1 /* ZD1211 USB-WLAN driver for Linux 2 * 3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de> 4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 23 #include "zd_rf.h" 24 #include "zd_usb.h" 25 #include "zd_chip.h" 26 27 /* This RF programming code is based upon the code found in v2.16.0.0 of the 28 * ZyDAS vendor driver. Unlike other RF's, Ubec publish full technical specs 29 * for this RF on their website, so we're able to understand more than 30 * usual as to what is going on. Thumbs up for Ubec for doing that. */ 31 32 /* The 3-wire serial interface provides access to 8 write-only registers. 33 * The data format is a 4 bit register address followed by a 20 bit value. */ 34 #define UW2453_REGWRITE(reg, val) ((((reg) & 0xf) << 20) | ((val) & 0xfffff)) 35 36 /* For channel tuning, we have to configure registers 1 (synthesizer), 2 (synth 37 * fractional divide ratio) and 3 (VCO config). 38 * 39 * We configure the RF to produce an interrupt when the PLL is locked onto 40 * the configured frequency. During initialization, we run through a variety 41 * of different VCO configurations on channel 1 until we detect a PLL lock. 42 * When this happens, we remember which VCO configuration produced the lock 43 * and use it later. Actually, we use the configuration *after* the one that 44 * produced the lock, which seems odd, but it works. 45 * 46 * If we do not see a PLL lock on any standard VCO config, we fall back on an 47 * autocal configuration, which has a fixed (as opposed to per-channel) VCO 48 * config and different synth values from the standard set (divide ratio 49 * is still shared with the standard set). */ 50 51 /* The per-channel synth values for all standard VCO configurations. These get 52 * written to register 1. */ 53 static const u8 uw2453_std_synth[] = { 54 RF_CHANNEL( 1) = 0x47, 55 RF_CHANNEL( 2) = 0x47, 56 RF_CHANNEL( 3) = 0x67, 57 RF_CHANNEL( 4) = 0x67, 58 RF_CHANNEL( 5) = 0x67, 59 RF_CHANNEL( 6) = 0x67, 60 RF_CHANNEL( 7) = 0x57, 61 RF_CHANNEL( 8) = 0x57, 62 RF_CHANNEL( 9) = 0x57, 63 RF_CHANNEL(10) = 0x57, 64 RF_CHANNEL(11) = 0x77, 65 RF_CHANNEL(12) = 0x77, 66 RF_CHANNEL(13) = 0x77, 67 RF_CHANNEL(14) = 0x4f, 68 }; 69 70 /* This table stores the synthesizer fractional divide ratio for *all* VCO 71 * configurations (both standard and autocal). These get written to register 2. 72 */ 73 static const u16 uw2453_synth_divide[] = { 74 RF_CHANNEL( 1) = 0x999, 75 RF_CHANNEL( 2) = 0x99b, 76 RF_CHANNEL( 3) = 0x998, 77 RF_CHANNEL( 4) = 0x99a, 78 RF_CHANNEL( 5) = 0x999, 79 RF_CHANNEL( 6) = 0x99b, 80 RF_CHANNEL( 7) = 0x998, 81 RF_CHANNEL( 8) = 0x99a, 82 RF_CHANNEL( 9) = 0x999, 83 RF_CHANNEL(10) = 0x99b, 84 RF_CHANNEL(11) = 0x998, 85 RF_CHANNEL(12) = 0x99a, 86 RF_CHANNEL(13) = 0x999, 87 RF_CHANNEL(14) = 0xccc, 88 }; 89 90 /* Here is the data for all the standard VCO configurations. We shrink our 91 * table a little by observing that both channels in a consecutive pair share 92 * the same value. We also observe that the high 4 bits ([0:3] in the specs) 93 * are all 'Reserved' and are always set to 0x4 - we chop them off in the data 94 * below. */ 95 #define CHAN_TO_PAIRIDX(a) ((a - 1) / 2) 96 #define RF_CHANPAIR(a,b) [CHAN_TO_PAIRIDX(a)] 97 static const u16 uw2453_std_vco_cfg[][7] = { 98 { /* table 1 */ 99 RF_CHANPAIR( 1, 2) = 0x664d, 100 RF_CHANPAIR( 3, 4) = 0x604d, 101 RF_CHANPAIR( 5, 6) = 0x6675, 102 RF_CHANPAIR( 7, 8) = 0x6475, 103 RF_CHANPAIR( 9, 10) = 0x6655, 104 RF_CHANPAIR(11, 12) = 0x6455, 105 RF_CHANPAIR(13, 14) = 0x6665, 106 }, 107 { /* table 2 */ 108 RF_CHANPAIR( 1, 2) = 0x666d, 109 RF_CHANPAIR( 3, 4) = 0x606d, 110 RF_CHANPAIR( 5, 6) = 0x664d, 111 RF_CHANPAIR( 7, 8) = 0x644d, 112 RF_CHANPAIR( 9, 10) = 0x6675, 113 RF_CHANPAIR(11, 12) = 0x6475, 114 RF_CHANPAIR(13, 14) = 0x6655, 115 }, 116 { /* table 3 */ 117 RF_CHANPAIR( 1, 2) = 0x665d, 118 RF_CHANPAIR( 3, 4) = 0x605d, 119 RF_CHANPAIR( 5, 6) = 0x666d, 120 RF_CHANPAIR( 7, 8) = 0x646d, 121 RF_CHANPAIR( 9, 10) = 0x664d, 122 RF_CHANPAIR(11, 12) = 0x644d, 123 RF_CHANPAIR(13, 14) = 0x6675, 124 }, 125 { /* table 4 */ 126 RF_CHANPAIR( 1, 2) = 0x667d, 127 RF_CHANPAIR( 3, 4) = 0x607d, 128 RF_CHANPAIR( 5, 6) = 0x665d, 129 RF_CHANPAIR( 7, 8) = 0x645d, 130 RF_CHANPAIR( 9, 10) = 0x666d, 131 RF_CHANPAIR(11, 12) = 0x646d, 132 RF_CHANPAIR(13, 14) = 0x664d, 133 }, 134 { /* table 5 */ 135 RF_CHANPAIR( 1, 2) = 0x6643, 136 RF_CHANPAIR( 3, 4) = 0x6043, 137 RF_CHANPAIR( 5, 6) = 0x667d, 138 RF_CHANPAIR( 7, 8) = 0x647d, 139 RF_CHANPAIR( 9, 10) = 0x665d, 140 RF_CHANPAIR(11, 12) = 0x645d, 141 RF_CHANPAIR(13, 14) = 0x666d, 142 }, 143 { /* table 6 */ 144 RF_CHANPAIR( 1, 2) = 0x6663, 145 RF_CHANPAIR( 3, 4) = 0x6063, 146 RF_CHANPAIR( 5, 6) = 0x6643, 147 RF_CHANPAIR( 7, 8) = 0x6443, 148 RF_CHANPAIR( 9, 10) = 0x667d, 149 RF_CHANPAIR(11, 12) = 0x647d, 150 RF_CHANPAIR(13, 14) = 0x665d, 151 }, 152 { /* table 7 */ 153 RF_CHANPAIR( 1, 2) = 0x6653, 154 RF_CHANPAIR( 3, 4) = 0x6053, 155 RF_CHANPAIR( 5, 6) = 0x6663, 156 RF_CHANPAIR( 7, 8) = 0x6463, 157 RF_CHANPAIR( 9, 10) = 0x6643, 158 RF_CHANPAIR(11, 12) = 0x6443, 159 RF_CHANPAIR(13, 14) = 0x667d, 160 }, 161 { /* table 8 */ 162 RF_CHANPAIR( 1, 2) = 0x6673, 163 RF_CHANPAIR( 3, 4) = 0x6073, 164 RF_CHANPAIR( 5, 6) = 0x6653, 165 RF_CHANPAIR( 7, 8) = 0x6453, 166 RF_CHANPAIR( 9, 10) = 0x6663, 167 RF_CHANPAIR(11, 12) = 0x6463, 168 RF_CHANPAIR(13, 14) = 0x6643, 169 }, 170 { /* table 9 */ 171 RF_CHANPAIR( 1, 2) = 0x664b, 172 RF_CHANPAIR( 3, 4) = 0x604b, 173 RF_CHANPAIR( 5, 6) = 0x6673, 174 RF_CHANPAIR( 7, 8) = 0x6473, 175 RF_CHANPAIR( 9, 10) = 0x6653, 176 RF_CHANPAIR(11, 12) = 0x6453, 177 RF_CHANPAIR(13, 14) = 0x6663, 178 }, 179 { /* table 10 */ 180 RF_CHANPAIR( 1, 2) = 0x666b, 181 RF_CHANPAIR( 3, 4) = 0x606b, 182 RF_CHANPAIR( 5, 6) = 0x664b, 183 RF_CHANPAIR( 7, 8) = 0x644b, 184 RF_CHANPAIR( 9, 10) = 0x6673, 185 RF_CHANPAIR(11, 12) = 0x6473, 186 RF_CHANPAIR(13, 14) = 0x6653, 187 }, 188 { /* table 11 */ 189 RF_CHANPAIR( 1, 2) = 0x665b, 190 RF_CHANPAIR( 3, 4) = 0x605b, 191 RF_CHANPAIR( 5, 6) = 0x666b, 192 RF_CHANPAIR( 7, 8) = 0x646b, 193 RF_CHANPAIR( 9, 10) = 0x664b, 194 RF_CHANPAIR(11, 12) = 0x644b, 195 RF_CHANPAIR(13, 14) = 0x6673, 196 }, 197 198 }; 199 200 /* The per-channel synth values for autocal. These get written to register 1. */ 201 static const u16 uw2453_autocal_synth[] = { 202 RF_CHANNEL( 1) = 0x6847, 203 RF_CHANNEL( 2) = 0x6847, 204 RF_CHANNEL( 3) = 0x6867, 205 RF_CHANNEL( 4) = 0x6867, 206 RF_CHANNEL( 5) = 0x6867, 207 RF_CHANNEL( 6) = 0x6867, 208 RF_CHANNEL( 7) = 0x6857, 209 RF_CHANNEL( 8) = 0x6857, 210 RF_CHANNEL( 9) = 0x6857, 211 RF_CHANNEL(10) = 0x6857, 212 RF_CHANNEL(11) = 0x6877, 213 RF_CHANNEL(12) = 0x6877, 214 RF_CHANNEL(13) = 0x6877, 215 RF_CHANNEL(14) = 0x684f, 216 }; 217 218 /* The VCO configuration for autocal (all channels) */ 219 static const u16 UW2453_AUTOCAL_VCO_CFG = 0x6662; 220 221 /* TX gain settings. The array index corresponds to the TX power integration 222 * values found in the EEPROM. The values get written to register 7. */ 223 static u32 uw2453_txgain[] = { 224 [0x00] = 0x0e313, 225 [0x01] = 0x0fb13, 226 [0x02] = 0x0e093, 227 [0x03] = 0x0f893, 228 [0x04] = 0x0ea93, 229 [0x05] = 0x1f093, 230 [0x06] = 0x1f493, 231 [0x07] = 0x1f693, 232 [0x08] = 0x1f393, 233 [0x09] = 0x1f35b, 234 [0x0a] = 0x1e6db, 235 [0x0b] = 0x1ff3f, 236 [0x0c] = 0x1ffff, 237 [0x0d] = 0x361d7, 238 [0x0e] = 0x37fbf, 239 [0x0f] = 0x3ff8b, 240 [0x10] = 0x3ff33, 241 [0x11] = 0x3fb3f, 242 [0x12] = 0x3ffff, 243 }; 244 245 /* RF-specific structure */ 246 struct uw2453_priv { 247 /* index into synth/VCO config tables where PLL lock was found 248 * -1 means autocal */ 249 int config; 250 }; 251 252 #define UW2453_PRIV(rf) ((struct uw2453_priv *) (rf)->priv) 253 254 static int uw2453_synth_set_channel(struct zd_chip *chip, int channel, 255 bool autocal) 256 { 257 int r; 258 int idx = channel - 1; 259 u32 val; 260 261 if (autocal) 262 val = UW2453_REGWRITE(1, uw2453_autocal_synth[idx]); 263 else 264 val = UW2453_REGWRITE(1, uw2453_std_synth[idx]); 265 266 r = zd_rfwrite_locked(chip, val, RF_RV_BITS); 267 if (r) 268 return r; 269 270 return zd_rfwrite_locked(chip, 271 UW2453_REGWRITE(2, uw2453_synth_divide[idx]), RF_RV_BITS); 272 } 273 274 static int uw2453_write_vco_cfg(struct zd_chip *chip, u16 value) 275 { 276 /* vendor driver always sets these upper bits even though the specs say 277 * they are reserved */ 278 u32 val = 0x40000 | value; 279 return zd_rfwrite_locked(chip, UW2453_REGWRITE(3, val), RF_RV_BITS); 280 } 281 282 static int uw2453_init_mode(struct zd_chip *chip) 283 { 284 static const u32 rv[] = { 285 UW2453_REGWRITE(0, 0x25f98), /* enter IDLE mode */ 286 UW2453_REGWRITE(0, 0x25f9a), /* enter CAL_VCO mode */ 287 UW2453_REGWRITE(0, 0x25f94), /* enter RX/TX mode */ 288 UW2453_REGWRITE(0, 0x27fd4), /* power down RSSI circuit */ 289 }; 290 291 return zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS); 292 } 293 294 static int uw2453_set_tx_gain_level(struct zd_chip *chip, int channel) 295 { 296 u8 int_value = chip->pwr_int_values[channel - 1]; 297 298 if (int_value >= ARRAY_SIZE(uw2453_txgain)) { 299 dev_dbg_f(zd_chip_dev(chip), "can't configure TX gain for " 300 "int value %x on channel %d\n", int_value, channel); 301 return 0; 302 } 303 304 return zd_rfwrite_locked(chip, 305 UW2453_REGWRITE(7, uw2453_txgain[int_value]), RF_RV_BITS); 306 } 307 308 static int uw2453_init_hw(struct zd_rf *rf) 309 { 310 int i, r; 311 int found_config = -1; 312 u16 intr_status; 313 struct zd_chip *chip = zd_rf_to_chip(rf); 314 315 static const struct zd_ioreq16 ioreqs[] = { 316 { ZD_CR10, 0x89 }, { ZD_CR15, 0x20 }, 317 { ZD_CR17, 0x28 }, /* 6112 no change */ 318 { ZD_CR23, 0x38 }, { ZD_CR24, 0x20 }, { ZD_CR26, 0x93 }, 319 { ZD_CR27, 0x15 }, { ZD_CR28, 0x3e }, { ZD_CR29, 0x00 }, 320 { ZD_CR33, 0x28 }, { ZD_CR34, 0x30 }, 321 { ZD_CR35, 0x43 }, /* 6112 3e->43 */ 322 { ZD_CR41, 0x24 }, { ZD_CR44, 0x32 }, 323 { ZD_CR46, 0x92 }, /* 6112 96->92 */ 324 { ZD_CR47, 0x1e }, 325 { ZD_CR48, 0x04 }, /* 5602 Roger */ 326 { ZD_CR49, 0xfa }, { ZD_CR79, 0x58 }, { ZD_CR80, 0x30 }, 327 { ZD_CR81, 0x30 }, { ZD_CR87, 0x0a }, { ZD_CR89, 0x04 }, 328 { ZD_CR91, 0x00 }, { ZD_CR92, 0x0a }, { ZD_CR98, 0x8d }, 329 { ZD_CR99, 0x28 }, { ZD_CR100, 0x02 }, 330 { ZD_CR101, 0x09 }, /* 6112 13->1f 6220 1f->13 6407 13->9 */ 331 { ZD_CR102, 0x27 }, 332 { ZD_CR106, 0x1c }, /* 5d07 5112 1f->1c 6220 1c->1f 333 * 6221 1f->1c 334 */ 335 { ZD_CR107, 0x1c }, /* 6220 1c->1a 5221 1a->1c */ 336 { ZD_CR109, 0x13 }, 337 { ZD_CR110, 0x1f }, /* 6112 13->1f 6221 1f->13 6407 13->0x09 */ 338 { ZD_CR111, 0x13 }, { ZD_CR112, 0x1f }, { ZD_CR113, 0x27 }, 339 { ZD_CR114, 0x23 }, /* 6221 27->23 */ 340 { ZD_CR115, 0x24 }, /* 6112 24->1c 6220 1c->24 */ 341 { ZD_CR116, 0x24 }, /* 6220 1c->24 */ 342 { ZD_CR117, 0xfa }, /* 6112 fa->f8 6220 f8->f4 6220 f4->fa */ 343 { ZD_CR118, 0xf0 }, /* 5d07 6112 f0->f2 6220 f2->f0 */ 344 { ZD_CR119, 0x1a }, /* 6112 1a->10 6220 10->14 6220 14->1a */ 345 { ZD_CR120, 0x4f }, 346 { ZD_CR121, 0x1f }, /* 6220 4f->1f */ 347 { ZD_CR122, 0xf0 }, { ZD_CR123, 0x57 }, { ZD_CR125, 0xad }, 348 { ZD_CR126, 0x6c }, { ZD_CR127, 0x03 }, 349 { ZD_CR128, 0x14 }, /* 6302 12->11 */ 350 { ZD_CR129, 0x12 }, /* 6301 10->0f */ 351 { ZD_CR130, 0x10 }, { ZD_CR137, 0x50 }, { ZD_CR138, 0xa8 }, 352 { ZD_CR144, 0xac }, { ZD_CR146, 0x20 }, { ZD_CR252, 0xff }, 353 { ZD_CR253, 0xff }, 354 }; 355 356 static const u32 rv[] = { 357 UW2453_REGWRITE(4, 0x2b), /* configure receiver gain */ 358 UW2453_REGWRITE(5, 0x19e4f), /* configure transmitter gain */ 359 UW2453_REGWRITE(6, 0xf81ad), /* enable RX/TX filter tuning */ 360 UW2453_REGWRITE(7, 0x3fffe), /* disable TX gain in test mode */ 361 362 /* enter CAL_FIL mode, TX gain set by registers, RX gain set by pins, 363 * RSSI circuit powered down, reduced RSSI range */ 364 UW2453_REGWRITE(0, 0x25f9c), /* 5d01 cal_fil */ 365 366 /* synthesizer configuration for channel 1 */ 367 UW2453_REGWRITE(1, 0x47), 368 UW2453_REGWRITE(2, 0x999), 369 370 /* disable manual VCO band selection */ 371 UW2453_REGWRITE(3, 0x7602), 372 373 /* enable manual VCO band selection, configure current level */ 374 UW2453_REGWRITE(3, 0x46063), 375 }; 376 377 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 378 if (r) 379 return r; 380 381 r = zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS); 382 if (r) 383 return r; 384 385 r = uw2453_init_mode(chip); 386 if (r) 387 return r; 388 389 /* Try all standard VCO configuration settings on channel 1 */ 390 for (i = 0; i < ARRAY_SIZE(uw2453_std_vco_cfg) - 1; i++) { 391 /* Configure synthesizer for channel 1 */ 392 r = uw2453_synth_set_channel(chip, 1, false); 393 if (r) 394 return r; 395 396 /* Write VCO config */ 397 r = uw2453_write_vco_cfg(chip, uw2453_std_vco_cfg[i][0]); 398 if (r) 399 return r; 400 401 /* ack interrupt event */ 402 r = zd_iowrite16_locked(chip, 0x0f, UW2453_INTR_REG); 403 if (r) 404 return r; 405 406 /* check interrupt status */ 407 r = zd_ioread16_locked(chip, &intr_status, UW2453_INTR_REG); 408 if (r) 409 return r; 410 411 if (!(intr_status & 0xf)) { 412 dev_dbg_f(zd_chip_dev(chip), 413 "PLL locked on configuration %d\n", i); 414 found_config = i; 415 break; 416 } 417 } 418 419 if (found_config == -1) { 420 /* autocal */ 421 dev_dbg_f(zd_chip_dev(chip), 422 "PLL did not lock, using autocal\n"); 423 424 r = uw2453_synth_set_channel(chip, 1, true); 425 if (r) 426 return r; 427 428 r = uw2453_write_vco_cfg(chip, UW2453_AUTOCAL_VCO_CFG); 429 if (r) 430 return r; 431 } 432 433 /* To match the vendor driver behaviour, we use the configuration after 434 * the one that produced a lock. */ 435 UW2453_PRIV(rf)->config = found_config + 1; 436 437 return zd_iowrite16_locked(chip, 0x06, ZD_CR203); 438 } 439 440 static int uw2453_set_channel(struct zd_rf *rf, u8 channel) 441 { 442 int r; 443 u16 vco_cfg; 444 int config = UW2453_PRIV(rf)->config; 445 bool autocal = (config == -1); 446 struct zd_chip *chip = zd_rf_to_chip(rf); 447 448 static const struct zd_ioreq16 ioreqs[] = { 449 { ZD_CR80, 0x30 }, { ZD_CR81, 0x30 }, { ZD_CR79, 0x58 }, 450 { ZD_CR12, 0xf0 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x58 }, 451 }; 452 453 r = uw2453_synth_set_channel(chip, channel, autocal); 454 if (r) 455 return r; 456 457 if (autocal) 458 vco_cfg = UW2453_AUTOCAL_VCO_CFG; 459 else 460 vco_cfg = uw2453_std_vco_cfg[config][CHAN_TO_PAIRIDX(channel)]; 461 462 r = uw2453_write_vco_cfg(chip, vco_cfg); 463 if (r) 464 return r; 465 466 r = uw2453_init_mode(chip); 467 if (r) 468 return r; 469 470 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 471 if (r) 472 return r; 473 474 r = uw2453_set_tx_gain_level(chip, channel); 475 if (r) 476 return r; 477 478 return zd_iowrite16_locked(chip, 0x06, ZD_CR203); 479 } 480 481 static int uw2453_switch_radio_on(struct zd_rf *rf) 482 { 483 int r; 484 struct zd_chip *chip = zd_rf_to_chip(rf); 485 struct zd_ioreq16 ioreqs[] = { 486 { ZD_CR11, 0x00 }, { ZD_CR251, 0x3f }, 487 }; 488 489 /* enter RXTX mode */ 490 r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f94), RF_RV_BITS); 491 if (r) 492 return r; 493 494 if (zd_chip_is_zd1211b(chip)) 495 ioreqs[1].value = 0x7f; 496 497 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 498 } 499 500 static int uw2453_switch_radio_off(struct zd_rf *rf) 501 { 502 int r; 503 struct zd_chip *chip = zd_rf_to_chip(rf); 504 static const struct zd_ioreq16 ioreqs[] = { 505 { ZD_CR11, 0x04 }, { ZD_CR251, 0x2f }, 506 }; 507 508 /* enter IDLE mode */ 509 /* FIXME: shouldn't we go to SLEEP? sent email to zydas */ 510 r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f90), RF_RV_BITS); 511 if (r) 512 return r; 513 514 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 515 } 516 517 static void uw2453_clear(struct zd_rf *rf) 518 { 519 kfree(rf->priv); 520 } 521 522 int zd_rf_init_uw2453(struct zd_rf *rf) 523 { 524 rf->init_hw = uw2453_init_hw; 525 rf->set_channel = uw2453_set_channel; 526 rf->switch_radio_on = uw2453_switch_radio_on; 527 rf->switch_radio_off = uw2453_switch_radio_off; 528 rf->patch_6m_band_edge = zd_rf_generic_patch_6m; 529 rf->clear = uw2453_clear; 530 /* we have our own TX integration code */ 531 rf->update_channel_int = 0; 532 533 rf->priv = kmalloc(sizeof(struct uw2453_priv), GFP_KERNEL); 534 if (rf->priv == NULL) 535 return -ENOMEM; 536 537 return 0; 538 } 539 540