xref: /linux/drivers/net/wireless/realtek/rtw89/sar.c (revision 8c994eff8fcfe8ecb1f1dbebed25b4d7bb75be12)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2019-2020  Realtek Corporation
3  */
4 
5 #include "acpi.h"
6 #include "debug.h"
7 #include "phy.h"
8 #include "reg.h"
9 #include "sar.h"
10 
11 #define RTW89_TAS_FACTOR 2 /* unit: 0.25 dBm */
12 #define RTW89_TAS_DPR_GAP (1 << RTW89_TAS_FACTOR)
13 #define RTW89_TAS_DELTA (2 << RTW89_TAS_FACTOR)
14 
15 static enum rtw89_sar_subband rtw89_sar_get_subband(struct rtw89_dev *rtwdev,
16 						    u32 center_freq)
17 {
18 	switch (center_freq) {
19 	default:
20 		rtw89_debug(rtwdev, RTW89_DBG_SAR,
21 			    "center freq: %u to SAR subband is unhandled\n",
22 			    center_freq);
23 		fallthrough;
24 	case 2412 ... 2484:
25 		return RTW89_SAR_2GHZ_SUBBAND;
26 	case 5180 ... 5320:
27 		return RTW89_SAR_5GHZ_SUBBAND_1_2;
28 	case 5500 ... 5720:
29 		return RTW89_SAR_5GHZ_SUBBAND_2_E;
30 	case 5745 ... 5825:
31 		return RTW89_SAR_5GHZ_SUBBAND_3;
32 	case 5955 ... 6155:
33 		return RTW89_SAR_6GHZ_SUBBAND_5_L;
34 	case 6175 ... 6415:
35 		return RTW89_SAR_6GHZ_SUBBAND_5_H;
36 	case 6435 ... 6515:
37 		return RTW89_SAR_6GHZ_SUBBAND_6;
38 	case 6535 ... 6695:
39 		return RTW89_SAR_6GHZ_SUBBAND_7_L;
40 	case 6715 ... 6855:
41 		return RTW89_SAR_6GHZ_SUBBAND_7_H;
42 
43 	/* freq 6875 (ch 185, 20MHz) spans RTW89_SAR_6GHZ_SUBBAND_7_H
44 	 * and RTW89_SAR_6GHZ_SUBBAND_8, so directly describe it with
45 	 * struct rtw89_sar_span in the following.
46 	 */
47 
48 	case 6895 ... 7115:
49 		return RTW89_SAR_6GHZ_SUBBAND_8;
50 	}
51 }
52 
53 struct rtw89_sar_span {
54 	enum rtw89_sar_subband subband_low;
55 	enum rtw89_sar_subband subband_high;
56 };
57 
58 #define RTW89_SAR_SPAN_VALID(span) ((span)->subband_high)
59 
60 #define RTW89_SAR_6GHZ_SPAN_HEAD 6145
61 #define RTW89_SAR_6GHZ_SPAN_IDX(center_freq) \
62 	((((int)(center_freq) - RTW89_SAR_6GHZ_SPAN_HEAD) / 5) / 2)
63 
64 #define RTW89_DECL_SAR_6GHZ_SPAN(center_freq, subband_l, subband_h) \
65 	[RTW89_SAR_6GHZ_SPAN_IDX(center_freq)] = { \
66 		.subband_low = RTW89_SAR_6GHZ_ ## subband_l, \
67 		.subband_high = RTW89_SAR_6GHZ_ ## subband_h, \
68 	}
69 
70 /* Since 6GHz SAR subbands are not edge aligned, some cases span two SAR
71  * subbands. In the following, we describe each of them with rtw89_sar_span.
72  */
73 static const struct rtw89_sar_span rtw89_sar_overlapping_6ghz[] = {
74 	RTW89_DECL_SAR_6GHZ_SPAN(6145, SUBBAND_5_L, SUBBAND_5_H),
75 	RTW89_DECL_SAR_6GHZ_SPAN(6165, SUBBAND_5_L, SUBBAND_5_H),
76 	RTW89_DECL_SAR_6GHZ_SPAN(6185, SUBBAND_5_L, SUBBAND_5_H),
77 	RTW89_DECL_SAR_6GHZ_SPAN(6505, SUBBAND_6, SUBBAND_7_L),
78 	RTW89_DECL_SAR_6GHZ_SPAN(6525, SUBBAND_6, SUBBAND_7_L),
79 	RTW89_DECL_SAR_6GHZ_SPAN(6545, SUBBAND_6, SUBBAND_7_L),
80 	RTW89_DECL_SAR_6GHZ_SPAN(6665, SUBBAND_7_L, SUBBAND_7_H),
81 	RTW89_DECL_SAR_6GHZ_SPAN(6705, SUBBAND_7_L, SUBBAND_7_H),
82 	RTW89_DECL_SAR_6GHZ_SPAN(6825, SUBBAND_7_H, SUBBAND_8),
83 	RTW89_DECL_SAR_6GHZ_SPAN(6865, SUBBAND_7_H, SUBBAND_8),
84 	RTW89_DECL_SAR_6GHZ_SPAN(6875, SUBBAND_7_H, SUBBAND_8),
85 	RTW89_DECL_SAR_6GHZ_SPAN(6885, SUBBAND_7_H, SUBBAND_8),
86 };
87 
88 static int rtw89_query_sar_config_common(struct rtw89_dev *rtwdev,
89 					 u32 center_freq, s32 *cfg)
90 {
91 	struct rtw89_sar_cfg_common *rtwsar = &rtwdev->sar.cfg_common;
92 	const struct rtw89_sar_span *span = NULL;
93 	enum rtw89_sar_subband subband_l, subband_h;
94 	int idx;
95 
96 	if (center_freq >= RTW89_SAR_6GHZ_SPAN_HEAD) {
97 		idx = RTW89_SAR_6GHZ_SPAN_IDX(center_freq);
98 		/* To decrease size of rtw89_sar_overlapping_6ghz[],
99 		 * RTW89_SAR_6GHZ_SPAN_IDX() truncates the leading NULLs
100 		 * to make first span as index 0 of the table. So, if center
101 		 * frequency is less than the first one, it will get netative.
102 		 */
103 		if (idx >= 0 && idx < ARRAY_SIZE(rtw89_sar_overlapping_6ghz))
104 			span = &rtw89_sar_overlapping_6ghz[idx];
105 	}
106 
107 	if (span && RTW89_SAR_SPAN_VALID(span)) {
108 		subband_l = span->subband_low;
109 		subband_h = span->subband_high;
110 	} else {
111 		subband_l = rtw89_sar_get_subband(rtwdev, center_freq);
112 		subband_h = subband_l;
113 	}
114 
115 	rtw89_debug(rtwdev, RTW89_DBG_SAR,
116 		    "center_freq %u: SAR subband {%u, %u}\n",
117 		    center_freq, subband_l, subband_h);
118 
119 	if (!rtwsar->set[subband_l] && !rtwsar->set[subband_h])
120 		return -ENODATA;
121 
122 	if (!rtwsar->set[subband_l])
123 		*cfg = rtwsar->cfg[subband_h];
124 	else if (!rtwsar->set[subband_h])
125 		*cfg = rtwsar->cfg[subband_l];
126 	else
127 		*cfg = min(rtwsar->cfg[subband_l], rtwsar->cfg[subband_h]);
128 
129 	return 0;
130 }
131 
132 static const
133 struct rtw89_sar_handler rtw89_sar_handlers[RTW89_SAR_SOURCE_NR] = {
134 	[RTW89_SAR_SOURCE_COMMON] = {
135 		.descr_sar_source = "RTW89_SAR_SOURCE_COMMON",
136 		.txpwr_factor_sar = 2,
137 		.query_sar_config = rtw89_query_sar_config_common,
138 	},
139 };
140 
141 #define rtw89_sar_set_src(_dev, _src, _cfg_name, _cfg_data)		\
142 	do {								\
143 		typeof(_src) _s = (_src);				\
144 		typeof(_dev) _d = (_dev);				\
145 		BUILD_BUG_ON(!rtw89_sar_handlers[_s].descr_sar_source);	\
146 		BUILD_BUG_ON(!rtw89_sar_handlers[_s].query_sar_config);	\
147 		lockdep_assert_held(&_d->mutex);			\
148 		_d->sar._cfg_name = *(_cfg_data);			\
149 		_d->sar.src = _s;					\
150 	} while (0)
151 
152 static s8 rtw89_txpwr_sar_to_mac(struct rtw89_dev *rtwdev, u8 fct, s32 cfg)
153 {
154 	const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
155 	s32 cfg_mac;
156 
157 	cfg_mac = fct > fct_mac ?
158 		  cfg >> (fct - fct_mac) : cfg << (fct_mac - fct);
159 
160 	return (s8)clamp_t(s32, cfg_mac,
161 			   RTW89_SAR_TXPWR_MAC_MIN,
162 			   RTW89_SAR_TXPWR_MAC_MAX);
163 }
164 
165 static s8 rtw89_txpwr_tas_to_sar(const struct rtw89_sar_handler *sar_hdl,
166 				 s8 cfg)
167 {
168 	const u8 fct = sar_hdl->txpwr_factor_sar;
169 
170 	if (fct > RTW89_TAS_FACTOR)
171 		return cfg << (fct - RTW89_TAS_FACTOR);
172 	else
173 		return cfg >> (RTW89_TAS_FACTOR - fct);
174 }
175 
176 static s8 rtw89_txpwr_sar_to_tas(const struct rtw89_sar_handler *sar_hdl,
177 				 s8 cfg)
178 {
179 	const u8 fct = sar_hdl->txpwr_factor_sar;
180 
181 	if (fct > RTW89_TAS_FACTOR)
182 		return cfg >> (fct - RTW89_TAS_FACTOR);
183 	else
184 		return cfg << (RTW89_TAS_FACTOR - fct);
185 }
186 
187 s8 rtw89_query_sar(struct rtw89_dev *rtwdev, u32 center_freq)
188 {
189 	const enum rtw89_sar_sources src = rtwdev->sar.src;
190 	/* its members are protected by rtw89_sar_set_src() */
191 	const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
192 	struct rtw89_tas_info *tas = &rtwdev->tas;
193 	s8 delta;
194 	int ret;
195 	s32 cfg;
196 	u8 fct;
197 
198 	lockdep_assert_held(&rtwdev->mutex);
199 
200 	if (src == RTW89_SAR_SOURCE_NONE)
201 		return RTW89_SAR_TXPWR_MAC_MAX;
202 
203 	ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg);
204 	if (ret)
205 		return RTW89_SAR_TXPWR_MAC_MAX;
206 
207 	if (tas->enable) {
208 		switch (tas->state) {
209 		case RTW89_TAS_STATE_DPR_OFF:
210 			return RTW89_SAR_TXPWR_MAC_MAX;
211 		case RTW89_TAS_STATE_DPR_ON:
212 			delta = rtw89_txpwr_tas_to_sar(sar_hdl, tas->delta);
213 			cfg -= delta;
214 			break;
215 		case RTW89_TAS_STATE_DPR_FORBID:
216 		default:
217 			break;
218 		}
219 	}
220 
221 	fct = sar_hdl->txpwr_factor_sar;
222 
223 	return rtw89_txpwr_sar_to_mac(rtwdev, fct, cfg);
224 }
225 
226 void rtw89_print_sar(struct seq_file *m, struct rtw89_dev *rtwdev, u32 center_freq)
227 {
228 	const enum rtw89_sar_sources src = rtwdev->sar.src;
229 	/* its members are protected by rtw89_sar_set_src() */
230 	const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
231 	const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
232 	int ret;
233 	s32 cfg;
234 	u8 fct;
235 
236 	lockdep_assert_held(&rtwdev->mutex);
237 
238 	if (src == RTW89_SAR_SOURCE_NONE) {
239 		seq_puts(m, "no SAR is applied\n");
240 		return;
241 	}
242 
243 	seq_printf(m, "source: %d (%s)\n", src, sar_hdl->descr_sar_source);
244 
245 	ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg);
246 	if (ret) {
247 		seq_printf(m, "config: return code: %d\n", ret);
248 		seq_printf(m, "assign: max setting: %d (unit: 1/%lu dBm)\n",
249 			   RTW89_SAR_TXPWR_MAC_MAX, BIT(fct_mac));
250 		return;
251 	}
252 
253 	fct = sar_hdl->txpwr_factor_sar;
254 
255 	seq_printf(m, "config: %d (unit: 1/%lu dBm)\n", cfg, BIT(fct));
256 }
257 
258 void rtw89_print_tas(struct seq_file *m, struct rtw89_dev *rtwdev)
259 {
260 	struct rtw89_tas_info *tas = &rtwdev->tas;
261 
262 	if (!tas->enable) {
263 		seq_puts(m, "no TAS is applied\n");
264 		return;
265 	}
266 
267 	seq_printf(m, "DPR gap: %d\n", tas->dpr_gap);
268 	seq_printf(m, "TAS delta: %d\n", tas->delta);
269 }
270 
271 static int rtw89_apply_sar_common(struct rtw89_dev *rtwdev,
272 				  const struct rtw89_sar_cfg_common *sar)
273 {
274 	enum rtw89_sar_sources src;
275 	int ret = 0;
276 
277 	mutex_lock(&rtwdev->mutex);
278 
279 	src = rtwdev->sar.src;
280 	if (src != RTW89_SAR_SOURCE_NONE && src != RTW89_SAR_SOURCE_COMMON) {
281 		rtw89_warn(rtwdev, "SAR source: %d is in use", src);
282 		ret = -EBUSY;
283 		goto exit;
284 	}
285 
286 	rtw89_sar_set_src(rtwdev, RTW89_SAR_SOURCE_COMMON, cfg_common, sar);
287 	rtw89_core_set_chip_txpwr(rtwdev);
288 
289 exit:
290 	mutex_unlock(&rtwdev->mutex);
291 	return ret;
292 }
293 
294 static const struct cfg80211_sar_freq_ranges rtw89_common_sar_freq_ranges[] = {
295 	{ .start_freq = 2412, .end_freq = 2484, },
296 	{ .start_freq = 5180, .end_freq = 5320, },
297 	{ .start_freq = 5500, .end_freq = 5720, },
298 	{ .start_freq = 5745, .end_freq = 5825, },
299 	{ .start_freq = 5955, .end_freq = 6155, },
300 	{ .start_freq = 6175, .end_freq = 6415, },
301 	{ .start_freq = 6435, .end_freq = 6515, },
302 	{ .start_freq = 6535, .end_freq = 6695, },
303 	{ .start_freq = 6715, .end_freq = 6875, },
304 	{ .start_freq = 6875, .end_freq = 7115, },
305 };
306 
307 static_assert(RTW89_SAR_SUBBAND_NR ==
308 	      ARRAY_SIZE(rtw89_common_sar_freq_ranges));
309 
310 const struct cfg80211_sar_capa rtw89_sar_capa = {
311 	.type = NL80211_SAR_TYPE_POWER,
312 	.num_freq_ranges = ARRAY_SIZE(rtw89_common_sar_freq_ranges),
313 	.freq_ranges = rtw89_common_sar_freq_ranges,
314 };
315 
316 int rtw89_ops_set_sar_specs(struct ieee80211_hw *hw,
317 			    const struct cfg80211_sar_specs *sar)
318 {
319 	struct rtw89_dev *rtwdev = hw->priv;
320 	struct rtw89_sar_cfg_common sar_common = {0};
321 	u8 fct;
322 	u32 freq_start;
323 	u32 freq_end;
324 	s32 power;
325 	u32 i, idx;
326 
327 	if (sar->type != NL80211_SAR_TYPE_POWER)
328 		return -EINVAL;
329 
330 	fct = rtw89_sar_handlers[RTW89_SAR_SOURCE_COMMON].txpwr_factor_sar;
331 
332 	for (i = 0; i < sar->num_sub_specs; i++) {
333 		idx = sar->sub_specs[i].freq_range_index;
334 		if (idx >= ARRAY_SIZE(rtw89_common_sar_freq_ranges))
335 			return -EINVAL;
336 
337 		freq_start = rtw89_common_sar_freq_ranges[idx].start_freq;
338 		freq_end = rtw89_common_sar_freq_ranges[idx].end_freq;
339 		power = sar->sub_specs[i].power;
340 
341 		rtw89_debug(rtwdev, RTW89_DBG_SAR,
342 			    "On freq %u to %u, set SAR limit %d (unit: 1/%lu dBm)\n",
343 			    freq_start, freq_end, power, BIT(fct));
344 
345 		sar_common.set[idx] = true;
346 		sar_common.cfg[idx] = power;
347 	}
348 
349 	return rtw89_apply_sar_common(rtwdev, &sar_common);
350 }
351 
352 static void rtw89_tas_state_update(struct rtw89_dev *rtwdev)
353 {
354 	const enum rtw89_sar_sources src = rtwdev->sar.src;
355 	/* its members are protected by rtw89_sar_set_src() */
356 	const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
357 	struct rtw89_tas_info *tas = &rtwdev->tas;
358 	s32 txpwr_avg = tas->total_txpwr / RTW89_TAS_MAX_WINDOW / PERCENT;
359 	s32 dpr_on_threshold, dpr_off_threshold, cfg;
360 	enum rtw89_tas_state state = tas->state;
361 	const struct rtw89_chan *chan;
362 	int ret;
363 
364 	lockdep_assert_held(&rtwdev->mutex);
365 
366 	if (src == RTW89_SAR_SOURCE_NONE)
367 		return;
368 
369 	chan = rtw89_chan_get(rtwdev, RTW89_SUB_ENTITY_0);
370 	ret = sar_hdl->query_sar_config(rtwdev, chan->freq, &cfg);
371 	if (ret)
372 		return;
373 
374 	cfg = rtw89_txpwr_sar_to_tas(sar_hdl, cfg);
375 
376 	if (tas->delta >= cfg) {
377 		rtw89_debug(rtwdev, RTW89_DBG_SAR,
378 			    "TAS delta exceed SAR limit\n");
379 		state = RTW89_TAS_STATE_DPR_FORBID;
380 		goto out;
381 	}
382 
383 	dpr_on_threshold = cfg;
384 	dpr_off_threshold = cfg - tas->dpr_gap;
385 	rtw89_debug(rtwdev, RTW89_DBG_SAR,
386 		    "DPR_ON thold: %d, DPR_OFF thold: %d, txpwr_avg: %d\n",
387 		    dpr_on_threshold, dpr_off_threshold, txpwr_avg);
388 
389 	if (txpwr_avg >= dpr_on_threshold)
390 		state = RTW89_TAS_STATE_DPR_ON;
391 	else if (txpwr_avg < dpr_off_threshold)
392 		state = RTW89_TAS_STATE_DPR_OFF;
393 
394 out:
395 	if (tas->state == state)
396 		return;
397 
398 	rtw89_debug(rtwdev, RTW89_DBG_SAR,
399 		    "TAS old state: %d, new state: %d\n", tas->state, state);
400 	tas->state = state;
401 	rtw89_core_set_chip_txpwr(rtwdev);
402 }
403 
404 void rtw89_tas_init(struct rtw89_dev *rtwdev)
405 {
406 	struct rtw89_tas_info *tas = &rtwdev->tas;
407 	int ret;
408 	u8 val;
409 
410 	ret = rtw89_acpi_evaluate_dsm(rtwdev, RTW89_ACPI_DSM_FUNC_TAS_EN, &val);
411 	if (ret) {
412 		rtw89_debug(rtwdev, RTW89_DBG_SAR,
413 			    "acpi: cannot get TAS: %d\n", ret);
414 		return;
415 	}
416 
417 	switch (val) {
418 	case 0:
419 		tas->enable = false;
420 		break;
421 	case 1:
422 		tas->enable = true;
423 		break;
424 	default:
425 		break;
426 	}
427 
428 	if (!tas->enable) {
429 		rtw89_debug(rtwdev, RTW89_DBG_SAR, "TAS not enable\n");
430 		return;
431 	}
432 
433 	tas->dpr_gap = RTW89_TAS_DPR_GAP;
434 	tas->delta = RTW89_TAS_DELTA;
435 }
436 
437 void rtw89_tas_reset(struct rtw89_dev *rtwdev)
438 {
439 	struct rtw89_tas_info *tas = &rtwdev->tas;
440 
441 	if (!tas->enable)
442 		return;
443 
444 	memset(&tas->txpwr_history, 0, sizeof(tas->txpwr_history));
445 	tas->total_txpwr = 0;
446 	tas->cur_idx = 0;
447 	tas->state = RTW89_TAS_STATE_DPR_OFF;
448 }
449 
450 static const struct rtw89_reg_def txpwr_regs[] = {
451 	{R_PATH0_TXPWR, B_PATH0_TXPWR},
452 	{R_PATH1_TXPWR, B_PATH1_TXPWR},
453 };
454 
455 void rtw89_tas_track(struct rtw89_dev *rtwdev)
456 {
457 	struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
458 	const enum rtw89_sar_sources src = rtwdev->sar.src;
459 	u8 max_nss_num = rtwdev->chip->rf_path_num;
460 	struct rtw89_tas_info *tas = &rtwdev->tas;
461 	s16 tmp, txpwr, instant_txpwr = 0;
462 	u32 val;
463 	int i;
464 
465 	if (!tas->enable || src == RTW89_SAR_SOURCE_NONE)
466 		return;
467 
468 	if (env->ccx_watchdog_result != RTW89_PHY_ENV_MON_IFS_CLM)
469 		return;
470 
471 	for (i = 0; i < max_nss_num; i++) {
472 		val = rtw89_phy_read32_mask(rtwdev, txpwr_regs[i].addr,
473 					    txpwr_regs[i].mask);
474 		tmp = sign_extend32(val, 8);
475 		if (tmp <= 0)
476 			return;
477 		instant_txpwr += tmp;
478 	}
479 
480 	instant_txpwr /= max_nss_num;
481 	/* in unit of 0.25 dBm multiply by percentage */
482 	txpwr = instant_txpwr * env->ifs_clm_tx_ratio;
483 	tas->total_txpwr += txpwr - tas->txpwr_history[tas->cur_idx];
484 	tas->txpwr_history[tas->cur_idx] = txpwr;
485 	rtw89_debug(rtwdev, RTW89_DBG_SAR,
486 		    "instant_txpwr: %d, tx_ratio: %d, txpwr: %d\n",
487 		    instant_txpwr, env->ifs_clm_tx_ratio, txpwr);
488 
489 	tas->cur_idx = (tas->cur_idx + 1) % RTW89_TAS_MAX_WINDOW;
490 
491 	rtw89_tas_state_update(rtwdev);
492 }
493