1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* ZD1211 USB-WLAN driver for Linux 3 * 4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de> 5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org> 6 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net> 7 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu> 8 */ 9 10 #include <linux/netdevice.h> 11 #include <linux/etherdevice.h> 12 #include <linux/slab.h> 13 #include <linux/usb.h> 14 #include <linux/jiffies.h> 15 #include <net/ieee80211_radiotap.h> 16 17 #include "zd_def.h" 18 #include "zd_chip.h" 19 #include "zd_mac.h" 20 #include "zd_rf.h" 21 22 struct zd_reg_alpha2_map { 23 u32 reg; 24 char alpha2[2] __nonstring; 25 }; 26 27 static struct zd_reg_alpha2_map reg_alpha2_map[] = { 28 { ZD_REGDOMAIN_FCC, "US" }, 29 { ZD_REGDOMAIN_IC, "CA" }, 30 { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */ 31 { ZD_REGDOMAIN_JAPAN, "JP" }, 32 { ZD_REGDOMAIN_JAPAN_2, "JP" }, 33 { ZD_REGDOMAIN_JAPAN_3, "JP" }, 34 { ZD_REGDOMAIN_SPAIN, "ES" }, 35 { ZD_REGDOMAIN_FRANCE, "FR" }, 36 }; 37 38 /* This table contains the hardware specific values for the modulation rates. */ 39 static const struct ieee80211_rate zd_rates[] = { 40 { .bitrate = 10, 41 .hw_value = ZD_CCK_RATE_1M, }, 42 { .bitrate = 20, 43 .hw_value = ZD_CCK_RATE_2M, 44 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT, 45 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 46 { .bitrate = 55, 47 .hw_value = ZD_CCK_RATE_5_5M, 48 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT, 49 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 50 { .bitrate = 110, 51 .hw_value = ZD_CCK_RATE_11M, 52 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT, 53 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 54 { .bitrate = 60, 55 .hw_value = ZD_OFDM_RATE_6M, 56 .flags = 0 }, 57 { .bitrate = 90, 58 .hw_value = ZD_OFDM_RATE_9M, 59 .flags = 0 }, 60 { .bitrate = 120, 61 .hw_value = ZD_OFDM_RATE_12M, 62 .flags = 0 }, 63 { .bitrate = 180, 64 .hw_value = ZD_OFDM_RATE_18M, 65 .flags = 0 }, 66 { .bitrate = 240, 67 .hw_value = ZD_OFDM_RATE_24M, 68 .flags = 0 }, 69 { .bitrate = 360, 70 .hw_value = ZD_OFDM_RATE_36M, 71 .flags = 0 }, 72 { .bitrate = 480, 73 .hw_value = ZD_OFDM_RATE_48M, 74 .flags = 0 }, 75 { .bitrate = 540, 76 .hw_value = ZD_OFDM_RATE_54M, 77 .flags = 0 }, 78 }; 79 80 /* 81 * Zydas retry rates table. Each line is listed in the same order as 82 * in zd_rates[] and contains all the rate used when a packet is sent 83 * starting with a given rates. Let's consider an example : 84 * 85 * "11 Mbits : 4, 3, 2, 1, 0" means : 86 * - packet is sent using 4 different rates 87 * - 1st rate is index 3 (ie 11 Mbits) 88 * - 2nd rate is index 2 (ie 5.5 Mbits) 89 * - 3rd rate is index 1 (ie 2 Mbits) 90 * - 4th rate is index 0 (ie 1 Mbits) 91 */ 92 93 static const struct tx_retry_rate zd_retry_rates[] = { 94 { /* 1 Mbits */ 1, { 0 }}, 95 { /* 2 Mbits */ 2, { 1, 0 }}, 96 { /* 5.5 Mbits */ 3, { 2, 1, 0 }}, 97 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }}, 98 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }}, 99 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}}, 100 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }}, 101 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }}, 102 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }}, 103 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }}, 104 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }}, 105 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }} 106 }; 107 108 static const struct ieee80211_channel zd_channels[] = { 109 { .center_freq = 2412, .hw_value = 1 }, 110 { .center_freq = 2417, .hw_value = 2 }, 111 { .center_freq = 2422, .hw_value = 3 }, 112 { .center_freq = 2427, .hw_value = 4 }, 113 { .center_freq = 2432, .hw_value = 5 }, 114 { .center_freq = 2437, .hw_value = 6 }, 115 { .center_freq = 2442, .hw_value = 7 }, 116 { .center_freq = 2447, .hw_value = 8 }, 117 { .center_freq = 2452, .hw_value = 9 }, 118 { .center_freq = 2457, .hw_value = 10 }, 119 { .center_freq = 2462, .hw_value = 11 }, 120 { .center_freq = 2467, .hw_value = 12 }, 121 { .center_freq = 2472, .hw_value = 13 }, 122 { .center_freq = 2484, .hw_value = 14 }, 123 }; 124 125 static void housekeeping_init(struct zd_mac *mac); 126 static void housekeeping_enable(struct zd_mac *mac); 127 static void housekeeping_disable(struct zd_mac *mac); 128 static void beacon_init(struct zd_mac *mac); 129 static void beacon_enable(struct zd_mac *mac); 130 static void beacon_disable(struct zd_mac *mac); 131 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble); 132 static int zd_mac_config_beacon(struct ieee80211_hw *hw, 133 struct sk_buff *beacon, bool in_intr); 134 135 static int zd_reg2alpha2(u8 regdomain, char *alpha2) 136 { 137 unsigned int i; 138 struct zd_reg_alpha2_map *reg_map; 139 for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) { 140 reg_map = ®_alpha2_map[i]; 141 if (regdomain == reg_map->reg) { 142 alpha2[0] = reg_map->alpha2[0]; 143 alpha2[1] = reg_map->alpha2[1]; 144 return 0; 145 } 146 } 147 return 1; 148 } 149 150 static int zd_check_signal(struct ieee80211_hw *hw, int signal) 151 { 152 struct zd_mac *mac = zd_hw_mac(hw); 153 154 dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100, 155 "%s: signal value from device not in range 0..100, " 156 "but %d.\n", __func__, signal); 157 158 if (signal < 0) 159 signal = 0; 160 else if (signal > 100) 161 signal = 100; 162 163 return signal; 164 } 165 166 int zd_mac_preinit_hw(struct ieee80211_hw *hw) 167 { 168 int r; 169 u8 addr[ETH_ALEN]; 170 struct zd_mac *mac = zd_hw_mac(hw); 171 172 r = zd_chip_read_mac_addr_fw(&mac->chip, addr); 173 if (r) 174 return r; 175 176 SET_IEEE80211_PERM_ADDR(hw, addr); 177 178 return 0; 179 } 180 181 int zd_mac_init_hw(struct ieee80211_hw *hw) 182 { 183 int r; 184 struct zd_mac *mac = zd_hw_mac(hw); 185 struct zd_chip *chip = &mac->chip; 186 char alpha2[2]; 187 u8 default_regdomain; 188 189 r = zd_chip_enable_int(chip); 190 if (r) 191 goto out; 192 r = zd_chip_init_hw(chip); 193 if (r) 194 goto disable_int; 195 196 ZD_ASSERT(!irqs_disabled()); 197 198 r = zd_read_regdomain(chip, &default_regdomain); 199 if (r) 200 goto disable_int; 201 spin_lock_irq(&mac->lock); 202 mac->regdomain = mac->default_regdomain = default_regdomain; 203 spin_unlock_irq(&mac->lock); 204 205 /* We must inform the device that we are doing encryption/decryption in 206 * software at the moment. */ 207 r = zd_set_encryption_type(chip, ENC_SNIFFER); 208 if (r) 209 goto disable_int; 210 211 r = zd_reg2alpha2(mac->regdomain, alpha2); 212 if (r) 213 goto disable_int; 214 215 r = regulatory_hint(hw->wiphy, alpha2); 216 disable_int: 217 zd_chip_disable_int(chip); 218 out: 219 return r; 220 } 221 222 void zd_mac_clear(struct zd_mac *mac) 223 { 224 flush_workqueue(zd_workqueue); 225 zd_chip_clear(&mac->chip); 226 ZD_MEMCLEAR(mac, sizeof(struct zd_mac)); 227 } 228 229 static int set_rx_filter(struct zd_mac *mac) 230 { 231 unsigned long flags; 232 u32 filter = STA_RX_FILTER; 233 234 spin_lock_irqsave(&mac->lock, flags); 235 if (mac->pass_ctrl) 236 filter |= RX_FILTER_CTRL; 237 spin_unlock_irqrestore(&mac->lock, flags); 238 239 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter); 240 } 241 242 static int set_mac_and_bssid(struct zd_mac *mac) 243 { 244 int r; 245 246 if (!mac->vif) 247 return -1; 248 249 r = zd_write_mac_addr(&mac->chip, mac->vif->addr); 250 if (r) 251 return r; 252 253 /* Vendor driver after setting MAC either sets BSSID for AP or 254 * filter for other modes. 255 */ 256 if (mac->type != NL80211_IFTYPE_AP) 257 return set_rx_filter(mac); 258 else 259 return zd_write_bssid(&mac->chip, mac->vif->addr); 260 } 261 262 static int set_mc_hash(struct zd_mac *mac) 263 { 264 struct zd_mc_hash hash; 265 zd_mc_clear(&hash); 266 return zd_chip_set_multicast_hash(&mac->chip, &hash); 267 } 268 269 int zd_op_start(struct ieee80211_hw *hw) 270 { 271 struct zd_mac *mac = zd_hw_mac(hw); 272 struct zd_chip *chip = &mac->chip; 273 struct zd_usb *usb = &chip->usb; 274 int r; 275 276 if (!usb->initialized) { 277 r = zd_usb_init_hw(usb); 278 if (r) 279 goto out; 280 } 281 282 r = zd_chip_enable_int(chip); 283 if (r < 0) 284 goto out; 285 286 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G); 287 if (r < 0) 288 goto disable_int; 289 r = set_rx_filter(mac); 290 if (r) 291 goto disable_int; 292 r = set_mc_hash(mac); 293 if (r) 294 goto disable_int; 295 296 /* Wait after setting the multicast hash table and powering on 297 * the radio otherwise interface bring up will fail. This matches 298 * what the vendor driver did. 299 */ 300 msleep(10); 301 302 r = zd_chip_switch_radio_on(chip); 303 if (r < 0) { 304 dev_err(zd_chip_dev(chip), 305 "%s: failed to set radio on\n", __func__); 306 goto disable_int; 307 } 308 r = zd_chip_enable_rxtx(chip); 309 if (r < 0) 310 goto disable_radio; 311 r = zd_chip_enable_hwint(chip); 312 if (r < 0) 313 goto disable_rxtx; 314 315 housekeeping_enable(mac); 316 beacon_enable(mac); 317 set_bit(ZD_DEVICE_RUNNING, &mac->flags); 318 return 0; 319 disable_rxtx: 320 zd_chip_disable_rxtx(chip); 321 disable_radio: 322 zd_chip_switch_radio_off(chip); 323 disable_int: 324 zd_chip_disable_int(chip); 325 out: 326 return r; 327 } 328 329 void zd_op_stop(struct ieee80211_hw *hw, bool suspend) 330 { 331 struct zd_mac *mac = zd_hw_mac(hw); 332 struct zd_chip *chip = &mac->chip; 333 struct sk_buff *skb; 334 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue; 335 336 clear_bit(ZD_DEVICE_RUNNING, &mac->flags); 337 338 /* The order here deliberately is a little different from the open() 339 * method, since we need to make sure there is no opportunity for RX 340 * frames to be processed by mac80211 after we have stopped it. 341 */ 342 343 zd_chip_disable_rxtx(chip); 344 beacon_disable(mac); 345 housekeeping_disable(mac); 346 flush_workqueue(zd_workqueue); 347 348 zd_chip_disable_hwint(chip); 349 zd_chip_switch_radio_off(chip); 350 zd_chip_disable_int(chip); 351 352 353 while ((skb = skb_dequeue(ack_wait_queue))) 354 dev_kfree_skb_any(skb); 355 } 356 357 int zd_restore_settings(struct zd_mac *mac) 358 { 359 struct sk_buff *beacon; 360 struct zd_mc_hash multicast_hash; 361 unsigned int short_preamble; 362 int r, beacon_interval, beacon_period; 363 u8 channel; 364 365 dev_dbg_f(zd_mac_dev(mac), "\n"); 366 367 spin_lock_irq(&mac->lock); 368 multicast_hash = mac->multicast_hash; 369 short_preamble = mac->short_preamble; 370 beacon_interval = mac->beacon.interval; 371 beacon_period = mac->beacon.period; 372 channel = mac->channel; 373 spin_unlock_irq(&mac->lock); 374 375 r = set_mac_and_bssid(mac); 376 if (r < 0) { 377 dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r); 378 return r; 379 } 380 381 r = zd_chip_set_channel(&mac->chip, channel); 382 if (r < 0) { 383 dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n", 384 r); 385 return r; 386 } 387 388 set_rts_cts(mac, short_preamble); 389 390 r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash); 391 if (r < 0) { 392 dev_dbg_f(zd_mac_dev(mac), 393 "zd_chip_set_multicast_hash failed, %d\n", r); 394 return r; 395 } 396 397 if (mac->type == NL80211_IFTYPE_MESH_POINT || 398 mac->type == NL80211_IFTYPE_ADHOC || 399 mac->type == NL80211_IFTYPE_AP) { 400 if (mac->vif != NULL) { 401 beacon = ieee80211_beacon_get(mac->hw, mac->vif, 0); 402 if (beacon) 403 zd_mac_config_beacon(mac->hw, beacon, false); 404 } 405 406 zd_set_beacon_interval(&mac->chip, beacon_interval, 407 beacon_period, mac->type); 408 409 spin_lock_irq(&mac->lock); 410 mac->beacon.last_update = jiffies; 411 spin_unlock_irq(&mac->lock); 412 } 413 414 return 0; 415 } 416 417 /** 418 * zd_mac_tx_status - reports tx status of a packet if required 419 * @hw: a &struct ieee80211_hw pointer 420 * @skb: a sk-buffer 421 * @ackssi: ACK signal strength 422 * @tx_status: success and/or retry 423 * 424 * This information calls ieee80211_tx_status_irqsafe() if required by the 425 * control information. It copies the control information into the status 426 * information. 427 * 428 * If no status information has been requested, the skb is freed. 429 */ 430 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb, 431 int ackssi, struct tx_status *tx_status) 432 { 433 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 434 int i; 435 int success = 1, retry = 1; 436 int first_idx; 437 const struct tx_retry_rate *retries; 438 439 ieee80211_tx_info_clear_status(info); 440 441 if (tx_status) { 442 success = !tx_status->failure; 443 retry = tx_status->retry + success; 444 } 445 446 if (success) { 447 /* success */ 448 info->flags |= IEEE80211_TX_STAT_ACK; 449 } else { 450 /* failure */ 451 info->flags &= ~IEEE80211_TX_STAT_ACK; 452 } 453 454 first_idx = info->status.rates[0].idx; 455 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates)); 456 retries = &zd_retry_rates[first_idx]; 457 ZD_ASSERT(1 <= retry && retry <= retries->count); 458 459 info->status.rates[0].idx = retries->rate[0]; 460 info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1); 461 462 for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) { 463 info->status.rates[i].idx = retries->rate[i]; 464 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2); 465 } 466 for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) { 467 info->status.rates[i].idx = retries->rate[retry - 1]; 468 info->status.rates[i].count = 1; // (success ? 1:2); 469 } 470 if (i<IEEE80211_TX_MAX_RATES) 471 info->status.rates[i].idx = -1; /* terminate */ 472 473 info->status.ack_signal = zd_check_signal(hw, ackssi); 474 ieee80211_tx_status_irqsafe(hw, skb); 475 } 476 477 /** 478 * zd_mac_tx_failed - callback for failed frames 479 * @urb: pointer to the urb structure 480 * 481 * This function is called if a frame couldn't be successfully 482 * transferred. The first frame from the tx queue, will be selected and 483 * reported as error to the upper layers. 484 */ 485 void zd_mac_tx_failed(struct urb *urb) 486 { 487 struct ieee80211_hw * hw = zd_usb_to_hw(urb->context); 488 struct zd_mac *mac = zd_hw_mac(hw); 489 struct sk_buff_head *q = &mac->ack_wait_queue; 490 struct sk_buff *skb; 491 struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer; 492 unsigned long flags; 493 int success = !tx_status->failure; 494 int retry = tx_status->retry + success; 495 int found = 0; 496 int i, position = 0; 497 498 spin_lock_irqsave(&q->lock, flags); 499 500 skb_queue_walk(q, skb) { 501 struct ieee80211_hdr *tx_hdr; 502 struct ieee80211_tx_info *info; 503 int first_idx, final_idx; 504 const struct tx_retry_rate *retries; 505 u8 final_rate; 506 507 position ++; 508 509 /* if the hardware reports a failure and we had a 802.11 ACK 510 * pending, then we skip the first skb when searching for a 511 * matching frame */ 512 if (tx_status->failure && mac->ack_pending && 513 skb_queue_is_first(q, skb)) { 514 continue; 515 } 516 517 tx_hdr = (struct ieee80211_hdr *)skb->data; 518 519 /* we skip all frames not matching the reported destination */ 520 if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac))) 521 continue; 522 523 /* we skip all frames not matching the reported final rate */ 524 525 info = IEEE80211_SKB_CB(skb); 526 first_idx = info->status.rates[0].idx; 527 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates)); 528 retries = &zd_retry_rates[first_idx]; 529 if (retry <= 0 || retry > retries->count) 530 continue; 531 532 final_idx = retries->rate[retry - 1]; 533 final_rate = zd_rates[final_idx].hw_value; 534 535 if (final_rate != tx_status->rate) { 536 continue; 537 } 538 539 found = 1; 540 break; 541 } 542 543 if (found) { 544 for (i=1; i<=position; i++) { 545 skb = __skb_dequeue(q); 546 zd_mac_tx_status(hw, skb, 547 mac->ack_pending ? mac->ack_signal : 0, 548 i == position ? tx_status : NULL); 549 mac->ack_pending = 0; 550 } 551 } 552 553 spin_unlock_irqrestore(&q->lock, flags); 554 } 555 556 /** 557 * zd_mac_tx_to_dev - callback for USB layer 558 * @skb: a &sk_buff pointer 559 * @error: error value, 0 if transmission successful 560 * 561 * Informs the MAC layer that the frame has successfully transferred to the 562 * device. If an ACK is required and the transfer to the device has been 563 * successful, the packets are put on the @ack_wait_queue with 564 * the control set removed. 565 */ 566 void zd_mac_tx_to_dev(struct sk_buff *skb, int error) 567 { 568 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 569 struct ieee80211_hw *hw = info->rate_driver_data[0]; 570 struct zd_mac *mac = zd_hw_mac(hw); 571 572 ieee80211_tx_info_clear_status(info); 573 574 skb_pull(skb, sizeof(struct zd_ctrlset)); 575 if (unlikely(error || 576 (info->flags & IEEE80211_TX_CTL_NO_ACK))) { 577 /* 578 * FIXME : do we need to fill in anything ? 579 */ 580 ieee80211_tx_status_irqsafe(hw, skb); 581 } else { 582 struct sk_buff_head *q = &mac->ack_wait_queue; 583 584 skb_queue_tail(q, skb); 585 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) { 586 skb = skb_dequeue(q); 587 if (!skb) 588 break; 589 590 zd_mac_tx_status(hw, skb, 591 mac->ack_pending ? mac->ack_signal : 0, 592 NULL); 593 mac->ack_pending = 0; 594 } 595 } 596 } 597 598 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length) 599 { 600 /* ZD_PURE_RATE() must be used to remove the modulation type flag of 601 * the zd-rate values. 602 */ 603 static const u8 rate_divisor[] = { 604 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1, 605 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2, 606 /* Bits must be doubled. */ 607 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11, 608 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11, 609 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6, 610 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9, 611 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12, 612 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18, 613 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24, 614 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36, 615 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48, 616 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54, 617 }; 618 619 u32 bits = (u32)tx_length * 8; 620 u32 divisor; 621 622 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)]; 623 if (divisor == 0) 624 return -EINVAL; 625 626 switch (zd_rate) { 627 case ZD_CCK_RATE_5_5M: 628 bits = (2*bits) + 10; /* round up to the next integer */ 629 break; 630 case ZD_CCK_RATE_11M: 631 if (service) { 632 u32 t = bits % 11; 633 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION; 634 if (0 < t && t <= 3) { 635 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION; 636 } 637 } 638 bits += 10; /* round up to the next integer */ 639 break; 640 } 641 642 return bits/divisor; 643 } 644 645 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs, 646 struct ieee80211_hdr *header, 647 struct ieee80211_tx_info *info) 648 { 649 /* 650 * CONTROL TODO: 651 * - if backoff needed, enable bit 0 652 * - if burst (backoff not needed) disable bit 0 653 */ 654 655 cs->control = 0; 656 657 /* First fragment */ 658 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 659 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF; 660 661 /* No ACK expected (multicast, etc.) */ 662 if (info->flags & IEEE80211_TX_CTL_NO_ACK) 663 cs->control |= ZD_CS_NO_ACK; 664 665 /* PS-POLL */ 666 if (ieee80211_is_pspoll(header->frame_control)) 667 cs->control |= ZD_CS_PS_POLL_FRAME; 668 669 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) 670 cs->control |= ZD_CS_RTS; 671 672 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) 673 cs->control |= ZD_CS_SELF_CTS; 674 675 /* FIXME: Management frame? */ 676 } 677 678 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon) 679 { 680 if (!mac->beacon.cur_beacon) 681 return false; 682 683 if (mac->beacon.cur_beacon->len != beacon->len) 684 return false; 685 686 return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len); 687 } 688 689 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac) 690 { 691 ZD_ASSERT(mutex_is_locked(&mac->chip.mutex)); 692 693 kfree_skb(mac->beacon.cur_beacon); 694 mac->beacon.cur_beacon = NULL; 695 } 696 697 static void zd_mac_free_cur_beacon(struct zd_mac *mac) 698 { 699 mutex_lock(&mac->chip.mutex); 700 zd_mac_free_cur_beacon_locked(mac); 701 mutex_unlock(&mac->chip.mutex); 702 } 703 704 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon, 705 bool in_intr) 706 { 707 struct zd_mac *mac = zd_hw_mac(hw); 708 int r, ret, num_cmds, req_pos = 0; 709 u32 tmp, j = 0; 710 /* 4 more bytes for tail CRC */ 711 u32 full_len = beacon->len + 4; 712 unsigned long end_jiffies, message_jiffies; 713 struct zd_ioreq32 *ioreqs; 714 715 mutex_lock(&mac->chip.mutex); 716 717 /* Check if hw already has this beacon. */ 718 if (zd_mac_match_cur_beacon(mac, beacon)) { 719 r = 0; 720 goto out_nofree; 721 } 722 723 /* Alloc memory for full beacon write at once. */ 724 num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len; 725 ioreqs = kmalloc_array(num_cmds, sizeof(struct zd_ioreq32), 726 GFP_KERNEL); 727 if (!ioreqs) { 728 r = -ENOMEM; 729 goto out_nofree; 730 } 731 732 r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE); 733 if (r < 0) 734 goto out; 735 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE); 736 if (r < 0) 737 goto release_sema; 738 if (in_intr && tmp & 0x2) { 739 r = -EBUSY; 740 goto release_sema; 741 } 742 743 end_jiffies = jiffies + HZ / 2; /*~500ms*/ 744 message_jiffies = jiffies + HZ / 10; /*~100ms*/ 745 while (tmp & 0x2) { 746 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE); 747 if (r < 0) 748 goto release_sema; 749 if (time_is_before_eq_jiffies(message_jiffies)) { 750 message_jiffies = jiffies + HZ / 10; 751 dev_err(zd_mac_dev(mac), 752 "CR_BCN_FIFO_SEMAPHORE not ready\n"); 753 if (time_is_before_eq_jiffies(end_jiffies)) { 754 dev_err(zd_mac_dev(mac), 755 "Giving up beacon config.\n"); 756 r = -ETIMEDOUT; 757 goto reset_device; 758 } 759 } 760 msleep(20); 761 } 762 763 ioreqs[req_pos].addr = CR_BCN_FIFO; 764 ioreqs[req_pos].value = full_len - 1; 765 req_pos++; 766 if (zd_chip_is_zd1211b(&mac->chip)) { 767 ioreqs[req_pos].addr = CR_BCN_LENGTH; 768 ioreqs[req_pos].value = full_len - 1; 769 req_pos++; 770 } 771 772 for (j = 0 ; j < beacon->len; j++) { 773 ioreqs[req_pos].addr = CR_BCN_FIFO; 774 ioreqs[req_pos].value = *((u8 *)(beacon->data + j)); 775 req_pos++; 776 } 777 778 for (j = 0; j < 4; j++) { 779 ioreqs[req_pos].addr = CR_BCN_FIFO; 780 ioreqs[req_pos].value = 0x0; 781 req_pos++; 782 } 783 784 BUG_ON(req_pos != num_cmds); 785 786 r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds); 787 788 release_sema: 789 /* 790 * Try very hard to release device beacon semaphore, as otherwise 791 * device/driver can be left in unusable state. 792 */ 793 end_jiffies = jiffies + HZ / 2; /*~500ms*/ 794 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE); 795 while (ret < 0) { 796 if (in_intr || time_is_before_eq_jiffies(end_jiffies)) { 797 ret = -ETIMEDOUT; 798 break; 799 } 800 801 msleep(20); 802 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE); 803 } 804 805 if (ret < 0) 806 dev_err(zd_mac_dev(mac), "Could not release " 807 "CR_BCN_FIFO_SEMAPHORE!\n"); 808 if (r < 0 || ret < 0) { 809 if (r >= 0) 810 r = ret; 811 812 /* We don't know if beacon was written successfully or not, 813 * so clear current. */ 814 zd_mac_free_cur_beacon_locked(mac); 815 816 goto out; 817 } 818 819 /* Beacon has now been written successfully, update current. */ 820 zd_mac_free_cur_beacon_locked(mac); 821 mac->beacon.cur_beacon = beacon; 822 beacon = NULL; 823 824 /* 802.11b/g 2.4G CCK 1Mb 825 * 802.11a, not yet implemented, uses different values (see GPL vendor 826 * driver) 827 */ 828 r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19), 829 CR_BCN_PLCP_CFG); 830 out: 831 kfree(ioreqs); 832 out_nofree: 833 kfree_skb(beacon); 834 mutex_unlock(&mac->chip.mutex); 835 836 return r; 837 838 reset_device: 839 zd_mac_free_cur_beacon_locked(mac); 840 kfree_skb(beacon); 841 842 mutex_unlock(&mac->chip.mutex); 843 kfree(ioreqs); 844 845 /* semaphore stuck, reset device to avoid fw freeze later */ 846 dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, " 847 "resetting device..."); 848 usb_queue_reset_device(mac->chip.usb.intf); 849 850 return r; 851 } 852 853 static int fill_ctrlset(struct zd_mac *mac, 854 struct sk_buff *skb) 855 { 856 int r; 857 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 858 unsigned int frag_len = skb->len + FCS_LEN; 859 unsigned int packet_length; 860 struct ieee80211_rate *txrate; 861 struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset)); 862 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 863 864 ZD_ASSERT(frag_len <= 0xffff); 865 866 /* 867 * Firmware computes the duration itself (for all frames except PSPoll) 868 * and needs the field set to 0 at input, otherwise firmware messes up 869 * duration_id and sets bits 14 and 15 on. 870 */ 871 if (!ieee80211_is_pspoll(hdr->frame_control)) 872 hdr->duration_id = 0; 873 874 txrate = ieee80211_get_tx_rate(mac->hw, info); 875 876 cs->modulation = txrate->hw_value; 877 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 878 cs->modulation = txrate->hw_value_short; 879 880 cs->tx_length = cpu_to_le16(frag_len); 881 882 cs_set_control(mac, cs, hdr, info); 883 884 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10; 885 ZD_ASSERT(packet_length <= 0xffff); 886 /* ZD1211B: Computing the length difference this way, gives us 887 * flexibility to compute the packet length. 888 */ 889 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ? 890 packet_length - frag_len : packet_length); 891 892 /* 893 * CURRENT LENGTH: 894 * - transmit frame length in microseconds 895 * - seems to be derived from frame length 896 * - see Cal_Us_Service() in zdinlinef.h 897 * - if macp->bTxBurstEnable is enabled, then multiply by 4 898 * - bTxBurstEnable is never set in the vendor driver 899 * 900 * SERVICE: 901 * - "for PLCP configuration" 902 * - always 0 except in some situations at 802.11b 11M 903 * - see line 53 of zdinlinef.h 904 */ 905 cs->service = 0; 906 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation), 907 le16_to_cpu(cs->tx_length)); 908 if (r < 0) 909 return r; 910 cs->current_length = cpu_to_le16(r); 911 cs->next_frame_length = 0; 912 913 return 0; 914 } 915 916 /** 917 * zd_op_tx - transmits a network frame to the device 918 * 919 * @hw: a &struct ieee80211_hw pointer 920 * @control: the control structure 921 * @skb: socket buffer 922 * 923 * This function transmit an IEEE 802.11 network frame to the device. The 924 * control block of the skbuff will be initialized. If necessary the incoming 925 * mac80211 queues will be stopped. 926 */ 927 static void zd_op_tx(struct ieee80211_hw *hw, 928 struct ieee80211_tx_control *control, 929 struct sk_buff *skb) 930 { 931 struct zd_mac *mac = zd_hw_mac(hw); 932 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 933 int r; 934 935 r = fill_ctrlset(mac, skb); 936 if (r) 937 goto fail; 938 939 info->rate_driver_data[0] = hw; 940 941 r = zd_usb_tx(&mac->chip.usb, skb); 942 if (r) 943 goto fail; 944 return; 945 946 fail: 947 dev_kfree_skb(skb); 948 } 949 950 /** 951 * filter_ack - filters incoming packets for acknowledgements 952 * @hw: a &struct ieee80211_hw pointer 953 * @rx_hdr: received header 954 * @stats: the status for the received packet 955 * 956 * This functions looks for ACK packets and tries to match them with the 957 * frames in the tx queue. If a match is found the frame will be dequeued and 958 * the upper layers is informed about the successful transmission. If 959 * mac80211 queues have been stopped and the number of frames still to be 960 * transmitted is low the queues will be opened again. 961 * 962 * Returns 1 if the frame was an ACK, 0 if it was ignored. 963 */ 964 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr, 965 struct ieee80211_rx_status *stats) 966 { 967 struct zd_mac *mac = zd_hw_mac(hw); 968 struct sk_buff *skb; 969 struct sk_buff_head *q; 970 unsigned long flags; 971 int found = 0; 972 int i, position = 0; 973 974 if (!ieee80211_is_ack(rx_hdr->frame_control)) 975 return 0; 976 977 q = &mac->ack_wait_queue; 978 spin_lock_irqsave(&q->lock, flags); 979 skb_queue_walk(q, skb) { 980 struct ieee80211_hdr *tx_hdr; 981 982 position ++; 983 984 if (mac->ack_pending && skb_queue_is_first(q, skb)) 985 continue; 986 987 tx_hdr = (struct ieee80211_hdr *)skb->data; 988 if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1))) 989 { 990 found = 1; 991 break; 992 } 993 } 994 995 if (found) { 996 for (i=1; i<position; i++) { 997 skb = __skb_dequeue(q); 998 zd_mac_tx_status(hw, skb, 999 mac->ack_pending ? mac->ack_signal : 0, 1000 NULL); 1001 mac->ack_pending = 0; 1002 } 1003 1004 mac->ack_pending = 1; 1005 mac->ack_signal = stats->signal; 1006 1007 /* Prevent pending tx-packet on AP-mode */ 1008 if (mac->type == NL80211_IFTYPE_AP) { 1009 skb = __skb_dequeue(q); 1010 zd_mac_tx_status(hw, skb, mac->ack_signal, NULL); 1011 mac->ack_pending = 0; 1012 } 1013 } 1014 1015 spin_unlock_irqrestore(&q->lock, flags); 1016 return 1; 1017 } 1018 1019 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length) 1020 { 1021 struct zd_mac *mac = zd_hw_mac(hw); 1022 struct ieee80211_rx_status stats; 1023 const struct rx_status *status; 1024 struct sk_buff *skb; 1025 int bad_frame = 0; 1026 __le16 fc; 1027 int need_padding; 1028 int i; 1029 u8 rate; 1030 1031 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ + 1032 FCS_LEN + sizeof(struct rx_status)) 1033 return -EINVAL; 1034 1035 memset(&stats, 0, sizeof(stats)); 1036 1037 /* Note about pass_failed_fcs and pass_ctrl access below: 1038 * mac locking intentionally omitted here, as this is the only unlocked 1039 * reader and the only writer is configure_filter. Plus, if there were 1040 * any races accessing these variables, it wouldn't really matter. 1041 * If mac80211 ever provides a way for us to access filter flags 1042 * from outside configure_filter, we could improve on this. Also, this 1043 * situation may change once we implement some kind of DMA-into-skb 1044 * RX path. */ 1045 1046 /* Caller has to ensure that length >= sizeof(struct rx_status). */ 1047 status = (struct rx_status *) 1048 (buffer + (length - sizeof(struct rx_status))); 1049 if (status->frame_status & ZD_RX_ERROR) { 1050 if (mac->pass_failed_fcs && 1051 (status->frame_status & ZD_RX_CRC32_ERROR)) { 1052 stats.flag |= RX_FLAG_FAILED_FCS_CRC; 1053 bad_frame = 1; 1054 } else { 1055 return -EINVAL; 1056 } 1057 } 1058 1059 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq; 1060 stats.band = NL80211_BAND_2GHZ; 1061 stats.signal = zd_check_signal(hw, status->signal_strength); 1062 1063 rate = zd_rx_rate(buffer, status); 1064 1065 /* todo: return index in the big switches in zd_rx_rate instead */ 1066 for (i = 0; i < mac->band.n_bitrates; i++) 1067 if (rate == mac->band.bitrates[i].hw_value) 1068 stats.rate_idx = i; 1069 1070 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status); 1071 buffer += ZD_PLCP_HEADER_SIZE; 1072 1073 /* Except for bad frames, filter each frame to see if it is an ACK, in 1074 * which case our internal TX tracking is updated. Normally we then 1075 * bail here as there's no need to pass ACKs on up to the stack, but 1076 * there is also the case where the stack has requested us to pass 1077 * control frames on up (pass_ctrl) which we must consider. */ 1078 if (!bad_frame && 1079 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats) 1080 && !mac->pass_ctrl) 1081 return 0; 1082 1083 fc = get_unaligned((__le16*)buffer); 1084 need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc); 1085 1086 skb = dev_alloc_skb(length + (need_padding ? 2 : 0)); 1087 if (skb == NULL) 1088 return -ENOMEM; 1089 if (need_padding) { 1090 /* Make sure the payload data is 4 byte aligned. */ 1091 skb_reserve(skb, 2); 1092 } 1093 1094 /* FIXME : could we avoid this big memcpy ? */ 1095 skb_put_data(skb, buffer, length); 1096 1097 memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats)); 1098 ieee80211_rx_irqsafe(hw, skb); 1099 return 0; 1100 } 1101 1102 static int zd_op_add_interface(struct ieee80211_hw *hw, 1103 struct ieee80211_vif *vif) 1104 { 1105 struct zd_mac *mac = zd_hw_mac(hw); 1106 1107 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */ 1108 if (mac->type != NL80211_IFTYPE_UNSPECIFIED) 1109 return -EOPNOTSUPP; 1110 1111 switch (vif->type) { 1112 case NL80211_IFTYPE_MONITOR: 1113 case NL80211_IFTYPE_MESH_POINT: 1114 case NL80211_IFTYPE_STATION: 1115 case NL80211_IFTYPE_ADHOC: 1116 case NL80211_IFTYPE_AP: 1117 mac->type = vif->type; 1118 break; 1119 default: 1120 return -EOPNOTSUPP; 1121 } 1122 1123 mac->vif = vif; 1124 1125 return set_mac_and_bssid(mac); 1126 } 1127 1128 static void zd_op_remove_interface(struct ieee80211_hw *hw, 1129 struct ieee80211_vif *vif) 1130 { 1131 struct zd_mac *mac = zd_hw_mac(hw); 1132 mac->type = NL80211_IFTYPE_UNSPECIFIED; 1133 mac->vif = NULL; 1134 zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED); 1135 zd_write_mac_addr(&mac->chip, NULL); 1136 1137 zd_mac_free_cur_beacon(mac); 1138 } 1139 1140 static int zd_op_config(struct ieee80211_hw *hw, int radio_idx, u32 changed) 1141 { 1142 struct zd_mac *mac = zd_hw_mac(hw); 1143 struct ieee80211_conf *conf = &hw->conf; 1144 1145 spin_lock_irq(&mac->lock); 1146 mac->channel = conf->chandef.chan->hw_value; 1147 spin_unlock_irq(&mac->lock); 1148 1149 return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value); 1150 } 1151 1152 static void zd_beacon_done(struct zd_mac *mac) 1153 { 1154 struct sk_buff *skb, *beacon; 1155 1156 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1157 return; 1158 if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP) 1159 return; 1160 1161 /* 1162 * Send out buffered broad- and multicast frames. 1163 */ 1164 while (!ieee80211_queue_stopped(mac->hw, 0)) { 1165 skb = ieee80211_get_buffered_bc(mac->hw, mac->vif); 1166 if (!skb) 1167 break; 1168 zd_op_tx(mac->hw, NULL, skb); 1169 } 1170 1171 /* 1172 * Fetch next beacon so that tim_count is updated. 1173 */ 1174 beacon = ieee80211_beacon_get(mac->hw, mac->vif, 0); 1175 if (beacon) 1176 zd_mac_config_beacon(mac->hw, beacon, true); 1177 1178 spin_lock_irq(&mac->lock); 1179 mac->beacon.last_update = jiffies; 1180 spin_unlock_irq(&mac->lock); 1181 } 1182 1183 static void zd_process_intr(struct work_struct *work) 1184 { 1185 u16 int_status; 1186 unsigned long flags; 1187 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr); 1188 1189 spin_lock_irqsave(&mac->lock, flags); 1190 int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4)); 1191 spin_unlock_irqrestore(&mac->lock, flags); 1192 1193 if (int_status & INT_CFG_NEXT_BCN) { 1194 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/ 1195 zd_beacon_done(mac); 1196 } else { 1197 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n"); 1198 } 1199 1200 zd_chip_enable_hwint(&mac->chip); 1201 } 1202 1203 1204 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw, 1205 struct netdev_hw_addr_list *mc_list) 1206 { 1207 struct zd_mac *mac = zd_hw_mac(hw); 1208 struct zd_mc_hash hash; 1209 struct netdev_hw_addr *ha; 1210 1211 zd_mc_clear(&hash); 1212 1213 netdev_hw_addr_list_for_each(ha, mc_list) { 1214 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr); 1215 zd_mc_add_addr(&hash, ha->addr); 1216 } 1217 1218 return hash.low | ((u64)hash.high << 32); 1219 } 1220 1221 #define SUPPORTED_FIF_FLAGS \ 1222 (FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \ 1223 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC) 1224 static void zd_op_configure_filter(struct ieee80211_hw *hw, 1225 unsigned int changed_flags, 1226 unsigned int *new_flags, 1227 u64 multicast) 1228 { 1229 struct zd_mc_hash hash = { 1230 .low = multicast, 1231 .high = multicast >> 32, 1232 }; 1233 struct zd_mac *mac = zd_hw_mac(hw); 1234 unsigned long flags; 1235 int r; 1236 1237 /* Only deal with supported flags */ 1238 changed_flags &= SUPPORTED_FIF_FLAGS; 1239 *new_flags &= SUPPORTED_FIF_FLAGS; 1240 1241 /* 1242 * If multicast parameter (as returned by zd_op_prepare_multicast) 1243 * has changed, no bit in changed_flags is set. To handle this 1244 * situation, we do not return if changed_flags is 0. If we do so, 1245 * we will have some issue with IPv6 which uses multicast for link 1246 * layer address resolution. 1247 */ 1248 if (*new_flags & FIF_ALLMULTI) 1249 zd_mc_add_all(&hash); 1250 1251 spin_lock_irqsave(&mac->lock, flags); 1252 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL); 1253 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL); 1254 mac->multicast_hash = hash; 1255 spin_unlock_irqrestore(&mac->lock, flags); 1256 1257 zd_chip_set_multicast_hash(&mac->chip, &hash); 1258 1259 if (changed_flags & FIF_CONTROL) { 1260 r = set_rx_filter(mac); 1261 if (r) 1262 dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r); 1263 } 1264 1265 /* no handling required for FIF_OTHER_BSS as we don't currently 1266 * do BSSID filtering */ 1267 /* FIXME: in future it would be nice to enable the probe response 1268 * filter (so that the driver doesn't see them) until 1269 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd 1270 * have to schedule work to enable prbresp reception, which might 1271 * happen too late. For now we'll just listen and forward them all the 1272 * time. */ 1273 } 1274 1275 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble) 1276 { 1277 mutex_lock(&mac->chip.mutex); 1278 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble); 1279 mutex_unlock(&mac->chip.mutex); 1280 } 1281 1282 static void zd_op_bss_info_changed(struct ieee80211_hw *hw, 1283 struct ieee80211_vif *vif, 1284 struct ieee80211_bss_conf *bss_conf, 1285 u64 changes) 1286 { 1287 struct zd_mac *mac = zd_hw_mac(hw); 1288 int associated; 1289 1290 dev_dbg_f(zd_mac_dev(mac), "changes: %llx\n", changes); 1291 1292 if (mac->type == NL80211_IFTYPE_MESH_POINT || 1293 mac->type == NL80211_IFTYPE_ADHOC || 1294 mac->type == NL80211_IFTYPE_AP) { 1295 associated = true; 1296 if (changes & BSS_CHANGED_BEACON) { 1297 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif, 1298 0); 1299 1300 if (beacon) { 1301 zd_chip_disable_hwint(&mac->chip); 1302 zd_mac_config_beacon(hw, beacon, false); 1303 zd_chip_enable_hwint(&mac->chip); 1304 } 1305 } 1306 1307 if (changes & BSS_CHANGED_BEACON_ENABLED) { 1308 u16 interval = 0; 1309 u8 period = 0; 1310 1311 if (bss_conf->enable_beacon) { 1312 period = bss_conf->dtim_period; 1313 interval = bss_conf->beacon_int; 1314 } 1315 1316 spin_lock_irq(&mac->lock); 1317 mac->beacon.period = period; 1318 mac->beacon.interval = interval; 1319 mac->beacon.last_update = jiffies; 1320 spin_unlock_irq(&mac->lock); 1321 1322 zd_set_beacon_interval(&mac->chip, interval, period, 1323 mac->type); 1324 } 1325 } else 1326 associated = is_valid_ether_addr(bss_conf->bssid); 1327 1328 spin_lock_irq(&mac->lock); 1329 mac->associated = associated; 1330 spin_unlock_irq(&mac->lock); 1331 1332 /* TODO: do hardware bssid filtering */ 1333 1334 if (changes & BSS_CHANGED_ERP_PREAMBLE) { 1335 spin_lock_irq(&mac->lock); 1336 mac->short_preamble = bss_conf->use_short_preamble; 1337 spin_unlock_irq(&mac->lock); 1338 1339 set_rts_cts(mac, bss_conf->use_short_preamble); 1340 } 1341 } 1342 1343 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1344 { 1345 struct zd_mac *mac = zd_hw_mac(hw); 1346 return zd_chip_get_tsf(&mac->chip); 1347 } 1348 1349 static const struct ieee80211_ops zd_ops = { 1350 .add_chanctx = ieee80211_emulate_add_chanctx, 1351 .remove_chanctx = ieee80211_emulate_remove_chanctx, 1352 .change_chanctx = ieee80211_emulate_change_chanctx, 1353 .switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx, 1354 .tx = zd_op_tx, 1355 .wake_tx_queue = ieee80211_handle_wake_tx_queue, 1356 .start = zd_op_start, 1357 .stop = zd_op_stop, 1358 .add_interface = zd_op_add_interface, 1359 .remove_interface = zd_op_remove_interface, 1360 .config = zd_op_config, 1361 .prepare_multicast = zd_op_prepare_multicast, 1362 .configure_filter = zd_op_configure_filter, 1363 .bss_info_changed = zd_op_bss_info_changed, 1364 .get_tsf = zd_op_get_tsf, 1365 }; 1366 1367 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf) 1368 { 1369 struct zd_mac *mac; 1370 struct ieee80211_hw *hw; 1371 1372 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops); 1373 if (!hw) { 1374 dev_dbg_f(&intf->dev, "out of memory\n"); 1375 return NULL; 1376 } 1377 1378 mac = zd_hw_mac(hw); 1379 1380 memset(mac, 0, sizeof(*mac)); 1381 spin_lock_init(&mac->lock); 1382 mac->hw = hw; 1383 1384 mac->type = NL80211_IFTYPE_UNSPECIFIED; 1385 1386 memcpy(mac->channels, zd_channels, sizeof(zd_channels)); 1387 memcpy(mac->rates, zd_rates, sizeof(zd_rates)); 1388 mac->band.n_bitrates = ARRAY_SIZE(zd_rates); 1389 mac->band.bitrates = mac->rates; 1390 mac->band.n_channels = ARRAY_SIZE(zd_channels); 1391 mac->band.channels = mac->channels; 1392 1393 hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band; 1394 1395 ieee80211_hw_set(hw, MFP_CAPABLE); 1396 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING); 1397 ieee80211_hw_set(hw, RX_INCLUDES_FCS); 1398 ieee80211_hw_set(hw, SIGNAL_UNSPEC); 1399 1400 hw->wiphy->interface_modes = 1401 BIT(NL80211_IFTYPE_MESH_POINT) | 1402 BIT(NL80211_IFTYPE_STATION) | 1403 BIT(NL80211_IFTYPE_ADHOC) | 1404 BIT(NL80211_IFTYPE_AP); 1405 1406 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 1407 1408 hw->max_signal = 100; 1409 hw->queues = 1; 1410 hw->extra_tx_headroom = sizeof(struct zd_ctrlset); 1411 1412 /* 1413 * Tell mac80211 that we support multi rate retries 1414 */ 1415 hw->max_rates = IEEE80211_TX_MAX_RATES; 1416 hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */ 1417 1418 skb_queue_head_init(&mac->ack_wait_queue); 1419 mac->ack_pending = 0; 1420 1421 zd_chip_init(&mac->chip, hw, intf); 1422 housekeeping_init(mac); 1423 beacon_init(mac); 1424 INIT_WORK(&mac->process_intr, zd_process_intr); 1425 1426 SET_IEEE80211_DEV(hw, &intf->dev); 1427 return hw; 1428 } 1429 1430 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ) 1431 1432 static void beacon_watchdog_handler(struct work_struct *work) 1433 { 1434 struct zd_mac *mac = 1435 container_of(work, struct zd_mac, beacon.watchdog_work.work); 1436 struct sk_buff *beacon; 1437 unsigned long timeout; 1438 int interval, period; 1439 1440 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1441 goto rearm; 1442 if (mac->type != NL80211_IFTYPE_AP || !mac->vif) 1443 goto rearm; 1444 1445 spin_lock_irq(&mac->lock); 1446 interval = mac->beacon.interval; 1447 period = mac->beacon.period; 1448 timeout = mac->beacon.last_update + 1449 msecs_to_jiffies(interval * 1024 / 1000) * 3; 1450 spin_unlock_irq(&mac->lock); 1451 1452 if (interval > 0 && time_is_before_jiffies(timeout)) { 1453 dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, " 1454 "restarting. " 1455 "(interval: %d, dtim: %d)\n", 1456 interval, period); 1457 1458 zd_chip_disable_hwint(&mac->chip); 1459 1460 beacon = ieee80211_beacon_get(mac->hw, mac->vif, 0); 1461 if (beacon) { 1462 zd_mac_free_cur_beacon(mac); 1463 1464 zd_mac_config_beacon(mac->hw, beacon, false); 1465 } 1466 1467 zd_set_beacon_interval(&mac->chip, interval, period, mac->type); 1468 1469 zd_chip_enable_hwint(&mac->chip); 1470 1471 spin_lock_irq(&mac->lock); 1472 mac->beacon.last_update = jiffies; 1473 spin_unlock_irq(&mac->lock); 1474 } 1475 1476 rearm: 1477 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work, 1478 BEACON_WATCHDOG_DELAY); 1479 } 1480 1481 static void beacon_init(struct zd_mac *mac) 1482 { 1483 INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler); 1484 } 1485 1486 static void beacon_enable(struct zd_mac *mac) 1487 { 1488 dev_dbg_f(zd_mac_dev(mac), "\n"); 1489 1490 mac->beacon.last_update = jiffies; 1491 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work, 1492 BEACON_WATCHDOG_DELAY); 1493 } 1494 1495 static void beacon_disable(struct zd_mac *mac) 1496 { 1497 dev_dbg_f(zd_mac_dev(mac), "\n"); 1498 cancel_delayed_work_sync(&mac->beacon.watchdog_work); 1499 1500 zd_mac_free_cur_beacon(mac); 1501 } 1502 1503 #define LINK_LED_WORK_DELAY HZ 1504 1505 static void link_led_handler(struct work_struct *work) 1506 { 1507 struct zd_mac *mac = 1508 container_of(work, struct zd_mac, housekeeping.link_led_work.work); 1509 struct zd_chip *chip = &mac->chip; 1510 int is_associated; 1511 int r; 1512 1513 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1514 goto requeue; 1515 1516 spin_lock_irq(&mac->lock); 1517 is_associated = mac->associated; 1518 spin_unlock_irq(&mac->lock); 1519 1520 r = zd_chip_control_leds(chip, 1521 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING); 1522 if (r) 1523 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r); 1524 1525 requeue: 1526 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, 1527 LINK_LED_WORK_DELAY); 1528 } 1529 1530 static void housekeeping_init(struct zd_mac *mac) 1531 { 1532 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler); 1533 } 1534 1535 static void housekeeping_enable(struct zd_mac *mac) 1536 { 1537 dev_dbg_f(zd_mac_dev(mac), "\n"); 1538 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, 1539 0); 1540 } 1541 1542 static void housekeeping_disable(struct zd_mac *mac) 1543 { 1544 dev_dbg_f(zd_mac_dev(mac), "\n"); 1545 cancel_delayed_work_sync(&mac->housekeeping.link_led_work); 1546 zd_chip_control_leds(&mac->chip, ZD_LED_OFF); 1547 } 1548