xref: /linux/drivers/net/wireless/zydas/zd1211rw/zd_chip.c (revision e6f2a617ac53bc0753b885ffb94379ff48b2e2df)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* ZD1211 USB-WLAN driver for Linux
3  *
4  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6  */
7 
8 /* This file implements all the hardware specific functions for the ZD1211
9  * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
10  * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/slab.h>
16 
17 #include "zd_def.h"
18 #include "zd_chip.h"
19 #include "zd_mac.h"
20 #include "zd_rf.h"
21 
22 void zd_chip_init(struct zd_chip *chip,
23 	         struct ieee80211_hw *hw,
24 		 struct usb_interface *intf)
25 {
26 	memset(chip, 0, sizeof(*chip));
27 	mutex_init(&chip->mutex);
28 	zd_usb_init(&chip->usb, hw, intf);
29 	zd_rf_init(&chip->rf);
30 }
31 
32 void zd_chip_clear(struct zd_chip *chip)
33 {
34 	ZD_ASSERT(!mutex_is_locked(&chip->mutex));
35 	zd_usb_clear(&chip->usb);
36 	zd_rf_clear(&chip->rf);
37 	mutex_destroy(&chip->mutex);
38 	ZD_MEMCLEAR(chip, sizeof(*chip));
39 }
40 
41 static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
42 {
43 	u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
44 	return scnprintf(buffer, size, "%3phD", addr);
45 }
46 
47 /* Prints an identifier line, which will support debugging. */
48 static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
49 {
50 	int i = 0;
51 
52 	i = scnprintf(buffer, size, "zd1211%s chip ",
53 		      zd_chip_is_zd1211b(chip) ? "b" : "");
54 	i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
55 	i += scnprintf(buffer+i, size-i, " ");
56 	i += scnprint_mac_oui(chip, buffer+i, size-i);
57 	i += scnprintf(buffer+i, size-i, " ");
58 	i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
59 	i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
60 		chip->patch_cck_gain ? 'g' : '-',
61 		chip->patch_cr157 ? '7' : '-',
62 		chip->patch_6m_band_edge ? '6' : '-',
63 		chip->new_phy_layout ? 'N' : '-',
64 		chip->al2230s_bit ? 'S' : '-');
65 	return i;
66 }
67 
68 static void print_id(struct zd_chip *chip)
69 {
70 	char buffer[80];
71 
72 	scnprint_id(chip, buffer, sizeof(buffer));
73 	buffer[sizeof(buffer)-1] = 0;
74 	dev_info(zd_chip_dev(chip), "%s\n", buffer);
75 }
76 
77 static zd_addr_t inc_addr(zd_addr_t addr)
78 {
79 	u16 a = (u16)addr;
80 	/* Control registers use byte addressing, but everything else uses word
81 	 * addressing. */
82 	if ((a & 0xf000) == CR_START)
83 		a += 2;
84 	else
85 		a += 1;
86 	return (zd_addr_t)a;
87 }
88 
89 /* Read a variable number of 32-bit values. Parameter count is not allowed to
90  * exceed USB_MAX_IOREAD32_COUNT.
91  */
92 int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
93 		 unsigned int count)
94 {
95 	int r;
96 	int i;
97 	zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
98 	u16 v16[USB_MAX_IOREAD32_COUNT * 2];
99 	unsigned int count16;
100 
101 	if (count > USB_MAX_IOREAD32_COUNT)
102 		return -EINVAL;
103 
104 	/* Use stack for values and addresses. */
105 	count16 = 2 * count;
106 	BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
107 	BUG_ON(count16 * sizeof(u16) > sizeof(v16));
108 
109 	for (i = 0; i < count; i++) {
110 		int j = 2*i;
111 		/* We read the high word always first. */
112 		a16[j] = inc_addr(addr[i]);
113 		a16[j+1] = addr[i];
114 	}
115 
116 	r = zd_ioread16v_locked(chip, v16, a16, count16);
117 	if (r) {
118 		dev_dbg_f(zd_chip_dev(chip),
119 			  "error: %s. Error number %d\n", __func__, r);
120 		return r;
121 	}
122 
123 	for (i = 0; i < count; i++) {
124 		int j = 2*i;
125 		values[i] = (v16[j] << 16) | v16[j+1];
126 	}
127 
128 	return 0;
129 }
130 
131 static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
132 				       const struct zd_ioreq32 *ioreqs,
133 				       unsigned int count)
134 {
135 	int i, j, r;
136 	struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
137 	unsigned int count16;
138 
139 	/* Use stack for values and addresses. */
140 
141 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
142 
143 	if (count == 0)
144 		return 0;
145 	if (count > USB_MAX_IOWRITE32_COUNT)
146 		return -EINVAL;
147 
148 	count16 = 2 * count;
149 	BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
150 
151 	for (i = 0; i < count; i++) {
152 		j = 2*i;
153 		/* We write the high word always first. */
154 		ioreqs16[j].value   = ioreqs[i].value >> 16;
155 		ioreqs16[j].addr    = inc_addr(ioreqs[i].addr);
156 		ioreqs16[j+1].value = ioreqs[i].value;
157 		ioreqs16[j+1].addr  = ioreqs[i].addr;
158 	}
159 
160 	r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
161 #ifdef DEBUG
162 	if (r) {
163 		dev_dbg_f(zd_chip_dev(chip),
164 			  "error %d in zd_usb_write16v\n", r);
165 	}
166 #endif /* DEBUG */
167 	return r;
168 }
169 
170 int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
171 			  unsigned int count)
172 {
173 	int r;
174 
175 	zd_usb_iowrite16v_async_start(&chip->usb);
176 	r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
177 	if (r) {
178 		zd_usb_iowrite16v_async_end(&chip->usb, 0);
179 		return r;
180 	}
181 	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
182 }
183 
184 int zd_iowrite16a_locked(struct zd_chip *chip,
185                   const struct zd_ioreq16 *ioreqs, unsigned int count)
186 {
187 	int r;
188 	unsigned int i, j, t, max;
189 
190 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
191 	zd_usb_iowrite16v_async_start(&chip->usb);
192 
193 	for (i = 0; i < count; i += j + t) {
194 		t = 0;
195 		max = count-i;
196 		if (max > USB_MAX_IOWRITE16_COUNT)
197 			max = USB_MAX_IOWRITE16_COUNT;
198 		for (j = 0; j < max; j++) {
199 			if (!ioreqs[i+j].addr) {
200 				t = 1;
201 				break;
202 			}
203 		}
204 
205 		r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
206 		if (r) {
207 			zd_usb_iowrite16v_async_end(&chip->usb, 0);
208 			dev_dbg_f(zd_chip_dev(chip),
209 				  "error zd_usb_iowrite16v. Error number %d\n",
210 				  r);
211 			return r;
212 		}
213 	}
214 
215 	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
216 }
217 
218 /* Writes a variable number of 32 bit registers. The functions will split
219  * that in several USB requests. A split can be forced by inserting an IO
220  * request with an zero address field.
221  */
222 int zd_iowrite32a_locked(struct zd_chip *chip,
223 	          const struct zd_ioreq32 *ioreqs, unsigned int count)
224 {
225 	int r;
226 	unsigned int i, j, t, max;
227 
228 	zd_usb_iowrite16v_async_start(&chip->usb);
229 
230 	for (i = 0; i < count; i += j + t) {
231 		t = 0;
232 		max = count-i;
233 		if (max > USB_MAX_IOWRITE32_COUNT)
234 			max = USB_MAX_IOWRITE32_COUNT;
235 		for (j = 0; j < max; j++) {
236 			if (!ioreqs[i+j].addr) {
237 				t = 1;
238 				break;
239 			}
240 		}
241 
242 		r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
243 		if (r) {
244 			zd_usb_iowrite16v_async_end(&chip->usb, 0);
245 			dev_dbg_f(zd_chip_dev(chip),
246 				"error _%s. Error number %d\n", __func__,
247 				r);
248 			return r;
249 		}
250 	}
251 
252 	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
253 }
254 
255 int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
256 {
257 	int r;
258 
259 	mutex_lock(&chip->mutex);
260 	r = zd_ioread16_locked(chip, value, addr);
261 	mutex_unlock(&chip->mutex);
262 	return r;
263 }
264 
265 int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
266 {
267 	int r;
268 
269 	mutex_lock(&chip->mutex);
270 	r = zd_ioread32_locked(chip, value, addr);
271 	mutex_unlock(&chip->mutex);
272 	return r;
273 }
274 
275 int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
276 {
277 	int r;
278 
279 	mutex_lock(&chip->mutex);
280 	r = zd_iowrite16_locked(chip, value, addr);
281 	mutex_unlock(&chip->mutex);
282 	return r;
283 }
284 
285 int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
286 {
287 	int r;
288 
289 	mutex_lock(&chip->mutex);
290 	r = zd_iowrite32_locked(chip, value, addr);
291 	mutex_unlock(&chip->mutex);
292 	return r;
293 }
294 
295 int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
296 	          u32 *values, unsigned int count)
297 {
298 	int r;
299 
300 	mutex_lock(&chip->mutex);
301 	r = zd_ioread32v_locked(chip, values, addresses, count);
302 	mutex_unlock(&chip->mutex);
303 	return r;
304 }
305 
306 int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
307 	          unsigned int count)
308 {
309 	int r;
310 
311 	mutex_lock(&chip->mutex);
312 	r = zd_iowrite32a_locked(chip, ioreqs, count);
313 	mutex_unlock(&chip->mutex);
314 	return r;
315 }
316 
317 static int read_pod(struct zd_chip *chip, u8 *rf_type)
318 {
319 	int r;
320 	u32 value;
321 
322 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
323 	r = zd_ioread32_locked(chip, &value, E2P_POD);
324 	if (r)
325 		goto error;
326 	dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
327 
328 	/* FIXME: AL2230 handling (Bit 7 in POD) */
329 	*rf_type = value & 0x0f;
330 	chip->pa_type = (value >> 16) & 0x0f;
331 	chip->patch_cck_gain = (value >> 8) & 0x1;
332 	chip->patch_cr157 = (value >> 13) & 0x1;
333 	chip->patch_6m_band_edge = (value >> 21) & 0x1;
334 	chip->new_phy_layout = (value >> 31) & 0x1;
335 	chip->al2230s_bit = (value >> 7) & 0x1;
336 	chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
337 	chip->supports_tx_led = 1;
338 	if (value & (1 << 24)) { /* LED scenario */
339 		if (value & (1 << 29))
340 			chip->supports_tx_led = 0;
341 	}
342 
343 	dev_dbg_f(zd_chip_dev(chip),
344 		"RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
345 		"patch 6M %d new PHY %d link LED%d tx led %d\n",
346 		zd_rf_name(*rf_type), *rf_type,
347 		chip->pa_type, chip->patch_cck_gain,
348 		chip->patch_cr157, chip->patch_6m_band_edge,
349 		chip->new_phy_layout,
350 		chip->link_led == LED1 ? 1 : 2,
351 		chip->supports_tx_led);
352 	return 0;
353 error:
354 	*rf_type = 0;
355 	chip->pa_type = 0;
356 	chip->patch_cck_gain = 0;
357 	chip->patch_cr157 = 0;
358 	chip->patch_6m_band_edge = 0;
359 	chip->new_phy_layout = 0;
360 	return r;
361 }
362 
363 static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
364 				    const struct zd_ioreq32 *in_reqs,
365 				    const char *type)
366 {
367 	int r;
368 	struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
369 
370 	if (mac_addr) {
371 		reqs[0].value = (mac_addr[3] << 24)
372 			      | (mac_addr[2] << 16)
373 			      | (mac_addr[1] <<  8)
374 			      |  mac_addr[0];
375 		reqs[1].value = (mac_addr[5] <<  8)
376 			      |  mac_addr[4];
377 		dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
378 	} else {
379 		dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
380 	}
381 
382 	mutex_lock(&chip->mutex);
383 	r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
384 	mutex_unlock(&chip->mutex);
385 	return r;
386 }
387 
388 /* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
389  *              CR_MAC_ADDR_P2 must be overwritten
390  */
391 int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
392 {
393 	static const struct zd_ioreq32 reqs[2] = {
394 		[0] = { .addr = CR_MAC_ADDR_P1 },
395 		[1] = { .addr = CR_MAC_ADDR_P2 },
396 	};
397 
398 	return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
399 }
400 
401 int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
402 {
403 	static const struct zd_ioreq32 reqs[2] = {
404 		[0] = { .addr = CR_BSSID_P1 },
405 		[1] = { .addr = CR_BSSID_P2 },
406 	};
407 
408 	return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
409 }
410 
411 int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
412 {
413 	int r;
414 	u32 value;
415 
416 	mutex_lock(&chip->mutex);
417 	r = zd_ioread32_locked(chip, &value, E2P_SUBID);
418 	mutex_unlock(&chip->mutex);
419 	if (r)
420 		return r;
421 
422 	*regdomain = value >> 16;
423 	dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
424 
425 	return 0;
426 }
427 
428 static int read_values(struct zd_chip *chip, u8 *values, size_t count,
429 	               zd_addr_t e2p_addr, u32 guard)
430 {
431 	int r;
432 	int i;
433 	u32 v;
434 
435 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
436 	for (i = 0;;) {
437 		r = zd_ioread32_locked(chip, &v,
438 			               (zd_addr_t)((u16)e2p_addr+i/2));
439 		if (r)
440 			return r;
441 		v -= guard;
442 		if (i+4 < count) {
443 			values[i++] = v;
444 			values[i++] = v >>  8;
445 			values[i++] = v >> 16;
446 			values[i++] = v >> 24;
447 			continue;
448 		}
449 		for (;i < count; i++)
450 			values[i] = v >> (8*(i%3));
451 		return 0;
452 	}
453 }
454 
455 static int read_pwr_cal_values(struct zd_chip *chip)
456 {
457 	return read_values(chip, chip->pwr_cal_values,
458 		        E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
459 			0);
460 }
461 
462 static int read_pwr_int_values(struct zd_chip *chip)
463 {
464 	return read_values(chip, chip->pwr_int_values,
465 		        E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
466 			E2P_PWR_INT_GUARD);
467 }
468 
469 static int read_ofdm_cal_values(struct zd_chip *chip)
470 {
471 	int r;
472 	int i;
473 	static const zd_addr_t addresses[] = {
474 		E2P_36M_CAL_VALUE1,
475 		E2P_48M_CAL_VALUE1,
476 		E2P_54M_CAL_VALUE1,
477 	};
478 
479 	for (i = 0; i < 3; i++) {
480 		r = read_values(chip, chip->ofdm_cal_values[i],
481 				E2P_CHANNEL_COUNT, addresses[i], 0);
482 		if (r)
483 			return r;
484 	}
485 	return 0;
486 }
487 
488 static int read_cal_int_tables(struct zd_chip *chip)
489 {
490 	int r;
491 
492 	r = read_pwr_cal_values(chip);
493 	if (r)
494 		return r;
495 	r = read_pwr_int_values(chip);
496 	if (r)
497 		return r;
498 	r = read_ofdm_cal_values(chip);
499 	if (r)
500 		return r;
501 	return 0;
502 }
503 
504 /* phy means physical registers */
505 int zd_chip_lock_phy_regs(struct zd_chip *chip)
506 {
507 	int r;
508 	u32 tmp;
509 
510 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
511 	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
512 	if (r) {
513 		dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
514 		return r;
515 	}
516 
517 	tmp &= ~UNLOCK_PHY_REGS;
518 
519 	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
520 	if (r)
521 		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
522 	return r;
523 }
524 
525 int zd_chip_unlock_phy_regs(struct zd_chip *chip)
526 {
527 	int r;
528 	u32 tmp;
529 
530 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
531 	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
532 	if (r) {
533 		dev_err(zd_chip_dev(chip),
534 			"error ioread32(CR_REG1): %d\n", r);
535 		return r;
536 	}
537 
538 	tmp |= UNLOCK_PHY_REGS;
539 
540 	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
541 	if (r)
542 		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
543 	return r;
544 }
545 
546 /* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
547 static int patch_cr157(struct zd_chip *chip)
548 {
549 	int r;
550 	u16 value;
551 
552 	if (!chip->patch_cr157)
553 		return 0;
554 
555 	r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
556 	if (r)
557 		return r;
558 
559 	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
560 	return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
561 }
562 
563 /*
564  * 6M band edge can be optionally overwritten for certain RF's
565  * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
566  * bit (for AL2230, AL2230S)
567  */
568 static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
569 {
570 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
571 	if (!chip->patch_6m_band_edge)
572 		return 0;
573 
574 	return zd_rf_patch_6m_band_edge(&chip->rf, channel);
575 }
576 
577 /* Generic implementation of 6M band edge patching, used by most RFs via
578  * zd_rf_generic_patch_6m() */
579 int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
580 {
581 	struct zd_ioreq16 ioreqs[] = {
582 		{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
583 		{ ZD_CR47,  0x1e },
584 	};
585 
586 	/* FIXME: Channel 11 is not the edge for all regulatory domains. */
587 	if (channel == 1 || channel == 11)
588 		ioreqs[0].value = 0x12;
589 
590 	dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
591 	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
592 }
593 
594 static int zd1211_hw_reset_phy(struct zd_chip *chip)
595 {
596 	static const struct zd_ioreq16 ioreqs[] = {
597 		{ ZD_CR0,   0x0a }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
598 		{ ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xa0 },
599 		{ ZD_CR10,  0x81 }, { ZD_CR11,  0x00 }, { ZD_CR12,  0x7f },
600 		{ ZD_CR13,  0x8c }, { ZD_CR14,  0x80 }, { ZD_CR15,  0x3d },
601 		{ ZD_CR16,  0x20 }, { ZD_CR17,  0x1e }, { ZD_CR18,  0x0a },
602 		{ ZD_CR19,  0x48 }, { ZD_CR20,  0x0c }, { ZD_CR21,  0x0c },
603 		{ ZD_CR22,  0x23 }, { ZD_CR23,  0x90 }, { ZD_CR24,  0x14 },
604 		{ ZD_CR25,  0x40 }, { ZD_CR26,  0x10 }, { ZD_CR27,  0x19 },
605 		{ ZD_CR28,  0x7f }, { ZD_CR29,  0x80 }, { ZD_CR30,  0x4b },
606 		{ ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
607 		{ ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
608 		{ ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
609 		{ ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
610 		{ ZD_CR43,  0x10 }, { ZD_CR44,  0x12 }, { ZD_CR46,  0xff },
611 		{ ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
612 		{ ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
613 		{ ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
614 		{ ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
615 		{ ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
616 		{ ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
617 		{ ZD_CR79,  0x68 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
618 		{ ZD_CR82,  0x00 }, { ZD_CR83,  0x00 }, { ZD_CR84,  0x00 },
619 		{ ZD_CR85,  0x02 }, { ZD_CR86,  0x00 }, { ZD_CR87,  0x00 },
620 		{ ZD_CR88,  0xff }, { ZD_CR89,  0xfc }, { ZD_CR90,  0x00 },
621 		{ ZD_CR91,  0x00 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x08 },
622 		{ ZD_CR94,  0x00 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0xff },
623 		{ ZD_CR97,  0xe7 }, { ZD_CR98,  0x00 }, { ZD_CR99,  0x00 },
624 		{ ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
625 		{ ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
626 		{ ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
627 		{ ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
628 		{ ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
629 		{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
630 		{ },
631 		{ ZD_CR5,   0x00 }, { ZD_CR6,   0x00 }, { ZD_CR7,   0x00 },
632 		{ ZD_CR8,   0x00 }, { ZD_CR9,   0x20 }, { ZD_CR12,  0xf0 },
633 		{ ZD_CR20,  0x0e }, { ZD_CR21,  0x0e }, { ZD_CR27,  0x10 },
634 		{ ZD_CR44,  0x33 }, { ZD_CR47,  0x1E }, { ZD_CR83,  0x24 },
635 		{ ZD_CR84,  0x04 }, { ZD_CR85,  0x00 }, { ZD_CR86,  0x0C },
636 		{ ZD_CR87,  0x12 }, { ZD_CR88,  0x0C }, { ZD_CR89,  0x00 },
637 		{ ZD_CR90,  0x10 }, { ZD_CR91,  0x08 }, { ZD_CR93,  0x00 },
638 		{ ZD_CR94,  0x01 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0x50 },
639 		{ ZD_CR97,  0x37 }, { ZD_CR98,  0x35 }, { ZD_CR101, 0x13 },
640 		{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
641 		{ ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
642 		{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
643 		{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
644 		{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
645 		{ ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
646 		{ ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
647 		{ ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
648 		{ ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
649 		{ ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
650 		{ ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
651 		{ ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
652 		{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
653 		{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
654 		{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
655 		{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
656 		/* Note: ZD_CR204 must lead the ZD_CR203 */
657 		{ ZD_CR204, 0x7d },
658 		{ },
659 		{ ZD_CR203, 0x30 },
660 	};
661 
662 	int r, t;
663 
664 	dev_dbg_f(zd_chip_dev(chip), "\n");
665 
666 	r = zd_chip_lock_phy_regs(chip);
667 	if (r)
668 		goto out;
669 
670 	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
671 	if (r)
672 		goto unlock;
673 
674 	r = patch_cr157(chip);
675 unlock:
676 	t = zd_chip_unlock_phy_regs(chip);
677 	if (t && !r)
678 		r = t;
679 out:
680 	return r;
681 }
682 
683 static int zd1211b_hw_reset_phy(struct zd_chip *chip)
684 {
685 	static const struct zd_ioreq16 ioreqs[] = {
686 		{ ZD_CR0,   0x14 }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
687 		{ ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xe0 },
688 		{ ZD_CR10,  0x81 },
689 		/* power control { { ZD_CR11,  1 << 6 }, */
690 		{ ZD_CR11,  0x00 },
691 		{ ZD_CR12,  0xf0 }, { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 },
692 		{ ZD_CR15,  0x3d }, { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e },
693 		{ ZD_CR18,  0x0a }, { ZD_CR19,  0x48 },
694 		{ ZD_CR20,  0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
695 		{ ZD_CR21,  0x0e }, { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 },
696 		{ ZD_CR24,  0x14 }, { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 },
697 		{ ZD_CR27,  0x10 }, { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 },
698 		{ ZD_CR30,  0x4b }, /* ASIC/FWT, no jointly decoder */
699 		{ ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
700 		{ ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
701 		{ ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
702 		{ ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
703 		{ ZD_CR43,  0x10 }, { ZD_CR44,  0x33 }, { ZD_CR46,  0xff },
704 		{ ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
705 		{ ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
706 		{ ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
707 		{ ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
708 		{ ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
709 		{ ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
710 		{ ZD_CR79,  0xf0 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
711 		{ ZD_CR82,  0x00 }, { ZD_CR83,  0x24 }, { ZD_CR84,  0x04 },
712 		{ ZD_CR85,  0x00 }, { ZD_CR86,  0x0c }, { ZD_CR87,  0x12 },
713 		{ ZD_CR88,  0x0c }, { ZD_CR89,  0x00 }, { ZD_CR90,  0x58 },
714 		{ ZD_CR91,  0x04 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x00 },
715 		{ ZD_CR94,  0x01 },
716 		{ ZD_CR95,  0x20 }, /* ZD1211B */
717 		{ ZD_CR96,  0x50 }, { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 },
718 		{ ZD_CR99,  0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
719 		{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
720 		{ ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
721 		{ ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
722 		{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
723 		{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
724 		{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
725 		{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
726 		{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
727 		{ ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
728 		{ ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
729 		{ ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
730 		{ ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
731 		{ ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
732 		{ ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
733 		{ ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
734 		{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
735 		{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
736 		{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
737 		{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
738 		/* Note: ZD_CR204 must lead the ZD_CR203 */
739 		{ ZD_CR204, 0x7d },
740 		{},
741 		{ ZD_CR203, 0x30 },
742 	};
743 
744 	int r, t;
745 
746 	dev_dbg_f(zd_chip_dev(chip), "\n");
747 
748 	r = zd_chip_lock_phy_regs(chip);
749 	if (r)
750 		goto out;
751 
752 	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
753 	t = zd_chip_unlock_phy_regs(chip);
754 	if (t && !r)
755 		r = t;
756 out:
757 	return r;
758 }
759 
760 static int hw_reset_phy(struct zd_chip *chip)
761 {
762 	return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
763 		                  zd1211_hw_reset_phy(chip);
764 }
765 
766 static int zd1211_hw_init_hmac(struct zd_chip *chip)
767 {
768 	static const struct zd_ioreq32 ioreqs[] = {
769 		{ CR_ZD1211_RETRY_MAX,		ZD1211_RETRY_COUNT },
770 		{ CR_RX_THRESHOLD,		0x000c0640 },
771 	};
772 
773 	dev_dbg_f(zd_chip_dev(chip), "\n");
774 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
775 	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
776 }
777 
778 static int zd1211b_hw_init_hmac(struct zd_chip *chip)
779 {
780 	static const struct zd_ioreq32 ioreqs[] = {
781 		{ CR_ZD1211B_RETRY_MAX,		ZD1211B_RETRY_COUNT },
782 		{ CR_ZD1211B_CWIN_MAX_MIN_AC0,	0x007f003f },
783 		{ CR_ZD1211B_CWIN_MAX_MIN_AC1,	0x007f003f },
784 		{ CR_ZD1211B_CWIN_MAX_MIN_AC2,  0x003f001f },
785 		{ CR_ZD1211B_CWIN_MAX_MIN_AC3,  0x001f000f },
786 		{ CR_ZD1211B_AIFS_CTL1,		0x00280028 },
787 		{ CR_ZD1211B_AIFS_CTL2,		0x008C003C },
788 		{ CR_ZD1211B_TXOP,		0x01800824 },
789 		{ CR_RX_THRESHOLD,		0x000c0eff, },
790 	};
791 
792 	dev_dbg_f(zd_chip_dev(chip), "\n");
793 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
794 	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
795 }
796 
797 static int hw_init_hmac(struct zd_chip *chip)
798 {
799 	int r;
800 	static const struct zd_ioreq32 ioreqs[] = {
801 		{ CR_ACK_TIMEOUT_EXT,		0x20 },
802 		{ CR_ADDA_MBIAS_WARMTIME,	0x30000808 },
803 		{ CR_SNIFFER_ON,		0 },
804 		{ CR_RX_FILTER,			STA_RX_FILTER },
805 		{ CR_GROUP_HASH_P1,		0x00 },
806 		{ CR_GROUP_HASH_P2,		0x80000000 },
807 		{ CR_REG1,			0xa4 },
808 		{ CR_ADDA_PWR_DWN,		0x7f },
809 		{ CR_BCN_PLCP_CFG,		0x00f00401 },
810 		{ CR_PHY_DELAY,			0x00 },
811 		{ CR_ACK_TIMEOUT_EXT,		0x80 },
812 		{ CR_ADDA_PWR_DWN,		0x00 },
813 		{ CR_ACK_TIME_80211,		0x100 },
814 		{ CR_RX_PE_DELAY,		0x70 },
815 		{ CR_PS_CTRL,			0x10000000 },
816 		{ CR_RTS_CTS_RATE,		0x02030203 },
817 		{ CR_AFTER_PNP,			0x1 },
818 		{ CR_WEP_PROTECT,		0x114 },
819 		{ CR_IFS_VALUE,			IFS_VALUE_DEFAULT },
820 		{ CR_CAM_MODE,			MODE_AP_WDS},
821 	};
822 
823 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
824 	r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
825 	if (r)
826 		return r;
827 
828 	return zd_chip_is_zd1211b(chip) ?
829 		zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
830 }
831 
832 struct aw_pt_bi {
833 	u32 atim_wnd_period;
834 	u32 pre_tbtt;
835 	u32 beacon_interval;
836 };
837 
838 static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
839 {
840 	int r;
841 	static const zd_addr_t aw_pt_bi_addr[] =
842 		{ CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
843 	u32 values[3];
844 
845 	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
846 		         ARRAY_SIZE(aw_pt_bi_addr));
847 	if (r) {
848 		memset(s, 0, sizeof(*s));
849 		return r;
850 	}
851 
852 	s->atim_wnd_period = values[0];
853 	s->pre_tbtt = values[1];
854 	s->beacon_interval = values[2];
855 	return 0;
856 }
857 
858 static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
859 {
860 	struct zd_ioreq32 reqs[3];
861 	u16 b_interval = s->beacon_interval & 0xffff;
862 
863 	if (b_interval <= 5)
864 		b_interval = 5;
865 	if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
866 		s->pre_tbtt = b_interval - 1;
867 	if (s->atim_wnd_period >= s->pre_tbtt)
868 		s->atim_wnd_period = s->pre_tbtt - 1;
869 
870 	reqs[0].addr = CR_ATIM_WND_PERIOD;
871 	reqs[0].value = s->atim_wnd_period;
872 	reqs[1].addr = CR_PRE_TBTT;
873 	reqs[1].value = s->pre_tbtt;
874 	reqs[2].addr = CR_BCN_INTERVAL;
875 	reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
876 
877 	return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
878 }
879 
880 
881 static int set_beacon_interval(struct zd_chip *chip, u16 interval,
882 			       u8 dtim_period, int type)
883 {
884 	int r;
885 	struct aw_pt_bi s;
886 	u32 b_interval, mode_flag;
887 
888 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
889 
890 	if (interval > 0) {
891 		switch (type) {
892 		case NL80211_IFTYPE_ADHOC:
893 		case NL80211_IFTYPE_MESH_POINT:
894 			mode_flag = BCN_MODE_IBSS;
895 			break;
896 		case NL80211_IFTYPE_AP:
897 			mode_flag = BCN_MODE_AP;
898 			break;
899 		default:
900 			mode_flag = 0;
901 			break;
902 		}
903 	} else {
904 		dtim_period = 0;
905 		mode_flag = 0;
906 	}
907 
908 	b_interval = mode_flag | (dtim_period << 16) | interval;
909 
910 	r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
911 	if (r)
912 		return r;
913 	r = get_aw_pt_bi(chip, &s);
914 	if (r)
915 		return r;
916 	return set_aw_pt_bi(chip, &s);
917 }
918 
919 int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
920 			   int type)
921 {
922 	int r;
923 
924 	mutex_lock(&chip->mutex);
925 	r = set_beacon_interval(chip, interval, dtim_period, type);
926 	mutex_unlock(&chip->mutex);
927 	return r;
928 }
929 
930 static int hw_init(struct zd_chip *chip)
931 {
932 	int r;
933 
934 	dev_dbg_f(zd_chip_dev(chip), "\n");
935 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
936 	r = hw_reset_phy(chip);
937 	if (r)
938 		return r;
939 
940 	r = hw_init_hmac(chip);
941 	if (r)
942 		return r;
943 
944 	return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
945 }
946 
947 static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
948 {
949 	return (zd_addr_t)((u16)chip->fw_regs_base + offset);
950 }
951 
952 #ifdef DEBUG
953 static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
954 	           const char *addr_string)
955 {
956 	int r;
957 	u32 value;
958 
959 	r = zd_ioread32_locked(chip, &value, addr);
960 	if (r) {
961 		dev_dbg_f(zd_chip_dev(chip),
962 			"error reading %s. Error number %d\n", addr_string, r);
963 		return r;
964 	}
965 
966 	dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
967 		addr_string, (unsigned int)value);
968 	return 0;
969 }
970 
971 static int test_init(struct zd_chip *chip)
972 {
973 	int r;
974 
975 	r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
976 	if (r)
977 		return r;
978 	r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
979 	if (r)
980 		return r;
981 	return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
982 }
983 
984 static void dump_fw_registers(struct zd_chip *chip)
985 {
986 	const zd_addr_t addr[4] = {
987 		fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
988 		fw_reg_addr(chip, FW_REG_USB_SPEED),
989 		fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
990 		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
991 	};
992 
993 	int r;
994 	u16 values[4];
995 
996 	r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
997 		         ARRAY_SIZE(addr));
998 	if (r) {
999 		dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1000 			 r);
1001 		return;
1002 	}
1003 
1004 	dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1005 	dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1006 	dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1007 	dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1008 }
1009 #endif /* DEBUG */
1010 
1011 static int print_fw_version(struct zd_chip *chip)
1012 {
1013 	struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1014 	int r;
1015 	u16 version;
1016 
1017 	r = zd_ioread16_locked(chip, &version,
1018 		fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1019 	if (r)
1020 		return r;
1021 
1022 	dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1023 
1024 	snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1025 			"%04hx", version);
1026 
1027 	return 0;
1028 }
1029 
1030 static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1031 {
1032 	u32 rates;
1033 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1034 	/* This sets the mandatory rates, which only depend from the standard
1035 	 * that the device is supporting. Until further notice we should try
1036 	 * to support 802.11g also for full speed USB.
1037 	 */
1038 	if (!gmode)
1039 		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1040 	else
1041 		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1042 			CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1043 
1044 	return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1045 }
1046 
1047 int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1048 				    int preamble)
1049 {
1050 	u32 value = 0;
1051 
1052 	dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1053 	value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1054 	value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1055 
1056 	/* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1057 	value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1058 	value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1059 	value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1060 	value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1061 
1062 	return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1063 }
1064 
1065 int zd_chip_enable_hwint(struct zd_chip *chip)
1066 {
1067 	int r;
1068 
1069 	mutex_lock(&chip->mutex);
1070 	r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1071 	mutex_unlock(&chip->mutex);
1072 	return r;
1073 }
1074 
1075 static int disable_hwint(struct zd_chip *chip)
1076 {
1077 	return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1078 }
1079 
1080 int zd_chip_disable_hwint(struct zd_chip *chip)
1081 {
1082 	int r;
1083 
1084 	mutex_lock(&chip->mutex);
1085 	r = disable_hwint(chip);
1086 	mutex_unlock(&chip->mutex);
1087 	return r;
1088 }
1089 
1090 static int read_fw_regs_offset(struct zd_chip *chip)
1091 {
1092 	int r;
1093 
1094 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1095 	r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1096 		               FWRAW_REGS_ADDR);
1097 	if (r)
1098 		return r;
1099 	dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1100 		  (u16)chip->fw_regs_base);
1101 
1102 	return 0;
1103 }
1104 
1105 /* Read mac address using pre-firmware interface */
1106 int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1107 {
1108 	dev_dbg_f(zd_chip_dev(chip), "\n");
1109 	return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1110 		ETH_ALEN);
1111 }
1112 
1113 int zd_chip_init_hw(struct zd_chip *chip)
1114 {
1115 	int r;
1116 	u8 rf_type;
1117 
1118 	dev_dbg_f(zd_chip_dev(chip), "\n");
1119 
1120 	mutex_lock(&chip->mutex);
1121 
1122 #ifdef DEBUG
1123 	r = test_init(chip);
1124 	if (r)
1125 		goto out;
1126 #endif
1127 	r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1128 	if (r)
1129 		goto out;
1130 
1131 	r = read_fw_regs_offset(chip);
1132 	if (r)
1133 		goto out;
1134 
1135 	/* GPI is always disabled, also in the other driver.
1136 	 */
1137 	r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1138 	if (r)
1139 		goto out;
1140 	r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1141 	if (r)
1142 		goto out;
1143 	/* Currently we support IEEE 802.11g for full and high speed USB.
1144 	 * It might be discussed, whether we should support pure b mode for
1145 	 * full speed USB.
1146 	 */
1147 	r = set_mandatory_rates(chip, 1);
1148 	if (r)
1149 		goto out;
1150 	/* Disabling interrupts is certainly a smart thing here.
1151 	 */
1152 	r = disable_hwint(chip);
1153 	if (r)
1154 		goto out;
1155 	r = read_pod(chip, &rf_type);
1156 	if (r)
1157 		goto out;
1158 	r = hw_init(chip);
1159 	if (r)
1160 		goto out;
1161 	r = zd_rf_init_hw(&chip->rf, rf_type);
1162 	if (r)
1163 		goto out;
1164 
1165 	r = print_fw_version(chip);
1166 	if (r)
1167 		goto out;
1168 
1169 #ifdef DEBUG
1170 	dump_fw_registers(chip);
1171 	r = test_init(chip);
1172 	if (r)
1173 		goto out;
1174 #endif /* DEBUG */
1175 
1176 	r = read_cal_int_tables(chip);
1177 	if (r)
1178 		goto out;
1179 
1180 	print_id(chip);
1181 out:
1182 	mutex_unlock(&chip->mutex);
1183 	return r;
1184 }
1185 
1186 static int update_pwr_int(struct zd_chip *chip, u8 channel)
1187 {
1188 	u8 value = chip->pwr_int_values[channel - 1];
1189 	return zd_iowrite16_locked(chip, value, ZD_CR31);
1190 }
1191 
1192 static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1193 {
1194 	u8 value = chip->pwr_cal_values[channel-1];
1195 	return zd_iowrite16_locked(chip, value, ZD_CR68);
1196 }
1197 
1198 static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1199 {
1200 	struct zd_ioreq16 ioreqs[3];
1201 
1202 	ioreqs[0].addr = ZD_CR67;
1203 	ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1204 	ioreqs[1].addr = ZD_CR66;
1205 	ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1206 	ioreqs[2].addr = ZD_CR65;
1207 	ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1208 
1209 	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1210 }
1211 
1212 static int update_channel_integration_and_calibration(struct zd_chip *chip,
1213 	                                              u8 channel)
1214 {
1215 	int r;
1216 
1217 	if (!zd_rf_should_update_pwr_int(&chip->rf))
1218 		return 0;
1219 
1220 	r = update_pwr_int(chip, channel);
1221 	if (r)
1222 		return r;
1223 	if (zd_chip_is_zd1211b(chip)) {
1224 		static const struct zd_ioreq16 ioreqs[] = {
1225 			{ ZD_CR69, 0x28 },
1226 			{},
1227 			{ ZD_CR69, 0x2a },
1228 		};
1229 
1230 		r = update_ofdm_cal(chip, channel);
1231 		if (r)
1232 			return r;
1233 		r = update_pwr_cal(chip, channel);
1234 		if (r)
1235 			return r;
1236 		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1237 		if (r)
1238 			return r;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 /* The CCK baseband gain can be optionally patched by the EEPROM */
1245 static int patch_cck_gain(struct zd_chip *chip)
1246 {
1247 	int r;
1248 	u32 value;
1249 
1250 	if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1251 		return 0;
1252 
1253 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1254 	r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1255 	if (r)
1256 		return r;
1257 	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1258 	return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1259 }
1260 
1261 int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1262 {
1263 	int r, t;
1264 
1265 	mutex_lock(&chip->mutex);
1266 	r = zd_chip_lock_phy_regs(chip);
1267 	if (r)
1268 		goto out;
1269 	r = zd_rf_set_channel(&chip->rf, channel);
1270 	if (r)
1271 		goto unlock;
1272 	r = update_channel_integration_and_calibration(chip, channel);
1273 	if (r)
1274 		goto unlock;
1275 	r = patch_cck_gain(chip);
1276 	if (r)
1277 		goto unlock;
1278 	r = patch_6m_band_edge(chip, channel);
1279 	if (r)
1280 		goto unlock;
1281 	r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1282 unlock:
1283 	t = zd_chip_unlock_phy_regs(chip);
1284 	if (t && !r)
1285 		r = t;
1286 out:
1287 	mutex_unlock(&chip->mutex);
1288 	return r;
1289 }
1290 
1291 u8 zd_chip_get_channel(struct zd_chip *chip)
1292 {
1293 	u8 channel;
1294 
1295 	mutex_lock(&chip->mutex);
1296 	channel = chip->rf.channel;
1297 	mutex_unlock(&chip->mutex);
1298 	return channel;
1299 }
1300 
1301 int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1302 {
1303 	const zd_addr_t a[] = {
1304 		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1305 		CR_LED,
1306 	};
1307 
1308 	int r;
1309 	u16 v[ARRAY_SIZE(a)];
1310 	struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1311 		[0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1312 		[1] = { CR_LED },
1313 	};
1314 	u16 other_led;
1315 
1316 	mutex_lock(&chip->mutex);
1317 	r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1318 	if (r)
1319 		goto out;
1320 
1321 	other_led = chip->link_led == LED1 ? LED2 : LED1;
1322 
1323 	switch (status) {
1324 	case ZD_LED_OFF:
1325 		ioreqs[0].value = FW_LINK_OFF;
1326 		ioreqs[1].value = v[1] & ~(LED1|LED2);
1327 		break;
1328 	case ZD_LED_SCANNING:
1329 		ioreqs[0].value = FW_LINK_OFF;
1330 		ioreqs[1].value = v[1] & ~other_led;
1331 		if ((u32)ktime_get_seconds() % 3 == 0) {
1332 			ioreqs[1].value &= ~chip->link_led;
1333 		} else {
1334 			ioreqs[1].value |= chip->link_led;
1335 		}
1336 		break;
1337 	case ZD_LED_ASSOCIATED:
1338 		ioreqs[0].value = FW_LINK_TX;
1339 		ioreqs[1].value = v[1] & ~other_led;
1340 		ioreqs[1].value |= chip->link_led;
1341 		break;
1342 	default:
1343 		r = -EINVAL;
1344 		goto out;
1345 	}
1346 
1347 	if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1348 		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1349 		if (r)
1350 			goto out;
1351 	}
1352 	r = 0;
1353 out:
1354 	mutex_unlock(&chip->mutex);
1355 	return r;
1356 }
1357 
1358 int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1359 {
1360 	int r;
1361 
1362 	if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1363 		return -EINVAL;
1364 
1365 	mutex_lock(&chip->mutex);
1366 	r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1367 	mutex_unlock(&chip->mutex);
1368 	return r;
1369 }
1370 
1371 static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1372 {
1373 	return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1374 }
1375 
1376 /**
1377  * zd_rx_rate - report zd-rate
1378  * @rx_frame - received frame
1379  * @rx_status - rx_status as given by the device
1380  *
1381  * This function converts the rate as encoded in the received packet to the
1382  * zd-rate, we are using on other places in the driver.
1383  */
1384 u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1385 {
1386 	u8 zd_rate;
1387 	if (status->frame_status & ZD_RX_OFDM) {
1388 		zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1389 	} else {
1390 		switch (zd_cck_plcp_header_signal(rx_frame)) {
1391 		case ZD_CCK_PLCP_SIGNAL_1M:
1392 			zd_rate = ZD_CCK_RATE_1M;
1393 			break;
1394 		case ZD_CCK_PLCP_SIGNAL_2M:
1395 			zd_rate = ZD_CCK_RATE_2M;
1396 			break;
1397 		case ZD_CCK_PLCP_SIGNAL_5M5:
1398 			zd_rate = ZD_CCK_RATE_5_5M;
1399 			break;
1400 		case ZD_CCK_PLCP_SIGNAL_11M:
1401 			zd_rate = ZD_CCK_RATE_11M;
1402 			break;
1403 		default:
1404 			zd_rate = 0;
1405 		}
1406 	}
1407 
1408 	return zd_rate;
1409 }
1410 
1411 int zd_chip_switch_radio_on(struct zd_chip *chip)
1412 {
1413 	int r;
1414 
1415 	mutex_lock(&chip->mutex);
1416 	r = zd_switch_radio_on(&chip->rf);
1417 	mutex_unlock(&chip->mutex);
1418 	return r;
1419 }
1420 
1421 int zd_chip_switch_radio_off(struct zd_chip *chip)
1422 {
1423 	int r;
1424 
1425 	mutex_lock(&chip->mutex);
1426 	r = zd_switch_radio_off(&chip->rf);
1427 	mutex_unlock(&chip->mutex);
1428 	return r;
1429 }
1430 
1431 int zd_chip_enable_int(struct zd_chip *chip)
1432 {
1433 	int r;
1434 
1435 	mutex_lock(&chip->mutex);
1436 	r = zd_usb_enable_int(&chip->usb);
1437 	mutex_unlock(&chip->mutex);
1438 	return r;
1439 }
1440 
1441 void zd_chip_disable_int(struct zd_chip *chip)
1442 {
1443 	mutex_lock(&chip->mutex);
1444 	zd_usb_disable_int(&chip->usb);
1445 	mutex_unlock(&chip->mutex);
1446 
1447 	/* cancel pending interrupt work */
1448 	cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1449 }
1450 
1451 int zd_chip_enable_rxtx(struct zd_chip *chip)
1452 {
1453 	int r;
1454 
1455 	mutex_lock(&chip->mutex);
1456 	zd_usb_enable_tx(&chip->usb);
1457 	r = zd_usb_enable_rx(&chip->usb);
1458 	zd_tx_watchdog_enable(&chip->usb);
1459 	mutex_unlock(&chip->mutex);
1460 	return r;
1461 }
1462 
1463 void zd_chip_disable_rxtx(struct zd_chip *chip)
1464 {
1465 	mutex_lock(&chip->mutex);
1466 	zd_tx_watchdog_disable(&chip->usb);
1467 	zd_usb_disable_rx(&chip->usb);
1468 	zd_usb_disable_tx(&chip->usb);
1469 	mutex_unlock(&chip->mutex);
1470 }
1471 
1472 int zd_rfwritev_locked(struct zd_chip *chip,
1473 	               const u32* values, unsigned int count, u8 bits)
1474 {
1475 	int r;
1476 	unsigned int i;
1477 
1478 	for (i = 0; i < count; i++) {
1479 		r = zd_rfwrite_locked(chip, values[i], bits);
1480 		if (r)
1481 			return r;
1482 	}
1483 
1484 	return 0;
1485 }
1486 
1487 /*
1488  * We can optionally program the RF directly through CR regs, if supported by
1489  * the hardware. This is much faster than the older method.
1490  */
1491 int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1492 {
1493 	const struct zd_ioreq16 ioreqs[] = {
1494 		{ ZD_CR244, (value >> 16) & 0xff },
1495 		{ ZD_CR243, (value >>  8) & 0xff },
1496 		{ ZD_CR242,  value        & 0xff },
1497 	};
1498 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1499 	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1500 }
1501 
1502 int zd_rfwritev_cr_locked(struct zd_chip *chip,
1503 	                  const u32 *values, unsigned int count)
1504 {
1505 	int r;
1506 	unsigned int i;
1507 
1508 	for (i = 0; i < count; i++) {
1509 		r = zd_rfwrite_cr_locked(chip, values[i]);
1510 		if (r)
1511 			return r;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 int zd_chip_set_multicast_hash(struct zd_chip *chip,
1518 	                       struct zd_mc_hash *hash)
1519 {
1520 	const struct zd_ioreq32 ioreqs[] = {
1521 		{ CR_GROUP_HASH_P1, hash->low },
1522 		{ CR_GROUP_HASH_P2, hash->high },
1523 	};
1524 
1525 	return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1526 }
1527 
1528 u64 zd_chip_get_tsf(struct zd_chip *chip)
1529 {
1530 	int r;
1531 	static const zd_addr_t aw_pt_bi_addr[] =
1532 		{ CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1533 	u32 values[2];
1534 	u64 tsf;
1535 
1536 	mutex_lock(&chip->mutex);
1537 	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1538 	                        ARRAY_SIZE(aw_pt_bi_addr));
1539 	mutex_unlock(&chip->mutex);
1540 	if (r)
1541 		return 0;
1542 
1543 	tsf = values[1];
1544 	tsf = (tsf << 32) | values[0];
1545 
1546 	return tsf;
1547 }
1548