xref: /linux/drivers/net/wireless/realtek/rtw89/efuse.c (revision 5cfe477f6a3f9a4d9b2906d442964f2115b0403f)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2019-2020  Realtek Corporation
3  */
4 
5 #include "debug.h"
6 #include "efuse.h"
7 #include "mac.h"
8 #include "reg.h"
9 
10 enum rtw89_efuse_bank {
11 	RTW89_EFUSE_BANK_WIFI,
12 	RTW89_EFUSE_BANK_BT,
13 };
14 
15 static int rtw89_switch_efuse_bank(struct rtw89_dev *rtwdev,
16 				   enum rtw89_efuse_bank bank)
17 {
18 	u8 val;
19 
20 	if (rtwdev->chip->chip_id != RTL8852A)
21 		return 0;
22 
23 	val = rtw89_read32_mask(rtwdev, R_AX_EFUSE_CTRL_1,
24 				B_AX_EF_CELL_SEL_MASK);
25 	if (bank == val)
26 		return 0;
27 
28 	rtw89_write32_mask(rtwdev, R_AX_EFUSE_CTRL_1, B_AX_EF_CELL_SEL_MASK,
29 			   bank);
30 
31 	val = rtw89_read32_mask(rtwdev, R_AX_EFUSE_CTRL_1,
32 				B_AX_EF_CELL_SEL_MASK);
33 	if (bank == val)
34 		return 0;
35 
36 	return -EBUSY;
37 }
38 
39 static void rtw89_enable_otp_burst_mode(struct rtw89_dev *rtwdev, bool en)
40 {
41 	if (en)
42 		rtw89_write32_set(rtwdev, R_AX_EFUSE_CTRL_1_V1, B_AX_EF_BURST);
43 	else
44 		rtw89_write32_clr(rtwdev, R_AX_EFUSE_CTRL_1_V1, B_AX_EF_BURST);
45 }
46 
47 static void rtw89_enable_efuse_pwr_cut_ddv(struct rtw89_dev *rtwdev)
48 {
49 	enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
50 	struct rtw89_hal *hal = &rtwdev->hal;
51 
52 	if (chip_id == RTL8852A)
53 		return;
54 
55 	rtw89_write8_set(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK);
56 	rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B14);
57 
58 	fsleep(1000);
59 
60 	rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B15);
61 	rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_ISO_EB2CORE);
62 	if (chip_id == RTL8852B && hal->cv == CHIP_CAV)
63 		rtw89_enable_otp_burst_mode(rtwdev, true);
64 }
65 
66 static void rtw89_disable_efuse_pwr_cut_ddv(struct rtw89_dev *rtwdev)
67 {
68 	enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
69 	struct rtw89_hal *hal = &rtwdev->hal;
70 
71 	if (chip_id == RTL8852A)
72 		return;
73 
74 	if (chip_id == RTL8852B && hal->cv == CHIP_CAV)
75 		rtw89_enable_otp_burst_mode(rtwdev, false);
76 
77 	rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_ISO_EB2CORE);
78 	rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B15);
79 
80 	fsleep(1000);
81 
82 	rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B14);
83 	rtw89_write8_clr(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK);
84 }
85 
86 static int rtw89_dump_physical_efuse_map_ddv(struct rtw89_dev *rtwdev, u8 *map,
87 					     u32 dump_addr, u32 dump_size)
88 {
89 	u32 efuse_ctl;
90 	u32 addr;
91 	int ret;
92 
93 	rtw89_enable_efuse_pwr_cut_ddv(rtwdev);
94 
95 	for (addr = dump_addr; addr < dump_addr + dump_size; addr++) {
96 		efuse_ctl = u32_encode_bits(addr, B_AX_EF_ADDR_MASK);
97 		rtw89_write32(rtwdev, R_AX_EFUSE_CTRL, efuse_ctl & ~B_AX_EF_RDY);
98 
99 		ret = read_poll_timeout_atomic(rtw89_read32, efuse_ctl,
100 					       efuse_ctl & B_AX_EF_RDY, 1, 1000000,
101 					       true, rtwdev, R_AX_EFUSE_CTRL);
102 		if (ret)
103 			return -EBUSY;
104 
105 		*map++ = (u8)(efuse_ctl & 0xff);
106 	}
107 
108 	rtw89_disable_efuse_pwr_cut_ddv(rtwdev);
109 
110 	return 0;
111 }
112 
113 static int rtw89_dump_physical_efuse_map_dav(struct rtw89_dev *rtwdev, u8 *map,
114 					     u32 dump_addr, u32 dump_size)
115 {
116 	u32 addr;
117 	u8 val8;
118 	int err;
119 	int ret;
120 
121 	for (addr = dump_addr; addr < dump_addr + dump_size; addr++) {
122 		ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0x40, FULL_BIT_MASK);
123 		if (ret)
124 			return ret;
125 		ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_LOW_ADDR,
126 					      addr & 0xff, XTAL_SI_LOW_ADDR_MASK);
127 		if (ret)
128 			return ret;
129 		ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, addr >> 8,
130 					      XTAL_SI_HIGH_ADDR_MASK);
131 		if (ret)
132 			return ret;
133 		ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0,
134 					      XTAL_SI_MODE_SEL_MASK);
135 		if (ret)
136 			return ret;
137 
138 		ret = read_poll_timeout_atomic(rtw89_mac_read_xtal_si, err,
139 					       !err && (val8 & XTAL_SI_RDY),
140 					       1, 10000, false,
141 					       rtwdev, XTAL_SI_CTRL, &val8);
142 		if (ret) {
143 			rtw89_warn(rtwdev, "failed to read dav efuse\n");
144 			return ret;
145 		}
146 
147 		ret = rtw89_mac_read_xtal_si(rtwdev, XTAL_SI_READ_VAL, &val8);
148 		if (ret)
149 			return ret;
150 		*map++ = val8;
151 	}
152 
153 	return 0;
154 }
155 
156 static int rtw89_dump_physical_efuse_map(struct rtw89_dev *rtwdev, u8 *map,
157 					 u32 dump_addr, u32 dump_size, bool dav)
158 {
159 	int ret;
160 
161 	if (!map || dump_size == 0)
162 		return 0;
163 
164 	rtw89_switch_efuse_bank(rtwdev, RTW89_EFUSE_BANK_WIFI);
165 
166 	if (dav) {
167 		ret = rtw89_dump_physical_efuse_map_dav(rtwdev, map, dump_addr, dump_size);
168 		if (ret)
169 			return ret;
170 	} else {
171 		ret = rtw89_dump_physical_efuse_map_ddv(rtwdev, map, dump_addr, dump_size);
172 		if (ret)
173 			return ret;
174 	}
175 
176 	return 0;
177 }
178 
179 #define invalid_efuse_header(hdr1, hdr2) \
180 	((hdr1) == 0xff || (hdr2) == 0xff)
181 #define invalid_efuse_content(word_en, i) \
182 	(((word_en) & BIT(i)) != 0x0)
183 #define get_efuse_blk_idx(hdr1, hdr2) \
184 	((((hdr2) & 0xf0) >> 4) | (((hdr1) & 0x0f) << 4))
185 #define block_idx_to_logical_idx(blk_idx, i) \
186 	(((blk_idx) << 3) + ((i) << 1))
187 static int rtw89_dump_logical_efuse_map(struct rtw89_dev *rtwdev, u8 *phy_map,
188 					u8 *log_map)
189 {
190 	u32 physical_size = rtwdev->chip->physical_efuse_size;
191 	u32 logical_size = rtwdev->chip->logical_efuse_size;
192 	u8 sec_ctrl_size = rtwdev->chip->sec_ctrl_efuse_size;
193 	u32 phy_idx = sec_ctrl_size;
194 	u32 log_idx;
195 	u8 hdr1, hdr2;
196 	u8 blk_idx;
197 	u8 word_en;
198 	int i;
199 
200 	if (!phy_map)
201 		return 0;
202 
203 	while (phy_idx < physical_size - sec_ctrl_size) {
204 		hdr1 = phy_map[phy_idx];
205 		hdr2 = phy_map[phy_idx + 1];
206 		if (invalid_efuse_header(hdr1, hdr2))
207 			break;
208 
209 		blk_idx = get_efuse_blk_idx(hdr1, hdr2);
210 		word_en = hdr2 & 0xf;
211 		phy_idx += 2;
212 
213 		for (i = 0; i < 4; i++) {
214 			if (invalid_efuse_content(word_en, i))
215 				continue;
216 
217 			log_idx = block_idx_to_logical_idx(blk_idx, i);
218 			if (phy_idx + 1 > physical_size - sec_ctrl_size - 1 ||
219 			    log_idx + 1 > logical_size)
220 				return -EINVAL;
221 
222 			log_map[log_idx] = phy_map[phy_idx];
223 			log_map[log_idx + 1] = phy_map[phy_idx + 1];
224 			phy_idx += 2;
225 		}
226 	}
227 	return 0;
228 }
229 
230 int rtw89_parse_efuse_map(struct rtw89_dev *rtwdev)
231 {
232 	u32 phy_size = rtwdev->chip->physical_efuse_size;
233 	u32 log_size = rtwdev->chip->logical_efuse_size;
234 	u32 dav_phy_size = rtwdev->chip->dav_phy_efuse_size;
235 	u32 dav_log_size = rtwdev->chip->dav_log_efuse_size;
236 	u32 full_log_size = log_size + dav_log_size;
237 	u8 *phy_map = NULL;
238 	u8 *log_map = NULL;
239 	u8 *dav_phy_map = NULL;
240 	u8 *dav_log_map = NULL;
241 	int ret;
242 
243 	if (rtw89_read16(rtwdev, R_AX_SYS_WL_EFUSE_CTRL) & B_AX_AUTOLOAD_SUS)
244 		rtwdev->efuse.valid = true;
245 	else
246 		rtw89_warn(rtwdev, "failed to check efuse autoload\n");
247 
248 	phy_map = kmalloc(phy_size, GFP_KERNEL);
249 	log_map = kmalloc(full_log_size, GFP_KERNEL);
250 	if (dav_phy_size && dav_log_size) {
251 		dav_phy_map = kmalloc(dav_phy_size, GFP_KERNEL);
252 		dav_log_map = log_map + log_size;
253 	}
254 
255 	if (!phy_map || !log_map || (dav_phy_size && !dav_phy_map)) {
256 		ret = -ENOMEM;
257 		goto out_free;
258 	}
259 
260 	ret = rtw89_dump_physical_efuse_map(rtwdev, phy_map, 0, phy_size, false);
261 	if (ret) {
262 		rtw89_warn(rtwdev, "failed to dump efuse physical map\n");
263 		goto out_free;
264 	}
265 	ret = rtw89_dump_physical_efuse_map(rtwdev, dav_phy_map, 0, dav_phy_size, true);
266 	if (ret) {
267 		rtw89_warn(rtwdev, "failed to dump efuse dav physical map\n");
268 		goto out_free;
269 	}
270 
271 	memset(log_map, 0xff, full_log_size);
272 	ret = rtw89_dump_logical_efuse_map(rtwdev, phy_map, log_map);
273 	if (ret) {
274 		rtw89_warn(rtwdev, "failed to dump efuse logical map\n");
275 		goto out_free;
276 	}
277 	ret = rtw89_dump_logical_efuse_map(rtwdev, dav_phy_map, dav_log_map);
278 	if (ret) {
279 		rtw89_warn(rtwdev, "failed to dump efuse dav logical map\n");
280 		goto out_free;
281 	}
282 
283 	rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "log_map: ", log_map, full_log_size);
284 
285 	ret = rtwdev->chip->ops->read_efuse(rtwdev, log_map);
286 	if (ret) {
287 		rtw89_warn(rtwdev, "failed to read efuse map\n");
288 		goto out_free;
289 	}
290 
291 out_free:
292 	kfree(dav_phy_map);
293 	kfree(log_map);
294 	kfree(phy_map);
295 
296 	return ret;
297 }
298 
299 int rtw89_parse_phycap_map(struct rtw89_dev *rtwdev)
300 {
301 	u32 phycap_addr = rtwdev->chip->phycap_addr;
302 	u32 phycap_size = rtwdev->chip->phycap_size;
303 	u8 *phycap_map = NULL;
304 	int ret = 0;
305 
306 	if (!phycap_size)
307 		return 0;
308 
309 	phycap_map = kmalloc(phycap_size, GFP_KERNEL);
310 	if (!phycap_map)
311 		return -ENOMEM;
312 
313 	ret = rtw89_dump_physical_efuse_map(rtwdev, phycap_map,
314 					    phycap_addr, phycap_size, false);
315 	if (ret) {
316 		rtw89_warn(rtwdev, "failed to dump phycap map\n");
317 		goto out_free;
318 	}
319 
320 	ret = rtwdev->chip->ops->read_phycap(rtwdev, phycap_map);
321 	if (ret) {
322 		rtw89_warn(rtwdev, "failed to read phycap map\n");
323 		goto out_free;
324 	}
325 
326 out_free:
327 	kfree(phycap_map);
328 
329 	return ret;
330 }
331