xref: /linux/drivers/net/wireless/realtek/rtw88/phy.c (revision dec1c62e91ba268ab2a6e339d4d7a59287d5eba1)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 #include "regd.h"
13 #include "sar.h"
14 
15 struct phy_cfg_pair {
16 	u32 addr;
17 	u32 data;
18 };
19 
20 union phy_table_tile {
21 	struct rtw_phy_cond cond;
22 	struct phy_cfg_pair cfg;
23 };
24 
25 static const u32 db_invert_table[12][8] = {
26 	{10,		13,		16,		20,
27 	 25,		32,		40,		50},
28 	{64,		80,		101,		128,
29 	 160,		201,		256,		318},
30 	{401,		505,		635,		800,
31 	 1007,		1268,		1596,		2010},
32 	{316,		398,		501,		631,
33 	 794,		1000,		1259,		1585},
34 	{1995,		2512,		3162,		3981,
35 	 5012,		6310,		7943,		10000},
36 	{12589,		15849,		19953,		25119,
37 	 31623,		39811,		50119,		63098},
38 	{79433,		100000,		125893,		158489,
39 	 199526,	251189,		316228,		398107},
40 	{501187,	630957,		794328,		1000000,
41 	 1258925,	1584893,	1995262,	2511886},
42 	{3162278,	3981072,	5011872,	6309573,
43 	 7943282,	1000000,	12589254,	15848932},
44 	{19952623,	25118864,	31622777,	39810717,
45 	 50118723,	63095734,	79432823,	100000000},
46 	{125892541,	158489319,	199526232,	251188643,
47 	 316227766,	398107171,	501187234,	630957345},
48 	{794328235,	1000000000,	1258925412,	1584893192,
49 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
50 };
51 
52 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
53 u8 rtw_ofdm_rates[] = {
54 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
55 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
56 	DESC_RATE48M, DESC_RATE54M
57 };
58 u8 rtw_ht_1s_rates[] = {
59 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
60 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
61 	DESC_RATEMCS6, DESC_RATEMCS7
62 };
63 u8 rtw_ht_2s_rates[] = {
64 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
65 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
66 	DESC_RATEMCS14, DESC_RATEMCS15
67 };
68 u8 rtw_vht_1s_rates[] = {
69 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
70 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
71 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
72 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
73 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
74 };
75 u8 rtw_vht_2s_rates[] = {
76 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
77 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
78 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
79 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
80 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
81 };
82 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
83 	rtw_cck_rates, rtw_ofdm_rates,
84 	rtw_ht_1s_rates, rtw_ht_2s_rates,
85 	rtw_vht_1s_rates, rtw_vht_2s_rates
86 };
87 EXPORT_SYMBOL(rtw_rate_section);
88 
89 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
90 	ARRAY_SIZE(rtw_cck_rates),
91 	ARRAY_SIZE(rtw_ofdm_rates),
92 	ARRAY_SIZE(rtw_ht_1s_rates),
93 	ARRAY_SIZE(rtw_ht_2s_rates),
94 	ARRAY_SIZE(rtw_vht_1s_rates),
95 	ARRAY_SIZE(rtw_vht_2s_rates)
96 };
97 EXPORT_SYMBOL(rtw_rate_size);
98 
99 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
100 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
101 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
102 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
103 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
104 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
105 
106 enum rtw_phy_band_type {
107 	PHY_BAND_2G	= 0,
108 	PHY_BAND_5G	= 1,
109 };
110 
111 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
112 {
113 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
114 	u8 i, j;
115 
116 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
117 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
118 			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
119 	}
120 
121 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
122 }
123 
124 void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l)
125 {
126 	struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th;
127 
128 	rtw_write32_mask(rtwdev,
129 			 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr,
130 			 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask,
131 			 l2h + edcca_th[EDCCA_TH_L2H_IDX].offset);
132 	rtw_write32_mask(rtwdev,
133 			 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr,
134 			 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask,
135 			 h2l + edcca_th[EDCCA_TH_H2L_IDX].offset);
136 }
137 EXPORT_SYMBOL(rtw_phy_set_edcca_th);
138 
139 void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev)
140 {
141 	struct rtw_chip_info *chip = rtwdev->chip;
142 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
143 
144 	/* turn off in debugfs for debug usage */
145 	if (!rtw_edcca_enabled) {
146 		dm_info->edcca_mode = RTW_EDCCA_NORMAL;
147 		rtw_dbg(rtwdev, RTW_DBG_PHY, "EDCCA disabled, cannot be set\n");
148 		return;
149 	}
150 
151 	switch (rtwdev->regd.dfs_region) {
152 	case NL80211_DFS_ETSI:
153 		dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
154 		dm_info->l2h_th_ini = chip->l2h_th_ini_ad;
155 		break;
156 	case NL80211_DFS_JP:
157 		dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
158 		dm_info->l2h_th_ini = chip->l2h_th_ini_cs;
159 		break;
160 	default:
161 		dm_info->edcca_mode = RTW_EDCCA_NORMAL;
162 		break;
163 	}
164 }
165 
166 static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev)
167 {
168 	struct rtw_chip_info *chip = rtwdev->chip;
169 
170 	rtw_phy_adaptivity_set_mode(rtwdev);
171 	if (chip->ops->adaptivity_init)
172 		chip->ops->adaptivity_init(rtwdev);
173 }
174 
175 static void rtw_phy_adaptivity(struct rtw_dev *rtwdev)
176 {
177 	if (rtwdev->chip->ops->adaptivity)
178 		rtwdev->chip->ops->adaptivity(rtwdev);
179 }
180 
181 static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
182 {
183 	struct rtw_chip_info *chip = rtwdev->chip;
184 
185 	if (chip->ops->cfo_init)
186 		chip->ops->cfo_init(rtwdev);
187 }
188 
189 static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev)
190 {
191 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
192 
193 	path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path;
194 	path_div->path_a_cnt = 0;
195 	path_div->path_a_sum = 0;
196 	path_div->path_b_cnt = 0;
197 	path_div->path_b_sum = 0;
198 }
199 
200 void rtw_phy_init(struct rtw_dev *rtwdev)
201 {
202 	struct rtw_chip_info *chip = rtwdev->chip;
203 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
204 	u32 addr, mask;
205 
206 	dm_info->fa_history[3] = 0;
207 	dm_info->fa_history[2] = 0;
208 	dm_info->fa_history[1] = 0;
209 	dm_info->fa_history[0] = 0;
210 	dm_info->igi_bitmap = 0;
211 	dm_info->igi_history[3] = 0;
212 	dm_info->igi_history[2] = 0;
213 	dm_info->igi_history[1] = 0;
214 
215 	addr = chip->dig[0].addr;
216 	mask = chip->dig[0].mask;
217 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
218 	rtw_phy_cck_pd_init(rtwdev);
219 
220 	dm_info->iqk.done = false;
221 	rtw_phy_adaptivity_init(rtwdev);
222 	rtw_phy_cfo_init(rtwdev);
223 	rtw_phy_tx_path_div_init(rtwdev);
224 }
225 EXPORT_SYMBOL(rtw_phy_init);
226 
227 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
228 {
229 	struct rtw_chip_info *chip = rtwdev->chip;
230 	struct rtw_hal *hal = &rtwdev->hal;
231 	u32 addr, mask;
232 	u8 path;
233 
234 	if (chip->dig_cck) {
235 		const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
236 		rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
237 	}
238 
239 	for (path = 0; path < hal->rf_path_num; path++) {
240 		addr = chip->dig[path].addr;
241 		mask = chip->dig[path].mask;
242 		rtw_write32_mask(rtwdev, addr, mask, igi);
243 	}
244 }
245 
246 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
247 {
248 	struct rtw_chip_info *chip = rtwdev->chip;
249 
250 	chip->ops->false_alarm_statistics(rtwdev);
251 }
252 
253 #define RA_FLOOR_TABLE_SIZE	7
254 #define RA_FLOOR_UP_GAP		3
255 
256 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
257 {
258 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
259 	u8 new_level = 0;
260 	int i;
261 
262 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
263 		if (i >= old_level)
264 			table[i] += RA_FLOOR_UP_GAP;
265 
266 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
267 		if (rssi < table[i]) {
268 			new_level = i;
269 			break;
270 		}
271 	}
272 
273 	return new_level;
274 }
275 
276 struct rtw_phy_stat_iter_data {
277 	struct rtw_dev *rtwdev;
278 	u8 min_rssi;
279 };
280 
281 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
282 {
283 	struct rtw_phy_stat_iter_data *iter_data = data;
284 	struct rtw_dev *rtwdev = iter_data->rtwdev;
285 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
286 	u8 rssi;
287 
288 	rssi = ewma_rssi_read(&si->avg_rssi);
289 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
290 
291 	rtw_fw_send_rssi_info(rtwdev, si);
292 
293 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
294 }
295 
296 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
297 {
298 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
299 	struct rtw_phy_stat_iter_data data = {};
300 
301 	data.rtwdev = rtwdev;
302 	data.min_rssi = U8_MAX;
303 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
304 
305 	dm_info->pre_min_rssi = dm_info->min_rssi;
306 	dm_info->min_rssi = data.min_rssi;
307 }
308 
309 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
310 {
311 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
312 
313 	dm_info->last_pkt_count = dm_info->cur_pkt_count;
314 	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
315 }
316 
317 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
318 {
319 	rtw_phy_stat_rssi(rtwdev);
320 	rtw_phy_stat_false_alarm(rtwdev);
321 	rtw_phy_stat_rate_cnt(rtwdev);
322 }
323 
324 #define DIG_PERF_FA_TH_LOW			250
325 #define DIG_PERF_FA_TH_HIGH			500
326 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
327 #define DIG_PERF_MAX				0x5a
328 #define DIG_PERF_MID				0x40
329 #define DIG_CVRG_FA_TH_LOW			2000
330 #define DIG_CVRG_FA_TH_HIGH			4000
331 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
332 #define DIG_CVRG_MAX				0x2a
333 #define DIG_CVRG_MID				0x26
334 #define DIG_CVRG_MIN				0x1c
335 #define DIG_RSSI_GAIN_OFFSET			15
336 
337 static bool
338 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
339 {
340 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
341 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
342 	u16 *fa_history;
343 	u8 *igi_history;
344 	u8 damping_rssi;
345 	u8 min_rssi;
346 	u8 diff;
347 	u8 igi_bitmap;
348 	bool damping = false;
349 
350 	min_rssi = dm_info->min_rssi;
351 	if (dm_info->damping) {
352 		damping_rssi = dm_info->damping_rssi;
353 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
354 						 damping_rssi - min_rssi;
355 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
356 			dm_info->damping = false;
357 			return false;
358 		}
359 
360 		return true;
361 	}
362 
363 	igi_history = dm_info->igi_history;
364 	fa_history = dm_info->fa_history;
365 	igi_bitmap = dm_info->igi_bitmap & 0xf;
366 	switch (igi_bitmap) {
367 	case 5:
368 		/* down -> up -> down -> up */
369 		if (igi_history[0] > igi_history[1] &&
370 		    igi_history[2] > igi_history[3] &&
371 		    igi_history[0] - igi_history[1] >= 2 &&
372 		    igi_history[2] - igi_history[3] >= 2 &&
373 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
374 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
375 			damping = true;
376 		break;
377 	case 9:
378 		/* up -> down -> down -> up */
379 		if (igi_history[0] > igi_history[1] &&
380 		    igi_history[3] > igi_history[2] &&
381 		    igi_history[0] - igi_history[1] >= 4 &&
382 		    igi_history[3] - igi_history[2] >= 2 &&
383 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
384 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
385 			damping = true;
386 		break;
387 	default:
388 		return false;
389 	}
390 
391 	if (damping) {
392 		dm_info->damping = true;
393 		dm_info->damping_cnt = 0;
394 		dm_info->damping_rssi = min_rssi;
395 	}
396 
397 	return damping;
398 }
399 
400 static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
401 				     struct rtw_dm_info *dm_info,
402 				     u8 *upper, u8 *lower, bool linked)
403 {
404 	u8 dig_max, dig_min, dig_mid;
405 	u8 min_rssi;
406 
407 	if (linked) {
408 		dig_max = DIG_PERF_MAX;
409 		dig_mid = DIG_PERF_MID;
410 		dig_min = rtwdev->chip->dig_min;
411 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
412 	} else {
413 		dig_max = DIG_CVRG_MAX;
414 		dig_mid = DIG_CVRG_MID;
415 		dig_min = DIG_CVRG_MIN;
416 		min_rssi = dig_min;
417 	}
418 
419 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
420 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
421 
422 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
423 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
424 }
425 
426 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
427 				      u16 *fa_th, u8 *step, bool linked)
428 {
429 	u8 min_rssi, pre_min_rssi;
430 
431 	min_rssi = dm_info->min_rssi;
432 	pre_min_rssi = dm_info->pre_min_rssi;
433 	step[0] = 4;
434 	step[1] = 3;
435 	step[2] = 2;
436 
437 	if (linked) {
438 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
439 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
440 		fa_th[2] = DIG_PERF_FA_TH_LOW;
441 		if (pre_min_rssi > min_rssi) {
442 			step[0] = 6;
443 			step[1] = 4;
444 			step[2] = 2;
445 		}
446 	} else {
447 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
448 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
449 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
450 	}
451 }
452 
453 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
454 {
455 	u8 *igi_history;
456 	u16 *fa_history;
457 	u8 igi_bitmap;
458 	bool up;
459 
460 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
461 	igi_history = dm_info->igi_history;
462 	fa_history = dm_info->fa_history;
463 
464 	up = igi > igi_history[0];
465 	igi_bitmap |= up;
466 
467 	igi_history[3] = igi_history[2];
468 	igi_history[2] = igi_history[1];
469 	igi_history[1] = igi_history[0];
470 	igi_history[0] = igi;
471 
472 	fa_history[3] = fa_history[2];
473 	fa_history[2] = fa_history[1];
474 	fa_history[1] = fa_history[0];
475 	fa_history[0] = fa;
476 
477 	dm_info->igi_bitmap = igi_bitmap;
478 }
479 
480 static void rtw_phy_dig(struct rtw_dev *rtwdev)
481 {
482 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
483 	u8 upper_bound, lower_bound;
484 	u8 pre_igi, cur_igi;
485 	u16 fa_th[3], fa_cnt;
486 	u8 level;
487 	u8 step[3];
488 	bool linked;
489 
490 	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
491 		return;
492 
493 	if (rtw_phy_dig_check_damping(dm_info))
494 		return;
495 
496 	linked = !!rtwdev->sta_cnt;
497 
498 	fa_cnt = dm_info->total_fa_cnt;
499 	pre_igi = dm_info->igi_history[0];
500 
501 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
502 
503 	/* test the false alarm count from the highest threshold level first,
504 	 * and increase it by corresponding step size
505 	 *
506 	 * note that the step size is offset by -2, compensate it afterall
507 	 */
508 	cur_igi = pre_igi;
509 	for (level = 0; level < 3; level++) {
510 		if (fa_cnt > fa_th[level]) {
511 			cur_igi += step[level];
512 			break;
513 		}
514 	}
515 	cur_igi -= 2;
516 
517 	/* calculate the upper/lower bound by the minimum rssi we have among
518 	 * the peers connected with us, meanwhile make sure the igi value does
519 	 * not beyond the hardware limitation
520 	 */
521 	rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound,
522 				 linked);
523 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
524 
525 	/* record current igi value and false alarm statistics for further
526 	 * damping checks, and record the trend of igi values
527 	 */
528 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
529 
530 	if (cur_igi != pre_igi)
531 		rtw_phy_dig_write(rtwdev, cur_igi);
532 }
533 
534 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
535 {
536 	struct rtw_dev *rtwdev = data;
537 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
538 
539 	rtw_update_sta_info(rtwdev, si, false);
540 }
541 
542 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
543 {
544 	if (rtwdev->watch_dog_cnt & 0x3)
545 		return;
546 
547 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
548 }
549 
550 static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
551 {
552 	u8 rate_order;
553 
554 	rate_order = rate_idx;
555 
556 	if (rate_idx >= DESC_RATEVHT4SS_MCS0)
557 		rate_order -= DESC_RATEVHT4SS_MCS0;
558 	else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
559 		rate_order -= DESC_RATEVHT3SS_MCS0;
560 	else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
561 		rate_order -= DESC_RATEVHT2SS_MCS0;
562 	else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
563 		rate_order -= DESC_RATEVHT1SS_MCS0;
564 	else if (rate_idx >= DESC_RATEMCS24)
565 		rate_order -= DESC_RATEMCS24;
566 	else if (rate_idx >= DESC_RATEMCS16)
567 		rate_order -= DESC_RATEMCS16;
568 	else if (rate_idx >= DESC_RATEMCS8)
569 		rate_order -= DESC_RATEMCS8;
570 	else if (rate_idx >= DESC_RATEMCS0)
571 		rate_order -= DESC_RATEMCS0;
572 	else if (rate_idx >= DESC_RATE6M)
573 		rate_order -= DESC_RATE6M;
574 	else
575 		rate_order -= DESC_RATE1M;
576 
577 	if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
578 		rate_order++;
579 
580 	return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
581 }
582 
583 static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
584 {
585 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
586 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
587 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
588 	u32 mask = 0;
589 
590 	mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
591 	if (mask < dm_info->rrsr_mask_min)
592 		dm_info->rrsr_mask_min = mask;
593 }
594 
595 static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
596 {
597 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
598 
599 	dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
600 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
601 	rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
602 }
603 
604 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
605 {
606 	struct rtw_chip_info *chip = rtwdev->chip;
607 
608 	if (chip->ops->dpk_track)
609 		chip->ops->dpk_track(rtwdev);
610 }
611 
612 struct rtw_rx_addr_match_data {
613 	struct rtw_dev *rtwdev;
614 	struct ieee80211_hdr *hdr;
615 	struct rtw_rx_pkt_stat *pkt_stat;
616 	u8 *bssid;
617 };
618 
619 static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
620 				     struct ieee80211_vif *vif)
621 {
622 	struct rtw_rx_addr_match_data *iter_data = data;
623 	struct rtw_dev *rtwdev = iter_data->rtwdev;
624 	struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
625 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
626 	struct rtw_cfo_track *cfo = &dm_info->cfo_track;
627 	u8 *bssid = iter_data->bssid;
628 	u8 i;
629 
630 	if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
631 		return;
632 
633 	for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
634 		cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
635 		cfo->cfo_cnt[i]++;
636 	}
637 
638 	cfo->packet_count++;
639 }
640 
641 void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
642 			 struct rtw_rx_pkt_stat *pkt_stat)
643 {
644 	struct ieee80211_hdr *hdr = pkt_stat->hdr;
645 	struct rtw_rx_addr_match_data data = {};
646 
647 	if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
648 	    ieee80211_is_ctl(hdr->frame_control))
649 		return;
650 
651 	data.rtwdev = rtwdev;
652 	data.hdr = hdr;
653 	data.pkt_stat = pkt_stat;
654 	data.bssid = get_hdr_bssid(hdr);
655 
656 	rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
657 }
658 EXPORT_SYMBOL(rtw_phy_parsing_cfo);
659 
660 static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
661 {
662 	struct rtw_chip_info *chip = rtwdev->chip;
663 
664 	if (chip->ops->cfo_track)
665 		chip->ops->cfo_track(rtwdev);
666 }
667 
668 #define CCK_PD_FA_LV1_MIN	1000
669 #define CCK_PD_FA_LV0_MAX	500
670 
671 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
672 {
673 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
674 	u32 cck_fa_avg = dm_info->cck_fa_avg;
675 
676 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
677 		return CCK_PD_LV1;
678 
679 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
680 		return CCK_PD_LV0;
681 
682 	return CCK_PD_LV_MAX;
683 }
684 
685 #define CCK_PD_IGI_LV4_VAL 0x38
686 #define CCK_PD_IGI_LV3_VAL 0x2a
687 #define CCK_PD_IGI_LV2_VAL 0x24
688 #define CCK_PD_RSSI_LV4_VAL 32
689 #define CCK_PD_RSSI_LV3_VAL 32
690 #define CCK_PD_RSSI_LV2_VAL 24
691 
692 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
693 {
694 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
695 	u8 igi = dm_info->igi_history[0];
696 	u8 rssi = dm_info->min_rssi;
697 	u32 cck_fa_avg = dm_info->cck_fa_avg;
698 
699 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
700 		return CCK_PD_LV4;
701 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
702 		return CCK_PD_LV3;
703 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
704 		return CCK_PD_LV2;
705 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
706 		return CCK_PD_LV1;
707 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
708 		return CCK_PD_LV0;
709 
710 	return CCK_PD_LV_MAX;
711 }
712 
713 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
714 {
715 	if (!rtw_is_assoc(rtwdev))
716 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
717 	else
718 		return rtw_phy_cck_pd_lv_link(rtwdev);
719 }
720 
721 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
722 {
723 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
724 	struct rtw_chip_info *chip = rtwdev->chip;
725 	u32 cck_fa = dm_info->cck_fa_cnt;
726 	u8 level;
727 
728 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
729 		return;
730 
731 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
732 		dm_info->cck_fa_avg = cck_fa;
733 	else
734 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
735 
736 	rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
737 		dm_info->igi_history[0], dm_info->min_rssi,
738 		dm_info->fa_history[0]);
739 	rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
740 		dm_info->cck_fa_avg, dm_info->cck_pd_default);
741 
742 	level = rtw_phy_cck_pd_lv(rtwdev);
743 
744 	if (level >= CCK_PD_LV_MAX)
745 		return;
746 
747 	if (chip->ops->cck_pd_set)
748 		chip->ops->cck_pd_set(rtwdev, level);
749 }
750 
751 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
752 {
753 	rtwdev->chip->ops->pwr_track(rtwdev);
754 }
755 
756 static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
757 {
758 	rtw_fw_update_wl_phy_info(rtwdev);
759 	rtw_phy_ra_info_update(rtwdev);
760 	rtw_phy_rrsr_update(rtwdev);
761 }
762 
763 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
764 {
765 	/* for further calculation */
766 	rtw_phy_statistics(rtwdev);
767 	rtw_phy_dig(rtwdev);
768 	rtw_phy_cck_pd(rtwdev);
769 	rtw_phy_ra_track(rtwdev);
770 	rtw_phy_tx_path_diversity(rtwdev);
771 	rtw_phy_cfo_track(rtwdev);
772 	rtw_phy_dpk_track(rtwdev);
773 	rtw_phy_pwr_track(rtwdev);
774 
775 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_ADAPTIVITY))
776 		rtw_fw_adaptivity(rtwdev);
777 	else
778 		rtw_phy_adaptivity(rtwdev);
779 }
780 
781 #define FRAC_BITS 3
782 
783 static u8 rtw_phy_power_2_db(s8 power)
784 {
785 	if (power <= -100 || power >= 20)
786 		return 0;
787 	else if (power >= 0)
788 		return 100;
789 	else
790 		return 100 + power;
791 }
792 
793 static u64 rtw_phy_db_2_linear(u8 power_db)
794 {
795 	u8 i, j;
796 	u64 linear;
797 
798 	if (power_db > 96)
799 		power_db = 96;
800 	else if (power_db < 1)
801 		return 1;
802 
803 	/* 1dB ~ 96dB */
804 	i = (power_db - 1) >> 3;
805 	j = (power_db - 1) - (i << 3);
806 
807 	linear = db_invert_table[i][j];
808 	linear = i > 2 ? linear << FRAC_BITS : linear;
809 
810 	return linear;
811 }
812 
813 static u8 rtw_phy_linear_2_db(u64 linear)
814 {
815 	u8 i;
816 	u8 j;
817 	u32 dB;
818 
819 	if (linear >= db_invert_table[11][7])
820 		return 96; /* maximum 96 dB */
821 
822 	for (i = 0; i < 12; i++) {
823 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
824 			break;
825 		else if (i > 2 && linear <= db_invert_table[i][7])
826 			break;
827 	}
828 
829 	for (j = 0; j < 8; j++) {
830 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
831 			break;
832 		else if (i > 2 && linear <= db_invert_table[i][j])
833 			break;
834 	}
835 
836 	if (j == 0 && i == 0)
837 		goto end;
838 
839 	if (j == 0) {
840 		if (i != 3) {
841 			if (db_invert_table[i][0] - linear >
842 			    linear - db_invert_table[i - 1][7]) {
843 				i = i - 1;
844 				j = 7;
845 			}
846 		} else {
847 			if (db_invert_table[3][0] - linear >
848 			    linear - db_invert_table[2][7]) {
849 				i = 2;
850 				j = 7;
851 			}
852 		}
853 	} else {
854 		if (db_invert_table[i][j] - linear >
855 		    linear - db_invert_table[i][j - 1]) {
856 			j = j - 1;
857 		}
858 	}
859 end:
860 	dB = (i << 3) + j + 1;
861 
862 	return dB;
863 }
864 
865 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
866 {
867 	s8 power;
868 	u8 power_db;
869 	u64 linear;
870 	u64 sum = 0;
871 	u8 path;
872 
873 	for (path = 0; path < path_num; path++) {
874 		power = rf_power[path];
875 		power_db = rtw_phy_power_2_db(power);
876 		linear = rtw_phy_db_2_linear(power_db);
877 		sum += linear;
878 	}
879 
880 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
881 	switch (path_num) {
882 	case 2:
883 		sum >>= 1;
884 		break;
885 	case 3:
886 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
887 		break;
888 	case 4:
889 		sum >>= 2;
890 		break;
891 	default:
892 		break;
893 	}
894 
895 	return rtw_phy_linear_2_db(sum);
896 }
897 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
898 
899 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
900 		    u32 addr, u32 mask)
901 {
902 	struct rtw_hal *hal = &rtwdev->hal;
903 	struct rtw_chip_info *chip = rtwdev->chip;
904 	const u32 *base_addr = chip->rf_base_addr;
905 	u32 val, direct_addr;
906 
907 	if (rf_path >= hal->rf_phy_num) {
908 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
909 		return INV_RF_DATA;
910 	}
911 
912 	addr &= 0xff;
913 	direct_addr = base_addr[rf_path] + (addr << 2);
914 	mask &= RFREG_MASK;
915 
916 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
917 
918 	return val;
919 }
920 EXPORT_SYMBOL(rtw_phy_read_rf);
921 
922 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
923 			 u32 addr, u32 mask)
924 {
925 	struct rtw_hal *hal = &rtwdev->hal;
926 	struct rtw_chip_info *chip = rtwdev->chip;
927 	const struct rtw_rf_sipi_addr *rf_sipi_addr;
928 	const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
929 	u32 val32;
930 	u32 en_pi;
931 	u32 r_addr;
932 	u32 shift;
933 
934 	if (rf_path >= hal->rf_phy_num) {
935 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
936 		return INV_RF_DATA;
937 	}
938 
939 	if (!chip->rf_sipi_read_addr) {
940 		rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
941 		return INV_RF_DATA;
942 	}
943 
944 	rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
945 	rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
946 
947 	addr &= 0xff;
948 
949 	val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
950 	val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
951 	rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
952 
953 	/* toggle read edge of path A */
954 	val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
955 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
956 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
957 
958 	udelay(120);
959 
960 	en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
961 	r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
962 
963 	val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
964 
965 	shift = __ffs(mask);
966 
967 	return (val32 & mask) >> shift;
968 }
969 EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
970 
971 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
972 			       u32 addr, u32 mask, u32 data)
973 {
974 	struct rtw_hal *hal = &rtwdev->hal;
975 	struct rtw_chip_info *chip = rtwdev->chip;
976 	u32 *sipi_addr = chip->rf_sipi_addr;
977 	u32 data_and_addr;
978 	u32 old_data = 0;
979 	u32 shift;
980 
981 	if (rf_path >= hal->rf_phy_num) {
982 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
983 		return false;
984 	}
985 
986 	addr &= 0xff;
987 	mask &= RFREG_MASK;
988 
989 	if (mask != RFREG_MASK) {
990 		old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
991 
992 		if (old_data == INV_RF_DATA) {
993 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
994 			return false;
995 		}
996 
997 		shift = __ffs(mask);
998 		data = ((old_data) & (~mask)) | (data << shift);
999 	}
1000 
1001 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
1002 
1003 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
1004 
1005 	udelay(13);
1006 
1007 	return true;
1008 }
1009 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
1010 
1011 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1012 			  u32 addr, u32 mask, u32 data)
1013 {
1014 	struct rtw_hal *hal = &rtwdev->hal;
1015 	struct rtw_chip_info *chip = rtwdev->chip;
1016 	const u32 *base_addr = chip->rf_base_addr;
1017 	u32 direct_addr;
1018 
1019 	if (rf_path >= hal->rf_phy_num) {
1020 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
1021 		return false;
1022 	}
1023 
1024 	addr &= 0xff;
1025 	direct_addr = base_addr[rf_path] + (addr << 2);
1026 	mask &= RFREG_MASK;
1027 
1028 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
1029 
1030 	udelay(1);
1031 
1032 	return true;
1033 }
1034 
1035 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1036 			      u32 addr, u32 mask, u32 data)
1037 {
1038 	if (addr != 0x00)
1039 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
1040 
1041 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
1042 }
1043 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
1044 
1045 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
1046 {
1047 	struct rtw_hal *hal = &rtwdev->hal;
1048 	struct rtw_efuse *efuse = &rtwdev->efuse;
1049 	struct rtw_phy_cond cond = {0};
1050 
1051 	cond.cut = hal->cut_version ? hal->cut_version : 15;
1052 	cond.pkg = pkg ? pkg : 15;
1053 	cond.plat = 0x04;
1054 	cond.rfe = efuse->rfe_option;
1055 
1056 	switch (rtw_hci_type(rtwdev)) {
1057 	case RTW_HCI_TYPE_USB:
1058 		cond.intf = INTF_USB;
1059 		break;
1060 	case RTW_HCI_TYPE_SDIO:
1061 		cond.intf = INTF_SDIO;
1062 		break;
1063 	case RTW_HCI_TYPE_PCIE:
1064 	default:
1065 		cond.intf = INTF_PCIE;
1066 		break;
1067 	}
1068 
1069 	hal->phy_cond = cond;
1070 
1071 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
1072 }
1073 
1074 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
1075 {
1076 	struct rtw_hal *hal = &rtwdev->hal;
1077 	struct rtw_phy_cond drv_cond = hal->phy_cond;
1078 
1079 	if (cond.cut && cond.cut != drv_cond.cut)
1080 		return false;
1081 
1082 	if (cond.pkg && cond.pkg != drv_cond.pkg)
1083 		return false;
1084 
1085 	if (cond.intf && cond.intf != drv_cond.intf)
1086 		return false;
1087 
1088 	if (cond.rfe != drv_cond.rfe)
1089 		return false;
1090 
1091 	return true;
1092 }
1093 
1094 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1095 {
1096 	const union phy_table_tile *p = tbl->data;
1097 	const union phy_table_tile *end = p + tbl->size / 2;
1098 	struct rtw_phy_cond pos_cond = {0};
1099 	bool is_matched = true, is_skipped = false;
1100 
1101 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
1102 
1103 	for (; p < end; p++) {
1104 		if (p->cond.pos) {
1105 			switch (p->cond.branch) {
1106 			case BRANCH_ENDIF:
1107 				is_matched = true;
1108 				is_skipped = false;
1109 				break;
1110 			case BRANCH_ELSE:
1111 				is_matched = is_skipped ? false : true;
1112 				break;
1113 			case BRANCH_IF:
1114 			case BRANCH_ELIF:
1115 			default:
1116 				pos_cond = p->cond;
1117 				break;
1118 			}
1119 		} else if (p->cond.neg) {
1120 			if (!is_skipped) {
1121 				if (check_positive(rtwdev, pos_cond)) {
1122 					is_matched = true;
1123 					is_skipped = true;
1124 				} else {
1125 					is_matched = false;
1126 					is_skipped = false;
1127 				}
1128 			} else {
1129 				is_matched = false;
1130 			}
1131 		} else if (is_matched) {
1132 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
1133 		}
1134 	}
1135 }
1136 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
1137 
1138 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
1139 
1140 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
1141 {
1142 	if (rtwdev->chip->is_pwr_by_rate_dec)
1143 		return bcd_to_dec_pwr_by_rate(hex, i);
1144 
1145 	return (hex >> (i * 8)) & 0xFF;
1146 }
1147 
1148 static void
1149 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1150 					 u32 addr, u32 mask, u32 val, u8 *rate,
1151 					 u8 *pwr_by_rate, u8 *rate_num)
1152 {
1153 	int i;
1154 
1155 	switch (addr) {
1156 	case 0xE00:
1157 	case 0x830:
1158 		rate[0] = DESC_RATE6M;
1159 		rate[1] = DESC_RATE9M;
1160 		rate[2] = DESC_RATE12M;
1161 		rate[3] = DESC_RATE18M;
1162 		for (i = 0; i < 4; ++i)
1163 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1164 		*rate_num = 4;
1165 		break;
1166 	case 0xE04:
1167 	case 0x834:
1168 		rate[0] = DESC_RATE24M;
1169 		rate[1] = DESC_RATE36M;
1170 		rate[2] = DESC_RATE48M;
1171 		rate[3] = DESC_RATE54M;
1172 		for (i = 0; i < 4; ++i)
1173 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1174 		*rate_num = 4;
1175 		break;
1176 	case 0xE08:
1177 		rate[0] = DESC_RATE1M;
1178 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1179 		*rate_num = 1;
1180 		break;
1181 	case 0x86C:
1182 		if (mask == 0xffffff00) {
1183 			rate[0] = DESC_RATE2M;
1184 			rate[1] = DESC_RATE5_5M;
1185 			rate[2] = DESC_RATE11M;
1186 			for (i = 1; i < 4; ++i)
1187 				pwr_by_rate[i - 1] =
1188 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1189 			*rate_num = 3;
1190 		} else if (mask == 0x000000ff) {
1191 			rate[0] = DESC_RATE11M;
1192 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1193 			*rate_num = 1;
1194 		}
1195 		break;
1196 	case 0xE10:
1197 	case 0x83C:
1198 		rate[0] = DESC_RATEMCS0;
1199 		rate[1] = DESC_RATEMCS1;
1200 		rate[2] = DESC_RATEMCS2;
1201 		rate[3] = DESC_RATEMCS3;
1202 		for (i = 0; i < 4; ++i)
1203 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1204 		*rate_num = 4;
1205 		break;
1206 	case 0xE14:
1207 	case 0x848:
1208 		rate[0] = DESC_RATEMCS4;
1209 		rate[1] = DESC_RATEMCS5;
1210 		rate[2] = DESC_RATEMCS6;
1211 		rate[3] = DESC_RATEMCS7;
1212 		for (i = 0; i < 4; ++i)
1213 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1214 		*rate_num = 4;
1215 		break;
1216 	case 0xE18:
1217 	case 0x84C:
1218 		rate[0] = DESC_RATEMCS8;
1219 		rate[1] = DESC_RATEMCS9;
1220 		rate[2] = DESC_RATEMCS10;
1221 		rate[3] = DESC_RATEMCS11;
1222 		for (i = 0; i < 4; ++i)
1223 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1224 		*rate_num = 4;
1225 		break;
1226 	case 0xE1C:
1227 	case 0x868:
1228 		rate[0] = DESC_RATEMCS12;
1229 		rate[1] = DESC_RATEMCS13;
1230 		rate[2] = DESC_RATEMCS14;
1231 		rate[3] = DESC_RATEMCS15;
1232 		for (i = 0; i < 4; ++i)
1233 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1234 		*rate_num = 4;
1235 		break;
1236 	case 0x838:
1237 		rate[0] = DESC_RATE1M;
1238 		rate[1] = DESC_RATE2M;
1239 		rate[2] = DESC_RATE5_5M;
1240 		for (i = 1; i < 4; ++i)
1241 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1242 								    val, i);
1243 		*rate_num = 3;
1244 		break;
1245 	case 0xC20:
1246 	case 0xE20:
1247 	case 0x1820:
1248 	case 0x1A20:
1249 		rate[0] = DESC_RATE1M;
1250 		rate[1] = DESC_RATE2M;
1251 		rate[2] = DESC_RATE5_5M;
1252 		rate[3] = DESC_RATE11M;
1253 		for (i = 0; i < 4; ++i)
1254 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1255 		*rate_num = 4;
1256 		break;
1257 	case 0xC24:
1258 	case 0xE24:
1259 	case 0x1824:
1260 	case 0x1A24:
1261 		rate[0] = DESC_RATE6M;
1262 		rate[1] = DESC_RATE9M;
1263 		rate[2] = DESC_RATE12M;
1264 		rate[3] = DESC_RATE18M;
1265 		for (i = 0; i < 4; ++i)
1266 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1267 		*rate_num = 4;
1268 		break;
1269 	case 0xC28:
1270 	case 0xE28:
1271 	case 0x1828:
1272 	case 0x1A28:
1273 		rate[0] = DESC_RATE24M;
1274 		rate[1] = DESC_RATE36M;
1275 		rate[2] = DESC_RATE48M;
1276 		rate[3] = DESC_RATE54M;
1277 		for (i = 0; i < 4; ++i)
1278 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1279 		*rate_num = 4;
1280 		break;
1281 	case 0xC2C:
1282 	case 0xE2C:
1283 	case 0x182C:
1284 	case 0x1A2C:
1285 		rate[0] = DESC_RATEMCS0;
1286 		rate[1] = DESC_RATEMCS1;
1287 		rate[2] = DESC_RATEMCS2;
1288 		rate[3] = DESC_RATEMCS3;
1289 		for (i = 0; i < 4; ++i)
1290 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1291 		*rate_num = 4;
1292 		break;
1293 	case 0xC30:
1294 	case 0xE30:
1295 	case 0x1830:
1296 	case 0x1A30:
1297 		rate[0] = DESC_RATEMCS4;
1298 		rate[1] = DESC_RATEMCS5;
1299 		rate[2] = DESC_RATEMCS6;
1300 		rate[3] = DESC_RATEMCS7;
1301 		for (i = 0; i < 4; ++i)
1302 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1303 		*rate_num = 4;
1304 		break;
1305 	case 0xC34:
1306 	case 0xE34:
1307 	case 0x1834:
1308 	case 0x1A34:
1309 		rate[0] = DESC_RATEMCS8;
1310 		rate[1] = DESC_RATEMCS9;
1311 		rate[2] = DESC_RATEMCS10;
1312 		rate[3] = DESC_RATEMCS11;
1313 		for (i = 0; i < 4; ++i)
1314 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1315 		*rate_num = 4;
1316 		break;
1317 	case 0xC38:
1318 	case 0xE38:
1319 	case 0x1838:
1320 	case 0x1A38:
1321 		rate[0] = DESC_RATEMCS12;
1322 		rate[1] = DESC_RATEMCS13;
1323 		rate[2] = DESC_RATEMCS14;
1324 		rate[3] = DESC_RATEMCS15;
1325 		for (i = 0; i < 4; ++i)
1326 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1327 		*rate_num = 4;
1328 		break;
1329 	case 0xC3C:
1330 	case 0xE3C:
1331 	case 0x183C:
1332 	case 0x1A3C:
1333 		rate[0] = DESC_RATEVHT1SS_MCS0;
1334 		rate[1] = DESC_RATEVHT1SS_MCS1;
1335 		rate[2] = DESC_RATEVHT1SS_MCS2;
1336 		rate[3] = DESC_RATEVHT1SS_MCS3;
1337 		for (i = 0; i < 4; ++i)
1338 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1339 		*rate_num = 4;
1340 		break;
1341 	case 0xC40:
1342 	case 0xE40:
1343 	case 0x1840:
1344 	case 0x1A40:
1345 		rate[0] = DESC_RATEVHT1SS_MCS4;
1346 		rate[1] = DESC_RATEVHT1SS_MCS5;
1347 		rate[2] = DESC_RATEVHT1SS_MCS6;
1348 		rate[3] = DESC_RATEVHT1SS_MCS7;
1349 		for (i = 0; i < 4; ++i)
1350 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1351 		*rate_num = 4;
1352 		break;
1353 	case 0xC44:
1354 	case 0xE44:
1355 	case 0x1844:
1356 	case 0x1A44:
1357 		rate[0] = DESC_RATEVHT1SS_MCS8;
1358 		rate[1] = DESC_RATEVHT1SS_MCS9;
1359 		rate[2] = DESC_RATEVHT2SS_MCS0;
1360 		rate[3] = DESC_RATEVHT2SS_MCS1;
1361 		for (i = 0; i < 4; ++i)
1362 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1363 		*rate_num = 4;
1364 		break;
1365 	case 0xC48:
1366 	case 0xE48:
1367 	case 0x1848:
1368 	case 0x1A48:
1369 		rate[0] = DESC_RATEVHT2SS_MCS2;
1370 		rate[1] = DESC_RATEVHT2SS_MCS3;
1371 		rate[2] = DESC_RATEVHT2SS_MCS4;
1372 		rate[3] = DESC_RATEVHT2SS_MCS5;
1373 		for (i = 0; i < 4; ++i)
1374 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1375 		*rate_num = 4;
1376 		break;
1377 	case 0xC4C:
1378 	case 0xE4C:
1379 	case 0x184C:
1380 	case 0x1A4C:
1381 		rate[0] = DESC_RATEVHT2SS_MCS6;
1382 		rate[1] = DESC_RATEVHT2SS_MCS7;
1383 		rate[2] = DESC_RATEVHT2SS_MCS8;
1384 		rate[3] = DESC_RATEVHT2SS_MCS9;
1385 		for (i = 0; i < 4; ++i)
1386 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1387 		*rate_num = 4;
1388 		break;
1389 	case 0xCD8:
1390 	case 0xED8:
1391 	case 0x18D8:
1392 	case 0x1AD8:
1393 		rate[0] = DESC_RATEMCS16;
1394 		rate[1] = DESC_RATEMCS17;
1395 		rate[2] = DESC_RATEMCS18;
1396 		rate[3] = DESC_RATEMCS19;
1397 		for (i = 0; i < 4; ++i)
1398 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1399 		*rate_num = 4;
1400 		break;
1401 	case 0xCDC:
1402 	case 0xEDC:
1403 	case 0x18DC:
1404 	case 0x1ADC:
1405 		rate[0] = DESC_RATEMCS20;
1406 		rate[1] = DESC_RATEMCS21;
1407 		rate[2] = DESC_RATEMCS22;
1408 		rate[3] = DESC_RATEMCS23;
1409 		for (i = 0; i < 4; ++i)
1410 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1411 		*rate_num = 4;
1412 		break;
1413 	case 0xCE0:
1414 	case 0xEE0:
1415 	case 0x18E0:
1416 	case 0x1AE0:
1417 		rate[0] = DESC_RATEVHT3SS_MCS0;
1418 		rate[1] = DESC_RATEVHT3SS_MCS1;
1419 		rate[2] = DESC_RATEVHT3SS_MCS2;
1420 		rate[3] = DESC_RATEVHT3SS_MCS3;
1421 		for (i = 0; i < 4; ++i)
1422 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1423 		*rate_num = 4;
1424 		break;
1425 	case 0xCE4:
1426 	case 0xEE4:
1427 	case 0x18E4:
1428 	case 0x1AE4:
1429 		rate[0] = DESC_RATEVHT3SS_MCS4;
1430 		rate[1] = DESC_RATEVHT3SS_MCS5;
1431 		rate[2] = DESC_RATEVHT3SS_MCS6;
1432 		rate[3] = DESC_RATEVHT3SS_MCS7;
1433 		for (i = 0; i < 4; ++i)
1434 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1435 		*rate_num = 4;
1436 		break;
1437 	case 0xCE8:
1438 	case 0xEE8:
1439 	case 0x18E8:
1440 	case 0x1AE8:
1441 		rate[0] = DESC_RATEVHT3SS_MCS8;
1442 		rate[1] = DESC_RATEVHT3SS_MCS9;
1443 		for (i = 0; i < 2; ++i)
1444 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1445 		*rate_num = 2;
1446 		break;
1447 	default:
1448 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1449 		break;
1450 	}
1451 }
1452 
1453 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1454 					   u32 band, u32 rfpath, u32 txnum,
1455 					   u32 regaddr, u32 bitmask, u32 data)
1456 {
1457 	struct rtw_hal *hal = &rtwdev->hal;
1458 	u8 rate_num = 0;
1459 	u8 rate;
1460 	u8 rates[RTW_RF_PATH_MAX] = {0};
1461 	s8 offset;
1462 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1463 	int i;
1464 
1465 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1466 						 rates, pwr_by_rate, &rate_num);
1467 
1468 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1469 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1470 		    rate_num > RTW_RF_PATH_MAX))
1471 		return;
1472 
1473 	for (i = 0; i < rate_num; i++) {
1474 		offset = pwr_by_rate[i];
1475 		rate = rates[i];
1476 		if (band == PHY_BAND_2G)
1477 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1478 		else if (band == PHY_BAND_5G)
1479 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1480 		else
1481 			continue;
1482 	}
1483 }
1484 
1485 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1486 {
1487 	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1488 	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1489 
1490 	for (; p < end; p++) {
1491 		if (p->addr == 0xfe || p->addr == 0xffe) {
1492 			msleep(50);
1493 			continue;
1494 		}
1495 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1496 					       p->tx_num, p->addr, p->bitmask,
1497 					       p->data);
1498 	}
1499 }
1500 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1501 
1502 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1503 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1504 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1505 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1506 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1507 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1508 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1509 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1510 
1511 static int rtw_channel_to_idx(u8 band, u8 channel)
1512 {
1513 	int ch_idx;
1514 	u8 n_channel;
1515 
1516 	if (band == PHY_BAND_2G) {
1517 		ch_idx = channel - 1;
1518 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1519 	} else if (band == PHY_BAND_5G) {
1520 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1521 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1522 			if (rtw_channel_idx_5g[ch_idx] == channel)
1523 				break;
1524 	} else {
1525 		return -1;
1526 	}
1527 
1528 	if (ch_idx >= n_channel)
1529 		return -1;
1530 
1531 	return ch_idx;
1532 }
1533 
1534 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1535 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1536 {
1537 	struct rtw_hal *hal = &rtwdev->hal;
1538 	u8 max_power_index = rtwdev->chip->max_power_index;
1539 	s8 ww;
1540 	int ch_idx;
1541 
1542 	pwr_limit = clamp_t(s8, pwr_limit,
1543 			    -max_power_index, max_power_index);
1544 	ch_idx = rtw_channel_to_idx(band, ch);
1545 
1546 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1547 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1548 		WARN(1,
1549 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1550 		     regd, band, bw, rs, ch_idx, pwr_limit);
1551 		return;
1552 	}
1553 
1554 	if (band == PHY_BAND_2G) {
1555 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1556 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1557 		ww = min_t(s8, ww, pwr_limit);
1558 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1559 	} else if (band == PHY_BAND_5G) {
1560 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1561 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1562 		ww = min_t(s8, ww, pwr_limit);
1563 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1564 	}
1565 }
1566 
1567 /* cross-reference 5G power limits if values are not assigned */
1568 static void
1569 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1570 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1571 {
1572 	struct rtw_hal *hal = &rtwdev->hal;
1573 	u8 max_power_index = rtwdev->chip->max_power_index;
1574 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1575 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1576 
1577 	if (lmt_ht == lmt_vht)
1578 		return;
1579 
1580 	if (lmt_ht == max_power_index)
1581 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1582 
1583 	else if (lmt_vht == max_power_index)
1584 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1585 }
1586 
1587 /* cross-reference power limits for ht and vht */
1588 static void
1589 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1590 {
1591 	u8 rs_idx, rs_ht, rs_vht;
1592 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1593 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1594 
1595 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1596 		rs_ht = rs_cmp[rs_idx][0];
1597 		rs_vht = rs_cmp[rs_idx][1];
1598 
1599 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1600 	}
1601 }
1602 
1603 /* cross-reference power limits for 5G channels */
1604 static void
1605 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1606 {
1607 	u8 ch_idx;
1608 
1609 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1610 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1611 }
1612 
1613 /* cross-reference power limits for 20/40M bandwidth */
1614 static void
1615 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1616 {
1617 	u8 bw;
1618 
1619 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1620 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1621 }
1622 
1623 /* cross-reference power limits */
1624 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1625 {
1626 	u8 regd;
1627 
1628 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1629 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1630 }
1631 
1632 static void
1633 __cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs)
1634 {
1635 	u8 ch;
1636 
1637 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1638 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] =
1639 			hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch];
1640 
1641 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1642 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] =
1643 			hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch];
1644 }
1645 
1646 static void
1647 rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt)
1648 {
1649 	u8 bw, rs;
1650 
1651 	for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1652 		for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1653 			__cfg_txpwr_lmt_by_alt(&rtwdev->hal, regd, regd_alt,
1654 					       bw, rs);
1655 }
1656 
1657 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1658 			     const struct rtw_table *tbl)
1659 {
1660 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1661 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1662 	u32 regd_cfg_flag = 0;
1663 	u8 regd_alt;
1664 	u8 i;
1665 
1666 	for (; p < end; p++) {
1667 		regd_cfg_flag |= BIT(p->regd);
1668 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1669 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1670 	}
1671 
1672 	for (i = 0; i < RTW_REGD_MAX; i++) {
1673 		if (i == RTW_REGD_WW)
1674 			continue;
1675 
1676 		if (regd_cfg_flag & BIT(i))
1677 			continue;
1678 
1679 		rtw_dbg(rtwdev, RTW_DBG_REGD,
1680 			"txpwr regd %d does not be configured\n", i);
1681 
1682 		if (rtw_regd_has_alt(i, &regd_alt) &&
1683 		    regd_cfg_flag & BIT(regd_alt)) {
1684 			rtw_dbg(rtwdev, RTW_DBG_REGD,
1685 				"cfg txpwr regd %d by regd %d as alternative\n",
1686 				i, regd_alt);
1687 
1688 			rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, regd_alt);
1689 			continue;
1690 		}
1691 
1692 		rtw_dbg(rtwdev, RTW_DBG_REGD, "cfg txpwr regd %d by WW\n", i);
1693 		rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, RTW_REGD_WW);
1694 	}
1695 
1696 	rtw_xref_txpwr_lmt(rtwdev);
1697 }
1698 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1699 
1700 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1701 		     u32 addr, u32 data)
1702 {
1703 	rtw_write8(rtwdev, addr, data);
1704 }
1705 EXPORT_SYMBOL(rtw_phy_cfg_mac);
1706 
1707 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1708 		     u32 addr, u32 data)
1709 {
1710 	rtw_write32(rtwdev, addr, data);
1711 }
1712 EXPORT_SYMBOL(rtw_phy_cfg_agc);
1713 
1714 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1715 		    u32 addr, u32 data)
1716 {
1717 	if (addr == 0xfe)
1718 		msleep(50);
1719 	else if (addr == 0xfd)
1720 		mdelay(5);
1721 	else if (addr == 0xfc)
1722 		mdelay(1);
1723 	else if (addr == 0xfb)
1724 		usleep_range(50, 60);
1725 	else if (addr == 0xfa)
1726 		udelay(5);
1727 	else if (addr == 0xf9)
1728 		udelay(1);
1729 	else
1730 		rtw_write32(rtwdev, addr, data);
1731 }
1732 EXPORT_SYMBOL(rtw_phy_cfg_bb);
1733 
1734 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1735 		    u32 addr, u32 data)
1736 {
1737 	if (addr == 0xffe) {
1738 		msleep(50);
1739 	} else if (addr == 0xfe) {
1740 		usleep_range(100, 110);
1741 	} else {
1742 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1743 		udelay(1);
1744 	}
1745 }
1746 EXPORT_SYMBOL(rtw_phy_cfg_rf);
1747 
1748 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1749 {
1750 	struct rtw_chip_info *chip = rtwdev->chip;
1751 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1752 
1753 	if (!chip->rfk_init_tbl)
1754 		return;
1755 
1756 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1757 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1758 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1759 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1760 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1761 
1762 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1763 
1764 	dpk_info->is_dpk_pwr_on = true;
1765 }
1766 
1767 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1768 {
1769 	struct rtw_chip_info *chip = rtwdev->chip;
1770 	u8 rf_path;
1771 
1772 	rtw_load_table(rtwdev, chip->mac_tbl);
1773 	rtw_load_table(rtwdev, chip->bb_tbl);
1774 	rtw_load_table(rtwdev, chip->agc_tbl);
1775 	rtw_load_rfk_table(rtwdev);
1776 
1777 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1778 		const struct rtw_table *tbl;
1779 
1780 		tbl = chip->rf_tbl[rf_path];
1781 		rtw_load_table(rtwdev, tbl);
1782 	}
1783 }
1784 EXPORT_SYMBOL(rtw_phy_load_tables);
1785 
1786 static u8 rtw_get_channel_group(u8 channel, u8 rate)
1787 {
1788 	switch (channel) {
1789 	default:
1790 		WARN_ON(1);
1791 		fallthrough;
1792 	case 1:
1793 	case 2:
1794 	case 36:
1795 	case 38:
1796 	case 40:
1797 	case 42:
1798 		return 0;
1799 	case 3:
1800 	case 4:
1801 	case 5:
1802 	case 44:
1803 	case 46:
1804 	case 48:
1805 	case 50:
1806 		return 1;
1807 	case 6:
1808 	case 7:
1809 	case 8:
1810 	case 52:
1811 	case 54:
1812 	case 56:
1813 	case 58:
1814 		return 2;
1815 	case 9:
1816 	case 10:
1817 	case 11:
1818 	case 60:
1819 	case 62:
1820 	case 64:
1821 		return 3;
1822 	case 12:
1823 	case 13:
1824 	case 100:
1825 	case 102:
1826 	case 104:
1827 	case 106:
1828 		return 4;
1829 	case 14:
1830 		return rate <= DESC_RATE11M ? 5 : 4;
1831 	case 108:
1832 	case 110:
1833 	case 112:
1834 	case 114:
1835 		return 5;
1836 	case 116:
1837 	case 118:
1838 	case 120:
1839 	case 122:
1840 		return 6;
1841 	case 124:
1842 	case 126:
1843 	case 128:
1844 	case 130:
1845 		return 7;
1846 	case 132:
1847 	case 134:
1848 	case 136:
1849 	case 138:
1850 		return 8;
1851 	case 140:
1852 	case 142:
1853 	case 144:
1854 		return 9;
1855 	case 149:
1856 	case 151:
1857 	case 153:
1858 	case 155:
1859 		return 10;
1860 	case 157:
1861 	case 159:
1862 	case 161:
1863 		return 11;
1864 	case 165:
1865 	case 167:
1866 	case 169:
1867 	case 171:
1868 		return 12;
1869 	case 173:
1870 	case 175:
1871 	case 177:
1872 		return 13;
1873 	}
1874 }
1875 
1876 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1877 {
1878 	struct rtw_chip_info *chip = rtwdev->chip;
1879 	s8 dpd_diff = 0;
1880 
1881 	if (!chip->en_dis_dpd)
1882 		return 0;
1883 
1884 #define RTW_DPD_RATE_CHECK(_rate)					\
1885 	case DESC_RATE ## _rate:					\
1886 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1887 		dpd_diff = -6 * chip->txgi_factor;			\
1888 	break
1889 
1890 	switch (rate) {
1891 	RTW_DPD_RATE_CHECK(6M);
1892 	RTW_DPD_RATE_CHECK(9M);
1893 	RTW_DPD_RATE_CHECK(MCS0);
1894 	RTW_DPD_RATE_CHECK(MCS1);
1895 	RTW_DPD_RATE_CHECK(MCS8);
1896 	RTW_DPD_RATE_CHECK(MCS9);
1897 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1898 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1899 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1900 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1901 	}
1902 #undef RTW_DPD_RATE_CHECK
1903 
1904 	return dpd_diff;
1905 }
1906 
1907 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1908 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1909 					enum rtw_bandwidth bandwidth,
1910 					u8 rate, u8 group)
1911 {
1912 	struct rtw_chip_info *chip = rtwdev->chip;
1913 	u8 tx_power;
1914 	bool mcs_rate;
1915 	bool above_2ss;
1916 	u8 factor = chip->txgi_factor;
1917 
1918 	if (rate <= DESC_RATE11M)
1919 		tx_power = pwr_idx_2g->cck_base[group];
1920 	else
1921 		tx_power = pwr_idx_2g->bw40_base[group];
1922 
1923 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1924 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1925 
1926 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1927 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1928 		    rate <= DESC_RATEVHT2SS_MCS9);
1929 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1930 		    (rate >= DESC_RATEVHT2SS_MCS0);
1931 
1932 	if (!mcs_rate)
1933 		return tx_power;
1934 
1935 	switch (bandwidth) {
1936 	default:
1937 		WARN_ON(1);
1938 		fallthrough;
1939 	case RTW_CHANNEL_WIDTH_20:
1940 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1941 		if (above_2ss)
1942 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1943 		break;
1944 	case RTW_CHANNEL_WIDTH_40:
1945 		/* bw40 is the base power */
1946 		if (above_2ss)
1947 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1948 		break;
1949 	}
1950 
1951 	return tx_power;
1952 }
1953 
1954 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1955 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1956 					enum rtw_bandwidth bandwidth,
1957 					u8 rate, u8 group)
1958 {
1959 	struct rtw_chip_info *chip = rtwdev->chip;
1960 	u8 tx_power;
1961 	u8 upper, lower;
1962 	bool mcs_rate;
1963 	bool above_2ss;
1964 	u8 factor = chip->txgi_factor;
1965 
1966 	tx_power = pwr_idx_5g->bw40_base[group];
1967 
1968 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1969 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1970 		    rate <= DESC_RATEVHT2SS_MCS9);
1971 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1972 		    (rate >= DESC_RATEVHT2SS_MCS0);
1973 
1974 	if (!mcs_rate) {
1975 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1976 		return tx_power;
1977 	}
1978 
1979 	switch (bandwidth) {
1980 	default:
1981 		WARN_ON(1);
1982 		fallthrough;
1983 	case RTW_CHANNEL_WIDTH_20:
1984 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1985 		if (above_2ss)
1986 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1987 		break;
1988 	case RTW_CHANNEL_WIDTH_40:
1989 		/* bw40 is the base power */
1990 		if (above_2ss)
1991 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1992 		break;
1993 	case RTW_CHANNEL_WIDTH_80:
1994 		/* the base idx of bw80 is the average of bw40+/bw40- */
1995 		lower = pwr_idx_5g->bw40_base[group];
1996 		upper = pwr_idx_5g->bw40_base[group + 1];
1997 
1998 		tx_power = (lower + upper) / 2;
1999 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
2000 		if (above_2ss)
2001 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
2002 		break;
2003 	}
2004 
2005 	return tx_power;
2006 }
2007 
2008 /* return RTW_RATE_SECTION_MAX to indicate rate is invalid */
2009 static u8 rtw_phy_rate_to_rate_section(u8 rate)
2010 {
2011 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
2012 		return RTW_RATE_SECTION_CCK;
2013 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
2014 		return RTW_RATE_SECTION_OFDM;
2015 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
2016 		return RTW_RATE_SECTION_HT_1S;
2017 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
2018 		return RTW_RATE_SECTION_HT_2S;
2019 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
2020 		return RTW_RATE_SECTION_VHT_1S;
2021 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
2022 		return RTW_RATE_SECTION_VHT_2S;
2023 	else
2024 		return RTW_RATE_SECTION_MAX;
2025 }
2026 
2027 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
2028 				     enum rtw_bandwidth bw, u8 rf_path,
2029 				     u8 rate, u8 channel, u8 regd)
2030 {
2031 	struct rtw_hal *hal = &rtwdev->hal;
2032 	u8 *cch_by_bw = hal->cch_by_bw;
2033 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
2034 	u8 rs = rtw_phy_rate_to_rate_section(rate);
2035 	int ch_idx;
2036 	u8 cur_bw, cur_ch;
2037 	s8 cur_lmt;
2038 
2039 	if (regd > RTW_REGD_WW)
2040 		return power_limit;
2041 
2042 	if (rs == RTW_RATE_SECTION_MAX)
2043 		goto err;
2044 
2045 	/* only 20M BW with cck and ofdm */
2046 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
2047 		bw = RTW_CHANNEL_WIDTH_20;
2048 
2049 	/* only 20/40M BW with ht */
2050 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
2051 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
2052 
2053 	/* select min power limit among [20M BW ~ current BW] */
2054 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
2055 		cur_ch = cch_by_bw[cur_bw];
2056 
2057 		ch_idx = rtw_channel_to_idx(band, cur_ch);
2058 		if (ch_idx < 0)
2059 			goto err;
2060 
2061 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
2062 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
2063 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
2064 
2065 		power_limit = min_t(s8, cur_lmt, power_limit);
2066 	}
2067 
2068 	return power_limit;
2069 
2070 err:
2071 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
2072 	     band, bw, rf_path, rate, channel);
2073 	return (s8)rtwdev->chip->max_power_index;
2074 }
2075 
2076 static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band,
2077 				   u8 rf_path, u8 rate)
2078 {
2079 	u8 rs = rtw_phy_rate_to_rate_section(rate);
2080 	struct rtw_sar_arg arg = {
2081 		.sar_band = sar_band,
2082 		.path = rf_path,
2083 		.rs = rs,
2084 	};
2085 
2086 	if (rs == RTW_RATE_SECTION_MAX)
2087 		goto err;
2088 
2089 	return rtw_query_sar(rtwdev, &arg);
2090 
2091 err:
2092 	WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n",
2093 	     sar_band, rf_path, rate);
2094 	return (s8)rtwdev->chip->max_power_index;
2095 }
2096 
2097 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
2098 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
2099 {
2100 	struct rtw_hal *hal = &rtwdev->hal;
2101 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2102 	struct rtw_txpwr_idx *pwr_idx;
2103 	u8 group, band;
2104 	u8 *base = &pwr_param->pwr_base;
2105 	s8 *offset = &pwr_param->pwr_offset;
2106 	s8 *limit = &pwr_param->pwr_limit;
2107 	s8 *remnant = &pwr_param->pwr_remnant;
2108 	s8 *sar = &pwr_param->pwr_sar;
2109 
2110 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
2111 	group = rtw_get_channel_group(ch, rate);
2112 
2113 	/* base power index for 2.4G/5G */
2114 	if (IS_CH_2G_BAND(ch)) {
2115 		band = PHY_BAND_2G;
2116 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
2117 						      &pwr_idx->pwr_idx_2g,
2118 						      bw, rate, group);
2119 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
2120 	} else {
2121 		band = PHY_BAND_5G;
2122 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
2123 						      &pwr_idx->pwr_idx_5g,
2124 						      bw, rate, group);
2125 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
2126 	}
2127 
2128 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
2129 					    rate, ch, regd);
2130 	*remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
2131 		    dm_info->txagc_remnant_ofdm);
2132 	*sar = rtw_phy_get_tx_power_sar(rtwdev, hal->sar_band, path, rate);
2133 }
2134 
2135 u8
2136 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
2137 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
2138 {
2139 	struct rtw_power_params pwr_param = {0};
2140 	u8 tx_power;
2141 	s8 offset;
2142 
2143 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
2144 				channel, regd, &pwr_param);
2145 
2146 	tx_power = pwr_param.pwr_base;
2147 	offset = min3(pwr_param.pwr_offset,
2148 		      pwr_param.pwr_limit,
2149 		      pwr_param.pwr_sar);
2150 
2151 	if (rtwdev->chip->en_dis_dpd)
2152 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
2153 
2154 	tx_power += offset + pwr_param.pwr_remnant;
2155 
2156 	if (tx_power > rtwdev->chip->max_power_index)
2157 		tx_power = rtwdev->chip->max_power_index;
2158 
2159 	return tx_power;
2160 }
2161 EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
2162 
2163 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
2164 					     u8 ch, u8 path, u8 rs)
2165 {
2166 	struct rtw_hal *hal = &rtwdev->hal;
2167 	u8 regd = rtw_regd_get(rtwdev);
2168 	u8 *rates;
2169 	u8 size;
2170 	u8 rate;
2171 	u8 pwr_idx;
2172 	u8 bw;
2173 	int i;
2174 
2175 	if (rs >= RTW_RATE_SECTION_MAX)
2176 		return;
2177 
2178 	rates = rtw_rate_section[rs];
2179 	size = rtw_rate_size[rs];
2180 	bw = hal->current_band_width;
2181 	for (i = 0; i < size; i++) {
2182 		rate = rates[i];
2183 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
2184 						     bw, ch, regd);
2185 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
2186 	}
2187 }
2188 
2189 /* set tx power level by path for each rates, note that the order of the rates
2190  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
2191  * power index into a four-byte power index register, and calls set_tx_agc to
2192  * write these values into hardware
2193  */
2194 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
2195 					       u8 ch, u8 path)
2196 {
2197 	struct rtw_hal *hal = &rtwdev->hal;
2198 	u8 rs;
2199 
2200 	/* do not need cck rates if we are not in 2.4G */
2201 	if (hal->current_band_type == RTW_BAND_2G)
2202 		rs = RTW_RATE_SECTION_CCK;
2203 	else
2204 		rs = RTW_RATE_SECTION_OFDM;
2205 
2206 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
2207 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
2208 }
2209 
2210 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
2211 {
2212 	struct rtw_chip_info *chip = rtwdev->chip;
2213 	struct rtw_hal *hal = &rtwdev->hal;
2214 	u8 path;
2215 
2216 	mutex_lock(&hal->tx_power_mutex);
2217 
2218 	for (path = 0; path < hal->rf_path_num; path++)
2219 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
2220 
2221 	chip->ops->set_tx_power_index(rtwdev);
2222 	mutex_unlock(&hal->tx_power_mutex);
2223 }
2224 EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
2225 
2226 static void
2227 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
2228 					u8 rs, u8 size, u8 *rates)
2229 {
2230 	u8 rate;
2231 	u8 base_idx, rate_idx;
2232 	s8 base_2g, base_5g;
2233 
2234 	if (rs >= RTW_RATE_SECTION_VHT_1S)
2235 		base_idx = rates[size - 3];
2236 	else
2237 		base_idx = rates[size - 1];
2238 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
2239 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
2240 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
2241 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
2242 	for (rate = 0; rate < size; rate++) {
2243 		rate_idx = rates[rate];
2244 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
2245 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
2246 	}
2247 }
2248 
2249 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
2250 {
2251 	u8 path;
2252 
2253 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2254 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2255 				RTW_RATE_SECTION_CCK,
2256 				rtw_cck_size, rtw_cck_rates);
2257 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2258 				RTW_RATE_SECTION_OFDM,
2259 				rtw_ofdm_size, rtw_ofdm_rates);
2260 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2261 				RTW_RATE_SECTION_HT_1S,
2262 				rtw_ht_1s_size, rtw_ht_1s_rates);
2263 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2264 				RTW_RATE_SECTION_HT_2S,
2265 				rtw_ht_2s_size, rtw_ht_2s_rates);
2266 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2267 				RTW_RATE_SECTION_VHT_1S,
2268 				rtw_vht_1s_size, rtw_vht_1s_rates);
2269 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2270 				RTW_RATE_SECTION_VHT_2S,
2271 				rtw_vht_2s_size, rtw_vht_2s_rates);
2272 	}
2273 }
2274 
2275 static void
2276 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
2277 {
2278 	s8 base;
2279 	u8 ch;
2280 
2281 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
2282 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
2283 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
2284 	}
2285 
2286 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
2287 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
2288 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2289 	}
2290 }
2291 
2292 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2293 {
2294 	u8 regd, bw, rs;
2295 
2296 	/* default at channel 1 */
2297 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2298 
2299 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2300 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2301 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2302 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2303 }
2304 
2305 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2306 					u8 regd, u8 bw, u8 rs)
2307 {
2308 	struct rtw_hal *hal = &rtwdev->hal;
2309 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2310 	u8 ch;
2311 
2312 	/* 2.4G channels */
2313 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2314 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2315 
2316 	/* 5G channels */
2317 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2318 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2319 }
2320 
2321 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2322 {
2323 	struct rtw_hal *hal = &rtwdev->hal;
2324 	u8 regd, path, rate, rs, bw;
2325 
2326 	/* init tx power by rate offset */
2327 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2328 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2329 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2330 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2331 		}
2332 	}
2333 
2334 	/* init tx power limit */
2335 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2336 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2337 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2338 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2339 							    rs);
2340 }
2341 
2342 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2343 				struct rtw_swing_table *swing_table)
2344 {
2345 	const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2346 	u8 channel = rtwdev->hal.current_channel;
2347 
2348 	if (IS_CH_2G_BAND(channel)) {
2349 		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2350 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2351 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2352 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2353 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2354 		} else {
2355 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2356 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2357 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2358 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2359 		}
2360 	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2361 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2362 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2363 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2364 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2365 	} else if (IS_CH_5G_BAND_3(channel)) {
2366 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2367 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2368 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2369 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2370 	} else if (IS_CH_5G_BAND_4(channel)) {
2371 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2372 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2373 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2374 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2375 	} else {
2376 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2377 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2378 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2379 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2380 	}
2381 }
2382 EXPORT_SYMBOL(rtw_phy_config_swing_table);
2383 
2384 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2385 {
2386 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2387 
2388 	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2389 	dm_info->thermal_avg[path] =
2390 		ewma_thermal_read(&dm_info->avg_thermal[path]);
2391 }
2392 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2393 
2394 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2395 				      u8 path)
2396 {
2397 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2398 	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2399 
2400 	if (avg == thermal)
2401 		return false;
2402 
2403 	return true;
2404 }
2405 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2406 
2407 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2408 {
2409 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2410 	u8 therm_avg, therm_efuse, therm_delta;
2411 
2412 	therm_avg = dm_info->thermal_avg[path];
2413 	therm_efuse = rtwdev->efuse.thermal_meter[path];
2414 	therm_delta = abs(therm_avg - therm_efuse);
2415 
2416 	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2417 }
2418 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2419 
2420 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2421 			       struct rtw_swing_table *swing_table,
2422 			       u8 tbl_path, u8 therm_path, u8 delta)
2423 {
2424 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2425 	const u8 *delta_swing_table_idx_pos;
2426 	const u8 *delta_swing_table_idx_neg;
2427 
2428 	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2429 		rtw_warn(rtwdev, "power track table overflow\n");
2430 		return 0;
2431 	}
2432 
2433 	if (!swing_table) {
2434 		rtw_warn(rtwdev, "swing table not configured\n");
2435 		return 0;
2436 	}
2437 
2438 	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2439 	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2440 
2441 	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2442 		rtw_warn(rtwdev, "invalid swing table index\n");
2443 		return 0;
2444 	}
2445 
2446 	if (dm_info->thermal_avg[therm_path] >
2447 	    rtwdev->efuse.thermal_meter[therm_path])
2448 		return delta_swing_table_idx_pos[delta];
2449 	else
2450 		return -delta_swing_table_idx_neg[delta];
2451 }
2452 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2453 
2454 bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
2455 {
2456 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2457 	u8 delta_lck;
2458 
2459 	delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
2460 	if (delta_lck >= rtwdev->chip->lck_threshold) {
2461 		dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
2462 		return true;
2463 	}
2464 	return false;
2465 }
2466 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
2467 
2468 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2469 {
2470 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2471 	u8 delta_iqk;
2472 
2473 	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2474 	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2475 		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2476 		return true;
2477 	}
2478 	return false;
2479 }
2480 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2481 
2482 static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev,
2483 				       enum rtw_bb_path tx_path_sel_1ss)
2484 {
2485 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2486 	enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss;
2487 	struct rtw_chip_info *chip = rtwdev->chip;
2488 
2489 	if (tx_path_sel_1ss == path_div->current_tx_path)
2490 		return;
2491 
2492 	path_div->current_tx_path = tx_path_sel_1ss;
2493 	rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n",
2494 		tx_path_sel_1ss == BB_PATH_A ? "A" : "B");
2495 	chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx,
2496 				  tx_path_sel_1ss, tx_path_sel_cck, false);
2497 }
2498 
2499 static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev)
2500 {
2501 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2502 	enum rtw_bb_path path = path_div->current_tx_path;
2503 	s32 rssi_a = 0, rssi_b = 0;
2504 
2505 	if (path_div->path_a_cnt)
2506 		rssi_a = path_div->path_a_sum / path_div->path_a_cnt;
2507 	else
2508 		rssi_a = 0;
2509 	if (path_div->path_b_cnt)
2510 		rssi_b = path_div->path_b_sum / path_div->path_b_cnt;
2511 	else
2512 		rssi_b = 0;
2513 
2514 	if (rssi_a != rssi_b)
2515 		path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B;
2516 
2517 	path_div->path_a_cnt = 0;
2518 	path_div->path_a_sum = 0;
2519 	path_div->path_b_cnt = 0;
2520 	path_div->path_b_sum = 0;
2521 	rtw_phy_set_tx_path_by_reg(rtwdev, path);
2522 }
2523 
2524 static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev)
2525 {
2526 	if (rtwdev->hal.antenna_rx != BB_PATH_AB) {
2527 		rtw_dbg(rtwdev, RTW_DBG_PATH_DIV,
2528 			"[Return] tx_Path_en=%d, rx_Path_en=%d\n",
2529 			rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx);
2530 		return;
2531 	}
2532 	if (rtwdev->sta_cnt == 0) {
2533 		rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n");
2534 		return;
2535 	}
2536 
2537 	rtw_phy_tx_path_div_select(rtwdev);
2538 }
2539 
2540 void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev)
2541 {
2542 	struct rtw_chip_info *chip = rtwdev->chip;
2543 
2544 	if (!chip->path_div_supported)
2545 		return;
2546 
2547 	rtw_phy_tx_path_diversity_2ss(rtwdev);
2548 }
2549