1 /* ZD1211 USB-WLAN driver for Linux 2 * 3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de> 4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org> 5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/firmware.h> 24 #include <linux/device.h> 25 #include <linux/errno.h> 26 #include <linux/slab.h> 27 #include <linux/skbuff.h> 28 #include <linux/usb.h> 29 #include <linux/workqueue.h> 30 #include <linux/module.h> 31 #include <net/mac80211.h> 32 #include <asm/unaligned.h> 33 34 #include "zd_def.h" 35 #include "zd_mac.h" 36 #include "zd_usb.h" 37 38 static const struct usb_device_id usb_ids[] = { 39 /* ZD1211 */ 40 { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 }, 41 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 }, 42 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 }, 43 { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 }, 44 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 }, 45 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 }, 46 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 }, 47 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 }, 48 { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 }, 49 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 }, 50 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 }, 51 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 }, 52 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 }, 53 { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 }, 54 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 }, 55 { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 }, 56 { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 }, 57 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 }, 58 { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 }, 59 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 }, 60 { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 }, 61 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 }, 62 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 }, 63 { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 }, 64 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 }, 65 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 }, 66 /* ZD1211B */ 67 { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B }, 68 { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B }, 69 { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B }, 70 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B }, 71 { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B }, 72 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B }, 73 { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B }, 74 { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B }, 75 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B }, 76 { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B }, 77 { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B }, 78 { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B }, 79 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B }, 80 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B }, 81 { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B }, 82 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B }, 83 { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B }, 84 { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B }, 85 { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B }, 86 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B }, 87 { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B }, 88 { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B }, 89 { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B }, 90 { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B }, 91 { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B }, 92 { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B }, 93 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B }, 94 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B }, 95 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B }, 96 { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B }, 97 { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B }, 98 /* "Driverless" devices that need ejecting */ 99 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER }, 100 { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER }, 101 {} 102 }; 103 104 MODULE_LICENSE("GPL"); 105 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip."); 106 MODULE_AUTHOR("Ulrich Kunitz"); 107 MODULE_AUTHOR("Daniel Drake"); 108 MODULE_VERSION("1.0"); 109 MODULE_DEVICE_TABLE(usb, usb_ids); 110 111 #define FW_ZD1211_PREFIX "zd1211/zd1211_" 112 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_" 113 114 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req, 115 unsigned int count); 116 117 /* USB device initialization */ 118 static void int_urb_complete(struct urb *urb); 119 120 static int request_fw_file( 121 const struct firmware **fw, const char *name, struct device *device) 122 { 123 int r; 124 125 dev_dbg_f(device, "fw name %s\n", name); 126 127 r = request_firmware(fw, name, device); 128 if (r) 129 dev_err(device, 130 "Could not load firmware file %s. Error number %d\n", 131 name, r); 132 return r; 133 } 134 135 static inline u16 get_bcdDevice(const struct usb_device *udev) 136 { 137 return le16_to_cpu(udev->descriptor.bcdDevice); 138 } 139 140 enum upload_code_flags { 141 REBOOT = 1, 142 }; 143 144 /* Ensures that MAX_TRANSFER_SIZE is even. */ 145 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1) 146 147 static int upload_code(struct usb_device *udev, 148 const u8 *data, size_t size, u16 code_offset, int flags) 149 { 150 u8 *p; 151 int r; 152 153 /* USB request blocks need "kmalloced" buffers. 154 */ 155 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL); 156 if (!p) { 157 r = -ENOMEM; 158 goto error; 159 } 160 161 size &= ~1; 162 while (size > 0) { 163 size_t transfer_size = size <= MAX_TRANSFER_SIZE ? 164 size : MAX_TRANSFER_SIZE; 165 166 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size); 167 168 memcpy(p, data, transfer_size); 169 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 170 USB_REQ_FIRMWARE_DOWNLOAD, 171 USB_DIR_OUT | USB_TYPE_VENDOR, 172 code_offset, 0, p, transfer_size, 1000 /* ms */); 173 if (r < 0) { 174 dev_err(&udev->dev, 175 "USB control request for firmware upload" 176 " failed. Error number %d\n", r); 177 goto error; 178 } 179 transfer_size = r & ~1; 180 181 size -= transfer_size; 182 data += transfer_size; 183 code_offset += transfer_size/sizeof(u16); 184 } 185 186 if (flags & REBOOT) { 187 u8 ret; 188 189 /* Use "DMA-aware" buffer. */ 190 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), 191 USB_REQ_FIRMWARE_CONFIRM, 192 USB_DIR_IN | USB_TYPE_VENDOR, 193 0, 0, p, sizeof(ret), 5000 /* ms */); 194 if (r != sizeof(ret)) { 195 dev_err(&udev->dev, 196 "control request firmware confirmation failed." 197 " Return value %d\n", r); 198 if (r >= 0) 199 r = -ENODEV; 200 goto error; 201 } 202 ret = p[0]; 203 if (ret & 0x80) { 204 dev_err(&udev->dev, 205 "Internal error while downloading." 206 " Firmware confirm return value %#04x\n", 207 (unsigned int)ret); 208 r = -ENODEV; 209 goto error; 210 } 211 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n", 212 (unsigned int)ret); 213 } 214 215 r = 0; 216 error: 217 kfree(p); 218 return r; 219 } 220 221 static u16 get_word(const void *data, u16 offset) 222 { 223 const __le16 *p = data; 224 return le16_to_cpu(p[offset]); 225 } 226 227 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size, 228 const char* postfix) 229 { 230 scnprintf(buffer, size, "%s%s", 231 usb->is_zd1211b ? 232 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX, 233 postfix); 234 return buffer; 235 } 236 237 static int handle_version_mismatch(struct zd_usb *usb, 238 const struct firmware *ub_fw) 239 { 240 struct usb_device *udev = zd_usb_to_usbdev(usb); 241 const struct firmware *ur_fw = NULL; 242 int offset; 243 int r = 0; 244 char fw_name[128]; 245 246 r = request_fw_file(&ur_fw, 247 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"), 248 &udev->dev); 249 if (r) 250 goto error; 251 252 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT); 253 if (r) 254 goto error; 255 256 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16)); 257 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset, 258 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT); 259 260 /* At this point, the vendor driver downloads the whole firmware 261 * image, hacks around with version IDs, and uploads it again, 262 * completely overwriting the boot code. We do not do this here as 263 * it is not required on any tested devices, and it is suspected to 264 * cause problems. */ 265 error: 266 release_firmware(ur_fw); 267 return r; 268 } 269 270 static int upload_firmware(struct zd_usb *usb) 271 { 272 int r; 273 u16 fw_bcdDevice; 274 u16 bcdDevice; 275 struct usb_device *udev = zd_usb_to_usbdev(usb); 276 const struct firmware *ub_fw = NULL; 277 const struct firmware *uph_fw = NULL; 278 char fw_name[128]; 279 280 bcdDevice = get_bcdDevice(udev); 281 282 r = request_fw_file(&ub_fw, 283 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"), 284 &udev->dev); 285 if (r) 286 goto error; 287 288 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET); 289 290 if (fw_bcdDevice != bcdDevice) { 291 dev_info(&udev->dev, 292 "firmware version %#06x and device bootcode version " 293 "%#06x differ\n", fw_bcdDevice, bcdDevice); 294 if (bcdDevice <= 0x4313) 295 dev_warn(&udev->dev, "device has old bootcode, please " 296 "report success or failure\n"); 297 298 r = handle_version_mismatch(usb, ub_fw); 299 if (r) 300 goto error; 301 } else { 302 dev_dbg_f(&udev->dev, 303 "firmware device id %#06x is equal to the " 304 "actual device id\n", fw_bcdDevice); 305 } 306 307 308 r = request_fw_file(&uph_fw, 309 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"), 310 &udev->dev); 311 if (r) 312 goto error; 313 314 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT); 315 if (r) { 316 dev_err(&udev->dev, 317 "Could not upload firmware code uph. Error number %d\n", 318 r); 319 } 320 321 /* FALL-THROUGH */ 322 error: 323 release_firmware(ub_fw); 324 release_firmware(uph_fw); 325 return r; 326 } 327 328 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur"); 329 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur"); 330 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub"); 331 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub"); 332 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr"); 333 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr"); 334 335 /* Read data from device address space using "firmware interface" which does 336 * not require firmware to be loaded. */ 337 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len) 338 { 339 int r; 340 struct usb_device *udev = zd_usb_to_usbdev(usb); 341 u8 *buf; 342 343 /* Use "DMA-aware" buffer. */ 344 buf = kmalloc(len, GFP_KERNEL); 345 if (!buf) 346 return -ENOMEM; 347 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), 348 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0, 349 buf, len, 5000); 350 if (r < 0) { 351 dev_err(&udev->dev, 352 "read over firmware interface failed: %d\n", r); 353 goto exit; 354 } else if (r != len) { 355 dev_err(&udev->dev, 356 "incomplete read over firmware interface: %d/%d\n", 357 r, len); 358 r = -EIO; 359 goto exit; 360 } 361 r = 0; 362 memcpy(data, buf, len); 363 exit: 364 kfree(buf); 365 return r; 366 } 367 368 #define urb_dev(urb) (&(urb)->dev->dev) 369 370 static inline void handle_regs_int_override(struct urb *urb) 371 { 372 struct zd_usb *usb = urb->context; 373 struct zd_usb_interrupt *intr = &usb->intr; 374 unsigned long flags; 375 376 spin_lock_irqsave(&intr->lock, flags); 377 if (atomic_read(&intr->read_regs_enabled)) { 378 atomic_set(&intr->read_regs_enabled, 0); 379 intr->read_regs_int_overridden = 1; 380 complete(&intr->read_regs.completion); 381 } 382 spin_unlock_irqrestore(&intr->lock, flags); 383 } 384 385 static inline void handle_regs_int(struct urb *urb) 386 { 387 struct zd_usb *usb = urb->context; 388 struct zd_usb_interrupt *intr = &usb->intr; 389 unsigned long flags; 390 int len; 391 u16 int_num; 392 393 ZD_ASSERT(in_interrupt()); 394 spin_lock_irqsave(&intr->lock, flags); 395 396 int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2)); 397 if (int_num == CR_INTERRUPT) { 398 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context)); 399 spin_lock(&mac->lock); 400 memcpy(&mac->intr_buffer, urb->transfer_buffer, 401 USB_MAX_EP_INT_BUFFER); 402 spin_unlock(&mac->lock); 403 schedule_work(&mac->process_intr); 404 } else if (atomic_read(&intr->read_regs_enabled)) { 405 len = urb->actual_length; 406 intr->read_regs.length = urb->actual_length; 407 if (len > sizeof(intr->read_regs.buffer)) 408 len = sizeof(intr->read_regs.buffer); 409 410 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len); 411 412 /* Sometimes USB_INT_ID_REGS is not overridden, but comes after 413 * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this 414 * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of 415 * retry unhandled. Next read-reg command then might catch 416 * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads. 417 */ 418 if (!check_read_regs(usb, intr->read_regs.req, 419 intr->read_regs.req_count)) 420 goto out; 421 422 atomic_set(&intr->read_regs_enabled, 0); 423 intr->read_regs_int_overridden = 0; 424 complete(&intr->read_regs.completion); 425 426 goto out; 427 } 428 429 out: 430 spin_unlock_irqrestore(&intr->lock, flags); 431 432 /* CR_INTERRUPT might override read_reg too. */ 433 if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled)) 434 handle_regs_int_override(urb); 435 } 436 437 static void int_urb_complete(struct urb *urb) 438 { 439 int r; 440 struct usb_int_header *hdr; 441 struct zd_usb *usb; 442 struct zd_usb_interrupt *intr; 443 444 switch (urb->status) { 445 case 0: 446 break; 447 case -ESHUTDOWN: 448 case -EINVAL: 449 case -ENODEV: 450 case -ENOENT: 451 case -ECONNRESET: 452 case -EPIPE: 453 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status); 454 return; 455 default: 456 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status); 457 goto resubmit; 458 } 459 460 if (urb->actual_length < sizeof(hdr)) { 461 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb); 462 goto resubmit; 463 } 464 465 hdr = urb->transfer_buffer; 466 if (hdr->type != USB_INT_TYPE) { 467 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb); 468 goto resubmit; 469 } 470 471 /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override 472 * pending USB_INT_ID_REGS causing read command timeout. 473 */ 474 usb = urb->context; 475 intr = &usb->intr; 476 if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled)) 477 handle_regs_int_override(urb); 478 479 switch (hdr->id) { 480 case USB_INT_ID_REGS: 481 handle_regs_int(urb); 482 break; 483 case USB_INT_ID_RETRY_FAILED: 484 zd_mac_tx_failed(urb); 485 break; 486 default: 487 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb, 488 (unsigned int)hdr->id); 489 goto resubmit; 490 } 491 492 resubmit: 493 r = usb_submit_urb(urb, GFP_ATOMIC); 494 if (r) { 495 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n", 496 urb, r); 497 /* TODO: add worker to reset intr->urb */ 498 } 499 return; 500 } 501 502 static inline int int_urb_interval(struct usb_device *udev) 503 { 504 switch (udev->speed) { 505 case USB_SPEED_HIGH: 506 return 4; 507 case USB_SPEED_LOW: 508 return 10; 509 case USB_SPEED_FULL: 510 default: 511 return 1; 512 } 513 } 514 515 static inline int usb_int_enabled(struct zd_usb *usb) 516 { 517 unsigned long flags; 518 struct zd_usb_interrupt *intr = &usb->intr; 519 struct urb *urb; 520 521 spin_lock_irqsave(&intr->lock, flags); 522 urb = intr->urb; 523 spin_unlock_irqrestore(&intr->lock, flags); 524 return urb != NULL; 525 } 526 527 int zd_usb_enable_int(struct zd_usb *usb) 528 { 529 int r; 530 struct usb_device *udev = zd_usb_to_usbdev(usb); 531 struct zd_usb_interrupt *intr = &usb->intr; 532 struct urb *urb; 533 534 dev_dbg_f(zd_usb_dev(usb), "\n"); 535 536 urb = usb_alloc_urb(0, GFP_KERNEL); 537 if (!urb) { 538 r = -ENOMEM; 539 goto out; 540 } 541 542 ZD_ASSERT(!irqs_disabled()); 543 spin_lock_irq(&intr->lock); 544 if (intr->urb) { 545 spin_unlock_irq(&intr->lock); 546 r = 0; 547 goto error_free_urb; 548 } 549 intr->urb = urb; 550 spin_unlock_irq(&intr->lock); 551 552 r = -ENOMEM; 553 intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER, 554 GFP_KERNEL, &intr->buffer_dma); 555 if (!intr->buffer) { 556 dev_dbg_f(zd_usb_dev(usb), 557 "couldn't allocate transfer_buffer\n"); 558 goto error_set_urb_null; 559 } 560 561 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN), 562 intr->buffer, USB_MAX_EP_INT_BUFFER, 563 int_urb_complete, usb, 564 intr->interval); 565 urb->transfer_dma = intr->buffer_dma; 566 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 567 568 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb); 569 r = usb_submit_urb(urb, GFP_KERNEL); 570 if (r) { 571 dev_dbg_f(zd_usb_dev(usb), 572 "Couldn't submit urb. Error number %d\n", r); 573 goto error; 574 } 575 576 return 0; 577 error: 578 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER, 579 intr->buffer, intr->buffer_dma); 580 error_set_urb_null: 581 spin_lock_irq(&intr->lock); 582 intr->urb = NULL; 583 spin_unlock_irq(&intr->lock); 584 error_free_urb: 585 usb_free_urb(urb); 586 out: 587 return r; 588 } 589 590 void zd_usb_disable_int(struct zd_usb *usb) 591 { 592 unsigned long flags; 593 struct usb_device *udev = zd_usb_to_usbdev(usb); 594 struct zd_usb_interrupt *intr = &usb->intr; 595 struct urb *urb; 596 void *buffer; 597 dma_addr_t buffer_dma; 598 599 spin_lock_irqsave(&intr->lock, flags); 600 urb = intr->urb; 601 if (!urb) { 602 spin_unlock_irqrestore(&intr->lock, flags); 603 return; 604 } 605 intr->urb = NULL; 606 buffer = intr->buffer; 607 buffer_dma = intr->buffer_dma; 608 intr->buffer = NULL; 609 spin_unlock_irqrestore(&intr->lock, flags); 610 611 usb_kill_urb(urb); 612 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb); 613 usb_free_urb(urb); 614 615 if (buffer) 616 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER, 617 buffer, buffer_dma); 618 } 619 620 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer, 621 unsigned int length) 622 { 623 int i; 624 const struct rx_length_info *length_info; 625 626 if (length < sizeof(struct rx_length_info)) { 627 /* It's not a complete packet anyhow. */ 628 dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n", 629 length); 630 return; 631 } 632 length_info = (struct rx_length_info *) 633 (buffer + length - sizeof(struct rx_length_info)); 634 635 /* It might be that three frames are merged into a single URB 636 * transaction. We have to check for the length info tag. 637 * 638 * While testing we discovered that length_info might be unaligned, 639 * because if USB transactions are merged, the last packet will not 640 * be padded. Unaligned access might also happen if the length_info 641 * structure is not present. 642 */ 643 if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG) 644 { 645 unsigned int l, k, n; 646 for (i = 0, l = 0;; i++) { 647 k = get_unaligned_le16(&length_info->length[i]); 648 if (k == 0) 649 return; 650 n = l+k; 651 if (n > length) 652 return; 653 zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k); 654 if (i >= 2) 655 return; 656 l = (n+3) & ~3; 657 } 658 } else { 659 zd_mac_rx(zd_usb_to_hw(usb), buffer, length); 660 } 661 } 662 663 static void rx_urb_complete(struct urb *urb) 664 { 665 int r; 666 struct zd_usb *usb; 667 struct zd_usb_rx *rx; 668 const u8 *buffer; 669 unsigned int length; 670 unsigned long flags; 671 672 switch (urb->status) { 673 case 0: 674 break; 675 case -ESHUTDOWN: 676 case -EINVAL: 677 case -ENODEV: 678 case -ENOENT: 679 case -ECONNRESET: 680 case -EPIPE: 681 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status); 682 return; 683 default: 684 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status); 685 goto resubmit; 686 } 687 688 buffer = urb->transfer_buffer; 689 length = urb->actual_length; 690 usb = urb->context; 691 rx = &usb->rx; 692 693 tasklet_schedule(&rx->reset_timer_tasklet); 694 695 if (length%rx->usb_packet_size > rx->usb_packet_size-4) { 696 /* If there is an old first fragment, we don't care. */ 697 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n"); 698 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment)); 699 spin_lock_irqsave(&rx->lock, flags); 700 memcpy(rx->fragment, buffer, length); 701 rx->fragment_length = length; 702 spin_unlock_irqrestore(&rx->lock, flags); 703 goto resubmit; 704 } 705 706 spin_lock_irqsave(&rx->lock, flags); 707 if (rx->fragment_length > 0) { 708 /* We are on a second fragment, we believe */ 709 ZD_ASSERT(length + rx->fragment_length <= 710 ARRAY_SIZE(rx->fragment)); 711 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n"); 712 memcpy(rx->fragment+rx->fragment_length, buffer, length); 713 handle_rx_packet(usb, rx->fragment, 714 rx->fragment_length + length); 715 rx->fragment_length = 0; 716 spin_unlock_irqrestore(&rx->lock, flags); 717 } else { 718 spin_unlock_irqrestore(&rx->lock, flags); 719 handle_rx_packet(usb, buffer, length); 720 } 721 722 resubmit: 723 r = usb_submit_urb(urb, GFP_ATOMIC); 724 if (r) 725 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r); 726 } 727 728 static struct urb *alloc_rx_urb(struct zd_usb *usb) 729 { 730 struct usb_device *udev = zd_usb_to_usbdev(usb); 731 struct urb *urb; 732 void *buffer; 733 734 urb = usb_alloc_urb(0, GFP_KERNEL); 735 if (!urb) 736 return NULL; 737 buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL, 738 &urb->transfer_dma); 739 if (!buffer) { 740 usb_free_urb(urb); 741 return NULL; 742 } 743 744 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN), 745 buffer, USB_MAX_RX_SIZE, 746 rx_urb_complete, usb); 747 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 748 749 return urb; 750 } 751 752 static void free_rx_urb(struct urb *urb) 753 { 754 if (!urb) 755 return; 756 usb_free_coherent(urb->dev, urb->transfer_buffer_length, 757 urb->transfer_buffer, urb->transfer_dma); 758 usb_free_urb(urb); 759 } 760 761 static int __zd_usb_enable_rx(struct zd_usb *usb) 762 { 763 int i, r; 764 struct zd_usb_rx *rx = &usb->rx; 765 struct urb **urbs; 766 767 dev_dbg_f(zd_usb_dev(usb), "\n"); 768 769 r = -ENOMEM; 770 urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL); 771 if (!urbs) 772 goto error; 773 for (i = 0; i < RX_URBS_COUNT; i++) { 774 urbs[i] = alloc_rx_urb(usb); 775 if (!urbs[i]) 776 goto error; 777 } 778 779 ZD_ASSERT(!irqs_disabled()); 780 spin_lock_irq(&rx->lock); 781 if (rx->urbs) { 782 spin_unlock_irq(&rx->lock); 783 r = 0; 784 goto error; 785 } 786 rx->urbs = urbs; 787 rx->urbs_count = RX_URBS_COUNT; 788 spin_unlock_irq(&rx->lock); 789 790 for (i = 0; i < RX_URBS_COUNT; i++) { 791 r = usb_submit_urb(urbs[i], GFP_KERNEL); 792 if (r) 793 goto error_submit; 794 } 795 796 return 0; 797 error_submit: 798 for (i = 0; i < RX_URBS_COUNT; i++) { 799 usb_kill_urb(urbs[i]); 800 } 801 spin_lock_irq(&rx->lock); 802 rx->urbs = NULL; 803 rx->urbs_count = 0; 804 spin_unlock_irq(&rx->lock); 805 error: 806 if (urbs) { 807 for (i = 0; i < RX_URBS_COUNT; i++) 808 free_rx_urb(urbs[i]); 809 } 810 return r; 811 } 812 813 int zd_usb_enable_rx(struct zd_usb *usb) 814 { 815 int r; 816 struct zd_usb_rx *rx = &usb->rx; 817 818 mutex_lock(&rx->setup_mutex); 819 r = __zd_usb_enable_rx(usb); 820 mutex_unlock(&rx->setup_mutex); 821 822 zd_usb_reset_rx_idle_timer(usb); 823 824 return r; 825 } 826 827 static void __zd_usb_disable_rx(struct zd_usb *usb) 828 { 829 int i; 830 unsigned long flags; 831 struct urb **urbs; 832 unsigned int count; 833 struct zd_usb_rx *rx = &usb->rx; 834 835 spin_lock_irqsave(&rx->lock, flags); 836 urbs = rx->urbs; 837 count = rx->urbs_count; 838 spin_unlock_irqrestore(&rx->lock, flags); 839 if (!urbs) 840 return; 841 842 for (i = 0; i < count; i++) { 843 usb_kill_urb(urbs[i]); 844 free_rx_urb(urbs[i]); 845 } 846 kfree(urbs); 847 848 spin_lock_irqsave(&rx->lock, flags); 849 rx->urbs = NULL; 850 rx->urbs_count = 0; 851 spin_unlock_irqrestore(&rx->lock, flags); 852 } 853 854 void zd_usb_disable_rx(struct zd_usb *usb) 855 { 856 struct zd_usb_rx *rx = &usb->rx; 857 858 mutex_lock(&rx->setup_mutex); 859 __zd_usb_disable_rx(usb); 860 mutex_unlock(&rx->setup_mutex); 861 862 tasklet_kill(&rx->reset_timer_tasklet); 863 cancel_delayed_work_sync(&rx->idle_work); 864 } 865 866 static void zd_usb_reset_rx(struct zd_usb *usb) 867 { 868 bool do_reset; 869 struct zd_usb_rx *rx = &usb->rx; 870 unsigned long flags; 871 872 mutex_lock(&rx->setup_mutex); 873 874 spin_lock_irqsave(&rx->lock, flags); 875 do_reset = rx->urbs != NULL; 876 spin_unlock_irqrestore(&rx->lock, flags); 877 878 if (do_reset) { 879 __zd_usb_disable_rx(usb); 880 __zd_usb_enable_rx(usb); 881 } 882 883 mutex_unlock(&rx->setup_mutex); 884 885 if (do_reset) 886 zd_usb_reset_rx_idle_timer(usb); 887 } 888 889 /** 890 * zd_usb_disable_tx - disable transmission 891 * @usb: the zd1211rw-private USB structure 892 * 893 * Frees all URBs in the free list and marks the transmission as disabled. 894 */ 895 void zd_usb_disable_tx(struct zd_usb *usb) 896 { 897 struct zd_usb_tx *tx = &usb->tx; 898 unsigned long flags; 899 900 atomic_set(&tx->enabled, 0); 901 902 /* kill all submitted tx-urbs */ 903 usb_kill_anchored_urbs(&tx->submitted); 904 905 spin_lock_irqsave(&tx->lock, flags); 906 WARN_ON(!skb_queue_empty(&tx->submitted_skbs)); 907 WARN_ON(tx->submitted_urbs != 0); 908 tx->submitted_urbs = 0; 909 spin_unlock_irqrestore(&tx->lock, flags); 910 911 /* The stopped state is ignored, relying on ieee80211_wake_queues() 912 * in a potentionally following zd_usb_enable_tx(). 913 */ 914 } 915 916 /** 917 * zd_usb_enable_tx - enables transmission 918 * @usb: a &struct zd_usb pointer 919 * 920 * This function enables transmission and prepares the &zd_usb_tx data 921 * structure. 922 */ 923 void zd_usb_enable_tx(struct zd_usb *usb) 924 { 925 unsigned long flags; 926 struct zd_usb_tx *tx = &usb->tx; 927 928 spin_lock_irqsave(&tx->lock, flags); 929 atomic_set(&tx->enabled, 1); 930 tx->submitted_urbs = 0; 931 ieee80211_wake_queues(zd_usb_to_hw(usb)); 932 tx->stopped = 0; 933 spin_unlock_irqrestore(&tx->lock, flags); 934 } 935 936 static void tx_dec_submitted_urbs(struct zd_usb *usb) 937 { 938 struct zd_usb_tx *tx = &usb->tx; 939 unsigned long flags; 940 941 spin_lock_irqsave(&tx->lock, flags); 942 --tx->submitted_urbs; 943 if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) { 944 ieee80211_wake_queues(zd_usb_to_hw(usb)); 945 tx->stopped = 0; 946 } 947 spin_unlock_irqrestore(&tx->lock, flags); 948 } 949 950 static void tx_inc_submitted_urbs(struct zd_usb *usb) 951 { 952 struct zd_usb_tx *tx = &usb->tx; 953 unsigned long flags; 954 955 spin_lock_irqsave(&tx->lock, flags); 956 ++tx->submitted_urbs; 957 if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) { 958 ieee80211_stop_queues(zd_usb_to_hw(usb)); 959 tx->stopped = 1; 960 } 961 spin_unlock_irqrestore(&tx->lock, flags); 962 } 963 964 /** 965 * tx_urb_complete - completes the execution of an URB 966 * @urb: a URB 967 * 968 * This function is called if the URB has been transferred to a device or an 969 * error has happened. 970 */ 971 static void tx_urb_complete(struct urb *urb) 972 { 973 int r; 974 struct sk_buff *skb; 975 struct ieee80211_tx_info *info; 976 struct zd_usb *usb; 977 struct zd_usb_tx *tx; 978 979 skb = (struct sk_buff *)urb->context; 980 info = IEEE80211_SKB_CB(skb); 981 /* 982 * grab 'usb' pointer before handing off the skb (since 983 * it might be freed by zd_mac_tx_to_dev or mac80211) 984 */ 985 usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb; 986 tx = &usb->tx; 987 988 switch (urb->status) { 989 case 0: 990 break; 991 case -ESHUTDOWN: 992 case -EINVAL: 993 case -ENODEV: 994 case -ENOENT: 995 case -ECONNRESET: 996 case -EPIPE: 997 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status); 998 break; 999 default: 1000 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status); 1001 goto resubmit; 1002 } 1003 free_urb: 1004 skb_unlink(skb, &usb->tx.submitted_skbs); 1005 zd_mac_tx_to_dev(skb, urb->status); 1006 usb_free_urb(urb); 1007 tx_dec_submitted_urbs(usb); 1008 return; 1009 resubmit: 1010 usb_anchor_urb(urb, &tx->submitted); 1011 r = usb_submit_urb(urb, GFP_ATOMIC); 1012 if (r) { 1013 usb_unanchor_urb(urb); 1014 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r); 1015 goto free_urb; 1016 } 1017 } 1018 1019 /** 1020 * zd_usb_tx: initiates transfer of a frame of the device 1021 * 1022 * @usb: the zd1211rw-private USB structure 1023 * @skb: a &struct sk_buff pointer 1024 * 1025 * This function tranmits a frame to the device. It doesn't wait for 1026 * completion. The frame must contain the control set and have all the 1027 * control set information available. 1028 * 1029 * The function returns 0 if the transfer has been successfully initiated. 1030 */ 1031 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb) 1032 { 1033 int r; 1034 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1035 struct usb_device *udev = zd_usb_to_usbdev(usb); 1036 struct urb *urb; 1037 struct zd_usb_tx *tx = &usb->tx; 1038 1039 if (!atomic_read(&tx->enabled)) { 1040 r = -ENOENT; 1041 goto out; 1042 } 1043 1044 urb = usb_alloc_urb(0, GFP_ATOMIC); 1045 if (!urb) { 1046 r = -ENOMEM; 1047 goto out; 1048 } 1049 1050 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT), 1051 skb->data, skb->len, tx_urb_complete, skb); 1052 1053 info->rate_driver_data[1] = (void *)jiffies; 1054 skb_queue_tail(&tx->submitted_skbs, skb); 1055 usb_anchor_urb(urb, &tx->submitted); 1056 1057 r = usb_submit_urb(urb, GFP_ATOMIC); 1058 if (r) { 1059 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r); 1060 usb_unanchor_urb(urb); 1061 skb_unlink(skb, &tx->submitted_skbs); 1062 goto error; 1063 } 1064 tx_inc_submitted_urbs(usb); 1065 return 0; 1066 error: 1067 usb_free_urb(urb); 1068 out: 1069 return r; 1070 } 1071 1072 static bool zd_tx_timeout(struct zd_usb *usb) 1073 { 1074 struct zd_usb_tx *tx = &usb->tx; 1075 struct sk_buff_head *q = &tx->submitted_skbs; 1076 struct sk_buff *skb, *skbnext; 1077 struct ieee80211_tx_info *info; 1078 unsigned long flags, trans_start; 1079 bool have_timedout = false; 1080 1081 spin_lock_irqsave(&q->lock, flags); 1082 skb_queue_walk_safe(q, skb, skbnext) { 1083 info = IEEE80211_SKB_CB(skb); 1084 trans_start = (unsigned long)info->rate_driver_data[1]; 1085 1086 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) { 1087 have_timedout = true; 1088 break; 1089 } 1090 } 1091 spin_unlock_irqrestore(&q->lock, flags); 1092 1093 return have_timedout; 1094 } 1095 1096 static void zd_tx_watchdog_handler(struct work_struct *work) 1097 { 1098 struct zd_usb *usb = 1099 container_of(work, struct zd_usb, tx.watchdog_work.work); 1100 struct zd_usb_tx *tx = &usb->tx; 1101 1102 if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled) 1103 goto out; 1104 if (!zd_tx_timeout(usb)) 1105 goto out; 1106 1107 /* TX halted, try reset */ 1108 dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device..."); 1109 1110 usb_queue_reset_device(usb->intf); 1111 1112 /* reset will stop this worker, don't rearm */ 1113 return; 1114 out: 1115 queue_delayed_work(zd_workqueue, &tx->watchdog_work, 1116 ZD_TX_WATCHDOG_INTERVAL); 1117 } 1118 1119 void zd_tx_watchdog_enable(struct zd_usb *usb) 1120 { 1121 struct zd_usb_tx *tx = &usb->tx; 1122 1123 if (!tx->watchdog_enabled) { 1124 dev_dbg_f(zd_usb_dev(usb), "\n"); 1125 queue_delayed_work(zd_workqueue, &tx->watchdog_work, 1126 ZD_TX_WATCHDOG_INTERVAL); 1127 tx->watchdog_enabled = 1; 1128 } 1129 } 1130 1131 void zd_tx_watchdog_disable(struct zd_usb *usb) 1132 { 1133 struct zd_usb_tx *tx = &usb->tx; 1134 1135 if (tx->watchdog_enabled) { 1136 dev_dbg_f(zd_usb_dev(usb), "\n"); 1137 tx->watchdog_enabled = 0; 1138 cancel_delayed_work_sync(&tx->watchdog_work); 1139 } 1140 } 1141 1142 static void zd_rx_idle_timer_handler(struct work_struct *work) 1143 { 1144 struct zd_usb *usb = 1145 container_of(work, struct zd_usb, rx.idle_work.work); 1146 struct zd_mac *mac = zd_usb_to_mac(usb); 1147 1148 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1149 return; 1150 1151 dev_dbg_f(zd_usb_dev(usb), "\n"); 1152 1153 /* 30 seconds since last rx, reset rx */ 1154 zd_usb_reset_rx(usb); 1155 } 1156 1157 static void zd_usb_reset_rx_idle_timer_tasklet(unsigned long param) 1158 { 1159 struct zd_usb *usb = (struct zd_usb *)param; 1160 1161 zd_usb_reset_rx_idle_timer(usb); 1162 } 1163 1164 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb) 1165 { 1166 struct zd_usb_rx *rx = &usb->rx; 1167 1168 mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL); 1169 } 1170 1171 static inline void init_usb_interrupt(struct zd_usb *usb) 1172 { 1173 struct zd_usb_interrupt *intr = &usb->intr; 1174 1175 spin_lock_init(&intr->lock); 1176 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb)); 1177 init_completion(&intr->read_regs.completion); 1178 atomic_set(&intr->read_regs_enabled, 0); 1179 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT); 1180 } 1181 1182 static inline void init_usb_rx(struct zd_usb *usb) 1183 { 1184 struct zd_usb_rx *rx = &usb->rx; 1185 1186 spin_lock_init(&rx->lock); 1187 mutex_init(&rx->setup_mutex); 1188 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) { 1189 rx->usb_packet_size = 512; 1190 } else { 1191 rx->usb_packet_size = 64; 1192 } 1193 ZD_ASSERT(rx->fragment_length == 0); 1194 INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler); 1195 rx->reset_timer_tasklet.func = zd_usb_reset_rx_idle_timer_tasklet; 1196 rx->reset_timer_tasklet.data = (unsigned long)usb; 1197 } 1198 1199 static inline void init_usb_tx(struct zd_usb *usb) 1200 { 1201 struct zd_usb_tx *tx = &usb->tx; 1202 1203 spin_lock_init(&tx->lock); 1204 atomic_set(&tx->enabled, 0); 1205 tx->stopped = 0; 1206 skb_queue_head_init(&tx->submitted_skbs); 1207 init_usb_anchor(&tx->submitted); 1208 tx->submitted_urbs = 0; 1209 tx->watchdog_enabled = 0; 1210 INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler); 1211 } 1212 1213 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw, 1214 struct usb_interface *intf) 1215 { 1216 memset(usb, 0, sizeof(*usb)); 1217 usb->intf = usb_get_intf(intf); 1218 usb_set_intfdata(usb->intf, hw); 1219 init_usb_anchor(&usb->submitted_cmds); 1220 init_usb_interrupt(usb); 1221 init_usb_tx(usb); 1222 init_usb_rx(usb); 1223 } 1224 1225 void zd_usb_clear(struct zd_usb *usb) 1226 { 1227 usb_set_intfdata(usb->intf, NULL); 1228 usb_put_intf(usb->intf); 1229 ZD_MEMCLEAR(usb, sizeof(*usb)); 1230 /* FIXME: usb_interrupt, usb_tx, usb_rx? */ 1231 } 1232 1233 static const char *speed(enum usb_device_speed speed) 1234 { 1235 switch (speed) { 1236 case USB_SPEED_LOW: 1237 return "low"; 1238 case USB_SPEED_FULL: 1239 return "full"; 1240 case USB_SPEED_HIGH: 1241 return "high"; 1242 default: 1243 return "unknown speed"; 1244 } 1245 } 1246 1247 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size) 1248 { 1249 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s", 1250 le16_to_cpu(udev->descriptor.idVendor), 1251 le16_to_cpu(udev->descriptor.idProduct), 1252 get_bcdDevice(udev), 1253 speed(udev->speed)); 1254 } 1255 1256 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size) 1257 { 1258 struct usb_device *udev = interface_to_usbdev(usb->intf); 1259 return scnprint_id(udev, buffer, size); 1260 } 1261 1262 #ifdef DEBUG 1263 static void print_id(struct usb_device *udev) 1264 { 1265 char buffer[40]; 1266 1267 scnprint_id(udev, buffer, sizeof(buffer)); 1268 buffer[sizeof(buffer)-1] = 0; 1269 dev_dbg_f(&udev->dev, "%s\n", buffer); 1270 } 1271 #else 1272 #define print_id(udev) do { } while (0) 1273 #endif 1274 1275 static int eject_installer(struct usb_interface *intf) 1276 { 1277 struct usb_device *udev = interface_to_usbdev(intf); 1278 struct usb_host_interface *iface_desc = &intf->altsetting[0]; 1279 struct usb_endpoint_descriptor *endpoint; 1280 unsigned char *cmd; 1281 u8 bulk_out_ep; 1282 int r; 1283 1284 if (iface_desc->desc.bNumEndpoints < 2) 1285 return -ENODEV; 1286 1287 /* Find bulk out endpoint */ 1288 for (r = 1; r >= 0; r--) { 1289 endpoint = &iface_desc->endpoint[r].desc; 1290 if (usb_endpoint_dir_out(endpoint) && 1291 usb_endpoint_xfer_bulk(endpoint)) { 1292 bulk_out_ep = endpoint->bEndpointAddress; 1293 break; 1294 } 1295 } 1296 if (r == -1) { 1297 dev_err(&udev->dev, 1298 "zd1211rw: Could not find bulk out endpoint\n"); 1299 return -ENODEV; 1300 } 1301 1302 cmd = kzalloc(31, GFP_KERNEL); 1303 if (cmd == NULL) 1304 return -ENODEV; 1305 1306 /* USB bulk command block */ 1307 cmd[0] = 0x55; /* bulk command signature */ 1308 cmd[1] = 0x53; /* bulk command signature */ 1309 cmd[2] = 0x42; /* bulk command signature */ 1310 cmd[3] = 0x43; /* bulk command signature */ 1311 cmd[14] = 6; /* command length */ 1312 1313 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */ 1314 cmd[19] = 0x2; /* eject disc */ 1315 1316 dev_info(&udev->dev, "Ejecting virtual installer media...\n"); 1317 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep), 1318 cmd, 31, NULL, 2000); 1319 kfree(cmd); 1320 if (r) 1321 return r; 1322 1323 /* At this point, the device disconnects and reconnects with the real 1324 * ID numbers. */ 1325 1326 usb_set_intfdata(intf, NULL); 1327 return 0; 1328 } 1329 1330 int zd_usb_init_hw(struct zd_usb *usb) 1331 { 1332 int r; 1333 struct zd_mac *mac = zd_usb_to_mac(usb); 1334 1335 dev_dbg_f(zd_usb_dev(usb), "\n"); 1336 1337 r = upload_firmware(usb); 1338 if (r) { 1339 dev_err(zd_usb_dev(usb), 1340 "couldn't load firmware. Error number %d\n", r); 1341 return r; 1342 } 1343 1344 r = usb_reset_configuration(zd_usb_to_usbdev(usb)); 1345 if (r) { 1346 dev_dbg_f(zd_usb_dev(usb), 1347 "couldn't reset configuration. Error number %d\n", r); 1348 return r; 1349 } 1350 1351 r = zd_mac_init_hw(mac->hw); 1352 if (r) { 1353 dev_dbg_f(zd_usb_dev(usb), 1354 "couldn't initialize mac. Error number %d\n", r); 1355 return r; 1356 } 1357 1358 usb->initialized = 1; 1359 return 0; 1360 } 1361 1362 static int probe(struct usb_interface *intf, const struct usb_device_id *id) 1363 { 1364 int r; 1365 struct usb_device *udev = interface_to_usbdev(intf); 1366 struct zd_usb *usb; 1367 struct ieee80211_hw *hw = NULL; 1368 1369 print_id(udev); 1370 1371 if (id->driver_info & DEVICE_INSTALLER) 1372 return eject_installer(intf); 1373 1374 switch (udev->speed) { 1375 case USB_SPEED_LOW: 1376 case USB_SPEED_FULL: 1377 case USB_SPEED_HIGH: 1378 break; 1379 default: 1380 dev_dbg_f(&intf->dev, "Unknown USB speed\n"); 1381 r = -ENODEV; 1382 goto error; 1383 } 1384 1385 r = usb_reset_device(udev); 1386 if (r) { 1387 dev_err(&intf->dev, 1388 "couldn't reset usb device. Error number %d\n", r); 1389 goto error; 1390 } 1391 1392 hw = zd_mac_alloc_hw(intf); 1393 if (hw == NULL) { 1394 r = -ENOMEM; 1395 goto error; 1396 } 1397 1398 usb = &zd_hw_mac(hw)->chip.usb; 1399 usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0; 1400 1401 r = zd_mac_preinit_hw(hw); 1402 if (r) { 1403 dev_dbg_f(&intf->dev, 1404 "couldn't initialize mac. Error number %d\n", r); 1405 goto error; 1406 } 1407 1408 r = ieee80211_register_hw(hw); 1409 if (r) { 1410 dev_dbg_f(&intf->dev, 1411 "couldn't register device. Error number %d\n", r); 1412 goto error; 1413 } 1414 1415 dev_dbg_f(&intf->dev, "successful\n"); 1416 dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy)); 1417 return 0; 1418 error: 1419 usb_reset_device(interface_to_usbdev(intf)); 1420 if (hw) { 1421 zd_mac_clear(zd_hw_mac(hw)); 1422 ieee80211_free_hw(hw); 1423 } 1424 return r; 1425 } 1426 1427 static void disconnect(struct usb_interface *intf) 1428 { 1429 struct ieee80211_hw *hw = zd_intf_to_hw(intf); 1430 struct zd_mac *mac; 1431 struct zd_usb *usb; 1432 1433 /* Either something really bad happened, or we're just dealing with 1434 * a DEVICE_INSTALLER. */ 1435 if (hw == NULL) 1436 return; 1437 1438 mac = zd_hw_mac(hw); 1439 usb = &mac->chip.usb; 1440 1441 dev_dbg_f(zd_usb_dev(usb), "\n"); 1442 1443 ieee80211_unregister_hw(hw); 1444 1445 /* Just in case something has gone wrong! */ 1446 zd_usb_disable_tx(usb); 1447 zd_usb_disable_rx(usb); 1448 zd_usb_disable_int(usb); 1449 1450 /* If the disconnect has been caused by a removal of the 1451 * driver module, the reset allows reloading of the driver. If the 1452 * reset will not be executed here, the upload of the firmware in the 1453 * probe function caused by the reloading of the driver will fail. 1454 */ 1455 usb_reset_device(interface_to_usbdev(intf)); 1456 1457 zd_mac_clear(mac); 1458 ieee80211_free_hw(hw); 1459 dev_dbg(&intf->dev, "disconnected\n"); 1460 } 1461 1462 static void zd_usb_resume(struct zd_usb *usb) 1463 { 1464 struct zd_mac *mac = zd_usb_to_mac(usb); 1465 int r; 1466 1467 dev_dbg_f(zd_usb_dev(usb), "\n"); 1468 1469 r = zd_op_start(zd_usb_to_hw(usb)); 1470 if (r < 0) { 1471 dev_warn(zd_usb_dev(usb), "Device resume failed " 1472 "with error code %d. Retrying...\n", r); 1473 if (usb->was_running) 1474 set_bit(ZD_DEVICE_RUNNING, &mac->flags); 1475 usb_queue_reset_device(usb->intf); 1476 return; 1477 } 1478 1479 if (mac->type != NL80211_IFTYPE_UNSPECIFIED) { 1480 r = zd_restore_settings(mac); 1481 if (r < 0) { 1482 dev_dbg(zd_usb_dev(usb), 1483 "failed to restore settings, %d\n", r); 1484 return; 1485 } 1486 } 1487 } 1488 1489 static void zd_usb_stop(struct zd_usb *usb) 1490 { 1491 dev_dbg_f(zd_usb_dev(usb), "\n"); 1492 1493 zd_op_stop(zd_usb_to_hw(usb)); 1494 1495 zd_usb_disable_tx(usb); 1496 zd_usb_disable_rx(usb); 1497 zd_usb_disable_int(usb); 1498 1499 usb->initialized = 0; 1500 } 1501 1502 static int pre_reset(struct usb_interface *intf) 1503 { 1504 struct ieee80211_hw *hw = usb_get_intfdata(intf); 1505 struct zd_mac *mac; 1506 struct zd_usb *usb; 1507 1508 if (!hw || intf->condition != USB_INTERFACE_BOUND) 1509 return 0; 1510 1511 mac = zd_hw_mac(hw); 1512 usb = &mac->chip.usb; 1513 1514 usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags); 1515 1516 zd_usb_stop(usb); 1517 1518 mutex_lock(&mac->chip.mutex); 1519 return 0; 1520 } 1521 1522 static int post_reset(struct usb_interface *intf) 1523 { 1524 struct ieee80211_hw *hw = usb_get_intfdata(intf); 1525 struct zd_mac *mac; 1526 struct zd_usb *usb; 1527 1528 if (!hw || intf->condition != USB_INTERFACE_BOUND) 1529 return 0; 1530 1531 mac = zd_hw_mac(hw); 1532 usb = &mac->chip.usb; 1533 1534 mutex_unlock(&mac->chip.mutex); 1535 1536 if (usb->was_running) 1537 zd_usb_resume(usb); 1538 return 0; 1539 } 1540 1541 static struct usb_driver driver = { 1542 .name = KBUILD_MODNAME, 1543 .id_table = usb_ids, 1544 .probe = probe, 1545 .disconnect = disconnect, 1546 .pre_reset = pre_reset, 1547 .post_reset = post_reset, 1548 .disable_hub_initiated_lpm = 1, 1549 }; 1550 1551 struct workqueue_struct *zd_workqueue; 1552 1553 static int __init usb_init(void) 1554 { 1555 int r; 1556 1557 pr_debug("%s usb_init()\n", driver.name); 1558 1559 zd_workqueue = create_singlethread_workqueue(driver.name); 1560 if (zd_workqueue == NULL) { 1561 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name); 1562 return -ENOMEM; 1563 } 1564 1565 r = usb_register(&driver); 1566 if (r) { 1567 destroy_workqueue(zd_workqueue); 1568 printk(KERN_ERR "%s usb_register() failed. Error number %d\n", 1569 driver.name, r); 1570 return r; 1571 } 1572 1573 pr_debug("%s initialized\n", driver.name); 1574 return 0; 1575 } 1576 1577 static void __exit usb_exit(void) 1578 { 1579 pr_debug("%s usb_exit()\n", driver.name); 1580 usb_deregister(&driver); 1581 destroy_workqueue(zd_workqueue); 1582 } 1583 1584 module_init(usb_init); 1585 module_exit(usb_exit); 1586 1587 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len, 1588 int *actual_length, int timeout) 1589 { 1590 /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in 1591 * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint 1592 * descriptor. 1593 */ 1594 struct usb_host_endpoint *ep; 1595 unsigned int pipe; 1596 1597 pipe = usb_sndintpipe(udev, EP_REGS_OUT); 1598 ep = usb_pipe_endpoint(udev, pipe); 1599 if (!ep) 1600 return -EINVAL; 1601 1602 if (usb_endpoint_xfer_int(&ep->desc)) { 1603 return usb_interrupt_msg(udev, pipe, data, len, 1604 actual_length, timeout); 1605 } else { 1606 pipe = usb_sndbulkpipe(udev, EP_REGS_OUT); 1607 return usb_bulk_msg(udev, pipe, data, len, actual_length, 1608 timeout); 1609 } 1610 } 1611 1612 static int usb_int_regs_length(unsigned int count) 1613 { 1614 return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data); 1615 } 1616 1617 static void prepare_read_regs_int(struct zd_usb *usb, 1618 struct usb_req_read_regs *req, 1619 unsigned int count) 1620 { 1621 struct zd_usb_interrupt *intr = &usb->intr; 1622 1623 spin_lock_irq(&intr->lock); 1624 atomic_set(&intr->read_regs_enabled, 1); 1625 intr->read_regs.req = req; 1626 intr->read_regs.req_count = count; 1627 reinit_completion(&intr->read_regs.completion); 1628 spin_unlock_irq(&intr->lock); 1629 } 1630 1631 static void disable_read_regs_int(struct zd_usb *usb) 1632 { 1633 struct zd_usb_interrupt *intr = &usb->intr; 1634 1635 spin_lock_irq(&intr->lock); 1636 atomic_set(&intr->read_regs_enabled, 0); 1637 spin_unlock_irq(&intr->lock); 1638 } 1639 1640 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req, 1641 unsigned int count) 1642 { 1643 int i; 1644 struct zd_usb_interrupt *intr = &usb->intr; 1645 struct read_regs_int *rr = &intr->read_regs; 1646 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer; 1647 1648 /* The created block size seems to be larger than expected. 1649 * However results appear to be correct. 1650 */ 1651 if (rr->length < usb_int_regs_length(count)) { 1652 dev_dbg_f(zd_usb_dev(usb), 1653 "error: actual length %d less than expected %d\n", 1654 rr->length, usb_int_regs_length(count)); 1655 return false; 1656 } 1657 1658 if (rr->length > sizeof(rr->buffer)) { 1659 dev_dbg_f(zd_usb_dev(usb), 1660 "error: actual length %d exceeds buffer size %zu\n", 1661 rr->length, sizeof(rr->buffer)); 1662 return false; 1663 } 1664 1665 for (i = 0; i < count; i++) { 1666 struct reg_data *rd = ®s->regs[i]; 1667 if (rd->addr != req->addr[i]) { 1668 dev_dbg_f(zd_usb_dev(usb), 1669 "rd[%d] addr %#06hx expected %#06hx\n", i, 1670 le16_to_cpu(rd->addr), 1671 le16_to_cpu(req->addr[i])); 1672 return false; 1673 } 1674 } 1675 1676 return true; 1677 } 1678 1679 static int get_results(struct zd_usb *usb, u16 *values, 1680 struct usb_req_read_regs *req, unsigned int count, 1681 bool *retry) 1682 { 1683 int r; 1684 int i; 1685 struct zd_usb_interrupt *intr = &usb->intr; 1686 struct read_regs_int *rr = &intr->read_regs; 1687 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer; 1688 1689 spin_lock_irq(&intr->lock); 1690 1691 r = -EIO; 1692 1693 /* Read failed because firmware bug? */ 1694 *retry = !!intr->read_regs_int_overridden; 1695 if (*retry) 1696 goto error_unlock; 1697 1698 if (!check_read_regs(usb, req, count)) { 1699 dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n"); 1700 goto error_unlock; 1701 } 1702 1703 for (i = 0; i < count; i++) { 1704 struct reg_data *rd = ®s->regs[i]; 1705 values[i] = le16_to_cpu(rd->value); 1706 } 1707 1708 r = 0; 1709 error_unlock: 1710 spin_unlock_irq(&intr->lock); 1711 return r; 1712 } 1713 1714 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values, 1715 const zd_addr_t *addresses, unsigned int count) 1716 { 1717 int r, i, req_len, actual_req_len, try_count = 0; 1718 struct usb_device *udev; 1719 struct usb_req_read_regs *req = NULL; 1720 unsigned long timeout; 1721 bool retry = false; 1722 1723 if (count < 1) { 1724 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n"); 1725 return -EINVAL; 1726 } 1727 if (count > USB_MAX_IOREAD16_COUNT) { 1728 dev_dbg_f(zd_usb_dev(usb), 1729 "error: count %u exceeds possible max %u\n", 1730 count, USB_MAX_IOREAD16_COUNT); 1731 return -EINVAL; 1732 } 1733 if (in_atomic()) { 1734 dev_dbg_f(zd_usb_dev(usb), 1735 "error: io in atomic context not supported\n"); 1736 return -EWOULDBLOCK; 1737 } 1738 if (!usb_int_enabled(usb)) { 1739 dev_dbg_f(zd_usb_dev(usb), 1740 "error: usb interrupt not enabled\n"); 1741 return -EWOULDBLOCK; 1742 } 1743 1744 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex)); 1745 BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT * 1746 sizeof(__le16) > sizeof(usb->req_buf)); 1747 BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) > 1748 sizeof(usb->req_buf)); 1749 1750 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16); 1751 req = (void *)usb->req_buf; 1752 1753 req->id = cpu_to_le16(USB_REQ_READ_REGS); 1754 for (i = 0; i < count; i++) 1755 req->addr[i] = cpu_to_le16((u16)addresses[i]); 1756 1757 retry_read: 1758 try_count++; 1759 udev = zd_usb_to_usbdev(usb); 1760 prepare_read_regs_int(usb, req, count); 1761 r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/); 1762 if (r) { 1763 dev_dbg_f(zd_usb_dev(usb), 1764 "error in zd_ep_regs_out_msg(). Error number %d\n", r); 1765 goto error; 1766 } 1767 if (req_len != actual_req_len) { 1768 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n" 1769 " req_len %d != actual_req_len %d\n", 1770 req_len, actual_req_len); 1771 r = -EIO; 1772 goto error; 1773 } 1774 1775 timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion, 1776 msecs_to_jiffies(50)); 1777 if (!timeout) { 1778 disable_read_regs_int(usb); 1779 dev_dbg_f(zd_usb_dev(usb), "read timed out\n"); 1780 r = -ETIMEDOUT; 1781 goto error; 1782 } 1783 1784 r = get_results(usb, values, req, count, &retry); 1785 if (retry && try_count < 20) { 1786 dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n", 1787 try_count); 1788 goto retry_read; 1789 } 1790 error: 1791 return r; 1792 } 1793 1794 static void iowrite16v_urb_complete(struct urb *urb) 1795 { 1796 struct zd_usb *usb = urb->context; 1797 1798 if (urb->status && !usb->cmd_error) 1799 usb->cmd_error = urb->status; 1800 1801 if (!usb->cmd_error && 1802 urb->actual_length != urb->transfer_buffer_length) 1803 usb->cmd_error = -EIO; 1804 } 1805 1806 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last) 1807 { 1808 int r = 0; 1809 struct urb *urb = usb->urb_async_waiting; 1810 1811 if (!urb) 1812 return 0; 1813 1814 usb->urb_async_waiting = NULL; 1815 1816 if (!last) 1817 urb->transfer_flags |= URB_NO_INTERRUPT; 1818 1819 usb_anchor_urb(urb, &usb->submitted_cmds); 1820 r = usb_submit_urb(urb, GFP_KERNEL); 1821 if (r) { 1822 usb_unanchor_urb(urb); 1823 dev_dbg_f(zd_usb_dev(usb), 1824 "error in usb_submit_urb(). Error number %d\n", r); 1825 goto error; 1826 } 1827 1828 /* fall-through with r == 0 */ 1829 error: 1830 usb_free_urb(urb); 1831 return r; 1832 } 1833 1834 void zd_usb_iowrite16v_async_start(struct zd_usb *usb) 1835 { 1836 ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds)); 1837 ZD_ASSERT(usb->urb_async_waiting == NULL); 1838 ZD_ASSERT(!usb->in_async); 1839 1840 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex)); 1841 1842 usb->in_async = 1; 1843 usb->cmd_error = 0; 1844 usb->urb_async_waiting = NULL; 1845 } 1846 1847 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout) 1848 { 1849 int r; 1850 1851 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex)); 1852 ZD_ASSERT(usb->in_async); 1853 1854 /* Submit last iowrite16v URB */ 1855 r = zd_submit_waiting_urb(usb, true); 1856 if (r) { 1857 dev_dbg_f(zd_usb_dev(usb), 1858 "error in zd_submit_waiting_usb(). " 1859 "Error number %d\n", r); 1860 1861 usb_kill_anchored_urbs(&usb->submitted_cmds); 1862 goto error; 1863 } 1864 1865 if (timeout) 1866 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds, 1867 timeout); 1868 if (!timeout) { 1869 usb_kill_anchored_urbs(&usb->submitted_cmds); 1870 if (usb->cmd_error == -ENOENT) { 1871 dev_dbg_f(zd_usb_dev(usb), "timed out"); 1872 r = -ETIMEDOUT; 1873 goto error; 1874 } 1875 } 1876 1877 r = usb->cmd_error; 1878 error: 1879 usb->in_async = 0; 1880 return r; 1881 } 1882 1883 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs, 1884 unsigned int count) 1885 { 1886 int r; 1887 struct usb_device *udev; 1888 struct usb_req_write_regs *req = NULL; 1889 int i, req_len; 1890 struct urb *urb; 1891 struct usb_host_endpoint *ep; 1892 1893 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex)); 1894 ZD_ASSERT(usb->in_async); 1895 1896 if (count == 0) 1897 return 0; 1898 if (count > USB_MAX_IOWRITE16_COUNT) { 1899 dev_dbg_f(zd_usb_dev(usb), 1900 "error: count %u exceeds possible max %u\n", 1901 count, USB_MAX_IOWRITE16_COUNT); 1902 return -EINVAL; 1903 } 1904 if (in_atomic()) { 1905 dev_dbg_f(zd_usb_dev(usb), 1906 "error: io in atomic context not supported\n"); 1907 return -EWOULDBLOCK; 1908 } 1909 1910 udev = zd_usb_to_usbdev(usb); 1911 1912 ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT)); 1913 if (!ep) 1914 return -ENOENT; 1915 1916 urb = usb_alloc_urb(0, GFP_KERNEL); 1917 if (!urb) 1918 return -ENOMEM; 1919 1920 req_len = sizeof(struct usb_req_write_regs) + 1921 count * sizeof(struct reg_data); 1922 req = kmalloc(req_len, GFP_KERNEL); 1923 if (!req) { 1924 r = -ENOMEM; 1925 goto error; 1926 } 1927 1928 req->id = cpu_to_le16(USB_REQ_WRITE_REGS); 1929 for (i = 0; i < count; i++) { 1930 struct reg_data *rw = &req->reg_writes[i]; 1931 rw->addr = cpu_to_le16((u16)ioreqs[i].addr); 1932 rw->value = cpu_to_le16(ioreqs[i].value); 1933 } 1934 1935 /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode 1936 * endpoint is bulk. Select correct type URB by endpoint descriptor. 1937 */ 1938 if (usb_endpoint_xfer_int(&ep->desc)) 1939 usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT), 1940 req, req_len, iowrite16v_urb_complete, usb, 1941 ep->desc.bInterval); 1942 else 1943 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT), 1944 req, req_len, iowrite16v_urb_complete, usb); 1945 1946 urb->transfer_flags |= URB_FREE_BUFFER; 1947 1948 /* Submit previous URB */ 1949 r = zd_submit_waiting_urb(usb, false); 1950 if (r) { 1951 dev_dbg_f(zd_usb_dev(usb), 1952 "error in zd_submit_waiting_usb(). " 1953 "Error number %d\n", r); 1954 goto error; 1955 } 1956 1957 /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs 1958 * of currect batch except for very last. 1959 */ 1960 usb->urb_async_waiting = urb; 1961 return 0; 1962 error: 1963 usb_free_urb(urb); 1964 return r; 1965 } 1966 1967 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs, 1968 unsigned int count) 1969 { 1970 int r; 1971 1972 zd_usb_iowrite16v_async_start(usb); 1973 r = zd_usb_iowrite16v_async(usb, ioreqs, count); 1974 if (r) { 1975 zd_usb_iowrite16v_async_end(usb, 0); 1976 return r; 1977 } 1978 return zd_usb_iowrite16v_async_end(usb, 50 /* ms */); 1979 } 1980 1981 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits) 1982 { 1983 int r; 1984 struct usb_device *udev; 1985 struct usb_req_rfwrite *req = NULL; 1986 int i, req_len, actual_req_len; 1987 u16 bit_value_template; 1988 1989 if (in_atomic()) { 1990 dev_dbg_f(zd_usb_dev(usb), 1991 "error: io in atomic context not supported\n"); 1992 return -EWOULDBLOCK; 1993 } 1994 if (bits < USB_MIN_RFWRITE_BIT_COUNT) { 1995 dev_dbg_f(zd_usb_dev(usb), 1996 "error: bits %d are smaller than" 1997 " USB_MIN_RFWRITE_BIT_COUNT %d\n", 1998 bits, USB_MIN_RFWRITE_BIT_COUNT); 1999 return -EINVAL; 2000 } 2001 if (bits > USB_MAX_RFWRITE_BIT_COUNT) { 2002 dev_dbg_f(zd_usb_dev(usb), 2003 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n", 2004 bits, USB_MAX_RFWRITE_BIT_COUNT); 2005 return -EINVAL; 2006 } 2007 #ifdef DEBUG 2008 if (value & (~0UL << bits)) { 2009 dev_dbg_f(zd_usb_dev(usb), 2010 "error: value %#09x has bits >= %d set\n", 2011 value, bits); 2012 return -EINVAL; 2013 } 2014 #endif /* DEBUG */ 2015 2016 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits); 2017 2018 r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203); 2019 if (r) { 2020 dev_dbg_f(zd_usb_dev(usb), 2021 "error %d: Couldn't read ZD_CR203\n", r); 2022 return r; 2023 } 2024 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA); 2025 2026 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex)); 2027 BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) + 2028 USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) > 2029 sizeof(usb->req_buf)); 2030 BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) > 2031 sizeof(usb->req_buf)); 2032 2033 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16); 2034 req = (void *)usb->req_buf; 2035 2036 req->id = cpu_to_le16(USB_REQ_WRITE_RF); 2037 /* 1: 3683a, but not used in ZYDAS driver */ 2038 req->value = cpu_to_le16(2); 2039 req->bits = cpu_to_le16(bits); 2040 2041 for (i = 0; i < bits; i++) { 2042 u16 bv = bit_value_template; 2043 if (value & (1 << (bits-1-i))) 2044 bv |= RF_DATA; 2045 req->bit_values[i] = cpu_to_le16(bv); 2046 } 2047 2048 udev = zd_usb_to_usbdev(usb); 2049 r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/); 2050 if (r) { 2051 dev_dbg_f(zd_usb_dev(usb), 2052 "error in zd_ep_regs_out_msg(). Error number %d\n", r); 2053 goto out; 2054 } 2055 if (req_len != actual_req_len) { 2056 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()" 2057 " req_len %d != actual_req_len %d\n", 2058 req_len, actual_req_len); 2059 r = -EIO; 2060 goto out; 2061 } 2062 2063 /* FALL-THROUGH with r == 0 */ 2064 out: 2065 return r; 2066 } 2067