xref: /linux/drivers/nfc/st21nfca/i2c.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * I2C Link Layer for ST21NFCA HCI based Driver
4  * Copyright (C) 2014  STMicroelectronics SAS. All rights reserved.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/crc-ccitt.h>
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/of_irq.h>
14 #include <linux/acpi.h>
15 #include <linux/interrupt.h>
16 #include <linux/delay.h>
17 #include <linux/nfc.h>
18 #include <linux/firmware.h>
19 
20 #include <net/nfc/hci.h>
21 #include <net/nfc/llc.h>
22 #include <net/nfc/nfc.h>
23 
24 #include "st21nfca.h"
25 
26 /*
27  * Every frame starts with ST21NFCA_SOF_EOF and ends with ST21NFCA_SOF_EOF.
28  * Because ST21NFCA_SOF_EOF is a possible data value, there is a mecanism
29  * called byte stuffing has been introduced.
30  *
31  * if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING
32  * - insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte)
33  * - xor byte with ST21NFCA_BYTE_STUFFING_MASK
34  */
35 #define ST21NFCA_SOF_EOF		0x7e
36 #define ST21NFCA_BYTE_STUFFING_MASK	0x20
37 #define ST21NFCA_ESCAPE_BYTE_STUFFING	0x7d
38 
39 /* SOF + 00 */
40 #define ST21NFCA_FRAME_HEADROOM			2
41 
42 /* 2 bytes crc + EOF */
43 #define ST21NFCA_FRAME_TAILROOM 3
44 #define IS_START_OF_FRAME(buf) (buf[0] == ST21NFCA_SOF_EOF && \
45 				buf[1] == 0)
46 
47 #define ST21NFCA_HCI_DRIVER_NAME "st21nfca_hci"
48 #define ST21NFCA_HCI_I2C_DRIVER_NAME "st21nfca_hci_i2c"
49 
50 struct st21nfca_i2c_phy {
51 	struct i2c_client *i2c_dev;
52 	struct nfc_hci_dev *hdev;
53 
54 	struct gpio_desc *gpiod_ena;
55 	struct st21nfca_se_status se_status;
56 
57 	struct sk_buff *pending_skb;
58 	int current_read_len;
59 	/*
60 	 * crc might have fail because i2c macro
61 	 * is disable due to other interface activity
62 	 */
63 	int crc_trials;
64 
65 	int powered;
66 	int run_mode;
67 
68 	/*
69 	 * < 0 if hardware error occured (e.g. i2c err)
70 	 * and prevents normal operation.
71 	 */
72 	int hard_fault;
73 	struct mutex phy_lock;
74 };
75 
76 static const u8 len_seq[] = { 16, 24, 12, 29 };
77 static const u16 wait_tab[] = { 2, 3, 5, 15, 20, 40};
78 
79 #define I2C_DUMP_SKB(info, skb)					\
80 do {								\
81 	pr_debug("%s:\n", info);				\
82 	print_hex_dump(KERN_DEBUG, "i2c: ", DUMP_PREFIX_OFFSET,	\
83 		       16, 1, (skb)->data, (skb)->len, 0);	\
84 } while (0)
85 
86 /*
87  * In order to get the CLF in a known state we generate an internal reboot
88  * using a proprietary command.
89  * Once the reboot is completed, we expect to receive a ST21NFCA_SOF_EOF
90  * fill buffer.
91  */
92 static int st21nfca_hci_platform_init(struct st21nfca_i2c_phy *phy)
93 {
94 	u16 wait_reboot[] = { 50, 300, 1000 };
95 	char reboot_cmd[] = { 0x7E, 0x66, 0x48, 0xF6, 0x7E };
96 	u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE];
97 	int i, r = -1;
98 
99 	for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++) {
100 		r = i2c_master_send(phy->i2c_dev, reboot_cmd,
101 				    sizeof(reboot_cmd));
102 		if (r < 0)
103 			msleep(wait_reboot[i]);
104 	}
105 	if (r < 0)
106 		return r;
107 
108 	/* CLF is spending about 20ms to do an internal reboot */
109 	msleep(20);
110 	r = -1;
111 	for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++) {
112 		r = i2c_master_recv(phy->i2c_dev, tmp,
113 				    ST21NFCA_HCI_LLC_MAX_SIZE);
114 		if (r < 0)
115 			msleep(wait_reboot[i]);
116 	}
117 	if (r < 0)
118 		return r;
119 
120 	for (i = 0; i < ST21NFCA_HCI_LLC_MAX_SIZE &&
121 		tmp[i] == ST21NFCA_SOF_EOF; i++)
122 		;
123 
124 	if (r != ST21NFCA_HCI_LLC_MAX_SIZE)
125 		return -ENODEV;
126 
127 	usleep_range(1000, 1500);
128 	return 0;
129 }
130 
131 static int st21nfca_hci_i2c_enable(void *phy_id)
132 {
133 	struct st21nfca_i2c_phy *phy = phy_id;
134 
135 	gpiod_set_value(phy->gpiod_ena, 1);
136 	phy->powered = 1;
137 	phy->run_mode = ST21NFCA_HCI_MODE;
138 
139 	usleep_range(10000, 15000);
140 
141 	return 0;
142 }
143 
144 static void st21nfca_hci_i2c_disable(void *phy_id)
145 {
146 	struct st21nfca_i2c_phy *phy = phy_id;
147 
148 	gpiod_set_value(phy->gpiod_ena, 0);
149 
150 	phy->powered = 0;
151 }
152 
153 static void st21nfca_hci_add_len_crc(struct sk_buff *skb)
154 {
155 	u16 crc;
156 	u8 tmp;
157 
158 	*(u8 *)skb_push(skb, 1) = 0;
159 
160 	crc = crc_ccitt(0xffff, skb->data, skb->len);
161 	crc = ~crc;
162 
163 	tmp = crc & 0x00ff;
164 	skb_put_u8(skb, tmp);
165 
166 	tmp = (crc >> 8) & 0x00ff;
167 	skb_put_u8(skb, tmp);
168 }
169 
170 static void st21nfca_hci_remove_len_crc(struct sk_buff *skb)
171 {
172 	skb_pull(skb, ST21NFCA_FRAME_HEADROOM);
173 	skb_trim(skb, skb->len - ST21NFCA_FRAME_TAILROOM);
174 }
175 
176 /*
177  * Writing a frame must not return the number of written bytes.
178  * It must return either zero for success, or <0 for error.
179  * In addition, it must not alter the skb
180  */
181 static int st21nfca_hci_i2c_write(void *phy_id, struct sk_buff *skb)
182 {
183 	int r = -1, i, j;
184 	struct st21nfca_i2c_phy *phy = phy_id;
185 	struct i2c_client *client = phy->i2c_dev;
186 	u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE * 2];
187 
188 	I2C_DUMP_SKB("st21nfca_hci_i2c_write", skb);
189 
190 	if (phy->hard_fault != 0)
191 		return phy->hard_fault;
192 
193 	/*
194 	 * Compute CRC before byte stuffing computation on frame
195 	 * Note st21nfca_hci_add_len_crc is doing a byte stuffing
196 	 * on its own value
197 	 */
198 	st21nfca_hci_add_len_crc(skb);
199 
200 	/* add ST21NFCA_SOF_EOF on tail */
201 	skb_put_u8(skb, ST21NFCA_SOF_EOF);
202 	/* add ST21NFCA_SOF_EOF on head */
203 	*(u8 *)skb_push(skb, 1) = ST21NFCA_SOF_EOF;
204 
205 	/*
206 	 * Compute byte stuffing
207 	 * if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING
208 	 * insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte)
209 	 * xor byte with ST21NFCA_BYTE_STUFFING_MASK
210 	 */
211 	tmp[0] = skb->data[0];
212 	for (i = 1, j = 1; i < skb->len - 1; i++, j++) {
213 		if (skb->data[i] == ST21NFCA_SOF_EOF
214 		    || skb->data[i] == ST21NFCA_ESCAPE_BYTE_STUFFING) {
215 			tmp[j] = ST21NFCA_ESCAPE_BYTE_STUFFING;
216 			j++;
217 			tmp[j] = skb->data[i] ^ ST21NFCA_BYTE_STUFFING_MASK;
218 		} else {
219 			tmp[j] = skb->data[i];
220 		}
221 	}
222 	tmp[j] = skb->data[i];
223 	j++;
224 
225 	/*
226 	 * Manage sleep mode
227 	 * Try 3 times to send data with delay between each
228 	 */
229 	mutex_lock(&phy->phy_lock);
230 	for (i = 0; i < ARRAY_SIZE(wait_tab) && r < 0; i++) {
231 		r = i2c_master_send(client, tmp, j);
232 		if (r < 0)
233 			msleep(wait_tab[i]);
234 	}
235 	mutex_unlock(&phy->phy_lock);
236 
237 	if (r >= 0) {
238 		if (r != j)
239 			r = -EREMOTEIO;
240 		else
241 			r = 0;
242 	}
243 
244 	st21nfca_hci_remove_len_crc(skb);
245 
246 	return r;
247 }
248 
249 static int get_frame_size(u8 *buf, int buflen)
250 {
251 	int len = 0;
252 
253 	if (buf[len + 1] == ST21NFCA_SOF_EOF)
254 		return 0;
255 
256 	for (len = 1; len < buflen && buf[len] != ST21NFCA_SOF_EOF; len++)
257 		;
258 
259 	return len;
260 }
261 
262 static int check_crc(u8 *buf, int buflen)
263 {
264 	u16 crc;
265 
266 	crc = crc_ccitt(0xffff, buf, buflen - 2);
267 	crc = ~crc;
268 
269 	if (buf[buflen - 2] != (crc & 0xff) || buf[buflen - 1] != (crc >> 8)) {
270 		pr_err(ST21NFCA_HCI_DRIVER_NAME
271 		       ": CRC error 0x%x != 0x%x 0x%x\n", crc, buf[buflen - 1],
272 		       buf[buflen - 2]);
273 
274 		pr_info(DRIVER_DESC ": %s : BAD CRC\n", __func__);
275 		print_hex_dump(KERN_DEBUG, "crc: ", DUMP_PREFIX_NONE,
276 			       16, 2, buf, buflen, false);
277 		return -EPERM;
278 	}
279 	return 0;
280 }
281 
282 /*
283  * Prepare received data for upper layer.
284  * Received data include byte stuffing, crc and sof/eof
285  * which is not usable by hci part.
286  * returns:
287  * frame size without sof/eof, header and byte stuffing
288  * -EBADMSG : frame was incorrect and discarded
289  */
290 static int st21nfca_hci_i2c_repack(struct sk_buff *skb)
291 {
292 	int i, j, r, size;
293 
294 	if (skb->len < 1 || (skb->len > 1 && skb->data[1] != 0))
295 		return -EBADMSG;
296 
297 	size = get_frame_size(skb->data, skb->len);
298 	if (size > 0) {
299 		skb_trim(skb, size);
300 		/* remove ST21NFCA byte stuffing for upper layer */
301 		for (i = 1, j = 0; i < skb->len; i++) {
302 			if (skb->data[i + j] ==
303 					(u8) ST21NFCA_ESCAPE_BYTE_STUFFING) {
304 				skb->data[i] = skb->data[i + j + 1]
305 						| ST21NFCA_BYTE_STUFFING_MASK;
306 				i++;
307 				j++;
308 			}
309 			skb->data[i] = skb->data[i + j];
310 		}
311 		/* remove byte stuffing useless byte */
312 		skb_trim(skb, i - j);
313 		/* remove ST21NFCA_SOF_EOF from head */
314 		skb_pull(skb, 1);
315 
316 		r = check_crc(skb->data, skb->len);
317 		if (r != 0)
318 			return -EBADMSG;
319 
320 		/* remove headbyte */
321 		skb_pull(skb, 1);
322 		/* remove crc. Byte Stuffing is already removed here */
323 		skb_trim(skb, skb->len - 2);
324 		return skb->len;
325 	}
326 	return 0;
327 }
328 
329 /*
330  * Reads an shdlc frame and returns it in a newly allocated sk_buff. Guarantees
331  * that i2c bus will be flushed and that next read will start on a new frame.
332  * returned skb contains only LLC header and payload.
333  * returns:
334  * frame size : if received frame is complete (find ST21NFCA_SOF_EOF at
335  * end of read)
336  * -EAGAIN : if received frame is incomplete (not find ST21NFCA_SOF_EOF
337  * at end of read)
338  * -EREMOTEIO : i2c read error (fatal)
339  * -EBADMSG : frame was incorrect and discarded
340  * (value returned from st21nfca_hci_i2c_repack)
341  * -EIO : if no ST21NFCA_SOF_EOF is found after reaching
342  * the read length end sequence
343  */
344 static int st21nfca_hci_i2c_read(struct st21nfca_i2c_phy *phy,
345 				 struct sk_buff *skb)
346 {
347 	int r, i;
348 	u8 len;
349 	u8 buf[ST21NFCA_HCI_LLC_MAX_PAYLOAD];
350 	struct i2c_client *client = phy->i2c_dev;
351 
352 	if (phy->current_read_len < ARRAY_SIZE(len_seq)) {
353 		len = len_seq[phy->current_read_len];
354 
355 		/*
356 		 * Add retry mecanism
357 		 * Operation on I2C interface may fail in case of operation on
358 		 * RF or SWP interface
359 		 */
360 		r = 0;
361 		mutex_lock(&phy->phy_lock);
362 		for (i = 0; i < ARRAY_SIZE(wait_tab) && r <= 0; i++) {
363 			r = i2c_master_recv(client, buf, len);
364 			if (r < 0)
365 				msleep(wait_tab[i]);
366 		}
367 		mutex_unlock(&phy->phy_lock);
368 
369 		if (r != len) {
370 			phy->current_read_len = 0;
371 			return -EREMOTEIO;
372 		}
373 
374 		/*
375 		 * The first read sequence does not start with SOF.
376 		 * Data is corrupeted so we drop it.
377 		 */
378 		if (!phy->current_read_len && !IS_START_OF_FRAME(buf)) {
379 			skb_trim(skb, 0);
380 			phy->current_read_len = 0;
381 			return -EIO;
382 		} else if (phy->current_read_len && IS_START_OF_FRAME(buf)) {
383 			/*
384 			 * Previous frame transmission was interrupted and
385 			 * the frame got repeated.
386 			 * Received frame start with ST21NFCA_SOF_EOF + 00.
387 			 */
388 			skb_trim(skb, 0);
389 			phy->current_read_len = 0;
390 		}
391 
392 		skb_put_data(skb, buf, len);
393 
394 		if (skb->data[skb->len - 1] == ST21NFCA_SOF_EOF) {
395 			phy->current_read_len = 0;
396 			return st21nfca_hci_i2c_repack(skb);
397 		}
398 		phy->current_read_len++;
399 		return -EAGAIN;
400 	}
401 	return -EIO;
402 }
403 
404 /*
405  * Reads an shdlc frame from the chip. This is not as straightforward as it
406  * seems. The frame format is data-crc, and corruption can occur anywhere
407  * while transiting on i2c bus, such that we could read an invalid data.
408  * The tricky case is when we read a corrupted data or crc. We must detect
409  * this here in order to determine that data can be transmitted to the hci
410  * core. This is the reason why we check the crc here.
411  * The CLF will repeat a frame until we send a RR on that frame.
412  *
413  * On ST21NFCA, IRQ goes in idle when read starts. As no size information are
414  * available in the incoming data, other IRQ might come. Every IRQ will trigger
415  * a read sequence with different length and will fill the current frame.
416  * The reception is complete once we reach a ST21NFCA_SOF_EOF.
417  */
418 static irqreturn_t st21nfca_hci_irq_thread_fn(int irq, void *phy_id)
419 {
420 	struct st21nfca_i2c_phy *phy = phy_id;
421 
422 	int r;
423 
424 	if (!phy || irq != phy->i2c_dev->irq) {
425 		WARN_ON_ONCE(1);
426 		return IRQ_NONE;
427 	}
428 
429 	if (phy->hard_fault != 0)
430 		return IRQ_HANDLED;
431 
432 	r = st21nfca_hci_i2c_read(phy, phy->pending_skb);
433 	if (r == -EREMOTEIO) {
434 		phy->hard_fault = r;
435 
436 		nfc_hci_recv_frame(phy->hdev, NULL);
437 
438 		return IRQ_HANDLED;
439 	} else if (r == -EAGAIN || r == -EIO) {
440 		return IRQ_HANDLED;
441 	} else if (r == -EBADMSG && phy->crc_trials < ARRAY_SIZE(wait_tab)) {
442 		/*
443 		 * With ST21NFCA, only one interface (I2C, RF or SWP)
444 		 * may be active at a time.
445 		 * Having incorrect crc is usually due to i2c macrocell
446 		 * deactivation in the middle of a transmission.
447 		 * It may generate corrupted data on i2c.
448 		 * We give sometime to get i2c back.
449 		 * The complete frame will be repeated.
450 		 */
451 		msleep(wait_tab[phy->crc_trials]);
452 		phy->crc_trials++;
453 		phy->current_read_len = 0;
454 		kfree_skb(phy->pending_skb);
455 	} else if (r > 0) {
456 		/*
457 		 * We succeeded to read data from the CLF and
458 		 * data is valid.
459 		 * Reset counter.
460 		 */
461 		nfc_hci_recv_frame(phy->hdev, phy->pending_skb);
462 		phy->crc_trials = 0;
463 	} else {
464 		kfree_skb(phy->pending_skb);
465 	}
466 
467 	phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL);
468 	if (phy->pending_skb == NULL) {
469 		phy->hard_fault = -ENOMEM;
470 		nfc_hci_recv_frame(phy->hdev, NULL);
471 	}
472 
473 	return IRQ_HANDLED;
474 }
475 
476 static const struct nfc_phy_ops i2c_phy_ops = {
477 	.write = st21nfca_hci_i2c_write,
478 	.enable = st21nfca_hci_i2c_enable,
479 	.disable = st21nfca_hci_i2c_disable,
480 };
481 
482 static const struct acpi_gpio_params enable_gpios = { 1, 0, false };
483 
484 static const struct acpi_gpio_mapping acpi_st21nfca_gpios[] = {
485 	{ "enable-gpios", &enable_gpios, 1 },
486 	{},
487 };
488 
489 static int st21nfca_hci_i2c_probe(struct i2c_client *client)
490 {
491 	struct device *dev = &client->dev;
492 	struct st21nfca_i2c_phy *phy;
493 	int r;
494 
495 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
496 		nfc_err(&client->dev, "Need I2C_FUNC_I2C\n");
497 		return -ENODEV;
498 	}
499 
500 	phy = devm_kzalloc(&client->dev, sizeof(struct st21nfca_i2c_phy),
501 			   GFP_KERNEL);
502 	if (!phy)
503 		return -ENOMEM;
504 
505 	phy->i2c_dev = client;
506 	phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL);
507 	if (phy->pending_skb == NULL)
508 		return -ENOMEM;
509 
510 	phy->current_read_len = 0;
511 	phy->crc_trials = 0;
512 	mutex_init(&phy->phy_lock);
513 	i2c_set_clientdata(client, phy);
514 
515 	r = devm_acpi_dev_add_driver_gpios(dev, acpi_st21nfca_gpios);
516 	if (r)
517 		dev_dbg(dev, "Unable to add GPIO mapping table\n");
518 
519 	/* Get EN GPIO from resource provider */
520 	phy->gpiod_ena = devm_gpiod_get(dev, "enable", GPIOD_OUT_LOW);
521 	if (IS_ERR(phy->gpiod_ena)) {
522 		nfc_err(dev, "Unable to get ENABLE GPIO\n");
523 		r = PTR_ERR(phy->gpiod_ena);
524 		goto out_free;
525 	}
526 
527 	phy->se_status.is_ese_present =
528 			device_property_read_bool(&client->dev, "ese-present");
529 	phy->se_status.is_uicc_present =
530 			device_property_read_bool(&client->dev, "uicc-present");
531 
532 	r = st21nfca_hci_platform_init(phy);
533 	if (r < 0) {
534 		nfc_err(&client->dev, "Unable to reboot st21nfca\n");
535 		goto out_free;
536 	}
537 
538 	r = devm_request_threaded_irq(&client->dev, client->irq, NULL,
539 				st21nfca_hci_irq_thread_fn,
540 				IRQF_ONESHOT,
541 				ST21NFCA_HCI_DRIVER_NAME, phy);
542 	if (r < 0) {
543 		nfc_err(&client->dev, "Unable to register IRQ handler\n");
544 		goto out_free;
545 	}
546 
547 	r = st21nfca_hci_probe(phy, &i2c_phy_ops, LLC_SHDLC_NAME,
548 			       ST21NFCA_FRAME_HEADROOM,
549 			       ST21NFCA_FRAME_TAILROOM,
550 			       ST21NFCA_HCI_LLC_MAX_PAYLOAD,
551 			       &phy->hdev,
552 			       &phy->se_status);
553 	if (r)
554 		goto out_free;
555 
556 	return 0;
557 
558 out_free:
559 	kfree_skb(phy->pending_skb);
560 	return r;
561 }
562 
563 static void st21nfca_hci_i2c_remove(struct i2c_client *client)
564 {
565 	struct st21nfca_i2c_phy *phy = i2c_get_clientdata(client);
566 
567 	st21nfca_hci_remove(phy->hdev);
568 
569 	if (phy->powered)
570 		st21nfca_hci_i2c_disable(phy);
571 	kfree_skb(phy->pending_skb);
572 }
573 
574 static const struct i2c_device_id st21nfca_hci_i2c_id_table[] = {
575 	{ ST21NFCA_HCI_DRIVER_NAME },
576 	{}
577 };
578 MODULE_DEVICE_TABLE(i2c, st21nfca_hci_i2c_id_table);
579 
580 static const struct acpi_device_id st21nfca_hci_i2c_acpi_match[] __maybe_unused = {
581 	{"SMO2100", 0},
582 	{}
583 };
584 MODULE_DEVICE_TABLE(acpi, st21nfca_hci_i2c_acpi_match);
585 
586 static const struct of_device_id of_st21nfca_i2c_match[] __maybe_unused = {
587 	{ .compatible = "st,st21nfca-i2c", },
588 	{ .compatible = "st,st21nfca_i2c", },
589 	{}
590 };
591 MODULE_DEVICE_TABLE(of, of_st21nfca_i2c_match);
592 
593 static struct i2c_driver st21nfca_hci_i2c_driver = {
594 	.driver = {
595 		.name = ST21NFCA_HCI_I2C_DRIVER_NAME,
596 		.of_match_table = of_match_ptr(of_st21nfca_i2c_match),
597 		.acpi_match_table = ACPI_PTR(st21nfca_hci_i2c_acpi_match),
598 	},
599 	.probe = st21nfca_hci_i2c_probe,
600 	.id_table = st21nfca_hci_i2c_id_table,
601 	.remove = st21nfca_hci_i2c_remove,
602 };
603 module_i2c_driver(st21nfca_hci_i2c_driver);
604 
605 MODULE_LICENSE("GPL");
606 MODULE_DESCRIPTION(DRIVER_DESC);
607