx_index;
1610 	buff_off = (size_t)buf & ~PAGE_MASK;
1611 	dest_off = (size_t)dest & ~PAGE_MASK;
1612 
1613 	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1614 		goto err;
1615 
1616 	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1617 	if (!unmap)
1618 		goto err;
1619 
1620 	unmap->len = len;
1621 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1622 				      buff_off, len, DMA_TO_DEVICE);
1623 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1624 		goto err_get_unmap;
1625 
1626 	unmap->to_cnt = 1;
1627 
1628 	for (retries = 0; retries < DMA_RETRIES; retries++) {
1629 		txd = device->device_prep_dma_memcpy(chan, dest,
1630 						     unmap->addr[0], len,
1631 						     DMA_PREP_INTERRUPT);
1632 		if (txd)
1633 			break;
1634 
1635 		set_current_state(TASK_INTERRUPTIBLE);
1636 		schedule_timeout(DMA_OUT_RESOURCE_TO);
1637 	}
1638 
1639 	if (!txd) {
1640 		qp->dma_tx_prep_err++;
1641 		goto err_get_unmap;
1642 	}
1643 
1644 	txd->callback_result = ntb_tx_copy_callback;
1645 	txd->callback_param = entry;
1646 	dma_set_unmap(txd, unmap);
1647 
1648 	cookie = dmaengine_submit(txd);
1649 	if (dma_submit_error(cookie))
1650 		goto err_set_unmap;
1651 
1652 	dmaengine_unmap_put(unmap);
1653 
1654 	dma_async_issue_pending(chan);
1655 
1656 	return 0;
1657 err_set_unmap:
1658 	dmaengine_unmap_put(unmap);
1659 err_get_unmap:
1660 	dmaengine_unmap_put(unmap);
1661 err:
1662 	return -ENXIO;
1663 }
1664 
1665 static void ntb_async_tx(struct ntb_transport_qp *qp,
1666 			 struct ntb_queue_entry *entry)
1667 {
1668 	struct ntb_payload_header __iomem *hdr;
1669 	struct dma_chan *chan = qp->tx_dma_chan;
1670 	void __iomem *offset;
1671 	int res;
1672 
1673 	entry->tx_index = qp->tx_index;
1674 	offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1675 	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1676 	entry->tx_hdr = hdr;
1677 
1678 	iowrite32(entry->len, &hdr->len);
1679 	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1680 
1681 	if (!chan)
1682 		goto err;
1683 
1684 	if (entry->len < copy_bytes)
1685 		goto err;
1686 
1687 	res = ntb_async_tx_submit(qp, entry);
1688 	if (res < 0)
1689 		goto err;
1690 
1691 	if (!entry->retries)
1692 		qp->tx_async++;
1693 
1694 	return;
1695 
1696 err:
1697 	ntb_memcpy_tx(entry, offset);
1698 	qp->tx_memcpy++;
1699 }
1700 
1701 static int ntb_process_tx(struct ntb_transport_qp *qp,
1702 			  struct ntb_queue_entry *entry)
1703 {
1704 	if (qp->tx_index == qp->remote_rx_info->entry) {
1705 		qp->tx_ring_full++;
1706 		return -EAGAIN;
1707 	}
1708 
1709 	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1710 		if (qp->tx_handler)
1711 			qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1712 
1713 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1714 			     &qp->tx_free_q);
1715 		return 0;
1716 	}
1717 
1718 	ntb_async_tx(qp, entry);
1719 
1720 	qp->tx_index++;
1721 	qp->tx_index %= qp->tx_max_entry;
1722 
1723 	qp->tx_pkts++;
1724 
1725 	return 0;
1726 }
1727 
1728 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1729 {
1730 	struct pci_dev *pdev = qp->ndev->pdev;
1731 	struct ntb_queue_entry *entry;
1732 	int i, rc;
1733 
1734 	if (!qp->link_is_up)
1735 		return;
1736 
1737 	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1738 
1739 	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1740 		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1741 		if (entry)
1742 			break;
1743 		msleep(100);
1744 	}
1745 
1746 	if (!entry)
1747 		return;
1748 
1749 	entry->cb_data = NULL;
1750 	entry->buf = NULL;
1751 	entry->len = 0;
1752 	entry->flags = LINK_DOWN_FLAG;
1753 
1754 	rc = ntb_process_tx(qp, entry);
1755 	if (rc)
1756 		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1757 			qp->qp_num);
1758 
1759 	ntb_qp_link_down_reset(qp);
1760 }
1761 
1762 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1763 {
1764 	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1765 }
1766 
1767 /**
1768  * ntb_transport_create_queue - Create a new NTB transport layer queue
1769  * @rx_handler: receive callback function
1770  * @tx_handler: transmit callback function
1771  * @event_handler: event callback function
1772  *
1773  * Create a new NTB transport layer queue and provide the queue with a callback
1774  * routine for both transmit and receive.  The receive callback routine will be
1775  * used to pass up data when the transport has received it on the queue.   The
1776  * transmit callback routine will be called when the transport has completed the
1777  * transmission of the data on the queue and the data is ready to be freed.
1778  *
1779  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1780  */
1781 struct ntb_transport_qp *
1782 ntb_transport_create_queue(void *data, struct device *client_dev,
1783 			   const struct ntb_queue_handlers *handlers)
1784 {
1785 	struct ntb_dev *ndev;
1786 	struct pci_dev *pdev;
1787 	struct ntb_transport_ctx *nt;
1788 	struct ntb_queue_entry *entry;
1789 	struct ntb_transport_qp *qp;
1790 	u64 qp_bit;
1791 	unsigned int free_queue;
1792 	dma_cap_mask_t dma_mask;
1793 	int node;
1794 	int i;
1795 
1796 	ndev = dev_ntb(client_dev->parent);
1797 	pdev = ndev->pdev;
1798 	nt = ndev->ctx;
1799 
1800 	node = dev_to_node(&ndev->dev);
1801 
1802 	free_queue = ffs(nt->qp_bitmap);
1803 	if (!free_queue)
1804 		goto err;
1805 
1806 	/* decrement free_queue to make it zero based */
1807 	free_queue--;
1808 
1809 	qp = &nt->qp_vec[free_queue];
1810 	qp_bit = BIT_ULL(qp->qp_num);
1811 
1812 	nt->qp_bitmap_free &= ~qp_bit;
1813 
1814 	qp->cb_data = data;
1815 	qp->rx_handler = handlers->rx_handler;
1816 	qp->tx_handler = handlers->tx_handler;
1817 	qp->event_handler = handlers->event_handler;
1818 
1819 	dma_cap_zero(dma_mask);
1820 	dma_cap_set(DMA_MEMCPY, dma_mask);
1821 
1822 	if (use_dma) {
1823 		qp->tx_dma_chan =
1824 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
1825 					    (void *)(unsigned long)node);
1826 		if (!qp->tx_dma_chan)
1827 			dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
1828 
1829 		qp->rx_dma_chan =
1830 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
1831 					    (void *)(unsigned long)node);
1832 		if (!qp->rx_dma_chan)
1833 			dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
1834 	} else {
1835 		qp->tx_dma_chan = NULL;
1836 		qp->rx_dma_chan = NULL;
1837 	}
1838 
1839 	dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
1840 		qp->tx_dma_chan ? "DMA" : "CPU");
1841 
1842 	dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
1843 		qp->rx_dma_chan ? "DMA" : "CPU");
1844 
1845 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1846 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1847 		if (!entry)
1848 			goto err1;
1849 
1850 		entry->qp = qp;
1851 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1852 			     &qp->rx_free_q);
1853 	}
1854 	qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
1855 
1856 	for (i = 0; i < qp->tx_max_entry; i++) {
1857 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1858 		if (!entry)
1859 			goto err2;
1860 
1861 		entry->qp = qp;
1862 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1863 			     &qp->tx_free_q);
1864 	}
1865 
1866 	ntb_db_clear(qp->ndev, qp_bit);
1867 	ntb_db_clear_mask(qp->ndev, qp_bit);
1868 
1869 	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1870 
1871 	return qp;
1872 
1873 err2:
1874 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1875 		kfree(entry);
1876 err1:
1877 	qp->rx_alloc_entry = 0;
1878 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1879 		kfree(entry);
1880 	if (qp->tx_dma_chan)
1881 		dma_release_channel(qp->tx_dma_chan);
1882 	if (qp->rx_dma_chan)
1883 		dma_release_channel(qp->rx_dma_chan);
1884 	nt->qp_bitmap_free |= qp_bit;
1885 err:
1886 	return NULL;
1887 }
1888 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1889 
1890 /**
1891  * ntb_transport_free_queue - Frees NTB transport queue
1892  * @qp: NTB queue to be freed
1893  *
1894  * Frees NTB transport queue
1895  */
1896 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1897 {
1898 	struct pci_dev *pdev;
1899 	struct ntb_queue_entry *entry;
1900 	u64 qp_bit;
1901 
1902 	if (!qp)
1903 		return;
1904 
1905 	pdev = qp->ndev->pdev;
1906 
1907 	qp->active = false;
1908 
1909 	if (qp->tx_dma_chan) {
1910 		struct dma_chan *chan = qp->tx_dma_chan;
1911 		/* Putting the dma_chan to NULL will force any new traffic to be
1912 		 * processed by the CPU instead of the DAM engine
1913 		 */
1914 		qp->tx_dma_chan = NULL;
1915 
1916 		/* Try to be nice and wait for any queued DMA engine
1917 		 * transactions to process before smashing it with a rock
1918 		 */
1919 		dma_sync_wait(chan, qp->last_cookie);
1920 		dmaengine_terminate_all(chan);
1921 		dma_release_channel(chan);
1922 	}
1923 
1924 	if (qp->rx_dma_chan) {
1925 		struct dma_chan *chan = qp->rx_dma_chan;
1926 		/* Putting the dma_chan to NULL will force any new traffic to be
1927 		 * processed by the CPU instead of the DAM engine
1928 		 */
1929 		qp->rx_dma_chan = NULL;
1930 
1931 		/* Try to be nice and wait for any queued DMA engine
1932 		 * transactions to process before smashing it with a rock
1933 		 */
1934 		dma_sync_wait(chan, qp->last_cookie);
1935 		dmaengine_terminate_all(chan);
1936 		dma_release_channel(chan);
1937 	}
1938 
1939 	qp_bit = BIT_ULL(qp->qp_num);
1940 
1941 	ntb_db_set_mask(qp->ndev, qp_bit);
1942 	tasklet_kill(&qp->rxc_db_work);
1943 
1944 	cancel_delayed_work_sync(&qp->link_work);
1945 
1946 	qp->cb_data = NULL;
1947 	qp->rx_handler = NULL;
1948 	qp->tx_handler = NULL;
1949 	qp->event_handler = NULL;
1950 
1951 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1952 		kfree(entry);
1953 
1954 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1955 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1956 		kfree(entry);
1957 	}
1958 
1959 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1960 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1961 		kfree(entry);
1962 	}
1963 
1964 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1965 		kfree(entry);
1966 
1967 	qp->transport->qp_bitmap_free |= qp_bit;
1968 
1969 	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1970 }
1971 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1972 
1973 /**
1974  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1975  * @qp: NTB queue to be freed
1976  * @len: pointer to variable to write enqueued buffers length
1977  *
1978  * Dequeues unused buffers from receive queue.  Should only be used during
1979  * shutdown of qp.
1980  *
1981  * RETURNS: NULL error value on error, or void* for success.
1982  */
1983 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1984 {
1985 	struct ntb_queue_entry *entry;
1986 	void *buf;
1987 
1988 	if (!qp || qp->client_ready)
1989 		return NULL;
1990 
1991 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1992 	if (!entry)
1993 		return NULL;
1994 
1995 	buf = entry->cb_data;
1996 	*len = entry->len;
1997 
1998 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1999 
2000 	return buf;
2001 }
2002 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2003 
2004 /**
2005  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2006  * @qp: NTB transport layer queue the entry is to be enqueued on
2007  * @cb: per buffer pointer for callback function to use
2008  * @data: pointer to data buffer that incoming packets will be copied into
2009  * @len: length of the data buffer
2010  *
2011  * Enqueue a new receive buffer onto the transport queue into which a NTB
2012  * payload can be received into.
2013  *
2014  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2015  */
2016 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2017 			     unsigned int len)
2018 {
2019 	struct ntb_queue_entry *entry;
2020 
2021 	if (!qp)
2022 		return -EINVAL;
2023 
2024 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2025 	if (!entry)
2026 		return -ENOMEM;
2027 
2028 	entry->cb_data = cb;
2029 	entry->buf = data;
2030 	entry->len = len;
2031 	entry->flags = 0;
2032 	entry->retries = 0;
2033 	entry->errors = 0;
2034 	entry->rx_index = 0;
2035 
2036 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2037 
2038 	if (qp->active)
2039 		tasklet_schedule(&qp->rxc_db_work);
2040 
2041 	return 0;
2042 }
2043 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2044 
2045 /**
2046  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2047  * @qp: NTB transport layer queue the entry is to be enqueued on
2048  * @cb: per buffer pointer for callback function to use
2049  * @data: pointer to data buffer that will be sent
2050  * @len: length of the data buffer
2051  *
2052  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2053  * payload will be transmitted.  This assumes that a lock is being held to
2054  * serialize access to the qp.
2055  *
2056  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2057  */
2058 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2059 			     unsigned int len)
2060 {
2061 	struct ntb_queue_entry *entry;
2062 	int rc;
2063 
2064 	if (!qp || !qp->link_is_up || !len)
2065 		return -EINVAL;
2066 
2067 	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2068 	if (!entry) {
2069 		qp->tx_err_no_buf++;
2070 		return -EBUSY;
2071 	}
2072 
2073 	entry->cb_data = cb;
2074 	entry->buf = data;
2075 	entry->len = len;
2076 	entry->flags = 0;
2077 	entry->errors = 0;
2078 	entry->retries = 0;
2079 	entry->tx_index = 0;
2080 
2081 	rc = ntb_process_tx(qp, entry);
2082 	if (rc)
2083 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2084 			     &qp->tx_free_q);
2085 
2086 	return rc;
2087 }
2088 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2089 
2090 /**
2091  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2092  * @qp: NTB transport layer queue to be enabled
2093  *
2094  * Notify NTB transport layer of client readiness to use queue
2095  */
2096 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2097 {
2098 	if (!qp)
2099 		return;
2100 
2101 	qp->client_ready = true;
2102 
2103 	if (qp->transport->link_is_up)
2104 		schedule_delayed_work(&qp->link_work, 0);
2105 }
2106 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2107 
2108 /**
2109  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2110  * @qp: NTB transport layer queue to be disabled
2111  *
2112  * Notify NTB transport layer of client's desire to no longer receive data on
2113  * transport queue specified.  It is the client's responsibility to ensure all
2114  * entries on queue are purged or otherwise handled appropriately.
2115  */
2116 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2117 {
2118 	int val;
2119 
2120 	if (!qp)
2121 		return;
2122 
2123 	qp->client_ready = false;
2124 
2125 	val = ntb_spad_read(qp->ndev, QP_LINKS);
2126 
2127 	ntb_peer_spad_write(qp->ndev, QP_LINKS,
2128 			    val & ~BIT(qp->qp_num));
2129 
2130 	if (qp->link_is_up)
2131 		ntb_send_link_down(qp);
2132 	else
2133 		cancel_delayed_work_sync(&qp->link_work);
2134 }
2135 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2136 
2137 /**
2138  * ntb_transport_link_query - Query transport link state
2139  * @qp: NTB transport layer queue to be queried
2140  *
2141  * Query connectivity to the remote system of the NTB transport queue
2142  *
2143  * RETURNS: true for link up or false for link down
2144  */
2145 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2146 {
2147 	if (!qp)
2148 		return false;
2149 
2150 	return qp->link_is_up;
2151 }
2152 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2153 
2154 /**
2155  * ntb_transport_qp_num - Query the qp number
2156  * @qp: NTB transport layer queue to be queried
2157  *
2158  * Query qp number of the NTB transport queue
2159  *
2160  * RETURNS: a zero based number specifying the qp number
2161  */
2162 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2163 {
2164 	if (!qp)
2165 		return 0;
2166 
2167 	return qp->qp_num;
2168 }
2169 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2170 
2171 /**
2172  * ntb_transport_max_size - Query the max payload size of a qp
2173  * @qp: NTB transport layer queue to be queried
2174  *
2175  * Query the maximum payload size permissible on the given qp
2176  *
2177  * RETURNS: the max payload size of a qp
2178  */
2179 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2180 {
2181 	unsigned int max_size;
2182 	unsigned int copy_align;
2183 	struct dma_chan *rx_chan, *tx_chan;
2184 
2185 	if (!qp)
2186 		return 0;
2187 
2188 	rx_chan = qp->rx_dma_chan;
2189 	tx_chan = qp->tx_dma_chan;
2190 
2191 	copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2192 			 tx_chan ? tx_chan->device->copy_align : 0);
2193 
2194 	/* If DMA engine usage is possible, try to find the max size for that */
2195 	max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2196 	max_size = round_down(max_size, 1 << copy_align);
2197 
2198 	return max_size;
2199 }
2200 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2201 
2202 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2203 {
2204 	unsigned int head = qp->tx_index;
2205 	unsigned int tail = qp->remote_rx_info->entry;
2206 
2207 	return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2208 }
2209 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2210 
2211 static void ntb_transport_doorbell_callback(void *data, int vector)
2212 {
2213 	struct ntb_transport_ctx *nt = data;
2214 	struct ntb_transport_qp *qp;
2215 	u64 db_bits;
2216 	unsigned int qp_num;
2217 
2218 	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2219 		   ntb_db_vector_mask(nt->ndev, vector));
2220 
2221 	while (db_bits) {
2222 		qp_num = __ffs(db_bits);
2223 		qp = &nt->qp_vec[qp_num];
2224 
2225 		if (qp->active)
2226 			tasklet_schedule(&qp->rxc_db_work);
2227 
2228 		db_bits &= ~BIT_ULL(qp_num);
2229 	}
2230 }
2231 
2232 static const struct ntb_ctx_ops ntb_transport_ops = {
2233 	.link_event = ntb_transport_event_callback,
2234 	.db_event = ntb_transport_doorbell_callback,
2235 };
2236 
2237 static struct ntb_client ntb_transport_client = {
2238 	.ops = {
2239 		.probe = ntb_transport_probe,
2240 		.remove = ntb_transport_free,
2241 	},
2242 };
2243 
2244 static int __init ntb_transport_init(void)
2245 {
2246 	int rc;
2247 
2248 	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2249 
2250 	if (debugfs_initialized())
2251 		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2252 
2253 	rc = bus_register(&ntb_transport_bus);
2254 	if (rc)
2255 		goto err_bus;
2256 
2257 	rc = ntb_register_client(&ntb_transport_client);
2258 	if (rc)
2259 		goto err_client;
2260 
2261 	return 0;
2262 
2263 err_client:
2264 	bus_unregister(&ntb_transport_bus);
2265 err_bus:
2266 	debugfs_remove_recursive(nt_debugfs_dir);
2267 	return rc;
2268 }
2269 module_init(ntb_transport_init);
2270 
2271 static void __exit ntb_transport_exit(void)
2272 {
2273 	debugfs_remove_recursive(nt_debugfs_dir);
2274 
2275 	ntb_unregister_client(&ntb_transport_client);
2276 	bus_unregister(&ntb_transport_bus);
2277 }
2278 module_exit(ntb_transport_exit);
2279