1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2012 Intel Corporation. All rights reserved. 8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * BSD LICENSE 15 * 16 * Copyright(c) 2012 Intel Corporation. All rights reserved. 17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved. 18 * 19 * Redistribution and use in source and binary forms, with or without 20 * modification, are permitted provided that the following conditions 21 * are met: 22 * 23 * * Redistributions of source code must retain the above copyright 24 * notice, this list of conditions and the following disclaimer. 25 * * Redistributions in binary form must reproduce the above copy 26 * notice, this list of conditions and the following disclaimer in 27 * the documentation and/or other materials provided with the 28 * distribution. 29 * * Neither the name of Intel Corporation nor the names of its 30 * contributors may be used to endorse or promote products derived 31 * from this software without specific prior written permission. 32 * 33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 44 * 45 * PCIe NTB Transport Linux driver 46 * 47 * Contact Information: 48 * Jon Mason <jon.mason@intel.com> 49 */ 50 #include <linux/debugfs.h> 51 #include <linux/delay.h> 52 #include <linux/dmaengine.h> 53 #include <linux/dma-mapping.h> 54 #include <linux/errno.h> 55 #include <linux/export.h> 56 #include <linux/interrupt.h> 57 #include <linux/module.h> 58 #include <linux/pci.h> 59 #include <linux/slab.h> 60 #include <linux/types.h> 61 #include <linux/uaccess.h> 62 #include "linux/ntb.h" 63 #include "linux/ntb_transport.h" 64 65 #define NTB_TRANSPORT_VERSION 4 66 #define NTB_TRANSPORT_VER "4" 67 #define NTB_TRANSPORT_NAME "ntb_transport" 68 #define NTB_TRANSPORT_DESC "Software Queue-Pair Transport over NTB" 69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2) 70 71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC); 72 MODULE_VERSION(NTB_TRANSPORT_VER); 73 MODULE_LICENSE("Dual BSD/GPL"); 74 MODULE_AUTHOR("Intel Corporation"); 75 76 static unsigned long max_mw_size; 77 module_param(max_mw_size, ulong, 0644); 78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows"); 79 80 static unsigned int transport_mtu = 0x10000; 81 module_param(transport_mtu, uint, 0644); 82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets"); 83 84 static unsigned char max_num_clients; 85 module_param(max_num_clients, byte, 0644); 86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients"); 87 88 static unsigned int copy_bytes = 1024; 89 module_param(copy_bytes, uint, 0644); 90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA"); 91 92 static bool use_dma; 93 module_param(use_dma, bool, 0644); 94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy"); 95 96 static bool use_msi; 97 #ifdef CONFIG_NTB_MSI 98 module_param(use_msi, bool, 0644); 99 MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells"); 100 #endif 101 102 static struct dentry *nt_debugfs_dir; 103 104 /* Only two-ports NTB devices are supported */ 105 #define PIDX NTB_DEF_PEER_IDX 106 107 struct ntb_queue_entry { 108 /* ntb_queue list reference */ 109 struct list_head entry; 110 /* pointers to data to be transferred */ 111 void *cb_data; 112 void *buf; 113 unsigned int len; 114 unsigned int flags; 115 int retries; 116 int errors; 117 unsigned int tx_index; 118 unsigned int rx_index; 119 120 struct ntb_transport_qp *qp; 121 union { 122 struct ntb_payload_header __iomem *tx_hdr; 123 struct ntb_payload_header *rx_hdr; 124 }; 125 }; 126 127 struct ntb_rx_info { 128 unsigned int entry; 129 }; 130 131 struct ntb_transport_qp { 132 struct ntb_transport_ctx *transport; 133 struct ntb_dev *ndev; 134 void *cb_data; 135 struct dma_chan *tx_dma_chan; 136 struct dma_chan *rx_dma_chan; 137 138 bool client_ready; 139 bool link_is_up; 140 bool active; 141 142 u8 qp_num; /* Only 64 QP's are allowed. 0-63 */ 143 u64 qp_bit; 144 145 struct ntb_rx_info __iomem *rx_info; 146 struct ntb_rx_info *remote_rx_info; 147 148 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data, 149 void *data, int len); 150 struct list_head tx_free_q; 151 spinlock_t ntb_tx_free_q_lock; 152 void __iomem *tx_mw; 153 phys_addr_t tx_mw_phys; 154 size_t tx_mw_size; 155 dma_addr_t tx_mw_dma_addr; 156 unsigned int tx_index; 157 unsigned int tx_max_entry; 158 unsigned int tx_max_frame; 159 160 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data, 161 void *data, int len); 162 struct list_head rx_post_q; 163 struct list_head rx_pend_q; 164 struct list_head rx_free_q; 165 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */ 166 spinlock_t ntb_rx_q_lock; 167 void *rx_buff; 168 unsigned int rx_index; 169 unsigned int rx_max_entry; 170 unsigned int rx_max_frame; 171 unsigned int rx_alloc_entry; 172 dma_cookie_t last_cookie; 173 struct tasklet_struct rxc_db_work; 174 175 void (*event_handler)(void *data, int status); 176 struct delayed_work link_work; 177 struct work_struct link_cleanup; 178 179 struct dentry *debugfs_dir; 180 struct dentry *debugfs_stats; 181 182 /* Stats */ 183 u64 rx_bytes; 184 u64 rx_pkts; 185 u64 rx_ring_empty; 186 u64 rx_err_no_buf; 187 u64 rx_err_oflow; 188 u64 rx_err_ver; 189 u64 rx_memcpy; 190 u64 rx_async; 191 u64 tx_bytes; 192 u64 tx_pkts; 193 u64 tx_ring_full; 194 u64 tx_err_no_buf; 195 u64 tx_memcpy; 196 u64 tx_async; 197 198 bool use_msi; 199 int msi_irq; 200 struct ntb_msi_desc msi_desc; 201 struct ntb_msi_desc peer_msi_desc; 202 }; 203 204 struct ntb_transport_mw { 205 phys_addr_t phys_addr; 206 resource_size_t phys_size; 207 void __iomem *vbase; 208 size_t xlat_size; 209 size_t buff_size; 210 size_t alloc_size; 211 void *alloc_addr; 212 void *virt_addr; 213 dma_addr_t dma_addr; 214 }; 215 216 struct ntb_transport_client_dev { 217 struct list_head entry; 218 struct ntb_transport_ctx *nt; 219 struct device dev; 220 }; 221 222 struct ntb_transport_ctx { 223 struct list_head entry; 224 struct list_head client_devs; 225 226 struct ntb_dev *ndev; 227 228 struct ntb_transport_mw *mw_vec; 229 struct ntb_transport_qp *qp_vec; 230 unsigned int mw_count; 231 unsigned int qp_count; 232 u64 qp_bitmap; 233 u64 qp_bitmap_free; 234 235 bool use_msi; 236 unsigned int msi_spad_offset; 237 u64 msi_db_mask; 238 239 bool link_is_up; 240 struct delayed_work link_work; 241 struct work_struct link_cleanup; 242 243 struct dentry *debugfs_node_dir; 244 }; 245 246 enum { 247 DESC_DONE_FLAG = BIT(0), 248 LINK_DOWN_FLAG = BIT(1), 249 }; 250 251 struct ntb_payload_header { 252 unsigned int ver; 253 unsigned int len; 254 unsigned int flags; 255 }; 256 257 enum { 258 VERSION = 0, 259 QP_LINKS, 260 NUM_QPS, 261 NUM_MWS, 262 MW0_SZ_HIGH, 263 MW0_SZ_LOW, 264 }; 265 266 #define dev_client_dev(__dev) \ 267 container_of((__dev), struct ntb_transport_client_dev, dev) 268 269 #define drv_client(__drv) \ 270 container_of((__drv), struct ntb_transport_client, driver) 271 272 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count) 273 #define NTB_QP_DEF_NUM_ENTRIES 100 274 #define NTB_LINK_DOWN_TIMEOUT 10 275 276 static void ntb_transport_rxc_db(unsigned long data); 277 static const struct ntb_ctx_ops ntb_transport_ops; 278 static struct ntb_client ntb_transport_client; 279 static int ntb_async_tx_submit(struct ntb_transport_qp *qp, 280 struct ntb_queue_entry *entry); 281 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset); 282 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset); 283 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset); 284 285 286 static int ntb_transport_bus_match(struct device *dev, 287 const struct device_driver *drv) 288 { 289 return !strncmp(dev_name(dev), drv->name, strlen(drv->name)); 290 } 291 292 static int ntb_transport_bus_probe(struct device *dev) 293 { 294 const struct ntb_transport_client *client; 295 int rc; 296 297 get_device(dev); 298 299 client = drv_client(dev->driver); 300 rc = client->probe(dev); 301 if (rc) 302 put_device(dev); 303 304 return rc; 305 } 306 307 static void ntb_transport_bus_remove(struct device *dev) 308 { 309 const struct ntb_transport_client *client; 310 311 client = drv_client(dev->driver); 312 client->remove(dev); 313 314 put_device(dev); 315 } 316 317 static const struct bus_type ntb_transport_bus = { 318 .name = "ntb_transport", 319 .match = ntb_transport_bus_match, 320 .probe = ntb_transport_bus_probe, 321 .remove = ntb_transport_bus_remove, 322 }; 323 324 static LIST_HEAD(ntb_transport_list); 325 326 static int ntb_bus_init(struct ntb_transport_ctx *nt) 327 { 328 list_add_tail(&nt->entry, &ntb_transport_list); 329 return 0; 330 } 331 332 static void ntb_bus_remove(struct ntb_transport_ctx *nt) 333 { 334 struct ntb_transport_client_dev *client_dev, *cd; 335 336 list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) { 337 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n", 338 dev_name(&client_dev->dev)); 339 list_del(&client_dev->entry); 340 device_unregister(&client_dev->dev); 341 } 342 343 list_del(&nt->entry); 344 } 345 346 static void ntb_transport_client_release(struct device *dev) 347 { 348 struct ntb_transport_client_dev *client_dev; 349 350 client_dev = dev_client_dev(dev); 351 kfree(client_dev); 352 } 353 354 /** 355 * ntb_transport_unregister_client_dev - Unregister NTB client device 356 * @device_name: Name of NTB client device 357 * 358 * Unregister an NTB client device with the NTB transport layer 359 */ 360 void ntb_transport_unregister_client_dev(char *device_name) 361 { 362 struct ntb_transport_client_dev *client, *cd; 363 struct ntb_transport_ctx *nt; 364 365 list_for_each_entry(nt, &ntb_transport_list, entry) 366 list_for_each_entry_safe(client, cd, &nt->client_devs, entry) 367 if (!strncmp(dev_name(&client->dev), device_name, 368 strlen(device_name))) { 369 list_del(&client->entry); 370 device_unregister(&client->dev); 371 } 372 } 373 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev); 374 375 /** 376 * ntb_transport_register_client_dev - Register NTB client device 377 * @device_name: Name of NTB client device 378 * 379 * Register an NTB client device with the NTB transport layer 380 * 381 * Returns: %0 on success or -errno code on error 382 */ 383 int ntb_transport_register_client_dev(char *device_name) 384 { 385 struct ntb_transport_client_dev *client_dev; 386 struct ntb_transport_ctx *nt; 387 int node; 388 int rc, i = 0; 389 390 if (list_empty(&ntb_transport_list)) 391 return -ENODEV; 392 393 list_for_each_entry(nt, &ntb_transport_list, entry) { 394 struct device *dev; 395 396 node = dev_to_node(&nt->ndev->dev); 397 398 client_dev = kzalloc_node(sizeof(*client_dev), 399 GFP_KERNEL, node); 400 if (!client_dev) { 401 rc = -ENOMEM; 402 goto err; 403 } 404 405 dev = &client_dev->dev; 406 407 /* setup and register client devices */ 408 dev_set_name(dev, "%s%d", device_name, i); 409 dev->bus = &ntb_transport_bus; 410 dev->release = ntb_transport_client_release; 411 dev->parent = &nt->ndev->dev; 412 413 rc = device_register(dev); 414 if (rc) { 415 put_device(dev); 416 goto err; 417 } 418 419 list_add_tail(&client_dev->entry, &nt->client_devs); 420 i++; 421 } 422 423 return 0; 424 425 err: 426 ntb_transport_unregister_client_dev(device_name); 427 428 return rc; 429 } 430 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev); 431 432 /** 433 * ntb_transport_register_client - Register NTB client driver 434 * @drv: NTB client driver to be registered 435 * 436 * Register an NTB client driver with the NTB transport layer 437 * 438 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 439 */ 440 int ntb_transport_register_client(struct ntb_transport_client *drv) 441 { 442 drv->driver.bus = &ntb_transport_bus; 443 444 if (list_empty(&ntb_transport_list)) 445 return -ENODEV; 446 447 return driver_register(&drv->driver); 448 } 449 EXPORT_SYMBOL_GPL(ntb_transport_register_client); 450 451 /** 452 * ntb_transport_unregister_client - Unregister NTB client driver 453 * @drv: NTB client driver to be unregistered 454 * 455 * Unregister an NTB client driver with the NTB transport layer 456 * 457 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 458 */ 459 void ntb_transport_unregister_client(struct ntb_transport_client *drv) 460 { 461 driver_unregister(&drv->driver); 462 } 463 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client); 464 465 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count, 466 loff_t *offp) 467 { 468 struct ntb_transport_qp *qp; 469 char *buf; 470 ssize_t ret, out_offset, out_count; 471 472 qp = filp->private_data; 473 474 if (!qp || !qp->link_is_up) 475 return 0; 476 477 out_count = 1000; 478 479 buf = kmalloc(out_count, GFP_KERNEL); 480 if (!buf) 481 return -ENOMEM; 482 483 out_offset = 0; 484 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 485 "\nNTB QP stats:\n\n"); 486 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 487 "rx_bytes - \t%llu\n", qp->rx_bytes); 488 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 489 "rx_pkts - \t%llu\n", qp->rx_pkts); 490 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 491 "rx_memcpy - \t%llu\n", qp->rx_memcpy); 492 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 493 "rx_async - \t%llu\n", qp->rx_async); 494 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 495 "rx_ring_empty - %llu\n", qp->rx_ring_empty); 496 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 497 "rx_err_no_buf - %llu\n", qp->rx_err_no_buf); 498 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 499 "rx_err_oflow - \t%llu\n", qp->rx_err_oflow); 500 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 501 "rx_err_ver - \t%llu\n", qp->rx_err_ver); 502 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 503 "rx_buff - \t0x%p\n", qp->rx_buff); 504 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 505 "rx_index - \t%u\n", qp->rx_index); 506 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 507 "rx_max_entry - \t%u\n", qp->rx_max_entry); 508 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 509 "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry); 510 511 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 512 "tx_bytes - \t%llu\n", qp->tx_bytes); 513 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 514 "tx_pkts - \t%llu\n", qp->tx_pkts); 515 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 516 "tx_memcpy - \t%llu\n", qp->tx_memcpy); 517 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 518 "tx_async - \t%llu\n", qp->tx_async); 519 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 520 "tx_ring_full - \t%llu\n", qp->tx_ring_full); 521 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 522 "tx_err_no_buf - %llu\n", qp->tx_err_no_buf); 523 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 524 "tx_mw - \t0x%p\n", qp->tx_mw); 525 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 526 "tx_index (H) - \t%u\n", qp->tx_index); 527 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 528 "RRI (T) - \t%u\n", 529 qp->remote_rx_info->entry); 530 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 531 "tx_max_entry - \t%u\n", qp->tx_max_entry); 532 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 533 "free tx - \t%u\n", 534 ntb_transport_tx_free_entry(qp)); 535 536 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 537 "\n"); 538 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 539 "Using TX DMA - \t%s\n", 540 qp->tx_dma_chan ? "Yes" : "No"); 541 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 542 "Using RX DMA - \t%s\n", 543 qp->rx_dma_chan ? "Yes" : "No"); 544 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 545 "QP Link - \t%s\n", 546 qp->link_is_up ? "Up" : "Down"); 547 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 548 "\n"); 549 550 if (out_offset > out_count) 551 out_offset = out_count; 552 553 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset); 554 kfree(buf); 555 return ret; 556 } 557 558 static const struct file_operations ntb_qp_debugfs_stats = { 559 .owner = THIS_MODULE, 560 .open = simple_open, 561 .read = debugfs_read, 562 }; 563 564 static void ntb_list_add(spinlock_t *lock, struct list_head *entry, 565 struct list_head *list) 566 { 567 unsigned long flags; 568 569 spin_lock_irqsave(lock, flags); 570 list_add_tail(entry, list); 571 spin_unlock_irqrestore(lock, flags); 572 } 573 574 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock, 575 struct list_head *list) 576 { 577 struct ntb_queue_entry *entry; 578 unsigned long flags; 579 580 spin_lock_irqsave(lock, flags); 581 if (list_empty(list)) { 582 entry = NULL; 583 goto out; 584 } 585 entry = list_first_entry(list, struct ntb_queue_entry, entry); 586 list_del(&entry->entry); 587 588 out: 589 spin_unlock_irqrestore(lock, flags); 590 591 return entry; 592 } 593 594 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock, 595 struct list_head *list, 596 struct list_head *to_list) 597 { 598 struct ntb_queue_entry *entry; 599 unsigned long flags; 600 601 spin_lock_irqsave(lock, flags); 602 603 if (list_empty(list)) { 604 entry = NULL; 605 } else { 606 entry = list_first_entry(list, struct ntb_queue_entry, entry); 607 list_move_tail(&entry->entry, to_list); 608 } 609 610 spin_unlock_irqrestore(lock, flags); 611 612 return entry; 613 } 614 615 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, 616 unsigned int qp_num) 617 { 618 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; 619 struct ntb_transport_mw *mw; 620 struct ntb_dev *ndev = nt->ndev; 621 struct ntb_queue_entry *entry; 622 unsigned int rx_size, num_qps_mw; 623 unsigned int mw_num, mw_count, qp_count; 624 unsigned int i; 625 int node; 626 627 mw_count = nt->mw_count; 628 qp_count = nt->qp_count; 629 630 mw_num = QP_TO_MW(nt, qp_num); 631 mw = &nt->mw_vec[mw_num]; 632 633 if (!mw->virt_addr) 634 return -ENOMEM; 635 636 if (mw_num < qp_count % mw_count) 637 num_qps_mw = qp_count / mw_count + 1; 638 else 639 num_qps_mw = qp_count / mw_count; 640 641 rx_size = (unsigned int)mw->xlat_size / num_qps_mw; 642 qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count); 643 rx_size -= sizeof(struct ntb_rx_info); 644 645 qp->remote_rx_info = qp->rx_buff + rx_size; 646 647 /* Due to housekeeping, there must be atleast 2 buffs */ 648 qp->rx_max_frame = min(transport_mtu, rx_size / 2); 649 qp->rx_max_entry = rx_size / qp->rx_max_frame; 650 qp->rx_index = 0; 651 652 /* 653 * Checking to see if we have more entries than the default. 654 * We should add additional entries if that is the case so we 655 * can be in sync with the transport frames. 656 */ 657 node = dev_to_node(&ndev->dev); 658 for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) { 659 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node); 660 if (!entry) 661 return -ENOMEM; 662 663 entry->qp = qp; 664 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, 665 &qp->rx_free_q); 666 qp->rx_alloc_entry++; 667 } 668 669 qp->remote_rx_info->entry = qp->rx_max_entry - 1; 670 671 /* setup the hdr offsets with 0's */ 672 for (i = 0; i < qp->rx_max_entry; i++) { 673 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) - 674 sizeof(struct ntb_payload_header)); 675 memset(offset, 0, sizeof(struct ntb_payload_header)); 676 } 677 678 qp->rx_pkts = 0; 679 qp->tx_pkts = 0; 680 qp->tx_index = 0; 681 682 return 0; 683 } 684 685 static irqreturn_t ntb_transport_isr(int irq, void *dev) 686 { 687 struct ntb_transport_qp *qp = dev; 688 689 tasklet_schedule(&qp->rxc_db_work); 690 691 return IRQ_HANDLED; 692 } 693 694 static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt, 695 unsigned int qp_num) 696 { 697 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; 698 int spad = qp_num * 2 + nt->msi_spad_offset; 699 700 if (!nt->use_msi) 701 return; 702 703 if (spad >= ntb_spad_count(nt->ndev)) 704 return; 705 706 qp->peer_msi_desc.addr_offset = 707 ntb_peer_spad_read(qp->ndev, PIDX, spad); 708 qp->peer_msi_desc.data = 709 ntb_peer_spad_read(qp->ndev, PIDX, spad + 1); 710 711 dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n", 712 qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data); 713 714 if (qp->peer_msi_desc.addr_offset) { 715 qp->use_msi = true; 716 dev_info(&qp->ndev->pdev->dev, 717 "Using MSI interrupts for QP%d\n", qp_num); 718 } 719 } 720 721 static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt, 722 unsigned int qp_num) 723 { 724 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; 725 int spad = qp_num * 2 + nt->msi_spad_offset; 726 int rc; 727 728 if (!nt->use_msi) 729 return; 730 731 if (spad >= ntb_spad_count(nt->ndev)) { 732 dev_warn_once(&qp->ndev->pdev->dev, 733 "Not enough SPADS to use MSI interrupts\n"); 734 return; 735 } 736 737 ntb_spad_write(qp->ndev, spad, 0); 738 ntb_spad_write(qp->ndev, spad + 1, 0); 739 740 if (!qp->msi_irq) { 741 qp->msi_irq = ntbm_msi_request_irq(qp->ndev, ntb_transport_isr, 742 KBUILD_MODNAME, qp, 743 &qp->msi_desc); 744 if (qp->msi_irq < 0) { 745 dev_warn(&qp->ndev->pdev->dev, 746 "Unable to allocate MSI interrupt for qp%d\n", 747 qp_num); 748 return; 749 } 750 } 751 752 rc = ntb_spad_write(qp->ndev, spad, qp->msi_desc.addr_offset); 753 if (rc) 754 goto err_free_interrupt; 755 756 rc = ntb_spad_write(qp->ndev, spad + 1, qp->msi_desc.data); 757 if (rc) 758 goto err_free_interrupt; 759 760 dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n", 761 qp_num, qp->msi_irq, qp->msi_desc.addr_offset, 762 qp->msi_desc.data); 763 764 return; 765 766 err_free_interrupt: 767 devm_free_irq(&nt->ndev->dev, qp->msi_irq, qp); 768 } 769 770 static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt) 771 { 772 int i; 773 774 dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed"); 775 776 for (i = 0; i < nt->qp_count; i++) 777 ntb_transport_setup_qp_peer_msi(nt, i); 778 } 779 780 static void ntb_transport_msi_desc_changed(void *data) 781 { 782 struct ntb_transport_ctx *nt = data; 783 int i; 784 785 dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed"); 786 787 for (i = 0; i < nt->qp_count; i++) 788 ntb_transport_setup_qp_msi(nt, i); 789 790 ntb_peer_db_set(nt->ndev, nt->msi_db_mask); 791 } 792 793 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw) 794 { 795 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; 796 struct pci_dev *pdev = nt->ndev->pdev; 797 798 if (!mw->virt_addr) 799 return; 800 801 ntb_mw_clear_trans(nt->ndev, PIDX, num_mw); 802 dma_free_coherent(&pdev->dev, mw->alloc_size, 803 mw->alloc_addr, mw->dma_addr); 804 mw->xlat_size = 0; 805 mw->buff_size = 0; 806 mw->alloc_size = 0; 807 mw->alloc_addr = NULL; 808 mw->virt_addr = NULL; 809 } 810 811 static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw, 812 struct device *ntb_dev, size_t align) 813 { 814 dma_addr_t dma_addr; 815 void *alloc_addr, *virt_addr; 816 int rc; 817 818 /* 819 * The buffer here is allocated against the NTB device. The reason to 820 * use dma_alloc_*() call is to allocate a large IOVA contiguous buffer 821 * backing the NTB BAR for the remote host to write to. During receive 822 * processing, the data is being copied out of the receive buffer to 823 * the kernel skbuff. When a DMA device is being used, dma_map_page() 824 * is called on the kvaddr of the receive buffer (from dma_alloc_*()) 825 * and remapped against the DMA device. It appears to be a double 826 * DMA mapping of buffers, but first is mapped to the NTB device and 827 * second is to the DMA device. DMA_ATTR_FORCE_CONTIGUOUS is necessary 828 * in order for the later dma_map_page() to not fail. 829 */ 830 alloc_addr = dma_alloc_attrs(ntb_dev, mw->alloc_size, 831 &dma_addr, GFP_KERNEL, 832 DMA_ATTR_FORCE_CONTIGUOUS); 833 if (!alloc_addr) { 834 dev_err(ntb_dev, "Unable to alloc MW buff of size %zu\n", 835 mw->alloc_size); 836 return -ENOMEM; 837 } 838 virt_addr = alloc_addr; 839 840 /* 841 * we must ensure that the memory address allocated is BAR size 842 * aligned in order for the XLAT register to take the value. This 843 * is a requirement of the hardware. It is recommended to setup CMA 844 * for BAR sizes equal or greater than 4MB. 845 */ 846 if (!IS_ALIGNED(dma_addr, align)) { 847 if (mw->alloc_size > mw->buff_size) { 848 virt_addr = PTR_ALIGN(alloc_addr, align); 849 dma_addr = ALIGN(dma_addr, align); 850 } else { 851 rc = -ENOMEM; 852 goto err; 853 } 854 } 855 856 mw->alloc_addr = alloc_addr; 857 mw->virt_addr = virt_addr; 858 mw->dma_addr = dma_addr; 859 860 return 0; 861 862 err: 863 dma_free_coherent(ntb_dev, mw->alloc_size, alloc_addr, dma_addr); 864 865 return rc; 866 } 867 868 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw, 869 resource_size_t size) 870 { 871 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; 872 struct pci_dev *pdev = nt->ndev->pdev; 873 size_t xlat_size, buff_size; 874 resource_size_t xlat_align; 875 resource_size_t xlat_align_size; 876 int rc; 877 878 if (!size) 879 return -EINVAL; 880 881 rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align, 882 &xlat_align_size, NULL); 883 if (rc) 884 return rc; 885 886 xlat_size = round_up(size, xlat_align_size); 887 buff_size = round_up(size, xlat_align); 888 889 /* No need to re-setup */ 890 if (mw->xlat_size == xlat_size) 891 return 0; 892 893 if (mw->buff_size) 894 ntb_free_mw(nt, num_mw); 895 896 /* Alloc memory for receiving data. Must be aligned */ 897 mw->xlat_size = xlat_size; 898 mw->buff_size = buff_size; 899 mw->alloc_size = buff_size; 900 901 rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align); 902 if (rc) { 903 mw->alloc_size *= 2; 904 rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align); 905 if (rc) { 906 dev_err(&pdev->dev, 907 "Unable to alloc aligned MW buff\n"); 908 mw->xlat_size = 0; 909 mw->buff_size = 0; 910 mw->alloc_size = 0; 911 return rc; 912 } 913 } 914 915 /* Notify HW the memory location of the receive buffer */ 916 rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr, 917 mw->xlat_size); 918 if (rc) { 919 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw); 920 ntb_free_mw(nt, num_mw); 921 return -EIO; 922 } 923 924 return 0; 925 } 926 927 static void ntb_qp_link_context_reset(struct ntb_transport_qp *qp) 928 { 929 qp->link_is_up = false; 930 qp->active = false; 931 932 qp->tx_index = 0; 933 qp->rx_index = 0; 934 qp->rx_bytes = 0; 935 qp->rx_pkts = 0; 936 qp->rx_ring_empty = 0; 937 qp->rx_err_no_buf = 0; 938 qp->rx_err_oflow = 0; 939 qp->rx_err_ver = 0; 940 qp->rx_memcpy = 0; 941 qp->rx_async = 0; 942 qp->tx_bytes = 0; 943 qp->tx_pkts = 0; 944 qp->tx_ring_full = 0; 945 qp->tx_err_no_buf = 0; 946 qp->tx_memcpy = 0; 947 qp->tx_async = 0; 948 } 949 950 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp) 951 { 952 ntb_qp_link_context_reset(qp); 953 if (qp->remote_rx_info) 954 qp->remote_rx_info->entry = qp->rx_max_entry - 1; 955 } 956 957 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp) 958 { 959 struct ntb_transport_ctx *nt = qp->transport; 960 struct pci_dev *pdev = nt->ndev->pdev; 961 962 dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num); 963 964 cancel_delayed_work_sync(&qp->link_work); 965 ntb_qp_link_down_reset(qp); 966 967 if (qp->event_handler) 968 qp->event_handler(qp->cb_data, qp->link_is_up); 969 } 970 971 static void ntb_qp_link_cleanup_work(struct work_struct *work) 972 { 973 struct ntb_transport_qp *qp = container_of(work, 974 struct ntb_transport_qp, 975 link_cleanup); 976 struct ntb_transport_ctx *nt = qp->transport; 977 978 ntb_qp_link_cleanup(qp); 979 980 if (nt->link_is_up) 981 schedule_delayed_work(&qp->link_work, 982 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT)); 983 } 984 985 static void ntb_qp_link_down(struct ntb_transport_qp *qp) 986 { 987 schedule_work(&qp->link_cleanup); 988 } 989 990 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt) 991 { 992 struct ntb_transport_qp *qp; 993 u64 qp_bitmap_alloc; 994 unsigned int i, count; 995 996 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free; 997 998 /* Pass along the info to any clients */ 999 for (i = 0; i < nt->qp_count; i++) 1000 if (qp_bitmap_alloc & BIT_ULL(i)) { 1001 qp = &nt->qp_vec[i]; 1002 ntb_qp_link_cleanup(qp); 1003 cancel_work_sync(&qp->link_cleanup); 1004 cancel_delayed_work_sync(&qp->link_work); 1005 } 1006 1007 if (!nt->link_is_up) 1008 cancel_delayed_work_sync(&nt->link_work); 1009 1010 for (i = 0; i < nt->mw_count; i++) 1011 ntb_free_mw(nt, i); 1012 1013 /* The scratchpad registers keep the values if the remote side 1014 * goes down, blast them now to give them a sane value the next 1015 * time they are accessed 1016 */ 1017 count = ntb_spad_count(nt->ndev); 1018 for (i = 0; i < count; i++) 1019 ntb_spad_write(nt->ndev, i, 0); 1020 } 1021 1022 static void ntb_transport_link_cleanup_work(struct work_struct *work) 1023 { 1024 struct ntb_transport_ctx *nt = 1025 container_of(work, struct ntb_transport_ctx, link_cleanup); 1026 1027 ntb_transport_link_cleanup(nt); 1028 } 1029 1030 static void ntb_transport_event_callback(void *data) 1031 { 1032 struct ntb_transport_ctx *nt = data; 1033 1034 if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1) 1035 schedule_delayed_work(&nt->link_work, 0); 1036 else 1037 schedule_work(&nt->link_cleanup); 1038 } 1039 1040 static void ntb_transport_link_work(struct work_struct *work) 1041 { 1042 struct ntb_transport_ctx *nt = 1043 container_of(work, struct ntb_transport_ctx, link_work.work); 1044 struct ntb_dev *ndev = nt->ndev; 1045 struct pci_dev *pdev = ndev->pdev; 1046 resource_size_t size; 1047 u32 val; 1048 int rc = 0, i, spad; 1049 1050 /* send the local info, in the opposite order of the way we read it */ 1051 1052 if (nt->use_msi) { 1053 rc = ntb_msi_setup_mws(ndev); 1054 if (rc) { 1055 dev_warn(&pdev->dev, 1056 "Failed to register MSI memory window: %d\n", 1057 rc); 1058 nt->use_msi = false; 1059 } 1060 } 1061 1062 for (i = 0; i < nt->qp_count; i++) 1063 ntb_transport_setup_qp_msi(nt, i); 1064 1065 for (i = 0; i < nt->mw_count; i++) { 1066 size = nt->mw_vec[i].phys_size; 1067 1068 if (max_mw_size && size > max_mw_size) 1069 size = max_mw_size; 1070 1071 spad = MW0_SZ_HIGH + (i * 2); 1072 ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size)); 1073 1074 spad = MW0_SZ_LOW + (i * 2); 1075 ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size)); 1076 } 1077 1078 ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count); 1079 1080 ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count); 1081 1082 ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION); 1083 1084 /* Query the remote side for its info */ 1085 val = ntb_spad_read(ndev, VERSION); 1086 dev_dbg(&pdev->dev, "Remote version = %d\n", val); 1087 if (val != NTB_TRANSPORT_VERSION) 1088 goto out; 1089 1090 val = ntb_spad_read(ndev, NUM_QPS); 1091 dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val); 1092 if (val != nt->qp_count) 1093 goto out; 1094 1095 val = ntb_spad_read(ndev, NUM_MWS); 1096 dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val); 1097 if (val != nt->mw_count) 1098 goto out; 1099 1100 for (i = 0; i < nt->mw_count; i++) { 1101 u64 val64; 1102 1103 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2)); 1104 val64 = (u64)val << 32; 1105 1106 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2)); 1107 val64 |= val; 1108 1109 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64); 1110 1111 rc = ntb_set_mw(nt, i, val64); 1112 if (rc) 1113 goto out1; 1114 } 1115 1116 nt->link_is_up = true; 1117 1118 for (i = 0; i < nt->qp_count; i++) { 1119 struct ntb_transport_qp *qp = &nt->qp_vec[i]; 1120 1121 ntb_transport_setup_qp_mw(nt, i); 1122 ntb_transport_setup_qp_peer_msi(nt, i); 1123 1124 if (qp->client_ready) 1125 schedule_delayed_work(&qp->link_work, 0); 1126 } 1127 1128 return; 1129 1130 out1: 1131 for (i = 0; i < nt->mw_count; i++) 1132 ntb_free_mw(nt, i); 1133 1134 /* if there's an actual failure, we should just bail */ 1135 if (rc < 0) 1136 return; 1137 1138 out: 1139 if (ntb_link_is_up(ndev, NULL, NULL) == 1) 1140 schedule_delayed_work(&nt->link_work, 1141 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT)); 1142 } 1143 1144 static void ntb_qp_link_work(struct work_struct *work) 1145 { 1146 struct ntb_transport_qp *qp = container_of(work, 1147 struct ntb_transport_qp, 1148 link_work.work); 1149 struct pci_dev *pdev = qp->ndev->pdev; 1150 struct ntb_transport_ctx *nt = qp->transport; 1151 int val; 1152 1153 WARN_ON(!nt->link_is_up); 1154 1155 val = ntb_spad_read(nt->ndev, QP_LINKS); 1156 1157 ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num)); 1158 1159 /* query remote spad for qp ready bits */ 1160 dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val); 1161 1162 /* See if the remote side is up */ 1163 if (val & BIT(qp->qp_num)) { 1164 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num); 1165 qp->link_is_up = true; 1166 qp->active = true; 1167 1168 if (qp->event_handler) 1169 qp->event_handler(qp->cb_data, qp->link_is_up); 1170 1171 if (qp->active) 1172 tasklet_schedule(&qp->rxc_db_work); 1173 } else if (nt->link_is_up) 1174 schedule_delayed_work(&qp->link_work, 1175 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT)); 1176 } 1177 1178 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt, 1179 unsigned int qp_num) 1180 { 1181 struct ntb_transport_qp *qp; 1182 phys_addr_t mw_base; 1183 resource_size_t mw_size; 1184 unsigned int num_qps_mw, tx_size; 1185 unsigned int mw_num, mw_count, qp_count; 1186 u64 qp_offset; 1187 1188 mw_count = nt->mw_count; 1189 qp_count = nt->qp_count; 1190 1191 mw_num = QP_TO_MW(nt, qp_num); 1192 1193 qp = &nt->qp_vec[qp_num]; 1194 qp->qp_num = qp_num; 1195 qp->transport = nt; 1196 qp->ndev = nt->ndev; 1197 qp->client_ready = false; 1198 qp->event_handler = NULL; 1199 ntb_qp_link_context_reset(qp); 1200 1201 if (mw_num < qp_count % mw_count) 1202 num_qps_mw = qp_count / mw_count + 1; 1203 else 1204 num_qps_mw = qp_count / mw_count; 1205 1206 mw_base = nt->mw_vec[mw_num].phys_addr; 1207 mw_size = nt->mw_vec[mw_num].phys_size; 1208 1209 if (max_mw_size && mw_size > max_mw_size) 1210 mw_size = max_mw_size; 1211 1212 tx_size = (unsigned int)mw_size / num_qps_mw; 1213 qp_offset = tx_size * (qp_num / mw_count); 1214 1215 qp->tx_mw_size = tx_size; 1216 qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset; 1217 if (!qp->tx_mw) 1218 return -EINVAL; 1219 1220 qp->tx_mw_phys = mw_base + qp_offset; 1221 if (!qp->tx_mw_phys) 1222 return -EINVAL; 1223 1224 tx_size -= sizeof(struct ntb_rx_info); 1225 qp->rx_info = qp->tx_mw + tx_size; 1226 1227 /* Due to housekeeping, there must be atleast 2 buffs */ 1228 qp->tx_max_frame = min(transport_mtu, tx_size / 2); 1229 qp->tx_max_entry = tx_size / qp->tx_max_frame; 1230 1231 if (nt->debugfs_node_dir) { 1232 char debugfs_name[4]; 1233 1234 snprintf(debugfs_name, 4, "qp%d", qp_num); 1235 qp->debugfs_dir = debugfs_create_dir(debugfs_name, 1236 nt->debugfs_node_dir); 1237 1238 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR, 1239 qp->debugfs_dir, qp, 1240 &ntb_qp_debugfs_stats); 1241 } else { 1242 qp->debugfs_dir = NULL; 1243 qp->debugfs_stats = NULL; 1244 } 1245 1246 INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work); 1247 INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work); 1248 1249 spin_lock_init(&qp->ntb_rx_q_lock); 1250 spin_lock_init(&qp->ntb_tx_free_q_lock); 1251 1252 INIT_LIST_HEAD(&qp->rx_post_q); 1253 INIT_LIST_HEAD(&qp->rx_pend_q); 1254 INIT_LIST_HEAD(&qp->rx_free_q); 1255 INIT_LIST_HEAD(&qp->tx_free_q); 1256 1257 tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db, 1258 (unsigned long)qp); 1259 1260 return 0; 1261 } 1262 1263 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev) 1264 { 1265 struct ntb_transport_ctx *nt; 1266 struct ntb_transport_mw *mw; 1267 unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads; 1268 u64 qp_bitmap; 1269 int node; 1270 int rc, i; 1271 1272 mw_count = ntb_peer_mw_count(ndev); 1273 1274 if (!ndev->ops->mw_set_trans) { 1275 dev_err(&ndev->dev, "Inbound MW based NTB API is required\n"); 1276 return -EINVAL; 1277 } 1278 1279 if (ntb_db_is_unsafe(ndev)) 1280 dev_dbg(&ndev->dev, 1281 "doorbell is unsafe, proceed anyway...\n"); 1282 if (ntb_spad_is_unsafe(ndev)) 1283 dev_dbg(&ndev->dev, 1284 "scratchpad is unsafe, proceed anyway...\n"); 1285 1286 if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT) 1287 dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n"); 1288 1289 node = dev_to_node(&ndev->dev); 1290 1291 nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node); 1292 if (!nt) 1293 return -ENOMEM; 1294 1295 nt->ndev = ndev; 1296 1297 /* 1298 * If we are using MSI, and have at least one extra memory window, 1299 * we will reserve the last MW for the MSI window. 1300 */ 1301 if (use_msi && mw_count > 1) { 1302 rc = ntb_msi_init(ndev, ntb_transport_msi_desc_changed); 1303 if (!rc) { 1304 mw_count -= 1; 1305 nt->use_msi = true; 1306 } 1307 } 1308 1309 spad_count = ntb_spad_count(ndev); 1310 1311 /* Limit the MW's based on the availability of scratchpads */ 1312 1313 if (spad_count < NTB_TRANSPORT_MIN_SPADS) { 1314 nt->mw_count = 0; 1315 rc = -EINVAL; 1316 goto err; 1317 } 1318 1319 max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2; 1320 nt->mw_count = min(mw_count, max_mw_count_for_spads); 1321 1322 nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH; 1323 1324 nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec), 1325 GFP_KERNEL, node); 1326 if (!nt->mw_vec) { 1327 rc = -ENOMEM; 1328 goto err; 1329 } 1330 1331 for (i = 0; i < mw_count; i++) { 1332 mw = &nt->mw_vec[i]; 1333 1334 rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr, 1335 &mw->phys_size); 1336 if (rc) 1337 goto err1; 1338 1339 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size); 1340 if (!mw->vbase) { 1341 rc = -ENOMEM; 1342 goto err1; 1343 } 1344 1345 mw->buff_size = 0; 1346 mw->xlat_size = 0; 1347 mw->virt_addr = NULL; 1348 mw->dma_addr = 0; 1349 } 1350 1351 qp_bitmap = ntb_db_valid_mask(ndev); 1352 1353 qp_count = ilog2(qp_bitmap); 1354 if (nt->use_msi) { 1355 qp_count -= 1; 1356 nt->msi_db_mask = 1 << qp_count; 1357 ntb_db_clear_mask(ndev, nt->msi_db_mask); 1358 } 1359 1360 if (max_num_clients && max_num_clients < qp_count) 1361 qp_count = max_num_clients; 1362 else if (nt->mw_count < qp_count) 1363 qp_count = nt->mw_count; 1364 1365 qp_bitmap &= BIT_ULL(qp_count) - 1; 1366 1367 nt->qp_count = qp_count; 1368 nt->qp_bitmap = qp_bitmap; 1369 nt->qp_bitmap_free = qp_bitmap; 1370 1371 nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec), 1372 GFP_KERNEL, node); 1373 if (!nt->qp_vec) { 1374 rc = -ENOMEM; 1375 goto err1; 1376 } 1377 1378 if (nt_debugfs_dir) { 1379 nt->debugfs_node_dir = 1380 debugfs_create_dir(pci_name(ndev->pdev), 1381 nt_debugfs_dir); 1382 } 1383 1384 for (i = 0; i < qp_count; i++) { 1385 rc = ntb_transport_init_queue(nt, i); 1386 if (rc) 1387 goto err2; 1388 } 1389 1390 INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work); 1391 INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work); 1392 1393 rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops); 1394 if (rc) 1395 goto err2; 1396 1397 INIT_LIST_HEAD(&nt->client_devs); 1398 rc = ntb_bus_init(nt); 1399 if (rc) 1400 goto err3; 1401 1402 nt->link_is_up = false; 1403 ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); 1404 ntb_link_event(ndev); 1405 1406 return 0; 1407 1408 err3: 1409 ntb_clear_ctx(ndev); 1410 err2: 1411 kfree(nt->qp_vec); 1412 err1: 1413 while (i--) { 1414 mw = &nt->mw_vec[i]; 1415 iounmap(mw->vbase); 1416 } 1417 kfree(nt->mw_vec); 1418 err: 1419 kfree(nt); 1420 return rc; 1421 } 1422 1423 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev) 1424 { 1425 struct ntb_transport_ctx *nt = ndev->ctx; 1426 struct ntb_transport_qp *qp; 1427 u64 qp_bitmap_alloc; 1428 int i; 1429 1430 ntb_transport_link_cleanup(nt); 1431 cancel_work_sync(&nt->link_cleanup); 1432 cancel_delayed_work_sync(&nt->link_work); 1433 1434 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free; 1435 1436 /* verify that all the qp's are freed */ 1437 for (i = 0; i < nt->qp_count; i++) { 1438 qp = &nt->qp_vec[i]; 1439 if (qp_bitmap_alloc & BIT_ULL(i)) 1440 ntb_transport_free_queue(qp); 1441 debugfs_remove_recursive(qp->debugfs_dir); 1442 } 1443 1444 ntb_link_disable(ndev); 1445 ntb_clear_ctx(ndev); 1446 1447 ntb_bus_remove(nt); 1448 1449 for (i = nt->mw_count; i--; ) { 1450 ntb_free_mw(nt, i); 1451 iounmap(nt->mw_vec[i].vbase); 1452 } 1453 1454 kfree(nt->qp_vec); 1455 kfree(nt->mw_vec); 1456 kfree(nt); 1457 } 1458 1459 static void ntb_complete_rxc(struct ntb_transport_qp *qp) 1460 { 1461 struct ntb_queue_entry *entry; 1462 void *cb_data; 1463 unsigned int len; 1464 unsigned long irqflags; 1465 1466 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags); 1467 1468 while (!list_empty(&qp->rx_post_q)) { 1469 entry = list_first_entry(&qp->rx_post_q, 1470 struct ntb_queue_entry, entry); 1471 if (!(entry->flags & DESC_DONE_FLAG)) 1472 break; 1473 1474 entry->rx_hdr->flags = 0; 1475 iowrite32(entry->rx_index, &qp->rx_info->entry); 1476 1477 cb_data = entry->cb_data; 1478 len = entry->len; 1479 1480 list_move_tail(&entry->entry, &qp->rx_free_q); 1481 1482 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags); 1483 1484 if (qp->rx_handler && qp->client_ready) 1485 qp->rx_handler(qp, qp->cb_data, cb_data, len); 1486 1487 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags); 1488 } 1489 1490 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags); 1491 } 1492 1493 static void ntb_rx_copy_callback(void *data, 1494 const struct dmaengine_result *res) 1495 { 1496 struct ntb_queue_entry *entry = data; 1497 1498 /* we need to check DMA results if we are using DMA */ 1499 if (res) { 1500 enum dmaengine_tx_result dma_err = res->result; 1501 1502 switch (dma_err) { 1503 case DMA_TRANS_READ_FAILED: 1504 case DMA_TRANS_WRITE_FAILED: 1505 entry->errors++; 1506 fallthrough; 1507 case DMA_TRANS_ABORTED: 1508 { 1509 struct ntb_transport_qp *qp = entry->qp; 1510 void *offset = qp->rx_buff + qp->rx_max_frame * 1511 qp->rx_index; 1512 1513 ntb_memcpy_rx(entry, offset); 1514 qp->rx_memcpy++; 1515 return; 1516 } 1517 1518 case DMA_TRANS_NOERROR: 1519 default: 1520 break; 1521 } 1522 } 1523 1524 entry->flags |= DESC_DONE_FLAG; 1525 1526 ntb_complete_rxc(entry->qp); 1527 } 1528 1529 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset) 1530 { 1531 void *buf = entry->buf; 1532 size_t len = entry->len; 1533 1534 memcpy(buf, offset, len); 1535 1536 /* Ensure that the data is fully copied out before clearing the flag */ 1537 wmb(); 1538 1539 ntb_rx_copy_callback(entry, NULL); 1540 } 1541 1542 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset) 1543 { 1544 struct dma_async_tx_descriptor *txd; 1545 struct ntb_transport_qp *qp = entry->qp; 1546 struct dma_chan *chan = qp->rx_dma_chan; 1547 struct dma_device *device; 1548 size_t pay_off, buff_off, len; 1549 struct dmaengine_unmap_data *unmap; 1550 dma_cookie_t cookie; 1551 void *buf = entry->buf; 1552 1553 len = entry->len; 1554 device = chan->device; 1555 pay_off = (size_t)offset & ~PAGE_MASK; 1556 buff_off = (size_t)buf & ~PAGE_MASK; 1557 1558 if (!is_dma_copy_aligned(device, pay_off, buff_off, len)) 1559 goto err; 1560 1561 unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT); 1562 if (!unmap) 1563 goto err; 1564 1565 unmap->len = len; 1566 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset), 1567 pay_off, len, DMA_TO_DEVICE); 1568 if (dma_mapping_error(device->dev, unmap->addr[0])) 1569 goto err_get_unmap; 1570 1571 unmap->to_cnt = 1; 1572 1573 unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf), 1574 buff_off, len, DMA_FROM_DEVICE); 1575 if (dma_mapping_error(device->dev, unmap->addr[1])) 1576 goto err_get_unmap; 1577 1578 unmap->from_cnt = 1; 1579 1580 txd = device->device_prep_dma_memcpy(chan, unmap->addr[1], 1581 unmap->addr[0], len, 1582 DMA_PREP_INTERRUPT); 1583 if (!txd) 1584 goto err_get_unmap; 1585 1586 txd->callback_result = ntb_rx_copy_callback; 1587 txd->callback_param = entry; 1588 dma_set_unmap(txd, unmap); 1589 1590 cookie = dmaengine_submit(txd); 1591 if (dma_submit_error(cookie)) 1592 goto err_set_unmap; 1593 1594 dmaengine_unmap_put(unmap); 1595 1596 qp->last_cookie = cookie; 1597 1598 qp->rx_async++; 1599 1600 return 0; 1601 1602 err_set_unmap: 1603 dmaengine_unmap_put(unmap); 1604 err_get_unmap: 1605 dmaengine_unmap_put(unmap); 1606 err: 1607 return -ENXIO; 1608 } 1609 1610 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset) 1611 { 1612 struct ntb_transport_qp *qp = entry->qp; 1613 struct dma_chan *chan = qp->rx_dma_chan; 1614 int res; 1615 1616 if (!chan) 1617 goto err; 1618 1619 if (entry->len < copy_bytes) 1620 goto err; 1621 1622 res = ntb_async_rx_submit(entry, offset); 1623 if (res < 0) 1624 goto err; 1625 1626 if (!entry->retries) 1627 qp->rx_async++; 1628 1629 return; 1630 1631 err: 1632 ntb_memcpy_rx(entry, offset); 1633 qp->rx_memcpy++; 1634 } 1635 1636 static int ntb_process_rxc(struct ntb_transport_qp *qp) 1637 { 1638 struct ntb_payload_header *hdr; 1639 struct ntb_queue_entry *entry; 1640 void *offset; 1641 1642 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index; 1643 hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header); 1644 1645 dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n", 1646 qp->qp_num, hdr->ver, hdr->len, hdr->flags); 1647 1648 if (!(hdr->flags & DESC_DONE_FLAG)) { 1649 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n"); 1650 qp->rx_ring_empty++; 1651 return -EAGAIN; 1652 } 1653 1654 if (hdr->flags & LINK_DOWN_FLAG) { 1655 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n"); 1656 ntb_qp_link_down(qp); 1657 hdr->flags = 0; 1658 return -EAGAIN; 1659 } 1660 1661 if (hdr->ver != (u32)qp->rx_pkts) { 1662 dev_dbg(&qp->ndev->pdev->dev, 1663 "version mismatch, expected %llu - got %u\n", 1664 qp->rx_pkts, hdr->ver); 1665 qp->rx_err_ver++; 1666 return -EIO; 1667 } 1668 1669 entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q); 1670 if (!entry) { 1671 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n"); 1672 qp->rx_err_no_buf++; 1673 return -EAGAIN; 1674 } 1675 1676 entry->rx_hdr = hdr; 1677 entry->rx_index = qp->rx_index; 1678 1679 if (hdr->len > entry->len) { 1680 dev_dbg(&qp->ndev->pdev->dev, 1681 "receive buffer overflow! Wanted %d got %d\n", 1682 hdr->len, entry->len); 1683 qp->rx_err_oflow++; 1684 1685 entry->len = -EIO; 1686 entry->flags |= DESC_DONE_FLAG; 1687 1688 ntb_complete_rxc(qp); 1689 } else { 1690 dev_dbg(&qp->ndev->pdev->dev, 1691 "RX OK index %u ver %u size %d into buf size %d\n", 1692 qp->rx_index, hdr->ver, hdr->len, entry->len); 1693 1694 qp->rx_bytes += hdr->len; 1695 qp->rx_pkts++; 1696 1697 entry->len = hdr->len; 1698 1699 ntb_async_rx(entry, offset); 1700 } 1701 1702 qp->rx_index++; 1703 qp->rx_index %= qp->rx_max_entry; 1704 1705 return 0; 1706 } 1707 1708 static void ntb_transport_rxc_db(unsigned long data) 1709 { 1710 struct ntb_transport_qp *qp = (void *)data; 1711 int rc, i; 1712 1713 dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n", 1714 __func__, qp->qp_num); 1715 1716 /* Limit the number of packets processed in a single interrupt to 1717 * provide fairness to others 1718 */ 1719 for (i = 0; i < qp->rx_max_entry; i++) { 1720 rc = ntb_process_rxc(qp); 1721 if (rc) 1722 break; 1723 } 1724 1725 if (i && qp->rx_dma_chan) 1726 dma_async_issue_pending(qp->rx_dma_chan); 1727 1728 if (i == qp->rx_max_entry) { 1729 /* there is more work to do */ 1730 if (qp->active) 1731 tasklet_schedule(&qp->rxc_db_work); 1732 } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) { 1733 /* the doorbell bit is set: clear it */ 1734 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num)); 1735 /* ntb_db_read ensures ntb_db_clear write is committed */ 1736 ntb_db_read(qp->ndev); 1737 1738 /* an interrupt may have arrived between finishing 1739 * ntb_process_rxc and clearing the doorbell bit: 1740 * there might be some more work to do. 1741 */ 1742 if (qp->active) 1743 tasklet_schedule(&qp->rxc_db_work); 1744 } 1745 } 1746 1747 static void ntb_tx_copy_callback(void *data, 1748 const struct dmaengine_result *res) 1749 { 1750 struct ntb_queue_entry *entry = data; 1751 struct ntb_transport_qp *qp = entry->qp; 1752 struct ntb_payload_header __iomem *hdr = entry->tx_hdr; 1753 1754 /* we need to check DMA results if we are using DMA */ 1755 if (res) { 1756 enum dmaengine_tx_result dma_err = res->result; 1757 1758 switch (dma_err) { 1759 case DMA_TRANS_READ_FAILED: 1760 case DMA_TRANS_WRITE_FAILED: 1761 entry->errors++; 1762 fallthrough; 1763 case DMA_TRANS_ABORTED: 1764 { 1765 void __iomem *offset = 1766 qp->tx_mw + qp->tx_max_frame * 1767 entry->tx_index; 1768 1769 /* resubmit via CPU */ 1770 ntb_memcpy_tx(entry, offset); 1771 qp->tx_memcpy++; 1772 return; 1773 } 1774 1775 case DMA_TRANS_NOERROR: 1776 default: 1777 break; 1778 } 1779 } 1780 1781 iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags); 1782 1783 if (qp->use_msi) 1784 ntb_msi_peer_trigger(qp->ndev, PIDX, &qp->peer_msi_desc); 1785 else 1786 ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num)); 1787 1788 /* The entry length can only be zero if the packet is intended to be a 1789 * "link down" or similar. Since no payload is being sent in these 1790 * cases, there is nothing to add to the completion queue. 1791 */ 1792 if (entry->len > 0) { 1793 qp->tx_bytes += entry->len; 1794 1795 if (qp->tx_handler) 1796 qp->tx_handler(qp, qp->cb_data, entry->cb_data, 1797 entry->len); 1798 } 1799 1800 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q); 1801 } 1802 1803 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset) 1804 { 1805 #ifdef ARCH_HAS_NOCACHE_UACCESS 1806 /* 1807 * Using non-temporal mov to improve performance on non-cached 1808 * writes, even though we aren't actually copying from user space. 1809 */ 1810 __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len); 1811 #else 1812 memcpy_toio(offset, entry->buf, entry->len); 1813 #endif 1814 1815 /* Ensure that the data is fully copied out before setting the flags */ 1816 wmb(); 1817 1818 ntb_tx_copy_callback(entry, NULL); 1819 } 1820 1821 static int ntb_async_tx_submit(struct ntb_transport_qp *qp, 1822 struct ntb_queue_entry *entry) 1823 { 1824 struct dma_async_tx_descriptor *txd; 1825 struct dma_chan *chan = qp->tx_dma_chan; 1826 struct dma_device *device; 1827 size_t len = entry->len; 1828 void *buf = entry->buf; 1829 size_t dest_off, buff_off; 1830 struct dmaengine_unmap_data *unmap; 1831 dma_addr_t dest; 1832 dma_cookie_t cookie; 1833 1834 device = chan->device; 1835 dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index; 1836 buff_off = (size_t)buf & ~PAGE_MASK; 1837 dest_off = (size_t)dest & ~PAGE_MASK; 1838 1839 if (!is_dma_copy_aligned(device, buff_off, dest_off, len)) 1840 goto err; 1841 1842 unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT); 1843 if (!unmap) 1844 goto err; 1845 1846 unmap->len = len; 1847 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf), 1848 buff_off, len, DMA_TO_DEVICE); 1849 if (dma_mapping_error(device->dev, unmap->addr[0])) 1850 goto err_get_unmap; 1851 1852 unmap->to_cnt = 1; 1853 1854 txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len, 1855 DMA_PREP_INTERRUPT); 1856 if (!txd) 1857 goto err_get_unmap; 1858 1859 txd->callback_result = ntb_tx_copy_callback; 1860 txd->callback_param = entry; 1861 dma_set_unmap(txd, unmap); 1862 1863 cookie = dmaengine_submit(txd); 1864 if (dma_submit_error(cookie)) 1865 goto err_set_unmap; 1866 1867 dmaengine_unmap_put(unmap); 1868 1869 dma_async_issue_pending(chan); 1870 1871 return 0; 1872 err_set_unmap: 1873 dmaengine_unmap_put(unmap); 1874 err_get_unmap: 1875 dmaengine_unmap_put(unmap); 1876 err: 1877 return -ENXIO; 1878 } 1879 1880 static void ntb_async_tx(struct ntb_transport_qp *qp, 1881 struct ntb_queue_entry *entry) 1882 { 1883 struct ntb_payload_header __iomem *hdr; 1884 struct dma_chan *chan = qp->tx_dma_chan; 1885 void __iomem *offset; 1886 int res; 1887 1888 entry->tx_index = qp->tx_index; 1889 offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index; 1890 hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header); 1891 entry->tx_hdr = hdr; 1892 1893 iowrite32(entry->len, &hdr->len); 1894 iowrite32((u32)qp->tx_pkts, &hdr->ver); 1895 1896 if (!chan) 1897 goto err; 1898 1899 if (entry->len < copy_bytes) 1900 goto err; 1901 1902 res = ntb_async_tx_submit(qp, entry); 1903 if (res < 0) 1904 goto err; 1905 1906 if (!entry->retries) 1907 qp->tx_async++; 1908 1909 return; 1910 1911 err: 1912 ntb_memcpy_tx(entry, offset); 1913 qp->tx_memcpy++; 1914 } 1915 1916 static int ntb_process_tx(struct ntb_transport_qp *qp, 1917 struct ntb_queue_entry *entry) 1918 { 1919 if (!ntb_transport_tx_free_entry(qp)) { 1920 qp->tx_ring_full++; 1921 return -EAGAIN; 1922 } 1923 1924 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) { 1925 if (qp->tx_handler) 1926 qp->tx_handler(qp, qp->cb_data, NULL, -EIO); 1927 1928 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, 1929 &qp->tx_free_q); 1930 return 0; 1931 } 1932 1933 ntb_async_tx(qp, entry); 1934 1935 qp->tx_index++; 1936 qp->tx_index %= qp->tx_max_entry; 1937 1938 qp->tx_pkts++; 1939 1940 return 0; 1941 } 1942 1943 static void ntb_send_link_down(struct ntb_transport_qp *qp) 1944 { 1945 struct pci_dev *pdev = qp->ndev->pdev; 1946 struct ntb_queue_entry *entry; 1947 int i, rc; 1948 1949 if (!qp->link_is_up) 1950 return; 1951 1952 dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num); 1953 1954 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) { 1955 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); 1956 if (entry) 1957 break; 1958 msleep(100); 1959 } 1960 1961 if (!entry) 1962 return; 1963 1964 entry->cb_data = NULL; 1965 entry->buf = NULL; 1966 entry->len = 0; 1967 entry->flags = LINK_DOWN_FLAG; 1968 1969 rc = ntb_process_tx(qp, entry); 1970 if (rc) 1971 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n", 1972 qp->qp_num); 1973 1974 ntb_qp_link_down_reset(qp); 1975 } 1976 1977 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node) 1978 { 1979 return dev_to_node(&chan->dev->device) == (int)(unsigned long)node; 1980 } 1981 1982 /** 1983 * ntb_transport_create_queue - Create a new NTB transport layer queue 1984 * @data: pointer for callback data 1985 * @client_dev: &struct device pointer 1986 * @handlers: pointer to various ntb queue (callback) handlers 1987 * 1988 * Create a new NTB transport layer queue and provide the queue with a callback 1989 * routine for both transmit and receive. The receive callback routine will be 1990 * used to pass up data when the transport has received it on the queue. The 1991 * transmit callback routine will be called when the transport has completed the 1992 * transmission of the data on the queue and the data is ready to be freed. 1993 * 1994 * RETURNS: pointer to newly created ntb_queue, NULL on error. 1995 */ 1996 struct ntb_transport_qp * 1997 ntb_transport_create_queue(void *data, struct device *client_dev, 1998 const struct ntb_queue_handlers *handlers) 1999 { 2000 struct ntb_dev *ndev; 2001 struct pci_dev *pdev; 2002 struct ntb_transport_ctx *nt; 2003 struct ntb_queue_entry *entry; 2004 struct ntb_transport_qp *qp; 2005 u64 qp_bit; 2006 unsigned int free_queue; 2007 dma_cap_mask_t dma_mask; 2008 int node; 2009 int i; 2010 2011 ndev = dev_ntb(client_dev->parent); 2012 pdev = ndev->pdev; 2013 nt = ndev->ctx; 2014 2015 node = dev_to_node(&ndev->dev); 2016 2017 free_queue = ffs(nt->qp_bitmap_free); 2018 if (!free_queue) 2019 goto err; 2020 2021 /* decrement free_queue to make it zero based */ 2022 free_queue--; 2023 2024 qp = &nt->qp_vec[free_queue]; 2025 qp_bit = BIT_ULL(qp->qp_num); 2026 2027 nt->qp_bitmap_free &= ~qp_bit; 2028 2029 qp->cb_data = data; 2030 qp->rx_handler = handlers->rx_handler; 2031 qp->tx_handler = handlers->tx_handler; 2032 qp->event_handler = handlers->event_handler; 2033 2034 dma_cap_zero(dma_mask); 2035 dma_cap_set(DMA_MEMCPY, dma_mask); 2036 2037 if (use_dma) { 2038 qp->tx_dma_chan = 2039 dma_request_channel(dma_mask, ntb_dma_filter_fn, 2040 (void *)(unsigned long)node); 2041 if (!qp->tx_dma_chan) 2042 dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n"); 2043 2044 qp->rx_dma_chan = 2045 dma_request_channel(dma_mask, ntb_dma_filter_fn, 2046 (void *)(unsigned long)node); 2047 if (!qp->rx_dma_chan) 2048 dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n"); 2049 } else { 2050 qp->tx_dma_chan = NULL; 2051 qp->rx_dma_chan = NULL; 2052 } 2053 2054 qp->tx_mw_dma_addr = 0; 2055 if (qp->tx_dma_chan) { 2056 qp->tx_mw_dma_addr = 2057 dma_map_resource(qp->tx_dma_chan->device->dev, 2058 qp->tx_mw_phys, qp->tx_mw_size, 2059 DMA_FROM_DEVICE, 0); 2060 if (dma_mapping_error(qp->tx_dma_chan->device->dev, 2061 qp->tx_mw_dma_addr)) { 2062 qp->tx_mw_dma_addr = 0; 2063 goto err1; 2064 } 2065 } 2066 2067 dev_dbg(&pdev->dev, "Using %s memcpy for TX\n", 2068 qp->tx_dma_chan ? "DMA" : "CPU"); 2069 2070 dev_dbg(&pdev->dev, "Using %s memcpy for RX\n", 2071 qp->rx_dma_chan ? "DMA" : "CPU"); 2072 2073 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { 2074 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node); 2075 if (!entry) 2076 goto err1; 2077 2078 entry->qp = qp; 2079 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, 2080 &qp->rx_free_q); 2081 } 2082 qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES; 2083 2084 for (i = 0; i < qp->tx_max_entry; i++) { 2085 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node); 2086 if (!entry) 2087 goto err2; 2088 2089 entry->qp = qp; 2090 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, 2091 &qp->tx_free_q); 2092 } 2093 2094 ntb_db_clear(qp->ndev, qp_bit); 2095 ntb_db_clear_mask(qp->ndev, qp_bit); 2096 2097 dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num); 2098 2099 return qp; 2100 2101 err2: 2102 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q))) 2103 kfree(entry); 2104 err1: 2105 qp->rx_alloc_entry = 0; 2106 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q))) 2107 kfree(entry); 2108 if (qp->tx_mw_dma_addr) 2109 dma_unmap_resource(qp->tx_dma_chan->device->dev, 2110 qp->tx_mw_dma_addr, qp->tx_mw_size, 2111 DMA_FROM_DEVICE, 0); 2112 if (qp->tx_dma_chan) 2113 dma_release_channel(qp->tx_dma_chan); 2114 if (qp->rx_dma_chan) 2115 dma_release_channel(qp->rx_dma_chan); 2116 nt->qp_bitmap_free |= qp_bit; 2117 err: 2118 return NULL; 2119 } 2120 EXPORT_SYMBOL_GPL(ntb_transport_create_queue); 2121 2122 /** 2123 * ntb_transport_free_queue - Frees NTB transport queue 2124 * @qp: NTB queue to be freed 2125 * 2126 * Frees NTB transport queue 2127 */ 2128 void ntb_transport_free_queue(struct ntb_transport_qp *qp) 2129 { 2130 struct pci_dev *pdev; 2131 struct ntb_queue_entry *entry; 2132 u64 qp_bit; 2133 2134 if (!qp) 2135 return; 2136 2137 pdev = qp->ndev->pdev; 2138 2139 qp->active = false; 2140 2141 if (qp->tx_dma_chan) { 2142 struct dma_chan *chan = qp->tx_dma_chan; 2143 /* Putting the dma_chan to NULL will force any new traffic to be 2144 * processed by the CPU instead of the DAM engine 2145 */ 2146 qp->tx_dma_chan = NULL; 2147 2148 /* Try to be nice and wait for any queued DMA engine 2149 * transactions to process before smashing it with a rock 2150 */ 2151 dma_sync_wait(chan, qp->last_cookie); 2152 dmaengine_terminate_all(chan); 2153 2154 dma_unmap_resource(chan->device->dev, 2155 qp->tx_mw_dma_addr, qp->tx_mw_size, 2156 DMA_FROM_DEVICE, 0); 2157 2158 dma_release_channel(chan); 2159 } 2160 2161 if (qp->rx_dma_chan) { 2162 struct dma_chan *chan = qp->rx_dma_chan; 2163 /* Putting the dma_chan to NULL will force any new traffic to be 2164 * processed by the CPU instead of the DAM engine 2165 */ 2166 qp->rx_dma_chan = NULL; 2167 2168 /* Try to be nice and wait for any queued DMA engine 2169 * transactions to process before smashing it with a rock 2170 */ 2171 dma_sync_wait(chan, qp->last_cookie); 2172 dmaengine_terminate_all(chan); 2173 dma_release_channel(chan); 2174 } 2175 2176 qp_bit = BIT_ULL(qp->qp_num); 2177 2178 ntb_db_set_mask(qp->ndev, qp_bit); 2179 tasklet_kill(&qp->rxc_db_work); 2180 2181 cancel_delayed_work_sync(&qp->link_work); 2182 2183 qp->cb_data = NULL; 2184 qp->rx_handler = NULL; 2185 qp->tx_handler = NULL; 2186 qp->event_handler = NULL; 2187 2188 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q))) 2189 kfree(entry); 2190 2191 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) { 2192 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n"); 2193 kfree(entry); 2194 } 2195 2196 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) { 2197 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n"); 2198 kfree(entry); 2199 } 2200 2201 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q))) 2202 kfree(entry); 2203 2204 qp->transport->qp_bitmap_free |= qp_bit; 2205 2206 dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num); 2207 } 2208 EXPORT_SYMBOL_GPL(ntb_transport_free_queue); 2209 2210 /** 2211 * ntb_transport_rx_remove - Dequeues enqueued rx packet 2212 * @qp: NTB queue to be freed 2213 * @len: pointer to variable to write enqueued buffers length 2214 * 2215 * Dequeues unused buffers from receive queue. Should only be used during 2216 * shutdown of qp. 2217 * 2218 * RETURNS: NULL error value on error, or void* for success. 2219 */ 2220 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len) 2221 { 2222 struct ntb_queue_entry *entry; 2223 void *buf; 2224 2225 if (!qp || qp->client_ready) 2226 return NULL; 2227 2228 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q); 2229 if (!entry) 2230 return NULL; 2231 2232 buf = entry->cb_data; 2233 *len = entry->len; 2234 2235 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q); 2236 2237 return buf; 2238 } 2239 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove); 2240 2241 /** 2242 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry 2243 * @qp: NTB transport layer queue the entry is to be enqueued on 2244 * @cb: per buffer pointer for callback function to use 2245 * @data: pointer to data buffer that incoming packets will be copied into 2246 * @len: length of the data buffer 2247 * 2248 * Enqueue a new receive buffer onto the transport queue into which a NTB 2249 * payload can be received into. 2250 * 2251 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2252 */ 2253 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data, 2254 unsigned int len) 2255 { 2256 struct ntb_queue_entry *entry; 2257 2258 if (!qp) 2259 return -EINVAL; 2260 2261 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q); 2262 if (!entry) 2263 return -ENOMEM; 2264 2265 entry->cb_data = cb; 2266 entry->buf = data; 2267 entry->len = len; 2268 entry->flags = 0; 2269 entry->retries = 0; 2270 entry->errors = 0; 2271 entry->rx_index = 0; 2272 2273 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q); 2274 2275 if (qp->active) 2276 tasklet_schedule(&qp->rxc_db_work); 2277 2278 return 0; 2279 } 2280 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue); 2281 2282 /** 2283 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry 2284 * @qp: NTB transport layer queue the entry is to be enqueued on 2285 * @cb: per buffer pointer for callback function to use 2286 * @data: pointer to data buffer that will be sent 2287 * @len: length of the data buffer 2288 * 2289 * Enqueue a new transmit buffer onto the transport queue from which a NTB 2290 * payload will be transmitted. This assumes that a lock is being held to 2291 * serialize access to the qp. 2292 * 2293 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2294 */ 2295 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data, 2296 unsigned int len) 2297 { 2298 struct ntb_queue_entry *entry; 2299 int rc; 2300 2301 if (!qp || !len) 2302 return -EINVAL; 2303 2304 /* If the qp link is down already, just ignore. */ 2305 if (!qp->link_is_up) 2306 return 0; 2307 2308 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); 2309 if (!entry) { 2310 qp->tx_err_no_buf++; 2311 return -EBUSY; 2312 } 2313 2314 entry->cb_data = cb; 2315 entry->buf = data; 2316 entry->len = len; 2317 entry->flags = 0; 2318 entry->errors = 0; 2319 entry->retries = 0; 2320 entry->tx_index = 0; 2321 2322 rc = ntb_process_tx(qp, entry); 2323 if (rc) 2324 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, 2325 &qp->tx_free_q); 2326 2327 return rc; 2328 } 2329 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue); 2330 2331 /** 2332 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue 2333 * @qp: NTB transport layer queue to be enabled 2334 * 2335 * Notify NTB transport layer of client readiness to use queue 2336 */ 2337 void ntb_transport_link_up(struct ntb_transport_qp *qp) 2338 { 2339 if (!qp) 2340 return; 2341 2342 qp->client_ready = true; 2343 2344 if (qp->transport->link_is_up) 2345 schedule_delayed_work(&qp->link_work, 0); 2346 } 2347 EXPORT_SYMBOL_GPL(ntb_transport_link_up); 2348 2349 /** 2350 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data 2351 * @qp: NTB transport layer queue to be disabled 2352 * 2353 * Notify NTB transport layer of client's desire to no longer receive data on 2354 * transport queue specified. It is the client's responsibility to ensure all 2355 * entries on queue are purged or otherwise handled appropriately. 2356 */ 2357 void ntb_transport_link_down(struct ntb_transport_qp *qp) 2358 { 2359 int val; 2360 2361 if (!qp) 2362 return; 2363 2364 qp->client_ready = false; 2365 2366 val = ntb_spad_read(qp->ndev, QP_LINKS); 2367 2368 ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num)); 2369 2370 if (qp->link_is_up) 2371 ntb_send_link_down(qp); 2372 else 2373 cancel_delayed_work_sync(&qp->link_work); 2374 } 2375 EXPORT_SYMBOL_GPL(ntb_transport_link_down); 2376 2377 /** 2378 * ntb_transport_link_query - Query transport link state 2379 * @qp: NTB transport layer queue to be queried 2380 * 2381 * Query connectivity to the remote system of the NTB transport queue 2382 * 2383 * RETURNS: true for link up or false for link down 2384 */ 2385 bool ntb_transport_link_query(struct ntb_transport_qp *qp) 2386 { 2387 if (!qp) 2388 return false; 2389 2390 return qp->link_is_up; 2391 } 2392 EXPORT_SYMBOL_GPL(ntb_transport_link_query); 2393 2394 /** 2395 * ntb_transport_qp_num - Query the qp number 2396 * @qp: NTB transport layer queue to be queried 2397 * 2398 * Query qp number of the NTB transport queue 2399 * 2400 * RETURNS: a zero based number specifying the qp number 2401 */ 2402 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp) 2403 { 2404 if (!qp) 2405 return 0; 2406 2407 return qp->qp_num; 2408 } 2409 EXPORT_SYMBOL_GPL(ntb_transport_qp_num); 2410 2411 /** 2412 * ntb_transport_max_size - Query the max payload size of a qp 2413 * @qp: NTB transport layer queue to be queried 2414 * 2415 * Query the maximum payload size permissible on the given qp 2416 * 2417 * RETURNS: the max payload size of a qp 2418 */ 2419 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp) 2420 { 2421 unsigned int max_size; 2422 unsigned int copy_align; 2423 struct dma_chan *rx_chan, *tx_chan; 2424 2425 if (!qp) 2426 return 0; 2427 2428 rx_chan = qp->rx_dma_chan; 2429 tx_chan = qp->tx_dma_chan; 2430 2431 copy_align = max(rx_chan ? rx_chan->device->copy_align : 0, 2432 tx_chan ? tx_chan->device->copy_align : 0); 2433 2434 /* If DMA engine usage is possible, try to find the max size for that */ 2435 max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header); 2436 max_size = round_down(max_size, 1 << copy_align); 2437 2438 return max_size; 2439 } 2440 EXPORT_SYMBOL_GPL(ntb_transport_max_size); 2441 2442 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp) 2443 { 2444 unsigned int head = qp->tx_index; 2445 unsigned int tail = qp->remote_rx_info->entry; 2446 2447 return tail >= head ? tail - head : qp->tx_max_entry + tail - head; 2448 } 2449 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry); 2450 2451 static void ntb_transport_doorbell_callback(void *data, int vector) 2452 { 2453 struct ntb_transport_ctx *nt = data; 2454 struct ntb_transport_qp *qp; 2455 u64 db_bits; 2456 unsigned int qp_num; 2457 2458 if (ntb_db_read(nt->ndev) & nt->msi_db_mask) { 2459 ntb_transport_msi_peer_desc_changed(nt); 2460 ntb_db_clear(nt->ndev, nt->msi_db_mask); 2461 } 2462 2463 db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free & 2464 ntb_db_vector_mask(nt->ndev, vector)); 2465 2466 while (db_bits) { 2467 qp_num = __ffs(db_bits); 2468 qp = &nt->qp_vec[qp_num]; 2469 2470 if (qp->active) 2471 tasklet_schedule(&qp->rxc_db_work); 2472 2473 db_bits &= ~BIT_ULL(qp_num); 2474 } 2475 } 2476 2477 static const struct ntb_ctx_ops ntb_transport_ops = { 2478 .link_event = ntb_transport_event_callback, 2479 .db_event = ntb_transport_doorbell_callback, 2480 }; 2481 2482 static struct ntb_client ntb_transport_client = { 2483 .ops = { 2484 .probe = ntb_transport_probe, 2485 .remove = ntb_transport_free, 2486 }, 2487 }; 2488 2489 static int __init ntb_transport_init(void) 2490 { 2491 int rc; 2492 2493 pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER); 2494 2495 if (debugfs_initialized()) 2496 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); 2497 2498 rc = bus_register(&ntb_transport_bus); 2499 if (rc) 2500 goto err_bus; 2501 2502 rc = ntb_register_client(&ntb_transport_client); 2503 if (rc) 2504 goto err_client; 2505 2506 return 0; 2507 2508 err_client: 2509 bus_unregister(&ntb_transport_bus); 2510 err_bus: 2511 debugfs_remove_recursive(nt_debugfs_dir); 2512 return rc; 2513 } 2514 module_init(ntb_transport_init); 2515 2516 static void __exit ntb_transport_exit(void) 2517 { 2518 ntb_unregister_client(&ntb_transport_client); 2519 bus_unregister(&ntb_transport_bus); 2520 debugfs_remove_recursive(nt_debugfs_dir); 2521 } 2522 module_exit(ntb_transport_exit); 2523