xref: /linux/drivers/net/wireless/rsi/rsi_91x_mgmt.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /**
2  * Copyright (c) 2014 Redpine Signals Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/etherdevice.h>
18 #include "rsi_mgmt.h"
19 #include "rsi_common.h"
20 #include "rsi_ps.h"
21 #include "rsi_hal.h"
22 
23 static struct bootup_params boot_params_20 = {
24 	.magic_number = cpu_to_le16(0x5aa5),
25 	.crystal_good_time = 0x0,
26 	.valid = cpu_to_le32(VALID_20),
27 	.reserved_for_valids = 0x0,
28 	.bootup_mode_info = 0x0,
29 	.digital_loop_back_params = 0x0,
30 	.rtls_timestamp_en = 0x0,
31 	.host_spi_intr_cfg = 0x0,
32 	.device_clk_info = {{
33 		.pll_config_g = {
34 			.tapll_info_g = {
35 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
36 					      (TA_PLL_M_VAL_20)),
37 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
38 			},
39 			.pll960_info_g = {
40 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
41 							 (PLL960_N_VAL_20)),
42 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
43 				.pll_reg_3 = 0x0,
44 			},
45 			.afepll_info_g = {
46 				.pll_reg = cpu_to_le16(0x9f0),
47 			}
48 		},
49 		.switch_clk_g = {
50 			.switch_clk_info = cpu_to_le16(0xb),
51 			.bbp_lmac_clk_reg_val = cpu_to_le16(0x111),
52 			.umac_clock_reg_config = cpu_to_le16(0x48),
53 			.qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
54 		}
55 	},
56 	{
57 		.pll_config_g = {
58 			.tapll_info_g = {
59 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
60 							 (TA_PLL_M_VAL_20)),
61 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
62 			},
63 			.pll960_info_g = {
64 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
65 							 (PLL960_N_VAL_20)),
66 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
67 				.pll_reg_3 = 0x0,
68 			},
69 			.afepll_info_g = {
70 				.pll_reg = cpu_to_le16(0x9f0),
71 			}
72 		},
73 		.switch_clk_g = {
74 			.switch_clk_info = 0x0,
75 			.bbp_lmac_clk_reg_val = 0x0,
76 			.umac_clock_reg_config = 0x0,
77 			.qspi_uart_clock_reg_config = 0x0
78 		}
79 	},
80 	{
81 		.pll_config_g = {
82 			.tapll_info_g = {
83 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
84 							 (TA_PLL_M_VAL_20)),
85 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
86 			},
87 			.pll960_info_g = {
88 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
89 							 (PLL960_N_VAL_20)),
90 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
91 				.pll_reg_3 = 0x0,
92 			},
93 			.afepll_info_g = {
94 				.pll_reg = cpu_to_le16(0x9f0),
95 			}
96 		},
97 		.switch_clk_g = {
98 			.switch_clk_info = 0x0,
99 			.bbp_lmac_clk_reg_val = 0x0,
100 			.umac_clock_reg_config = 0x0,
101 			.qspi_uart_clock_reg_config = 0x0
102 		}
103 	} },
104 	.buckboost_wakeup_cnt = 0x0,
105 	.pmu_wakeup_wait = 0x0,
106 	.shutdown_wait_time = 0x0,
107 	.pmu_slp_clkout_sel = 0x0,
108 	.wdt_prog_value = 0x0,
109 	.wdt_soc_rst_delay = 0x0,
110 	.dcdc_operation_mode = 0x0,
111 	.soc_reset_wait_cnt = 0x0,
112 	.waiting_time_at_fresh_sleep = 0x0,
113 	.max_threshold_to_avoid_sleep = 0x0,
114 	.beacon_resedue_alg_en = 0,
115 };
116 
117 static struct bootup_params boot_params_40 = {
118 	.magic_number = cpu_to_le16(0x5aa5),
119 	.crystal_good_time = 0x0,
120 	.valid = cpu_to_le32(VALID_40),
121 	.reserved_for_valids = 0x0,
122 	.bootup_mode_info = 0x0,
123 	.digital_loop_back_params = 0x0,
124 	.rtls_timestamp_en = 0x0,
125 	.host_spi_intr_cfg = 0x0,
126 	.device_clk_info = {{
127 		.pll_config_g = {
128 			.tapll_info_g = {
129 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
130 							 (TA_PLL_M_VAL_40)),
131 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
132 			},
133 			.pll960_info_g = {
134 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
135 							 (PLL960_N_VAL_40)),
136 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
137 				.pll_reg_3 = 0x0,
138 			},
139 			.afepll_info_g = {
140 				.pll_reg = cpu_to_le16(0x9f0),
141 			}
142 		},
143 		.switch_clk_g = {
144 			.switch_clk_info = cpu_to_le16(0x09),
145 			.bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
146 			.umac_clock_reg_config = cpu_to_le16(0x48),
147 			.qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
148 		}
149 	},
150 	{
151 		.pll_config_g = {
152 			.tapll_info_g = {
153 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
154 							 (TA_PLL_M_VAL_40)),
155 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
156 			},
157 			.pll960_info_g = {
158 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
159 							 (PLL960_N_VAL_40)),
160 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
161 				.pll_reg_3 = 0x0,
162 			},
163 			.afepll_info_g = {
164 				.pll_reg = cpu_to_le16(0x9f0),
165 			}
166 		},
167 		.switch_clk_g = {
168 			.switch_clk_info = 0x0,
169 			.bbp_lmac_clk_reg_val = 0x0,
170 			.umac_clock_reg_config = 0x0,
171 			.qspi_uart_clock_reg_config = 0x0
172 		}
173 	},
174 	{
175 		.pll_config_g = {
176 			.tapll_info_g = {
177 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
178 							 (TA_PLL_M_VAL_40)),
179 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
180 			},
181 			.pll960_info_g = {
182 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
183 							 (PLL960_N_VAL_40)),
184 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
185 				.pll_reg_3 = 0x0,
186 			},
187 			.afepll_info_g = {
188 				.pll_reg = cpu_to_le16(0x9f0),
189 			}
190 		},
191 		.switch_clk_g = {
192 			.switch_clk_info = 0x0,
193 			.bbp_lmac_clk_reg_val = 0x0,
194 			.umac_clock_reg_config = 0x0,
195 			.qspi_uart_clock_reg_config = 0x0
196 		}
197 	} },
198 	.buckboost_wakeup_cnt = 0x0,
199 	.pmu_wakeup_wait = 0x0,
200 	.shutdown_wait_time = 0x0,
201 	.pmu_slp_clkout_sel = 0x0,
202 	.wdt_prog_value = 0x0,
203 	.wdt_soc_rst_delay = 0x0,
204 	.dcdc_operation_mode = 0x0,
205 	.soc_reset_wait_cnt = 0x0,
206 	.waiting_time_at_fresh_sleep = 0x0,
207 	.max_threshold_to_avoid_sleep = 0x0,
208 	.beacon_resedue_alg_en = 0,
209 };
210 
211 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
212 
213 /**
214  * rsi_set_default_parameters() - This function sets default parameters.
215  * @common: Pointer to the driver private structure.
216  *
217  * Return: none
218  */
219 static void rsi_set_default_parameters(struct rsi_common *common)
220 {
221 	common->band = NL80211_BAND_2GHZ;
222 	common->channel_width = BW_20MHZ;
223 	common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
224 	common->channel = 1;
225 	common->min_rate = 0xffff;
226 	common->fsm_state = FSM_CARD_NOT_READY;
227 	common->iface_down = true;
228 	common->endpoint = EP_2GHZ_20MHZ;
229 	common->driver_mode = 1; /* End to end mode */
230 	common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/
231 	common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/
232 	common->rf_power_val = 0; /* Default 1.9V */
233 	common->wlan_rf_power_mode = 0;
234 	common->obm_ant_sel_val = 2;
235 	common->beacon_interval = RSI_BEACON_INTERVAL;
236 	common->dtim_cnt = RSI_DTIM_COUNT;
237 }
238 
239 /**
240  * rsi_set_contention_vals() - This function sets the contention values for the
241  *			       backoff procedure.
242  * @common: Pointer to the driver private structure.
243  *
244  * Return: None.
245  */
246 static void rsi_set_contention_vals(struct rsi_common *common)
247 {
248 	u8 ii = 0;
249 
250 	for (; ii < NUM_EDCA_QUEUES; ii++) {
251 		common->tx_qinfo[ii].wme_params =
252 			(((common->edca_params[ii].cw_min / 2) +
253 			  (common->edca_params[ii].aifs)) *
254 			  WMM_SHORT_SLOT_TIME + SIFS_DURATION);
255 		common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
256 		common->tx_qinfo[ii].pkt_contended = 0;
257 	}
258 }
259 
260 /**
261  * rsi_send_internal_mgmt_frame() - This function sends management frames to
262  *				    firmware.Also schedules packet to queue
263  *				    for transmission.
264  * @common: Pointer to the driver private structure.
265  * @skb: Pointer to the socket buffer structure.
266  *
267  * Return: 0 on success, -1 on failure.
268  */
269 static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
270 					struct sk_buff *skb)
271 {
272 	struct skb_info *tx_params;
273 	struct rsi_cmd_desc *desc;
274 
275 	if (skb == NULL) {
276 		rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
277 		return -ENOMEM;
278 	}
279 	desc = (struct rsi_cmd_desc *)skb->data;
280 	desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP);
281 	skb->priority = MGMT_SOFT_Q;
282 	tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
283 	tx_params->flags |= INTERNAL_MGMT_PKT;
284 	skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
285 	rsi_set_event(&common->tx_thread.event);
286 	return 0;
287 }
288 
289 /**
290  * rsi_load_radio_caps() - This function is used to send radio capabilities
291  *			   values to firmware.
292  * @common: Pointer to the driver private structure.
293  *
294  * Return: 0 on success, corresponding negative error code on failure.
295  */
296 static int rsi_load_radio_caps(struct rsi_common *common)
297 {
298 	struct rsi_radio_caps *radio_caps;
299 	struct rsi_hw *adapter = common->priv;
300 	u16 inx = 0;
301 	u8 ii;
302 	u8 radio_id = 0;
303 	u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
304 		      0xf0, 0xf0, 0xf0, 0xf0,
305 		      0xf0, 0xf0, 0xf0, 0xf0,
306 		      0xf0, 0xf0, 0xf0, 0xf0,
307 		      0xf0, 0xf0, 0xf0, 0xf0};
308 	struct sk_buff *skb;
309 	u16 frame_len = sizeof(struct rsi_radio_caps);
310 
311 	rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
312 
313 	skb = dev_alloc_skb(frame_len);
314 
315 	if (!skb) {
316 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
317 			__func__);
318 		return -ENOMEM;
319 	}
320 
321 	memset(skb->data, 0, frame_len);
322 	radio_caps = (struct rsi_radio_caps *)skb->data;
323 
324 	radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES;
325 	radio_caps->channel_num = common->channel;
326 	radio_caps->rf_model = RSI_RF_TYPE;
327 
328 	radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ;
329 	if (common->channel_width == BW_40MHZ) {
330 		radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ;
331 
332 		if (common->fsm_state == FSM_MAC_INIT_DONE) {
333 			struct ieee80211_hw *hw = adapter->hw;
334 			struct ieee80211_conf *conf = &hw->conf;
335 
336 			if (conf_is_ht40_plus(conf)) {
337 				radio_caps->radio_cfg_info =
338 					RSI_CMDDESC_LOWER_20_ENABLE;
339 				radio_caps->radio_info =
340 					RSI_CMDDESC_LOWER_20_ENABLE;
341 			} else if (conf_is_ht40_minus(conf)) {
342 				radio_caps->radio_cfg_info =
343 					RSI_CMDDESC_UPPER_20_ENABLE;
344 				radio_caps->radio_info =
345 					RSI_CMDDESC_UPPER_20_ENABLE;
346 			} else {
347 				radio_caps->radio_cfg_info =
348 					RSI_CMDDESC_40MHZ;
349 				radio_caps->radio_info =
350 					RSI_CMDDESC_FULL_40_ENABLE;
351 			}
352 		}
353 	}
354 	radio_caps->radio_info |= radio_id;
355 
356 	radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
357 	radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
358 	radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
359 	radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
360 	radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
361 	radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
362 
363 	for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
364 		radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
365 		radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
366 		radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
367 		radio_caps->qos_params[ii].txop_q = 0;
368 	}
369 
370 	for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) {
371 		radio_caps->qos_params[ii].cont_win_min_q =
372 			cpu_to_le16(common->edca_params[ii].cw_min);
373 		radio_caps->qos_params[ii].cont_win_max_q =
374 			cpu_to_le16(common->edca_params[ii].cw_max);
375 		radio_caps->qos_params[ii].aifsn_val_q =
376 			cpu_to_le16((common->edca_params[ii].aifs) << 8);
377 		radio_caps->qos_params[ii].txop_q =
378 			cpu_to_le16(common->edca_params[ii].txop);
379 	}
380 
381 	radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff);
382 	radio_caps->qos_params[MGMT_HW_Q].txop_q = 0;
383 	radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff);
384 
385 	memcpy(&common->rate_pwr[0], &gc[0], 40);
386 	for (ii = 0; ii < 20; ii++)
387 		radio_caps->gcpd_per_rate[inx++] =
388 			cpu_to_le16(common->rate_pwr[ii]  & 0x00FF);
389 
390 	rsi_set_len_qno(&radio_caps->desc_dword0.len_qno,
391 			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
392 
393 	skb_put(skb, frame_len);
394 
395 	return rsi_send_internal_mgmt_frame(common, skb);
396 }
397 
398 /**
399  * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
400  * @common: Pointer to the driver private structure.
401  * @msg: Pointer to received packet.
402  * @msg_len: Length of the recieved packet.
403  * @type: Type of recieved packet.
404  *
405  * Return: 0 on success, -1 on failure.
406  */
407 static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
408 				u8 *msg,
409 				s32 msg_len)
410 {
411 	struct rsi_hw *adapter = common->priv;
412 	struct ieee80211_tx_info *info;
413 	struct skb_info *rx_params;
414 	u8 pad_bytes = msg[4];
415 	struct sk_buff *skb;
416 
417 	if (!adapter->sc_nvifs)
418 		return -ENOLINK;
419 
420 	msg_len -= pad_bytes;
421 	if (msg_len <= 0) {
422 		rsi_dbg(MGMT_RX_ZONE,
423 			"%s: Invalid rx msg of len = %d\n",
424 			__func__, msg_len);
425 		return -EINVAL;
426 	}
427 
428 	skb = dev_alloc_skb(msg_len);
429 	if (!skb)
430 		return -ENOMEM;
431 
432 	skb_put_data(skb,
433 		     (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
434 		     msg_len);
435 
436 	info = IEEE80211_SKB_CB(skb);
437 	rx_params = (struct skb_info *)info->driver_data;
438 	rx_params->rssi = rsi_get_rssi(msg);
439 	rx_params->channel = rsi_get_channel(msg);
440 	rsi_indicate_pkt_to_os(common, skb);
441 
442 	return 0;
443 }
444 
445 /**
446  * rsi_hal_send_sta_notify_frame() - This function sends the station notify
447  *				     frame to firmware.
448  * @common: Pointer to the driver private structure.
449  * @opmode: Operating mode of device.
450  * @notify_event: Notification about station connection.
451  * @bssid: bssid.
452  * @qos_enable: Qos is enabled.
453  * @aid: Aid (unique for all STA).
454  *
455  * Return: status: 0 on success, corresponding negative error code on failure.
456  */
457 int rsi_hal_send_sta_notify_frame(struct rsi_common *common, enum opmode opmode,
458 				  u8 notify_event, const unsigned char *bssid,
459 				  u8 qos_enable, u16 aid, u16 sta_id,
460 				  struct ieee80211_vif *vif)
461 {
462 	struct sk_buff *skb = NULL;
463 	struct rsi_peer_notify *peer_notify;
464 	u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id;
465 	int status;
466 	u16 frame_len = sizeof(struct rsi_peer_notify);
467 
468 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
469 
470 	skb = dev_alloc_skb(frame_len);
471 
472 	if (!skb) {
473 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
474 			__func__);
475 		return -ENOMEM;
476 	}
477 
478 	memset(skb->data, 0, frame_len);
479 	peer_notify = (struct rsi_peer_notify *)skb->data;
480 
481 	if (opmode == RSI_OPMODE_STA)
482 		peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1);
483 	else if (opmode == RSI_OPMODE_AP)
484 		peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1);
485 
486 	switch (notify_event) {
487 	case STA_CONNECTED:
488 		peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
489 		break;
490 	case STA_DISCONNECTED:
491 		peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
492 		break;
493 	default:
494 		break;
495 	}
496 
497 	peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
498 	ether_addr_copy(peer_notify->mac_addr, bssid);
499 	peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY);
500 	peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
501 
502 	rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno,
503 			(frame_len - FRAME_DESC_SZ),
504 			RSI_WIFI_MGMT_Q);
505 	peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY;
506 	peer_notify->desc.desc_dword3.qid_tid = sta_id;
507 	peer_notify->desc.desc_dword3.sta_id = vap_id;
508 
509 	skb_put(skb, frame_len);
510 
511 	status = rsi_send_internal_mgmt_frame(common, skb);
512 
513 	if ((vif->type == NL80211_IFTYPE_STATION) &&
514 	    (!status && qos_enable)) {
515 		rsi_set_contention_vals(common);
516 		status = rsi_load_radio_caps(common);
517 	}
518 	return status;
519 }
520 
521 /**
522  * rsi_send_aggregation_params_frame() - This function sends the ampdu
523  *					 indication frame to firmware.
524  * @common: Pointer to the driver private structure.
525  * @tid: traffic identifier.
526  * @ssn: ssn.
527  * @buf_size: buffer size.
528  * @event: notification about station connection.
529  *
530  * Return: 0 on success, corresponding negative error code on failure.
531  */
532 int rsi_send_aggregation_params_frame(struct rsi_common *common,
533 				      u16 tid,
534 				      u16 ssn,
535 				      u8 buf_size,
536 				      u8 event,
537 				      u8 sta_id)
538 {
539 	struct sk_buff *skb = NULL;
540 	struct rsi_aggr_params *aggr_params;
541 	u16 frame_len = sizeof(struct rsi_aggr_params);
542 
543 	skb = dev_alloc_skb(frame_len);
544 
545 	if (!skb) {
546 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
547 			__func__);
548 		return -ENOMEM;
549 	}
550 
551 	memset(skb->data, 0, frame_len);
552 	aggr_params = (struct rsi_aggr_params *)skb->data;
553 
554 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
555 
556 	rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
557 	aggr_params->desc_dword0.frame_type = AMPDU_IND;
558 
559 	aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK;
560 	aggr_params->peer_id = sta_id;
561 	if (event == STA_TX_ADDBA_DONE) {
562 		aggr_params->seq_start = cpu_to_le16(ssn);
563 		aggr_params->baw_size = cpu_to_le16(buf_size);
564 		aggr_params->aggr_params |= RSI_AGGR_PARAMS_START;
565 	} else if (event == STA_RX_ADDBA_DONE) {
566 		aggr_params->seq_start = cpu_to_le16(ssn);
567 		aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START |
568 					     RSI_AGGR_PARAMS_RX_AGGR);
569 	} else if (event == STA_RX_DELBA) {
570 		aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR;
571 	}
572 
573 	skb_put(skb, frame_len);
574 
575 	return rsi_send_internal_mgmt_frame(common, skb);
576 }
577 
578 /**
579  * rsi_program_bb_rf() - This function starts base band and RF programming.
580  *			 This is called after initial configurations are done.
581  * @common: Pointer to the driver private structure.
582  *
583  * Return: 0 on success, corresponding negative error code on failure.
584  */
585 static int rsi_program_bb_rf(struct rsi_common *common)
586 {
587 	struct sk_buff *skb;
588 	struct rsi_bb_rf_prog *bb_rf_prog;
589 	u16 frame_len = sizeof(struct rsi_bb_rf_prog);
590 
591 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
592 
593 	skb = dev_alloc_skb(frame_len);
594 	if (!skb) {
595 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
596 			__func__);
597 		return -ENOMEM;
598 	}
599 
600 	memset(skb->data, 0, frame_len);
601 	bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data;
602 
603 	rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
604 	bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA;
605 	bb_rf_prog->endpoint = common->endpoint;
606 	bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode;
607 
608 	if (common->rf_reset) {
609 		bb_rf_prog->flags =  cpu_to_le16(RF_RESET_ENABLE);
610 		rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
611 			__func__);
612 		common->rf_reset = 0;
613 	}
614 	common->bb_rf_prog_count = 1;
615 	bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE |
616 					 (RSI_RF_TYPE << 4));
617 	skb_put(skb, frame_len);
618 
619 	return rsi_send_internal_mgmt_frame(common, skb);
620 }
621 
622 /**
623  * rsi_set_vap_capabilities() - This function send vap capability to firmware.
624  * @common: Pointer to the driver private structure.
625  * @opmode: Operating mode of device.
626  *
627  * Return: 0 on success, corresponding negative error code on failure.
628  */
629 int rsi_set_vap_capabilities(struct rsi_common *common,
630 			     enum opmode mode,
631 			     u8 *mac_addr,
632 			     u8 vap_id,
633 			     u8 vap_status)
634 {
635 	struct sk_buff *skb = NULL;
636 	struct rsi_vap_caps *vap_caps;
637 	struct rsi_hw *adapter = common->priv;
638 	struct ieee80211_hw *hw = adapter->hw;
639 	struct ieee80211_conf *conf = &hw->conf;
640 	u16 frame_len = sizeof(struct rsi_vap_caps);
641 
642 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
643 
644 	skb = dev_alloc_skb(frame_len);
645 	if (!skb) {
646 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
647 			__func__);
648 		return -ENOMEM;
649 	}
650 
651 	memset(skb->data, 0, frame_len);
652 	vap_caps = (struct rsi_vap_caps *)skb->data;
653 
654 	rsi_set_len_qno(&vap_caps->desc_dword0.len_qno,
655 			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
656 	vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES;
657 	vap_caps->status = vap_status;
658 	vap_caps->vif_type = mode;
659 	vap_caps->channel_bw = common->channel_width;
660 	vap_caps->vap_id = vap_id;
661 	vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) |
662 				   (common->radio_id & 0xf);
663 
664 	memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN);
665 	vap_caps->keep_alive_period = cpu_to_le16(90);
666 	vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
667 
668 	vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
669 
670 	if (common->band == NL80211_BAND_5GHZ) {
671 		vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6);
672 		vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
673 	} else {
674 		vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1);
675 		vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1);
676 	}
677 	if (conf_is_ht40(conf)) {
678 		if (conf_is_ht40_minus(conf))
679 			vap_caps->ctrl_rate_flags =
680 				cpu_to_le16(UPPER_20_ENABLE);
681 		else if (conf_is_ht40_plus(conf))
682 			vap_caps->ctrl_rate_flags =
683 				cpu_to_le16(LOWER_20_ENABLE);
684 		else
685 			vap_caps->ctrl_rate_flags =
686 				cpu_to_le16(FULL40M_ENABLE);
687 	}
688 
689 	vap_caps->default_data_rate = 0;
690 	vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval);
691 	vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt);
692 
693 	skb_put(skb, frame_len);
694 
695 	return rsi_send_internal_mgmt_frame(common, skb);
696 }
697 
698 /**
699  * rsi_hal_load_key() - This function is used to load keys within the firmware.
700  * @common: Pointer to the driver private structure.
701  * @data: Pointer to the key data.
702  * @key_len: Key length to be loaded.
703  * @key_type: Type of key: GROUP/PAIRWISE.
704  * @key_id: Key index.
705  * @cipher: Type of cipher used.
706  *
707  * Return: 0 on success, -1 on failure.
708  */
709 int rsi_hal_load_key(struct rsi_common *common,
710 		     u8 *data,
711 		     u16 key_len,
712 		     u8 key_type,
713 		     u8 key_id,
714 		     u32 cipher,
715 		     s16 sta_id,
716 		     struct ieee80211_vif *vif)
717 {
718 	struct sk_buff *skb = NULL;
719 	struct rsi_set_key *set_key;
720 	u16 key_descriptor = 0;
721 	u16 frame_len = sizeof(struct rsi_set_key);
722 
723 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
724 
725 	skb = dev_alloc_skb(frame_len);
726 	if (!skb) {
727 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
728 			__func__);
729 		return -ENOMEM;
730 	}
731 
732 	memset(skb->data, 0, frame_len);
733 	set_key = (struct rsi_set_key *)skb->data;
734 
735 	if (key_type == RSI_GROUP_KEY) {
736 		key_descriptor = RSI_KEY_TYPE_BROADCAST;
737 		if (vif->type == NL80211_IFTYPE_AP)
738 			key_descriptor |= RSI_KEY_MODE_AP;
739 	}
740 	if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
741 	    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
742 		key_id = 0;
743 		key_descriptor |= RSI_WEP_KEY;
744 		if (key_len >= 13)
745 			key_descriptor |= RSI_WEP_KEY_104;
746 	} else if (cipher != KEY_TYPE_CLEAR) {
747 		key_descriptor |= RSI_CIPHER_WPA;
748 		if (cipher == WLAN_CIPHER_SUITE_TKIP)
749 			key_descriptor |= RSI_CIPHER_TKIP;
750 	}
751 	key_descriptor |= RSI_PROTECT_DATA_FRAMES;
752 	key_descriptor |= ((key_id << RSI_KEY_ID_OFFSET) & RSI_KEY_ID_MASK);
753 
754 	rsi_set_len_qno(&set_key->desc_dword0.len_qno,
755 			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
756 	set_key->desc_dword0.frame_type = SET_KEY_REQ;
757 	set_key->key_desc = cpu_to_le16(key_descriptor);
758 	set_key->sta_id = sta_id;
759 
760 	if (data) {
761 		if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
762 		    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
763 			memcpy(&set_key->key[key_id][1], data, key_len * 2);
764 		} else {
765 			memcpy(&set_key->key[0][0], data, key_len);
766 		}
767 		memcpy(set_key->tx_mic_key, &data[16], 8);
768 		memcpy(set_key->rx_mic_key, &data[24], 8);
769 	} else {
770 		memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ);
771 	}
772 
773 	skb_put(skb, frame_len);
774 
775 	return rsi_send_internal_mgmt_frame(common, skb);
776 }
777 
778 /*
779  * This function sends the common device configuration parameters to device.
780  * This frame includes the useful information to make device works on
781  * specific operating mode.
782  */
783 static int rsi_send_common_dev_params(struct rsi_common *common)
784 {
785 	struct sk_buff *skb;
786 	u16 frame_len;
787 	struct rsi_config_vals *dev_cfgs;
788 
789 	frame_len = sizeof(struct rsi_config_vals);
790 
791 	rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n");
792 	skb = dev_alloc_skb(frame_len);
793 	if (!skb) {
794 		rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
795 		return -ENOMEM;
796 	}
797 
798 	memset(skb->data, 0, frame_len);
799 
800 	dev_cfgs = (struct rsi_config_vals *)skb->data;
801 	memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals)));
802 
803 	rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ),
804 			RSI_COEX_Q);
805 	dev_cfgs->pkt_type = COMMON_DEV_CONFIG;
806 
807 	dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode;
808 	dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode;
809 
810 	dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP;
811 	dev_cfgs->unused_soc_gpio_bitmap =
812 				cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP);
813 
814 	dev_cfgs->opermode = common->oper_mode;
815 	dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode;
816 	dev_cfgs->driver_mode = common->driver_mode;
817 	dev_cfgs->region_code = NL80211_DFS_FCC;
818 	dev_cfgs->antenna_sel_val = common->obm_ant_sel_val;
819 
820 	skb_put(skb, frame_len);
821 
822 	return rsi_send_internal_mgmt_frame(common, skb);
823 }
824 
825 /*
826  * rsi_load_bootup_params() - This function send bootup params to the firmware.
827  * @common: Pointer to the driver private structure.
828  *
829  * Return: 0 on success, corresponding error code on failure.
830  */
831 static int rsi_load_bootup_params(struct rsi_common *common)
832 {
833 	struct sk_buff *skb;
834 	struct rsi_boot_params *boot_params;
835 
836 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
837 	skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
838 	if (!skb) {
839 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
840 			__func__);
841 		return -ENOMEM;
842 	}
843 
844 	memset(skb->data, 0, sizeof(struct rsi_boot_params));
845 	boot_params = (struct rsi_boot_params *)skb->data;
846 
847 	rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
848 
849 	if (common->channel_width == BW_40MHZ) {
850 		memcpy(&boot_params->bootup_params,
851 		       &boot_params_40,
852 		       sizeof(struct bootup_params));
853 		rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
854 			UMAC_CLK_40BW);
855 		boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
856 	} else {
857 		memcpy(&boot_params->bootup_params,
858 		       &boot_params_20,
859 		       sizeof(struct bootup_params));
860 		if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
861 			boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
862 			rsi_dbg(MGMT_TX_ZONE,
863 				"%s: Packet 20MHZ <=== %d\n", __func__,
864 				UMAC_CLK_20BW);
865 		} else {
866 			boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
867 			rsi_dbg(MGMT_TX_ZONE,
868 				"%s: Packet 20MHZ <=== %d\n", __func__,
869 				UMAC_CLK_40MHZ);
870 		}
871 	}
872 
873 	/**
874 	 * Bit{0:11} indicates length of the Packet
875 	 * Bit{12:15} indicates host queue number
876 	 */
877 	boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
878 				    (RSI_WIFI_MGMT_Q << 12));
879 	boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
880 
881 	skb_put(skb, sizeof(struct rsi_boot_params));
882 
883 	return rsi_send_internal_mgmt_frame(common, skb);
884 }
885 
886 /**
887  * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
888  *			  internal management frame to indicate it to firmware.
889  * @common: Pointer to the driver private structure.
890  *
891  * Return: 0 on success, corresponding error code on failure.
892  */
893 static int rsi_send_reset_mac(struct rsi_common *common)
894 {
895 	struct sk_buff *skb;
896 	struct rsi_mac_frame *mgmt_frame;
897 
898 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
899 
900 	skb = dev_alloc_skb(FRAME_DESC_SZ);
901 	if (!skb) {
902 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
903 			__func__);
904 		return -ENOMEM;
905 	}
906 
907 	memset(skb->data, 0, FRAME_DESC_SZ);
908 	mgmt_frame = (struct rsi_mac_frame *)skb->data;
909 
910 	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
911 	mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
912 	mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
913 
914 	skb_put(skb, FRAME_DESC_SZ);
915 
916 	return rsi_send_internal_mgmt_frame(common, skb);
917 }
918 
919 /**
920  * rsi_band_check() - This function programs the band
921  * @common: Pointer to the driver private structure.
922  *
923  * Return: 0 on success, corresponding error code on failure.
924  */
925 int rsi_band_check(struct rsi_common *common,
926 		   struct ieee80211_channel *curchan)
927 {
928 	struct rsi_hw *adapter = common->priv;
929 	struct ieee80211_hw *hw = adapter->hw;
930 	u8 prev_bw = common->channel_width;
931 	u8 prev_ep = common->endpoint;
932 	int status = 0;
933 
934 	if (common->band != curchan->band) {
935 		common->rf_reset = 1;
936 		common->band = curchan->band;
937 	}
938 
939 	if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
940 	    (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
941 		common->channel_width = BW_20MHZ;
942 	else
943 		common->channel_width = BW_40MHZ;
944 
945 	if (common->band == NL80211_BAND_2GHZ) {
946 		if (common->channel_width)
947 			common->endpoint = EP_2GHZ_40MHZ;
948 		else
949 			common->endpoint = EP_2GHZ_20MHZ;
950 	} else {
951 		if (common->channel_width)
952 			common->endpoint = EP_5GHZ_40MHZ;
953 		else
954 			common->endpoint = EP_5GHZ_20MHZ;
955 	}
956 
957 	if (common->endpoint != prev_ep) {
958 		status = rsi_program_bb_rf(common);
959 		if (status)
960 			return status;
961 	}
962 
963 	if (common->channel_width != prev_bw) {
964 		status = rsi_load_bootup_params(common);
965 		if (status)
966 			return status;
967 
968 		status = rsi_load_radio_caps(common);
969 		if (status)
970 			return status;
971 	}
972 
973 	return status;
974 }
975 
976 /**
977  * rsi_set_channel() - This function programs the channel.
978  * @common: Pointer to the driver private structure.
979  * @channel: Channel value to be set.
980  *
981  * Return: 0 on success, corresponding error code on failure.
982  */
983 int rsi_set_channel(struct rsi_common *common,
984 		    struct ieee80211_channel *channel)
985 {
986 	struct sk_buff *skb = NULL;
987 	struct rsi_chan_config *chan_cfg;
988 	u16 frame_len = sizeof(struct rsi_chan_config);
989 
990 	rsi_dbg(MGMT_TX_ZONE,
991 		"%s: Sending scan req frame\n", __func__);
992 
993 	skb = dev_alloc_skb(frame_len);
994 	if (!skb) {
995 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
996 			__func__);
997 		return -ENOMEM;
998 	}
999 
1000 	if (!channel) {
1001 		dev_kfree_skb(skb);
1002 		return 0;
1003 	}
1004 	memset(skb->data, 0, frame_len);
1005 	chan_cfg = (struct rsi_chan_config *)skb->data;
1006 
1007 	rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1008 	chan_cfg->desc_dword0.frame_type = SCAN_REQUEST;
1009 	chan_cfg->channel_number = channel->hw_value;
1010 	chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain;
1011 	chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain;
1012 	chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4;
1013 
1014 	if ((channel->flags & IEEE80211_CHAN_NO_IR) ||
1015 	    (channel->flags & IEEE80211_CHAN_RADAR)) {
1016 		chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR;
1017 	} else {
1018 		if (common->tx_power < channel->max_power)
1019 			chan_cfg->tx_power = cpu_to_le16(common->tx_power);
1020 		else
1021 			chan_cfg->tx_power = cpu_to_le16(channel->max_power);
1022 	}
1023 	chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf);
1024 
1025 	if (common->channel_width == BW_40MHZ)
1026 		chan_cfg->channel_width = 0x1;
1027 
1028 	common->channel = channel->hw_value;
1029 
1030 	skb_put(skb, frame_len);
1031 
1032 	return rsi_send_internal_mgmt_frame(common, skb);
1033 }
1034 
1035 /**
1036  * rsi_send_radio_params_update() - This function sends the radio
1037  *				parameters update to device
1038  * @common: Pointer to the driver private structure.
1039  * @channel: Channel value to be set.
1040  *
1041  * Return: 0 on success, corresponding error code on failure.
1042  */
1043 int rsi_send_radio_params_update(struct rsi_common *common)
1044 {
1045 	struct rsi_mac_frame *cmd_frame;
1046 	struct sk_buff *skb = NULL;
1047 
1048 	rsi_dbg(MGMT_TX_ZONE,
1049 		"%s: Sending Radio Params update frame\n", __func__);
1050 
1051 	skb = dev_alloc_skb(FRAME_DESC_SZ);
1052 	if (!skb) {
1053 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1054 			__func__);
1055 		return -ENOMEM;
1056 	}
1057 
1058 	memset(skb->data, 0, FRAME_DESC_SZ);
1059 	cmd_frame = (struct rsi_mac_frame *)skb->data;
1060 
1061 	cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1062 	cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
1063 	cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
1064 
1065 	cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
1066 
1067 	skb_put(skb, FRAME_DESC_SZ);
1068 
1069 	return rsi_send_internal_mgmt_frame(common, skb);
1070 }
1071 
1072 /* This function programs the threshold. */
1073 int rsi_send_vap_dynamic_update(struct rsi_common *common)
1074 {
1075 	struct sk_buff *skb;
1076 	struct rsi_dynamic_s *dynamic_frame;
1077 
1078 	rsi_dbg(MGMT_TX_ZONE,
1079 		"%s: Sending vap update indication frame\n", __func__);
1080 
1081 	skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s));
1082 	if (!skb)
1083 		return -ENOMEM;
1084 
1085 	memset(skb->data, 0, sizeof(struct rsi_dynamic_s));
1086 	dynamic_frame = (struct rsi_dynamic_s *)skb->data;
1087 	rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno,
1088 			sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q);
1089 
1090 	dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE;
1091 	dynamic_frame->desc_dword2.pkt_info =
1092 					cpu_to_le32(common->rts_threshold);
1093 
1094 	if (common->wow_flags & RSI_WOW_ENABLED) {
1095 		/* Beacon miss threshold */
1096 		dynamic_frame->desc_dword3.token =
1097 					cpu_to_le16(RSI_BCN_MISS_THRESHOLD);
1098 		dynamic_frame->frame_body.keep_alive_period =
1099 					cpu_to_le16(RSI_WOW_KEEPALIVE);
1100 	} else {
1101 		dynamic_frame->frame_body.keep_alive_period =
1102 					cpu_to_le16(RSI_DEF_KEEPALIVE);
1103 	}
1104 
1105 	dynamic_frame->desc_dword3.sta_id = 0; /* vap id */
1106 
1107 	skb_put(skb, sizeof(struct rsi_dynamic_s));
1108 
1109 	return rsi_send_internal_mgmt_frame(common, skb);
1110 }
1111 
1112 /**
1113  * rsi_compare() - This function is used to compare two integers
1114  * @a: pointer to the first integer
1115  * @b: pointer to the second integer
1116  *
1117  * Return: 0 if both are equal, -1 if the first is smaller, else 1
1118  */
1119 static int rsi_compare(const void *a, const void *b)
1120 {
1121 	u16 _a = *(const u16 *)(a);
1122 	u16 _b = *(const u16 *)(b);
1123 
1124 	if (_a > _b)
1125 		return -1;
1126 
1127 	if (_a < _b)
1128 		return 1;
1129 
1130 	return 0;
1131 }
1132 
1133 /**
1134  * rsi_map_rates() - This function is used to map selected rates to hw rates.
1135  * @rate: The standard rate to be mapped.
1136  * @offset: Offset that will be returned.
1137  *
1138  * Return: 0 if it is a mcs rate, else 1
1139  */
1140 static bool rsi_map_rates(u16 rate, int *offset)
1141 {
1142 	int kk;
1143 	for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
1144 		if (rate == mcs[kk]) {
1145 			*offset = kk;
1146 			return false;
1147 		}
1148 	}
1149 
1150 	for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
1151 		if (rate == rsi_rates[kk].bitrate / 5) {
1152 			*offset = kk;
1153 			break;
1154 		}
1155 	}
1156 	return true;
1157 }
1158 
1159 /**
1160  * rsi_send_auto_rate_request() - This function is to set rates for connection
1161  *				  and send autorate request to firmware.
1162  * @common: Pointer to the driver private structure.
1163  *
1164  * Return: 0 on success, corresponding error code on failure.
1165  */
1166 static int rsi_send_auto_rate_request(struct rsi_common *common,
1167 				      struct ieee80211_sta *sta,
1168 				      u16 sta_id,
1169 				      struct ieee80211_vif *vif)
1170 {
1171 	struct sk_buff *skb;
1172 	struct rsi_auto_rate *auto_rate;
1173 	int ii = 0, jj = 0, kk = 0;
1174 	struct ieee80211_hw *hw = common->priv->hw;
1175 	u8 band = hw->conf.chandef.chan->band;
1176 	u8 num_supported_rates = 0;
1177 	u8 rate_table_offset, rate_offset = 0;
1178 	u32 rate_bitmap;
1179 	u16 *selected_rates, min_rate;
1180 	bool is_ht = false, is_sgi = false;
1181 	u16 frame_len = sizeof(struct rsi_auto_rate);
1182 
1183 	rsi_dbg(MGMT_TX_ZONE,
1184 		"%s: Sending auto rate request frame\n", __func__);
1185 
1186 	skb = dev_alloc_skb(frame_len);
1187 	if (!skb) {
1188 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1189 			__func__);
1190 		return -ENOMEM;
1191 	}
1192 
1193 	memset(skb->data, 0, frame_len);
1194 	selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1195 	if (!selected_rates) {
1196 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1197 			__func__);
1198 		dev_kfree_skb(skb);
1199 		return -ENOMEM;
1200 	}
1201 
1202 	auto_rate = (struct rsi_auto_rate *)skb->data;
1203 
1204 	auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1205 	auto_rate->collision_tolerance = cpu_to_le16(3);
1206 	auto_rate->failure_limit = cpu_to_le16(3);
1207 	auto_rate->initial_boundary = cpu_to_le16(3);
1208 	auto_rate->max_threshold_limt = cpu_to_le16(27);
1209 
1210 	auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND;
1211 
1212 	if (common->channel_width == BW_40MHZ)
1213 		auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ;
1214 	auto_rate->desc.desc_dword3.sta_id = sta_id;
1215 
1216 	if (vif->type == NL80211_IFTYPE_STATION) {
1217 		rate_bitmap = common->bitrate_mask[band];
1218 		is_ht = common->vif_info[0].is_ht;
1219 		is_sgi = common->vif_info[0].sgi;
1220 	} else {
1221 		rate_bitmap = sta->supp_rates[band];
1222 		is_ht = sta->ht_cap.ht_supported;
1223 		if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
1224 		    (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
1225 			is_sgi = true;
1226 	}
1227 
1228 	if (band == NL80211_BAND_2GHZ) {
1229 		if ((rate_bitmap == 0) && (is_ht))
1230 			min_rate = RSI_RATE_MCS0;
1231 		else
1232 			min_rate = RSI_RATE_1;
1233 		rate_table_offset = 0;
1234 	} else {
1235 		if ((rate_bitmap == 0) && (is_ht))
1236 			min_rate = RSI_RATE_MCS0;
1237 		else
1238 			min_rate = RSI_RATE_6;
1239 		rate_table_offset = 4;
1240 	}
1241 
1242 	for (ii = 0, jj = 0;
1243 	     ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1244 		if (rate_bitmap & BIT(ii)) {
1245 			selected_rates[jj++] =
1246 			(rsi_rates[ii + rate_table_offset].bitrate / 5);
1247 			rate_offset++;
1248 		}
1249 	}
1250 	num_supported_rates = jj;
1251 
1252 	if (is_ht) {
1253 		for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1254 			selected_rates[jj++] = mcs[ii];
1255 		num_supported_rates += ARRAY_SIZE(mcs);
1256 		rate_offset += ARRAY_SIZE(mcs);
1257 	}
1258 
1259 	sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1260 
1261 	/* mapping the rates to RSI rates */
1262 	for (ii = 0; ii < jj; ii++) {
1263 		if (rsi_map_rates(selected_rates[ii], &kk)) {
1264 			auto_rate->supported_rates[ii] =
1265 				cpu_to_le16(rsi_rates[kk].hw_value);
1266 		} else {
1267 			auto_rate->supported_rates[ii] =
1268 				cpu_to_le16(rsi_mcsrates[kk]);
1269 		}
1270 	}
1271 
1272 	/* loading HT rates in the bottom half of the auto rate table */
1273 	if (is_ht) {
1274 		for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1275 		     ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1276 			if (is_sgi || conf_is_ht40(&common->priv->hw->conf))
1277 				auto_rate->supported_rates[ii++] =
1278 					cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1279 			else
1280 				auto_rate->supported_rates[ii++] =
1281 					cpu_to_le16(rsi_mcsrates[kk]);
1282 			auto_rate->supported_rates[ii] =
1283 				cpu_to_le16(rsi_mcsrates[kk--]);
1284 		}
1285 
1286 		for (; ii < (RSI_TBL_SZ - 1); ii++) {
1287 			auto_rate->supported_rates[ii] =
1288 				cpu_to_le16(rsi_mcsrates[0]);
1289 		}
1290 	}
1291 
1292 	for (; ii < RSI_TBL_SZ; ii++)
1293 		auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1294 
1295 	auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1296 	auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1297 	num_supported_rates *= 2;
1298 
1299 	rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno,
1300 			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1301 
1302 	skb_put(skb, frame_len);
1303 	kfree(selected_rates);
1304 
1305 	return rsi_send_internal_mgmt_frame(common, skb);
1306 }
1307 
1308 /**
1309  * rsi_inform_bss_status() - This function informs about bss status with the
1310  *			     help of sta notify params by sending an internal
1311  *			     management frame to firmware.
1312  * @common: Pointer to the driver private structure.
1313  * @status: Bss status type.
1314  * @bssid: Bssid.
1315  * @qos_enable: Qos is enabled.
1316  * @aid: Aid (unique for all STAs).
1317  *
1318  * Return: None.
1319  */
1320 void rsi_inform_bss_status(struct rsi_common *common,
1321 			   enum opmode opmode,
1322 			   u8 status,
1323 			   const u8 *addr,
1324 			   u8 qos_enable,
1325 			   u16 aid,
1326 			   struct ieee80211_sta *sta,
1327 			   u16 sta_id,
1328 			   u16 assoc_cap,
1329 			   struct ieee80211_vif *vif)
1330 {
1331 	if (status) {
1332 		if (opmode == RSI_OPMODE_STA)
1333 			common->hw_data_qs_blocked = true;
1334 		rsi_hal_send_sta_notify_frame(common,
1335 					      opmode,
1336 					      STA_CONNECTED,
1337 					      addr,
1338 					      qos_enable,
1339 					      aid, sta_id,
1340 					      vif);
1341 		if (common->min_rate == 0xffff)
1342 			rsi_send_auto_rate_request(common, sta, sta_id, vif);
1343 		if (opmode == RSI_OPMODE_STA &&
1344 		    !(assoc_cap & WLAN_CAPABILITY_PRIVACY) &&
1345 		    !rsi_send_block_unblock_frame(common, false))
1346 			common->hw_data_qs_blocked = false;
1347 	} else {
1348 		if (opmode == RSI_OPMODE_STA)
1349 			common->hw_data_qs_blocked = true;
1350 
1351 		if (!(common->wow_flags & RSI_WOW_ENABLED))
1352 			rsi_hal_send_sta_notify_frame(common, opmode,
1353 						      STA_DISCONNECTED, addr,
1354 						      qos_enable, aid, sta_id,
1355 						      vif);
1356 		if (opmode == RSI_OPMODE_STA)
1357 			rsi_send_block_unblock_frame(common, true);
1358 	}
1359 }
1360 
1361 /**
1362  * rsi_eeprom_read() - This function sends a frame to read the mac address
1363  *		       from the eeprom.
1364  * @common: Pointer to the driver private structure.
1365  *
1366  * Return: 0 on success, -1 on failure.
1367  */
1368 static int rsi_eeprom_read(struct rsi_common *common)
1369 {
1370 	struct rsi_eeprom_read_frame *mgmt_frame;
1371 	struct rsi_hw *adapter = common->priv;
1372 	struct sk_buff *skb;
1373 
1374 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1375 
1376 	skb = dev_alloc_skb(FRAME_DESC_SZ);
1377 	if (!skb) {
1378 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1379 			__func__);
1380 		return -ENOMEM;
1381 	}
1382 
1383 	memset(skb->data, 0, FRAME_DESC_SZ);
1384 	mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data;
1385 
1386 	/* FrameType */
1387 	rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q);
1388 	mgmt_frame->pkt_type = EEPROM_READ;
1389 
1390 	/* Number of bytes to read */
1391 	mgmt_frame->pkt_info =
1392 		cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) &
1393 			    RSI_EEPROM_LEN_MASK);
1394 	mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) &
1395 					    RSI_EEPROM_HDR_SIZE_MASK);
1396 
1397 	/* Address to read */
1398 	mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset);
1399 
1400 	skb_put(skb, FRAME_DESC_SZ);
1401 
1402 	return rsi_send_internal_mgmt_frame(common, skb);
1403 }
1404 
1405 /**
1406  * This function sends a frame to block/unblock
1407  * data queues in the firmware
1408  *
1409  * @param common Pointer to the driver private structure.
1410  * @param block event - block if true, unblock if false
1411  * @return 0 on success, -1 on failure.
1412  */
1413 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1414 {
1415 	struct rsi_block_unblock_data *mgmt_frame;
1416 	struct sk_buff *skb;
1417 
1418 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1419 
1420 	skb = dev_alloc_skb(FRAME_DESC_SZ);
1421 	if (!skb) {
1422 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1423 			__func__);
1424 		return -ENOMEM;
1425 	}
1426 
1427 	memset(skb->data, 0, FRAME_DESC_SZ);
1428 	mgmt_frame = (struct rsi_block_unblock_data *)skb->data;
1429 
1430 	rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1431 	mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE;
1432 	mgmt_frame->host_quiet_info = QUIET_INFO_VALID;
1433 
1434 	if (block_event) {
1435 		rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1436 		mgmt_frame->block_q_bitmap = cpu_to_le16(0xf);
1437 		mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4);
1438 	} else {
1439 		rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1440 		mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf);
1441 		mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4);
1442 	}
1443 
1444 	skb_put(skb, FRAME_DESC_SZ);
1445 
1446 	return rsi_send_internal_mgmt_frame(common, skb);
1447 }
1448 
1449 /**
1450  * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
1451  *
1452  * @common: Pointer to the driver private structure.
1453  * @rx_filter_word: Flags of filter packets
1454  *
1455  * @Return: 0 on success, -1 on failure.
1456  */
1457 int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
1458 {
1459 	struct rsi_mac_frame *cmd_frame;
1460 	struct sk_buff *skb;
1461 
1462 	rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
1463 
1464 	skb = dev_alloc_skb(FRAME_DESC_SZ);
1465 	if (!skb) {
1466 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1467 			__func__);
1468 		return -ENOMEM;
1469 	}
1470 
1471 	memset(skb->data, 0, FRAME_DESC_SZ);
1472 	cmd_frame = (struct rsi_mac_frame *)skb->data;
1473 
1474 	cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1475 	cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
1476 	cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
1477 
1478 	skb_put(skb, FRAME_DESC_SZ);
1479 
1480 	return rsi_send_internal_mgmt_frame(common, skb);
1481 }
1482 
1483 int rsi_send_ps_request(struct rsi_hw *adapter, bool enable,
1484 			struct ieee80211_vif *vif)
1485 {
1486 	struct rsi_common *common = adapter->priv;
1487 	struct ieee80211_bss_conf *bss = &vif->bss_conf;
1488 	struct rsi_request_ps *ps;
1489 	struct rsi_ps_info *ps_info;
1490 	struct sk_buff *skb;
1491 	int frame_len = sizeof(*ps);
1492 
1493 	skb = dev_alloc_skb(frame_len);
1494 	if (!skb)
1495 		return -ENOMEM;
1496 	memset(skb->data, 0, frame_len);
1497 
1498 	ps = (struct rsi_request_ps *)skb->data;
1499 	ps_info = &adapter->ps_info;
1500 
1501 	rsi_set_len_qno(&ps->desc.desc_dword0.len_qno,
1502 			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1503 	ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST;
1504 	if (enable) {
1505 		ps->ps_sleep.enable = RSI_PS_ENABLE;
1506 		ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST);
1507 	} else {
1508 		ps->ps_sleep.enable = RSI_PS_DISABLE;
1509 		ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND);
1510 		ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST);
1511 	}
1512 
1513 	ps->ps_uapsd_acs = common->uapsd_bitmap;
1514 
1515 	ps->ps_sleep.sleep_type = ps_info->sleep_type;
1516 	ps->ps_sleep.num_bcns_per_lis_int =
1517 		cpu_to_le16(ps_info->num_bcns_per_lis_int);
1518 	ps->ps_sleep.sleep_duration =
1519 		cpu_to_le32(ps_info->deep_sleep_wakeup_period);
1520 
1521 	if (bss->assoc)
1522 		ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP;
1523 	else
1524 		ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP;
1525 
1526 	ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval);
1527 	ps->ps_dtim_interval_duration =
1528 		cpu_to_le32(ps_info->dtim_interval_duration);
1529 
1530 	if (ps_info->listen_interval > ps_info->dtim_interval_duration)
1531 		ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE);
1532 
1533 	ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep);
1534 	skb_put(skb, frame_len);
1535 
1536 	return rsi_send_internal_mgmt_frame(common, skb);
1537 }
1538 
1539 /**
1540  * rsi_set_antenna() - This fuction send antenna configuration request
1541  *		       to device
1542  *
1543  * @common: Pointer to the driver private structure.
1544  * @antenna: bitmap for tx antenna selection
1545  *
1546  * Return: 0 on Success, negative error code on failure
1547  */
1548 int rsi_set_antenna(struct rsi_common *common, u8 antenna)
1549 {
1550 	struct rsi_ant_sel_frame *ant_sel_frame;
1551 	struct sk_buff *skb;
1552 
1553 	skb = dev_alloc_skb(FRAME_DESC_SZ);
1554 	if (!skb) {
1555 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1556 			__func__);
1557 		return -ENOMEM;
1558 	}
1559 
1560 	memset(skb->data, 0, FRAME_DESC_SZ);
1561 
1562 	ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data;
1563 	ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME;
1564 	ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE;
1565 	ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE);
1566 	rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno,
1567 			0, RSI_WIFI_MGMT_Q);
1568 	skb_put(skb, FRAME_DESC_SZ);
1569 
1570 	return rsi_send_internal_mgmt_frame(common, skb);
1571 }
1572 
1573 static int rsi_send_beacon(struct rsi_common *common)
1574 {
1575 	struct sk_buff *skb = NULL;
1576 	u8 dword_align_bytes = 0;
1577 
1578 	skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE);
1579 	if (!skb)
1580 		return -ENOMEM;
1581 
1582 	memset(skb->data, 0, MAX_MGMT_PKT_SIZE);
1583 
1584 	dword_align_bytes = ((unsigned long)skb->data & 0x3f);
1585 	if (dword_align_bytes)
1586 		skb_pull(skb, (64 - dword_align_bytes));
1587 	if (rsi_prepare_beacon(common, skb)) {
1588 		rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n");
1589 		return -EINVAL;
1590 	}
1591 	skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb);
1592 	rsi_set_event(&common->tx_thread.event);
1593 	rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__);
1594 
1595 	return 0;
1596 }
1597 
1598 #ifdef CONFIG_PM
1599 int rsi_send_wowlan_request(struct rsi_common *common, u16 flags,
1600 			    u16 sleep_status)
1601 {
1602 	struct rsi_wowlan_req *cmd_frame;
1603 	struct sk_buff *skb;
1604 	u8 length;
1605 
1606 	rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__);
1607 
1608 	length = sizeof(*cmd_frame);
1609 	skb = dev_alloc_skb(length);
1610 	if (!skb)
1611 		return -ENOMEM;
1612 	memset(skb->data, 0, length);
1613 	cmd_frame = (struct rsi_wowlan_req *)skb->data;
1614 
1615 	rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno,
1616 			(length - FRAME_DESC_SZ),
1617 			RSI_WIFI_MGMT_Q);
1618 	cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS;
1619 	cmd_frame->host_sleep_status = sleep_status;
1620 	if (common->secinfo.security_enable &&
1621 	    common->secinfo.gtk_cipher)
1622 		flags |= RSI_WOW_GTK_REKEY;
1623 	if (sleep_status)
1624 		cmd_frame->wow_flags = flags;
1625 	rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n",
1626 		cmd_frame->host_sleep_status, cmd_frame->wow_flags);
1627 
1628 	skb_put(skb, length);
1629 
1630 	return rsi_send_internal_mgmt_frame(common, skb);
1631 }
1632 #endif
1633 
1634 /**
1635  * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1636  * @common: Pointer to the driver private structure.
1637  * @msg: Pointer to received packet.
1638  *
1639  * Return: 0 on success, -1 on failure.
1640  */
1641 static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1642 				      u8 *msg)
1643 {
1644 	struct rsi_hw *adapter = common->priv;
1645 	u8 sub_type = (msg[15] & 0xff);
1646 	u16 msg_len = ((u16 *)msg)[0] & 0xfff;
1647 	u8 offset;
1648 
1649 	switch (sub_type) {
1650 	case BOOTUP_PARAMS_REQUEST:
1651 		rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1652 			__func__);
1653 		if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1654 			adapter->eeprom.length = (IEEE80211_ADDR_LEN +
1655 						  WLAN_MAC_MAGIC_WORD_LEN +
1656 						  WLAN_HOST_MODE_LEN);
1657 			adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR;
1658 			if (rsi_eeprom_read(common)) {
1659 				common->fsm_state = FSM_CARD_NOT_READY;
1660 				goto out;
1661 			}
1662 			common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1663 		} else {
1664 			rsi_dbg(INFO_ZONE,
1665 				"%s: Received bootup params cfm in %d state\n",
1666 				 __func__, common->fsm_state);
1667 			return 0;
1668 		}
1669 		break;
1670 
1671 	case EEPROM_READ:
1672 		rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n");
1673 		if (msg_len <= 0) {
1674 			rsi_dbg(FSM_ZONE,
1675 				"%s: [EEPROM_READ] Invalid len %d\n",
1676 				__func__, msg_len);
1677 			goto out;
1678 		}
1679 		if (msg[16] != MAGIC_WORD) {
1680 			rsi_dbg(FSM_ZONE,
1681 				"%s: [EEPROM_READ] Invalid token\n", __func__);
1682 			common->fsm_state = FSM_CARD_NOT_READY;
1683 			goto out;
1684 		}
1685 		if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1686 			offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN +
1687 				  WLAN_MAC_MAGIC_WORD_LEN);
1688 			memcpy(common->mac_addr, &msg[offset], ETH_ALEN);
1689 			adapter->eeprom.length =
1690 				((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3));
1691 			adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR;
1692 			if (rsi_eeprom_read(common)) {
1693 				rsi_dbg(ERR_ZONE,
1694 					"%s: Failed reading RF band\n",
1695 					__func__);
1696 				common->fsm_state = FSM_CARD_NOT_READY;
1697 				goto out;
1698 			}
1699 			common->fsm_state = FSM_EEPROM_READ_RF_TYPE;
1700 		} else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) {
1701 			if ((msg[17] & 0x3) == 0x3) {
1702 				rsi_dbg(INIT_ZONE, "Dual band supported\n");
1703 				common->band = NL80211_BAND_5GHZ;
1704 				common->num_supp_bands = 2;
1705 			} else if ((msg[17] & 0x3) == 0x1) {
1706 				rsi_dbg(INIT_ZONE,
1707 					"Only 2.4Ghz band supported\n");
1708 				common->band = NL80211_BAND_2GHZ;
1709 				common->num_supp_bands = 1;
1710 			}
1711 			if (rsi_send_reset_mac(common))
1712 				goto out;
1713 			common->fsm_state = FSM_RESET_MAC_SENT;
1714 		} else {
1715 			rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n",
1716 				__func__);
1717 			return 0;
1718 		}
1719 		break;
1720 
1721 	case RESET_MAC_REQ:
1722 		if (common->fsm_state == FSM_RESET_MAC_SENT) {
1723 			rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1724 				__func__);
1725 
1726 			if (rsi_load_radio_caps(common))
1727 				goto out;
1728 			else
1729 				common->fsm_state = FSM_RADIO_CAPS_SENT;
1730 		} else {
1731 			rsi_dbg(ERR_ZONE,
1732 				"%s: Received reset mac cfm in %d state\n",
1733 				 __func__, common->fsm_state);
1734 			return 0;
1735 		}
1736 		break;
1737 
1738 	case RADIO_CAPABILITIES:
1739 		if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1740 			common->rf_reset = 1;
1741 			if (rsi_program_bb_rf(common)) {
1742 				goto out;
1743 			} else {
1744 				common->fsm_state = FSM_BB_RF_PROG_SENT;
1745 				rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1746 					__func__);
1747 			}
1748 		} else {
1749 			rsi_dbg(INFO_ZONE,
1750 				"%s: Received radio caps cfm in %d state\n",
1751 				 __func__, common->fsm_state);
1752 			return 0;
1753 		}
1754 		break;
1755 
1756 	case BB_PROG_VALUES_REQUEST:
1757 	case RF_PROG_VALUES_REQUEST:
1758 	case BBP_PROG_IN_TA:
1759 		rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1760 		if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1761 			common->bb_rf_prog_count--;
1762 			if (!common->bb_rf_prog_count) {
1763 				common->fsm_state = FSM_MAC_INIT_DONE;
1764 				if (common->reinit_hw) {
1765 					complete(&common->wlan_init_completion);
1766 				} else {
1767 					return rsi_mac80211_attach(common);
1768 				}
1769 			}
1770 		} else {
1771 			rsi_dbg(INFO_ZONE,
1772 				"%s: Received bbb_rf cfm in %d state\n",
1773 				 __func__, common->fsm_state);
1774 			return 0;
1775 		}
1776 		break;
1777 	case WAKEUP_SLEEP_REQUEST:
1778 		rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n");
1779 		return rsi_handle_ps_confirm(adapter, msg);
1780 	default:
1781 		rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1782 			__func__);
1783 		break;
1784 	}
1785 	return 0;
1786 out:
1787 	rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1788 		__func__);
1789 	return -EINVAL;
1790 }
1791 
1792 int rsi_handle_card_ready(struct rsi_common *common, u8 *msg)
1793 {
1794 	switch (common->fsm_state) {
1795 	case FSM_CARD_NOT_READY:
1796 		rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n");
1797 		rsi_set_default_parameters(common);
1798 		if (rsi_send_common_dev_params(common) < 0)
1799 			return -EINVAL;
1800 		common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT;
1801 		break;
1802 	case FSM_COMMON_DEV_PARAMS_SENT:
1803 		rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n");
1804 
1805 		/* Get usb buffer status register address */
1806 		common->priv->usb_buffer_status_reg = *(u32 *)&msg[8];
1807 		rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n",
1808 			common->priv->usb_buffer_status_reg);
1809 
1810 		if (rsi_load_bootup_params(common)) {
1811 			common->fsm_state = FSM_CARD_NOT_READY;
1812 			return -EINVAL;
1813 		}
1814 		common->fsm_state = FSM_BOOT_PARAMS_SENT;
1815 		break;
1816 	default:
1817 		rsi_dbg(ERR_ZONE,
1818 			"%s: card ready indication in invalid state %d.\n",
1819 			__func__, common->fsm_state);
1820 		return -EINVAL;
1821 	}
1822 
1823 	return 0;
1824 }
1825 
1826 /**
1827  * rsi_mgmt_pkt_recv() - This function processes the management packets
1828  *			 recieved from the hardware.
1829  * @common: Pointer to the driver private structure.
1830  * @msg: Pointer to the received packet.
1831  *
1832  * Return: 0 on success, -1 on failure.
1833  */
1834 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1835 {
1836 	s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1837 	u16 msg_type = (msg[2]);
1838 
1839 	rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1840 		__func__, msg_len, msg_type);
1841 
1842 	switch (msg_type) {
1843 	case TA_CONFIRM_TYPE:
1844 		return rsi_handle_ta_confirm_type(common, msg);
1845 	case CARD_READY_IND:
1846 		common->hibernate_resume = false;
1847 		rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1848 			__func__);
1849 		return rsi_handle_card_ready(common, msg);
1850 	case TX_STATUS_IND:
1851 		switch (msg[RSI_TX_STATUS_TYPE]) {
1852 		case PROBEREQ_CONFIRM:
1853 			common->mgmt_q_block = false;
1854 			rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1855 				__func__);
1856 			break;
1857 		case EAPOL4_CONFIRM:
1858 			if (msg[RSI_TX_STATUS]) {
1859 				common->eapol4_confirm = true;
1860 				if (!rsi_send_block_unblock_frame(common,
1861 								  false))
1862 					common->hw_data_qs_blocked = false;
1863 			}
1864 		}
1865 		break;
1866 	case BEACON_EVENT_IND:
1867 		rsi_dbg(INFO_ZONE, "Beacon event\n");
1868 		if (common->fsm_state != FSM_MAC_INIT_DONE)
1869 			return -1;
1870 		if (common->iface_down)
1871 			return -1;
1872 		if (!common->beacon_enabled)
1873 			return -1;
1874 		rsi_send_beacon(common);
1875 		break;
1876 	case RX_DOT11_MGMT:
1877 		return rsi_mgmt_pkt_to_core(common, msg, msg_len);
1878 	default:
1879 		rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type);
1880 	}
1881 	return 0;
1882 }
1883