xref: /linux/drivers/net/wireless/realtek/rtw88/phy.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 
13 struct phy_cfg_pair {
14 	u32 addr;
15 	u32 data;
16 };
17 
18 union phy_table_tile {
19 	struct rtw_phy_cond cond;
20 	struct phy_cfg_pair cfg;
21 };
22 
23 static const u32 db_invert_table[12][8] = {
24 	{10,		13,		16,		20,
25 	 25,		32,		40,		50},
26 	{64,		80,		101,		128,
27 	 160,		201,		256,		318},
28 	{401,		505,		635,		800,
29 	 1007,		1268,		1596,		2010},
30 	{316,		398,		501,		631,
31 	 794,		1000,		1259,		1585},
32 	{1995,		2512,		3162,		3981,
33 	 5012,		6310,		7943,		10000},
34 	{12589,		15849,		19953,		25119,
35 	 31623,		39811,		50119,		63098},
36 	{79433,		100000,		125893,		158489,
37 	 199526,	251189,		316228,		398107},
38 	{501187,	630957,		794328,		1000000,
39 	 1258925,	1584893,	1995262,	2511886},
40 	{3162278,	3981072,	5011872,	6309573,
41 	 7943282,	1000000,	12589254,	15848932},
42 	{19952623,	25118864,	31622777,	39810717,
43 	 50118723,	63095734,	79432823,	100000000},
44 	{125892541,	158489319,	199526232,	251188643,
45 	 316227766,	398107171,	501187234,	630957345},
46 	{794328235,	1000000000,	1258925412,	1584893192,
47 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
48 };
49 
50 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
51 u8 rtw_ofdm_rates[] = {
52 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
53 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
54 	DESC_RATE48M, DESC_RATE54M
55 };
56 u8 rtw_ht_1s_rates[] = {
57 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
58 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
59 	DESC_RATEMCS6, DESC_RATEMCS7
60 };
61 u8 rtw_ht_2s_rates[] = {
62 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
63 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
64 	DESC_RATEMCS14, DESC_RATEMCS15
65 };
66 u8 rtw_vht_1s_rates[] = {
67 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
68 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
69 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
70 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
71 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
72 };
73 u8 rtw_vht_2s_rates[] = {
74 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
75 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
76 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
77 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
78 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
79 };
80 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
81 	rtw_cck_rates, rtw_ofdm_rates,
82 	rtw_ht_1s_rates, rtw_ht_2s_rates,
83 	rtw_vht_1s_rates, rtw_vht_2s_rates
84 };
85 EXPORT_SYMBOL(rtw_rate_section);
86 
87 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
88 	ARRAY_SIZE(rtw_cck_rates),
89 	ARRAY_SIZE(rtw_ofdm_rates),
90 	ARRAY_SIZE(rtw_ht_1s_rates),
91 	ARRAY_SIZE(rtw_ht_2s_rates),
92 	ARRAY_SIZE(rtw_vht_1s_rates),
93 	ARRAY_SIZE(rtw_vht_2s_rates)
94 };
95 EXPORT_SYMBOL(rtw_rate_size);
96 
97 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
98 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
99 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
100 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
101 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
102 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
103 
104 enum rtw_phy_band_type {
105 	PHY_BAND_2G	= 0,
106 	PHY_BAND_5G	= 1,
107 };
108 
109 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
110 {
111 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
112 	u8 i, j;
113 
114 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
115 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
116 			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
117 	}
118 
119 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
120 }
121 
122 static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
123 {
124 	struct rtw_chip_info *chip = rtwdev->chip;
125 
126 	if (chip->ops->cfo_init)
127 		chip->ops->cfo_init(rtwdev);
128 }
129 
130 static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev)
131 {
132 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
133 
134 	path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path;
135 	path_div->path_a_cnt = 0;
136 	path_div->path_a_sum = 0;
137 	path_div->path_b_cnt = 0;
138 	path_div->path_b_sum = 0;
139 }
140 
141 void rtw_phy_init(struct rtw_dev *rtwdev)
142 {
143 	struct rtw_chip_info *chip = rtwdev->chip;
144 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
145 	u32 addr, mask;
146 
147 	dm_info->fa_history[3] = 0;
148 	dm_info->fa_history[2] = 0;
149 	dm_info->fa_history[1] = 0;
150 	dm_info->fa_history[0] = 0;
151 	dm_info->igi_bitmap = 0;
152 	dm_info->igi_history[3] = 0;
153 	dm_info->igi_history[2] = 0;
154 	dm_info->igi_history[1] = 0;
155 
156 	addr = chip->dig[0].addr;
157 	mask = chip->dig[0].mask;
158 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
159 	rtw_phy_cck_pd_init(rtwdev);
160 
161 	dm_info->iqk.done = false;
162 	rtw_phy_cfo_init(rtwdev);
163 	rtw_phy_tx_path_div_init(rtwdev);
164 }
165 EXPORT_SYMBOL(rtw_phy_init);
166 
167 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
168 {
169 	struct rtw_chip_info *chip = rtwdev->chip;
170 	struct rtw_hal *hal = &rtwdev->hal;
171 	u32 addr, mask;
172 	u8 path;
173 
174 	if (chip->dig_cck) {
175 		const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
176 		rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
177 	}
178 
179 	for (path = 0; path < hal->rf_path_num; path++) {
180 		addr = chip->dig[path].addr;
181 		mask = chip->dig[path].mask;
182 		rtw_write32_mask(rtwdev, addr, mask, igi);
183 	}
184 }
185 
186 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
187 {
188 	struct rtw_chip_info *chip = rtwdev->chip;
189 
190 	chip->ops->false_alarm_statistics(rtwdev);
191 }
192 
193 #define RA_FLOOR_TABLE_SIZE	7
194 #define RA_FLOOR_UP_GAP		3
195 
196 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
197 {
198 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
199 	u8 new_level = 0;
200 	int i;
201 
202 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
203 		if (i >= old_level)
204 			table[i] += RA_FLOOR_UP_GAP;
205 
206 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
207 		if (rssi < table[i]) {
208 			new_level = i;
209 			break;
210 		}
211 	}
212 
213 	return new_level;
214 }
215 
216 struct rtw_phy_stat_iter_data {
217 	struct rtw_dev *rtwdev;
218 	u8 min_rssi;
219 };
220 
221 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
222 {
223 	struct rtw_phy_stat_iter_data *iter_data = data;
224 	struct rtw_dev *rtwdev = iter_data->rtwdev;
225 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
226 	u8 rssi;
227 
228 	rssi = ewma_rssi_read(&si->avg_rssi);
229 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
230 
231 	rtw_fw_send_rssi_info(rtwdev, si);
232 
233 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
234 }
235 
236 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
237 {
238 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
239 	struct rtw_phy_stat_iter_data data = {};
240 
241 	data.rtwdev = rtwdev;
242 	data.min_rssi = U8_MAX;
243 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
244 
245 	dm_info->pre_min_rssi = dm_info->min_rssi;
246 	dm_info->min_rssi = data.min_rssi;
247 }
248 
249 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
250 {
251 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
252 
253 	dm_info->last_pkt_count = dm_info->cur_pkt_count;
254 	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
255 }
256 
257 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
258 {
259 	rtw_phy_stat_rssi(rtwdev);
260 	rtw_phy_stat_false_alarm(rtwdev);
261 	rtw_phy_stat_rate_cnt(rtwdev);
262 }
263 
264 #define DIG_PERF_FA_TH_LOW			250
265 #define DIG_PERF_FA_TH_HIGH			500
266 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
267 #define DIG_PERF_MAX				0x5a
268 #define DIG_PERF_MID				0x40
269 #define DIG_CVRG_FA_TH_LOW			2000
270 #define DIG_CVRG_FA_TH_HIGH			4000
271 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
272 #define DIG_CVRG_MAX				0x2a
273 #define DIG_CVRG_MID				0x26
274 #define DIG_CVRG_MIN				0x1c
275 #define DIG_RSSI_GAIN_OFFSET			15
276 
277 static bool
278 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
279 {
280 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
281 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
282 	u16 *fa_history;
283 	u8 *igi_history;
284 	u8 damping_rssi;
285 	u8 min_rssi;
286 	u8 diff;
287 	u8 igi_bitmap;
288 	bool damping = false;
289 
290 	min_rssi = dm_info->min_rssi;
291 	if (dm_info->damping) {
292 		damping_rssi = dm_info->damping_rssi;
293 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
294 						 damping_rssi - min_rssi;
295 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
296 			dm_info->damping = false;
297 			return false;
298 		}
299 
300 		return true;
301 	}
302 
303 	igi_history = dm_info->igi_history;
304 	fa_history = dm_info->fa_history;
305 	igi_bitmap = dm_info->igi_bitmap & 0xf;
306 	switch (igi_bitmap) {
307 	case 5:
308 		/* down -> up -> down -> up */
309 		if (igi_history[0] > igi_history[1] &&
310 		    igi_history[2] > igi_history[3] &&
311 		    igi_history[0] - igi_history[1] >= 2 &&
312 		    igi_history[2] - igi_history[3] >= 2 &&
313 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
314 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
315 			damping = true;
316 		break;
317 	case 9:
318 		/* up -> down -> down -> up */
319 		if (igi_history[0] > igi_history[1] &&
320 		    igi_history[3] > igi_history[2] &&
321 		    igi_history[0] - igi_history[1] >= 4 &&
322 		    igi_history[3] - igi_history[2] >= 2 &&
323 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
324 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
325 			damping = true;
326 		break;
327 	default:
328 		return false;
329 	}
330 
331 	if (damping) {
332 		dm_info->damping = true;
333 		dm_info->damping_cnt = 0;
334 		dm_info->damping_rssi = min_rssi;
335 	}
336 
337 	return damping;
338 }
339 
340 static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
341 				     struct rtw_dm_info *dm_info,
342 				     u8 *upper, u8 *lower, bool linked)
343 {
344 	u8 dig_max, dig_min, dig_mid;
345 	u8 min_rssi;
346 
347 	if (linked) {
348 		dig_max = DIG_PERF_MAX;
349 		dig_mid = DIG_PERF_MID;
350 		dig_min = rtwdev->chip->dig_min;
351 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
352 	} else {
353 		dig_max = DIG_CVRG_MAX;
354 		dig_mid = DIG_CVRG_MID;
355 		dig_min = DIG_CVRG_MIN;
356 		min_rssi = dig_min;
357 	}
358 
359 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
360 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
361 
362 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
363 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
364 }
365 
366 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
367 				      u16 *fa_th, u8 *step, bool linked)
368 {
369 	u8 min_rssi, pre_min_rssi;
370 
371 	min_rssi = dm_info->min_rssi;
372 	pre_min_rssi = dm_info->pre_min_rssi;
373 	step[0] = 4;
374 	step[1] = 3;
375 	step[2] = 2;
376 
377 	if (linked) {
378 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
379 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
380 		fa_th[2] = DIG_PERF_FA_TH_LOW;
381 		if (pre_min_rssi > min_rssi) {
382 			step[0] = 6;
383 			step[1] = 4;
384 			step[2] = 2;
385 		}
386 	} else {
387 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
388 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
389 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
390 	}
391 }
392 
393 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
394 {
395 	u8 *igi_history;
396 	u16 *fa_history;
397 	u8 igi_bitmap;
398 	bool up;
399 
400 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
401 	igi_history = dm_info->igi_history;
402 	fa_history = dm_info->fa_history;
403 
404 	up = igi > igi_history[0];
405 	igi_bitmap |= up;
406 
407 	igi_history[3] = igi_history[2];
408 	igi_history[2] = igi_history[1];
409 	igi_history[1] = igi_history[0];
410 	igi_history[0] = igi;
411 
412 	fa_history[3] = fa_history[2];
413 	fa_history[2] = fa_history[1];
414 	fa_history[1] = fa_history[0];
415 	fa_history[0] = fa;
416 
417 	dm_info->igi_bitmap = igi_bitmap;
418 }
419 
420 static void rtw_phy_dig(struct rtw_dev *rtwdev)
421 {
422 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
423 	u8 upper_bound, lower_bound;
424 	u8 pre_igi, cur_igi;
425 	u16 fa_th[3], fa_cnt;
426 	u8 level;
427 	u8 step[3];
428 	bool linked;
429 
430 	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
431 		return;
432 
433 	if (rtw_phy_dig_check_damping(dm_info))
434 		return;
435 
436 	linked = !!rtwdev->sta_cnt;
437 
438 	fa_cnt = dm_info->total_fa_cnt;
439 	pre_igi = dm_info->igi_history[0];
440 
441 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
442 
443 	/* test the false alarm count from the highest threshold level first,
444 	 * and increase it by corresponding step size
445 	 *
446 	 * note that the step size is offset by -2, compensate it afterall
447 	 */
448 	cur_igi = pre_igi;
449 	for (level = 0; level < 3; level++) {
450 		if (fa_cnt > fa_th[level]) {
451 			cur_igi += step[level];
452 			break;
453 		}
454 	}
455 	cur_igi -= 2;
456 
457 	/* calculate the upper/lower bound by the minimum rssi we have among
458 	 * the peers connected with us, meanwhile make sure the igi value does
459 	 * not beyond the hardware limitation
460 	 */
461 	rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound,
462 				 linked);
463 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
464 
465 	/* record current igi value and false alarm statistics for further
466 	 * damping checks, and record the trend of igi values
467 	 */
468 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
469 
470 	if (cur_igi != pre_igi)
471 		rtw_phy_dig_write(rtwdev, cur_igi);
472 }
473 
474 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
475 {
476 	struct rtw_dev *rtwdev = data;
477 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
478 
479 	rtw_update_sta_info(rtwdev, si);
480 }
481 
482 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
483 {
484 	if (rtwdev->watch_dog_cnt & 0x3)
485 		return;
486 
487 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
488 }
489 
490 static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
491 {
492 	u8 rate_order;
493 
494 	rate_order = rate_idx;
495 
496 	if (rate_idx >= DESC_RATEVHT4SS_MCS0)
497 		rate_order -= DESC_RATEVHT4SS_MCS0;
498 	else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
499 		rate_order -= DESC_RATEVHT3SS_MCS0;
500 	else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
501 		rate_order -= DESC_RATEVHT2SS_MCS0;
502 	else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
503 		rate_order -= DESC_RATEVHT1SS_MCS0;
504 	else if (rate_idx >= DESC_RATEMCS24)
505 		rate_order -= DESC_RATEMCS24;
506 	else if (rate_idx >= DESC_RATEMCS16)
507 		rate_order -= DESC_RATEMCS16;
508 	else if (rate_idx >= DESC_RATEMCS8)
509 		rate_order -= DESC_RATEMCS8;
510 	else if (rate_idx >= DESC_RATEMCS0)
511 		rate_order -= DESC_RATEMCS0;
512 	else if (rate_idx >= DESC_RATE6M)
513 		rate_order -= DESC_RATE6M;
514 	else
515 		rate_order -= DESC_RATE1M;
516 
517 	if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
518 		rate_order++;
519 
520 	return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
521 }
522 
523 static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
524 {
525 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
526 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
527 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
528 	u32 mask = 0;
529 
530 	mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
531 	if (mask < dm_info->rrsr_mask_min)
532 		dm_info->rrsr_mask_min = mask;
533 }
534 
535 static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
536 {
537 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
538 
539 	dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
540 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
541 	rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
542 }
543 
544 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
545 {
546 	struct rtw_chip_info *chip = rtwdev->chip;
547 
548 	if (chip->ops->dpk_track)
549 		chip->ops->dpk_track(rtwdev);
550 }
551 
552 struct rtw_rx_addr_match_data {
553 	struct rtw_dev *rtwdev;
554 	struct ieee80211_hdr *hdr;
555 	struct rtw_rx_pkt_stat *pkt_stat;
556 	u8 *bssid;
557 };
558 
559 static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
560 				     struct ieee80211_vif *vif)
561 {
562 	struct rtw_rx_addr_match_data *iter_data = data;
563 	struct rtw_dev *rtwdev = iter_data->rtwdev;
564 	struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
565 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
566 	struct rtw_cfo_track *cfo = &dm_info->cfo_track;
567 	u8 *bssid = iter_data->bssid;
568 	u8 i;
569 
570 	if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
571 		return;
572 
573 	for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
574 		cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
575 		cfo->cfo_cnt[i]++;
576 	}
577 
578 	cfo->packet_count++;
579 }
580 
581 void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
582 			 struct rtw_rx_pkt_stat *pkt_stat)
583 {
584 	struct ieee80211_hdr *hdr = pkt_stat->hdr;
585 	struct rtw_rx_addr_match_data data = {};
586 
587 	if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
588 	    ieee80211_is_ctl(hdr->frame_control))
589 		return;
590 
591 	data.rtwdev = rtwdev;
592 	data.hdr = hdr;
593 	data.pkt_stat = pkt_stat;
594 	data.bssid = get_hdr_bssid(hdr);
595 
596 	rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
597 }
598 EXPORT_SYMBOL(rtw_phy_parsing_cfo);
599 
600 static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
601 {
602 	struct rtw_chip_info *chip = rtwdev->chip;
603 
604 	if (chip->ops->cfo_track)
605 		chip->ops->cfo_track(rtwdev);
606 }
607 
608 #define CCK_PD_FA_LV1_MIN	1000
609 #define CCK_PD_FA_LV0_MAX	500
610 
611 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
612 {
613 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
614 	u32 cck_fa_avg = dm_info->cck_fa_avg;
615 
616 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
617 		return CCK_PD_LV1;
618 
619 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
620 		return CCK_PD_LV0;
621 
622 	return CCK_PD_LV_MAX;
623 }
624 
625 #define CCK_PD_IGI_LV4_VAL 0x38
626 #define CCK_PD_IGI_LV3_VAL 0x2a
627 #define CCK_PD_IGI_LV2_VAL 0x24
628 #define CCK_PD_RSSI_LV4_VAL 32
629 #define CCK_PD_RSSI_LV3_VAL 32
630 #define CCK_PD_RSSI_LV2_VAL 24
631 
632 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
633 {
634 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
635 	u8 igi = dm_info->igi_history[0];
636 	u8 rssi = dm_info->min_rssi;
637 	u32 cck_fa_avg = dm_info->cck_fa_avg;
638 
639 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
640 		return CCK_PD_LV4;
641 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
642 		return CCK_PD_LV3;
643 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
644 		return CCK_PD_LV2;
645 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
646 		return CCK_PD_LV1;
647 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
648 		return CCK_PD_LV0;
649 
650 	return CCK_PD_LV_MAX;
651 }
652 
653 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
654 {
655 	if (!rtw_is_assoc(rtwdev))
656 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
657 	else
658 		return rtw_phy_cck_pd_lv_link(rtwdev);
659 }
660 
661 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
662 {
663 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
664 	struct rtw_chip_info *chip = rtwdev->chip;
665 	u32 cck_fa = dm_info->cck_fa_cnt;
666 	u8 level;
667 
668 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
669 		return;
670 
671 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
672 		dm_info->cck_fa_avg = cck_fa;
673 	else
674 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
675 
676 	rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
677 		dm_info->igi_history[0], dm_info->min_rssi,
678 		dm_info->fa_history[0]);
679 	rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
680 		dm_info->cck_fa_avg, dm_info->cck_pd_default);
681 
682 	level = rtw_phy_cck_pd_lv(rtwdev);
683 
684 	if (level >= CCK_PD_LV_MAX)
685 		return;
686 
687 	if (chip->ops->cck_pd_set)
688 		chip->ops->cck_pd_set(rtwdev, level);
689 }
690 
691 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
692 {
693 	rtwdev->chip->ops->pwr_track(rtwdev);
694 }
695 
696 static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
697 {
698 	rtw_fw_update_wl_phy_info(rtwdev);
699 	rtw_phy_ra_info_update(rtwdev);
700 	rtw_phy_rrsr_update(rtwdev);
701 }
702 
703 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
704 {
705 	/* for further calculation */
706 	rtw_phy_statistics(rtwdev);
707 	rtw_phy_dig(rtwdev);
708 	rtw_phy_cck_pd(rtwdev);
709 	rtw_phy_ra_track(rtwdev);
710 	rtw_phy_tx_path_diversity(rtwdev);
711 	rtw_phy_cfo_track(rtwdev);
712 	rtw_phy_dpk_track(rtwdev);
713 	rtw_phy_pwr_track(rtwdev);
714 }
715 
716 #define FRAC_BITS 3
717 
718 static u8 rtw_phy_power_2_db(s8 power)
719 {
720 	if (power <= -100 || power >= 20)
721 		return 0;
722 	else if (power >= 0)
723 		return 100;
724 	else
725 		return 100 + power;
726 }
727 
728 static u64 rtw_phy_db_2_linear(u8 power_db)
729 {
730 	u8 i, j;
731 	u64 linear;
732 
733 	if (power_db > 96)
734 		power_db = 96;
735 	else if (power_db < 1)
736 		return 1;
737 
738 	/* 1dB ~ 96dB */
739 	i = (power_db - 1) >> 3;
740 	j = (power_db - 1) - (i << 3);
741 
742 	linear = db_invert_table[i][j];
743 	linear = i > 2 ? linear << FRAC_BITS : linear;
744 
745 	return linear;
746 }
747 
748 static u8 rtw_phy_linear_2_db(u64 linear)
749 {
750 	u8 i;
751 	u8 j;
752 	u32 dB;
753 
754 	if (linear >= db_invert_table[11][7])
755 		return 96; /* maximum 96 dB */
756 
757 	for (i = 0; i < 12; i++) {
758 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
759 			break;
760 		else if (i > 2 && linear <= db_invert_table[i][7])
761 			break;
762 	}
763 
764 	for (j = 0; j < 8; j++) {
765 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
766 			break;
767 		else if (i > 2 && linear <= db_invert_table[i][j])
768 			break;
769 	}
770 
771 	if (j == 0 && i == 0)
772 		goto end;
773 
774 	if (j == 0) {
775 		if (i != 3) {
776 			if (db_invert_table[i][0] - linear >
777 			    linear - db_invert_table[i - 1][7]) {
778 				i = i - 1;
779 				j = 7;
780 			}
781 		} else {
782 			if (db_invert_table[3][0] - linear >
783 			    linear - db_invert_table[2][7]) {
784 				i = 2;
785 				j = 7;
786 			}
787 		}
788 	} else {
789 		if (db_invert_table[i][j] - linear >
790 		    linear - db_invert_table[i][j - 1]) {
791 			j = j - 1;
792 		}
793 	}
794 end:
795 	dB = (i << 3) + j + 1;
796 
797 	return dB;
798 }
799 
800 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
801 {
802 	s8 power;
803 	u8 power_db;
804 	u64 linear;
805 	u64 sum = 0;
806 	u8 path;
807 
808 	for (path = 0; path < path_num; path++) {
809 		power = rf_power[path];
810 		power_db = rtw_phy_power_2_db(power);
811 		linear = rtw_phy_db_2_linear(power_db);
812 		sum += linear;
813 	}
814 
815 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
816 	switch (path_num) {
817 	case 2:
818 		sum >>= 1;
819 		break;
820 	case 3:
821 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
822 		break;
823 	case 4:
824 		sum >>= 2;
825 		break;
826 	default:
827 		break;
828 	}
829 
830 	return rtw_phy_linear_2_db(sum);
831 }
832 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
833 
834 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
835 		    u32 addr, u32 mask)
836 {
837 	struct rtw_hal *hal = &rtwdev->hal;
838 	struct rtw_chip_info *chip = rtwdev->chip;
839 	const u32 *base_addr = chip->rf_base_addr;
840 	u32 val, direct_addr;
841 
842 	if (rf_path >= hal->rf_phy_num) {
843 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
844 		return INV_RF_DATA;
845 	}
846 
847 	addr &= 0xff;
848 	direct_addr = base_addr[rf_path] + (addr << 2);
849 	mask &= RFREG_MASK;
850 
851 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
852 
853 	return val;
854 }
855 EXPORT_SYMBOL(rtw_phy_read_rf);
856 
857 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
858 			 u32 addr, u32 mask)
859 {
860 	struct rtw_hal *hal = &rtwdev->hal;
861 	struct rtw_chip_info *chip = rtwdev->chip;
862 	const struct rtw_rf_sipi_addr *rf_sipi_addr;
863 	const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
864 	u32 val32;
865 	u32 en_pi;
866 	u32 r_addr;
867 	u32 shift;
868 
869 	if (rf_path >= hal->rf_phy_num) {
870 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
871 		return INV_RF_DATA;
872 	}
873 
874 	if (!chip->rf_sipi_read_addr) {
875 		rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
876 		return INV_RF_DATA;
877 	}
878 
879 	rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
880 	rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
881 
882 	addr &= 0xff;
883 
884 	val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
885 	val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
886 	rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
887 
888 	/* toggle read edge of path A */
889 	val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
890 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
891 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
892 
893 	udelay(120);
894 
895 	en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
896 	r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
897 
898 	val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
899 
900 	shift = __ffs(mask);
901 
902 	return (val32 & mask) >> shift;
903 }
904 EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
905 
906 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
907 			       u32 addr, u32 mask, u32 data)
908 {
909 	struct rtw_hal *hal = &rtwdev->hal;
910 	struct rtw_chip_info *chip = rtwdev->chip;
911 	u32 *sipi_addr = chip->rf_sipi_addr;
912 	u32 data_and_addr;
913 	u32 old_data = 0;
914 	u32 shift;
915 
916 	if (rf_path >= hal->rf_phy_num) {
917 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
918 		return false;
919 	}
920 
921 	addr &= 0xff;
922 	mask &= RFREG_MASK;
923 
924 	if (mask != RFREG_MASK) {
925 		old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
926 
927 		if (old_data == INV_RF_DATA) {
928 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
929 			return false;
930 		}
931 
932 		shift = __ffs(mask);
933 		data = ((old_data) & (~mask)) | (data << shift);
934 	}
935 
936 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
937 
938 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
939 
940 	udelay(13);
941 
942 	return true;
943 }
944 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
945 
946 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
947 			  u32 addr, u32 mask, u32 data)
948 {
949 	struct rtw_hal *hal = &rtwdev->hal;
950 	struct rtw_chip_info *chip = rtwdev->chip;
951 	const u32 *base_addr = chip->rf_base_addr;
952 	u32 direct_addr;
953 
954 	if (rf_path >= hal->rf_phy_num) {
955 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
956 		return false;
957 	}
958 
959 	addr &= 0xff;
960 	direct_addr = base_addr[rf_path] + (addr << 2);
961 	mask &= RFREG_MASK;
962 
963 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
964 
965 	udelay(1);
966 
967 	return true;
968 }
969 
970 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
971 			      u32 addr, u32 mask, u32 data)
972 {
973 	if (addr != 0x00)
974 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
975 
976 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
977 }
978 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
979 
980 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
981 {
982 	struct rtw_hal *hal = &rtwdev->hal;
983 	struct rtw_efuse *efuse = &rtwdev->efuse;
984 	struct rtw_phy_cond cond = {0};
985 
986 	cond.cut = hal->cut_version ? hal->cut_version : 15;
987 	cond.pkg = pkg ? pkg : 15;
988 	cond.plat = 0x04;
989 	cond.rfe = efuse->rfe_option;
990 
991 	switch (rtw_hci_type(rtwdev)) {
992 	case RTW_HCI_TYPE_USB:
993 		cond.intf = INTF_USB;
994 		break;
995 	case RTW_HCI_TYPE_SDIO:
996 		cond.intf = INTF_SDIO;
997 		break;
998 	case RTW_HCI_TYPE_PCIE:
999 	default:
1000 		cond.intf = INTF_PCIE;
1001 		break;
1002 	}
1003 
1004 	hal->phy_cond = cond;
1005 
1006 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
1007 }
1008 
1009 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
1010 {
1011 	struct rtw_hal *hal = &rtwdev->hal;
1012 	struct rtw_phy_cond drv_cond = hal->phy_cond;
1013 
1014 	if (cond.cut && cond.cut != drv_cond.cut)
1015 		return false;
1016 
1017 	if (cond.pkg && cond.pkg != drv_cond.pkg)
1018 		return false;
1019 
1020 	if (cond.intf && cond.intf != drv_cond.intf)
1021 		return false;
1022 
1023 	if (cond.rfe != drv_cond.rfe)
1024 		return false;
1025 
1026 	return true;
1027 }
1028 
1029 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1030 {
1031 	const union phy_table_tile *p = tbl->data;
1032 	const union phy_table_tile *end = p + tbl->size / 2;
1033 	struct rtw_phy_cond pos_cond = {0};
1034 	bool is_matched = true, is_skipped = false;
1035 
1036 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
1037 
1038 	for (; p < end; p++) {
1039 		if (p->cond.pos) {
1040 			switch (p->cond.branch) {
1041 			case BRANCH_ENDIF:
1042 				is_matched = true;
1043 				is_skipped = false;
1044 				break;
1045 			case BRANCH_ELSE:
1046 				is_matched = is_skipped ? false : true;
1047 				break;
1048 			case BRANCH_IF:
1049 			case BRANCH_ELIF:
1050 			default:
1051 				pos_cond = p->cond;
1052 				break;
1053 			}
1054 		} else if (p->cond.neg) {
1055 			if (!is_skipped) {
1056 				if (check_positive(rtwdev, pos_cond)) {
1057 					is_matched = true;
1058 					is_skipped = true;
1059 				} else {
1060 					is_matched = false;
1061 					is_skipped = false;
1062 				}
1063 			} else {
1064 				is_matched = false;
1065 			}
1066 		} else if (is_matched) {
1067 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
1068 		}
1069 	}
1070 }
1071 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
1072 
1073 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
1074 
1075 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
1076 {
1077 	if (rtwdev->chip->is_pwr_by_rate_dec)
1078 		return bcd_to_dec_pwr_by_rate(hex, i);
1079 
1080 	return (hex >> (i * 8)) & 0xFF;
1081 }
1082 
1083 static void
1084 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1085 					 u32 addr, u32 mask, u32 val, u8 *rate,
1086 					 u8 *pwr_by_rate, u8 *rate_num)
1087 {
1088 	int i;
1089 
1090 	switch (addr) {
1091 	case 0xE00:
1092 	case 0x830:
1093 		rate[0] = DESC_RATE6M;
1094 		rate[1] = DESC_RATE9M;
1095 		rate[2] = DESC_RATE12M;
1096 		rate[3] = DESC_RATE18M;
1097 		for (i = 0; i < 4; ++i)
1098 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1099 		*rate_num = 4;
1100 		break;
1101 	case 0xE04:
1102 	case 0x834:
1103 		rate[0] = DESC_RATE24M;
1104 		rate[1] = DESC_RATE36M;
1105 		rate[2] = DESC_RATE48M;
1106 		rate[3] = DESC_RATE54M;
1107 		for (i = 0; i < 4; ++i)
1108 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1109 		*rate_num = 4;
1110 		break;
1111 	case 0xE08:
1112 		rate[0] = DESC_RATE1M;
1113 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1114 		*rate_num = 1;
1115 		break;
1116 	case 0x86C:
1117 		if (mask == 0xffffff00) {
1118 			rate[0] = DESC_RATE2M;
1119 			rate[1] = DESC_RATE5_5M;
1120 			rate[2] = DESC_RATE11M;
1121 			for (i = 1; i < 4; ++i)
1122 				pwr_by_rate[i - 1] =
1123 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1124 			*rate_num = 3;
1125 		} else if (mask == 0x000000ff) {
1126 			rate[0] = DESC_RATE11M;
1127 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1128 			*rate_num = 1;
1129 		}
1130 		break;
1131 	case 0xE10:
1132 	case 0x83C:
1133 		rate[0] = DESC_RATEMCS0;
1134 		rate[1] = DESC_RATEMCS1;
1135 		rate[2] = DESC_RATEMCS2;
1136 		rate[3] = DESC_RATEMCS3;
1137 		for (i = 0; i < 4; ++i)
1138 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1139 		*rate_num = 4;
1140 		break;
1141 	case 0xE14:
1142 	case 0x848:
1143 		rate[0] = DESC_RATEMCS4;
1144 		rate[1] = DESC_RATEMCS5;
1145 		rate[2] = DESC_RATEMCS6;
1146 		rate[3] = DESC_RATEMCS7;
1147 		for (i = 0; i < 4; ++i)
1148 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1149 		*rate_num = 4;
1150 		break;
1151 	case 0xE18:
1152 	case 0x84C:
1153 		rate[0] = DESC_RATEMCS8;
1154 		rate[1] = DESC_RATEMCS9;
1155 		rate[2] = DESC_RATEMCS10;
1156 		rate[3] = DESC_RATEMCS11;
1157 		for (i = 0; i < 4; ++i)
1158 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1159 		*rate_num = 4;
1160 		break;
1161 	case 0xE1C:
1162 	case 0x868:
1163 		rate[0] = DESC_RATEMCS12;
1164 		rate[1] = DESC_RATEMCS13;
1165 		rate[2] = DESC_RATEMCS14;
1166 		rate[3] = DESC_RATEMCS15;
1167 		for (i = 0; i < 4; ++i)
1168 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1169 		*rate_num = 4;
1170 		break;
1171 	case 0x838:
1172 		rate[0] = DESC_RATE1M;
1173 		rate[1] = DESC_RATE2M;
1174 		rate[2] = DESC_RATE5_5M;
1175 		for (i = 1; i < 4; ++i)
1176 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1177 								    val, i);
1178 		*rate_num = 3;
1179 		break;
1180 	case 0xC20:
1181 	case 0xE20:
1182 	case 0x1820:
1183 	case 0x1A20:
1184 		rate[0] = DESC_RATE1M;
1185 		rate[1] = DESC_RATE2M;
1186 		rate[2] = DESC_RATE5_5M;
1187 		rate[3] = DESC_RATE11M;
1188 		for (i = 0; i < 4; ++i)
1189 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1190 		*rate_num = 4;
1191 		break;
1192 	case 0xC24:
1193 	case 0xE24:
1194 	case 0x1824:
1195 	case 0x1A24:
1196 		rate[0] = DESC_RATE6M;
1197 		rate[1] = DESC_RATE9M;
1198 		rate[2] = DESC_RATE12M;
1199 		rate[3] = DESC_RATE18M;
1200 		for (i = 0; i < 4; ++i)
1201 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1202 		*rate_num = 4;
1203 		break;
1204 	case 0xC28:
1205 	case 0xE28:
1206 	case 0x1828:
1207 	case 0x1A28:
1208 		rate[0] = DESC_RATE24M;
1209 		rate[1] = DESC_RATE36M;
1210 		rate[2] = DESC_RATE48M;
1211 		rate[3] = DESC_RATE54M;
1212 		for (i = 0; i < 4; ++i)
1213 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1214 		*rate_num = 4;
1215 		break;
1216 	case 0xC2C:
1217 	case 0xE2C:
1218 	case 0x182C:
1219 	case 0x1A2C:
1220 		rate[0] = DESC_RATEMCS0;
1221 		rate[1] = DESC_RATEMCS1;
1222 		rate[2] = DESC_RATEMCS2;
1223 		rate[3] = DESC_RATEMCS3;
1224 		for (i = 0; i < 4; ++i)
1225 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1226 		*rate_num = 4;
1227 		break;
1228 	case 0xC30:
1229 	case 0xE30:
1230 	case 0x1830:
1231 	case 0x1A30:
1232 		rate[0] = DESC_RATEMCS4;
1233 		rate[1] = DESC_RATEMCS5;
1234 		rate[2] = DESC_RATEMCS6;
1235 		rate[3] = DESC_RATEMCS7;
1236 		for (i = 0; i < 4; ++i)
1237 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1238 		*rate_num = 4;
1239 		break;
1240 	case 0xC34:
1241 	case 0xE34:
1242 	case 0x1834:
1243 	case 0x1A34:
1244 		rate[0] = DESC_RATEMCS8;
1245 		rate[1] = DESC_RATEMCS9;
1246 		rate[2] = DESC_RATEMCS10;
1247 		rate[3] = DESC_RATEMCS11;
1248 		for (i = 0; i < 4; ++i)
1249 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1250 		*rate_num = 4;
1251 		break;
1252 	case 0xC38:
1253 	case 0xE38:
1254 	case 0x1838:
1255 	case 0x1A38:
1256 		rate[0] = DESC_RATEMCS12;
1257 		rate[1] = DESC_RATEMCS13;
1258 		rate[2] = DESC_RATEMCS14;
1259 		rate[3] = DESC_RATEMCS15;
1260 		for (i = 0; i < 4; ++i)
1261 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1262 		*rate_num = 4;
1263 		break;
1264 	case 0xC3C:
1265 	case 0xE3C:
1266 	case 0x183C:
1267 	case 0x1A3C:
1268 		rate[0] = DESC_RATEVHT1SS_MCS0;
1269 		rate[1] = DESC_RATEVHT1SS_MCS1;
1270 		rate[2] = DESC_RATEVHT1SS_MCS2;
1271 		rate[3] = DESC_RATEVHT1SS_MCS3;
1272 		for (i = 0; i < 4; ++i)
1273 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1274 		*rate_num = 4;
1275 		break;
1276 	case 0xC40:
1277 	case 0xE40:
1278 	case 0x1840:
1279 	case 0x1A40:
1280 		rate[0] = DESC_RATEVHT1SS_MCS4;
1281 		rate[1] = DESC_RATEVHT1SS_MCS5;
1282 		rate[2] = DESC_RATEVHT1SS_MCS6;
1283 		rate[3] = DESC_RATEVHT1SS_MCS7;
1284 		for (i = 0; i < 4; ++i)
1285 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1286 		*rate_num = 4;
1287 		break;
1288 	case 0xC44:
1289 	case 0xE44:
1290 	case 0x1844:
1291 	case 0x1A44:
1292 		rate[0] = DESC_RATEVHT1SS_MCS8;
1293 		rate[1] = DESC_RATEVHT1SS_MCS9;
1294 		rate[2] = DESC_RATEVHT2SS_MCS0;
1295 		rate[3] = DESC_RATEVHT2SS_MCS1;
1296 		for (i = 0; i < 4; ++i)
1297 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1298 		*rate_num = 4;
1299 		break;
1300 	case 0xC48:
1301 	case 0xE48:
1302 	case 0x1848:
1303 	case 0x1A48:
1304 		rate[0] = DESC_RATEVHT2SS_MCS2;
1305 		rate[1] = DESC_RATEVHT2SS_MCS3;
1306 		rate[2] = DESC_RATEVHT2SS_MCS4;
1307 		rate[3] = DESC_RATEVHT2SS_MCS5;
1308 		for (i = 0; i < 4; ++i)
1309 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1310 		*rate_num = 4;
1311 		break;
1312 	case 0xC4C:
1313 	case 0xE4C:
1314 	case 0x184C:
1315 	case 0x1A4C:
1316 		rate[0] = DESC_RATEVHT2SS_MCS6;
1317 		rate[1] = DESC_RATEVHT2SS_MCS7;
1318 		rate[2] = DESC_RATEVHT2SS_MCS8;
1319 		rate[3] = DESC_RATEVHT2SS_MCS9;
1320 		for (i = 0; i < 4; ++i)
1321 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1322 		*rate_num = 4;
1323 		break;
1324 	case 0xCD8:
1325 	case 0xED8:
1326 	case 0x18D8:
1327 	case 0x1AD8:
1328 		rate[0] = DESC_RATEMCS16;
1329 		rate[1] = DESC_RATEMCS17;
1330 		rate[2] = DESC_RATEMCS18;
1331 		rate[3] = DESC_RATEMCS19;
1332 		for (i = 0; i < 4; ++i)
1333 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1334 		*rate_num = 4;
1335 		break;
1336 	case 0xCDC:
1337 	case 0xEDC:
1338 	case 0x18DC:
1339 	case 0x1ADC:
1340 		rate[0] = DESC_RATEMCS20;
1341 		rate[1] = DESC_RATEMCS21;
1342 		rate[2] = DESC_RATEMCS22;
1343 		rate[3] = DESC_RATEMCS23;
1344 		for (i = 0; i < 4; ++i)
1345 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1346 		*rate_num = 4;
1347 		break;
1348 	case 0xCE0:
1349 	case 0xEE0:
1350 	case 0x18E0:
1351 	case 0x1AE0:
1352 		rate[0] = DESC_RATEVHT3SS_MCS0;
1353 		rate[1] = DESC_RATEVHT3SS_MCS1;
1354 		rate[2] = DESC_RATEVHT3SS_MCS2;
1355 		rate[3] = DESC_RATEVHT3SS_MCS3;
1356 		for (i = 0; i < 4; ++i)
1357 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1358 		*rate_num = 4;
1359 		break;
1360 	case 0xCE4:
1361 	case 0xEE4:
1362 	case 0x18E4:
1363 	case 0x1AE4:
1364 		rate[0] = DESC_RATEVHT3SS_MCS4;
1365 		rate[1] = DESC_RATEVHT3SS_MCS5;
1366 		rate[2] = DESC_RATEVHT3SS_MCS6;
1367 		rate[3] = DESC_RATEVHT3SS_MCS7;
1368 		for (i = 0; i < 4; ++i)
1369 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1370 		*rate_num = 4;
1371 		break;
1372 	case 0xCE8:
1373 	case 0xEE8:
1374 	case 0x18E8:
1375 	case 0x1AE8:
1376 		rate[0] = DESC_RATEVHT3SS_MCS8;
1377 		rate[1] = DESC_RATEVHT3SS_MCS9;
1378 		for (i = 0; i < 2; ++i)
1379 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1380 		*rate_num = 2;
1381 		break;
1382 	default:
1383 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1384 		break;
1385 	}
1386 }
1387 
1388 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1389 					   u32 band, u32 rfpath, u32 txnum,
1390 					   u32 regaddr, u32 bitmask, u32 data)
1391 {
1392 	struct rtw_hal *hal = &rtwdev->hal;
1393 	u8 rate_num = 0;
1394 	u8 rate;
1395 	u8 rates[RTW_RF_PATH_MAX] = {0};
1396 	s8 offset;
1397 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1398 	int i;
1399 
1400 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1401 						 rates, pwr_by_rate, &rate_num);
1402 
1403 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1404 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1405 		    rate_num > RTW_RF_PATH_MAX))
1406 		return;
1407 
1408 	for (i = 0; i < rate_num; i++) {
1409 		offset = pwr_by_rate[i];
1410 		rate = rates[i];
1411 		if (band == PHY_BAND_2G)
1412 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1413 		else if (band == PHY_BAND_5G)
1414 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1415 		else
1416 			continue;
1417 	}
1418 }
1419 
1420 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1421 {
1422 	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1423 	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1424 
1425 	for (; p < end; p++) {
1426 		if (p->addr == 0xfe || p->addr == 0xffe) {
1427 			msleep(50);
1428 			continue;
1429 		}
1430 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1431 					       p->tx_num, p->addr, p->bitmask,
1432 					       p->data);
1433 	}
1434 }
1435 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1436 
1437 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1438 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1439 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1440 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1441 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1442 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1443 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1444 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1445 
1446 static int rtw_channel_to_idx(u8 band, u8 channel)
1447 {
1448 	int ch_idx;
1449 	u8 n_channel;
1450 
1451 	if (band == PHY_BAND_2G) {
1452 		ch_idx = channel - 1;
1453 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1454 	} else if (band == PHY_BAND_5G) {
1455 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1456 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1457 			if (rtw_channel_idx_5g[ch_idx] == channel)
1458 				break;
1459 	} else {
1460 		return -1;
1461 	}
1462 
1463 	if (ch_idx >= n_channel)
1464 		return -1;
1465 
1466 	return ch_idx;
1467 }
1468 
1469 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1470 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1471 {
1472 	struct rtw_hal *hal = &rtwdev->hal;
1473 	u8 max_power_index = rtwdev->chip->max_power_index;
1474 	s8 ww;
1475 	int ch_idx;
1476 
1477 	pwr_limit = clamp_t(s8, pwr_limit,
1478 			    -max_power_index, max_power_index);
1479 	ch_idx = rtw_channel_to_idx(band, ch);
1480 
1481 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1482 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1483 		WARN(1,
1484 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1485 		     regd, band, bw, rs, ch_idx, pwr_limit);
1486 		return;
1487 	}
1488 
1489 	if (band == PHY_BAND_2G) {
1490 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1491 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1492 		ww = min_t(s8, ww, pwr_limit);
1493 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1494 	} else if (band == PHY_BAND_5G) {
1495 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1496 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1497 		ww = min_t(s8, ww, pwr_limit);
1498 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1499 	}
1500 }
1501 
1502 /* cross-reference 5G power limits if values are not assigned */
1503 static void
1504 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1505 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1506 {
1507 	struct rtw_hal *hal = &rtwdev->hal;
1508 	u8 max_power_index = rtwdev->chip->max_power_index;
1509 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1510 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1511 
1512 	if (lmt_ht == lmt_vht)
1513 		return;
1514 
1515 	if (lmt_ht == max_power_index)
1516 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1517 
1518 	else if (lmt_vht == max_power_index)
1519 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1520 }
1521 
1522 /* cross-reference power limits for ht and vht */
1523 static void
1524 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1525 {
1526 	u8 rs_idx, rs_ht, rs_vht;
1527 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1528 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1529 
1530 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1531 		rs_ht = rs_cmp[rs_idx][0];
1532 		rs_vht = rs_cmp[rs_idx][1];
1533 
1534 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1535 	}
1536 }
1537 
1538 /* cross-reference power limits for 5G channels */
1539 static void
1540 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1541 {
1542 	u8 ch_idx;
1543 
1544 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1545 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1546 }
1547 
1548 /* cross-reference power limits for 20/40M bandwidth */
1549 static void
1550 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1551 {
1552 	u8 bw;
1553 
1554 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1555 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1556 }
1557 
1558 /* cross-reference power limits */
1559 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1560 {
1561 	u8 regd;
1562 
1563 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1564 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1565 }
1566 
1567 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1568 			     const struct rtw_table *tbl)
1569 {
1570 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1571 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1572 
1573 	for (; p < end; p++) {
1574 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1575 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1576 	}
1577 
1578 	rtw_xref_txpwr_lmt(rtwdev);
1579 }
1580 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1581 
1582 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1583 		     u32 addr, u32 data)
1584 {
1585 	rtw_write8(rtwdev, addr, data);
1586 }
1587 EXPORT_SYMBOL(rtw_phy_cfg_mac);
1588 
1589 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1590 		     u32 addr, u32 data)
1591 {
1592 	rtw_write32(rtwdev, addr, data);
1593 }
1594 EXPORT_SYMBOL(rtw_phy_cfg_agc);
1595 
1596 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1597 		    u32 addr, u32 data)
1598 {
1599 	if (addr == 0xfe)
1600 		msleep(50);
1601 	else if (addr == 0xfd)
1602 		mdelay(5);
1603 	else if (addr == 0xfc)
1604 		mdelay(1);
1605 	else if (addr == 0xfb)
1606 		usleep_range(50, 60);
1607 	else if (addr == 0xfa)
1608 		udelay(5);
1609 	else if (addr == 0xf9)
1610 		udelay(1);
1611 	else
1612 		rtw_write32(rtwdev, addr, data);
1613 }
1614 EXPORT_SYMBOL(rtw_phy_cfg_bb);
1615 
1616 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1617 		    u32 addr, u32 data)
1618 {
1619 	if (addr == 0xffe) {
1620 		msleep(50);
1621 	} else if (addr == 0xfe) {
1622 		usleep_range(100, 110);
1623 	} else {
1624 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1625 		udelay(1);
1626 	}
1627 }
1628 EXPORT_SYMBOL(rtw_phy_cfg_rf);
1629 
1630 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1631 {
1632 	struct rtw_chip_info *chip = rtwdev->chip;
1633 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1634 
1635 	if (!chip->rfk_init_tbl)
1636 		return;
1637 
1638 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1639 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1640 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1641 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1642 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1643 
1644 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1645 
1646 	dpk_info->is_dpk_pwr_on = true;
1647 }
1648 
1649 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1650 {
1651 	struct rtw_chip_info *chip = rtwdev->chip;
1652 	u8 rf_path;
1653 
1654 	rtw_load_table(rtwdev, chip->mac_tbl);
1655 	rtw_load_table(rtwdev, chip->bb_tbl);
1656 	rtw_load_table(rtwdev, chip->agc_tbl);
1657 	rtw_load_rfk_table(rtwdev);
1658 
1659 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1660 		const struct rtw_table *tbl;
1661 
1662 		tbl = chip->rf_tbl[rf_path];
1663 		rtw_load_table(rtwdev, tbl);
1664 	}
1665 }
1666 EXPORT_SYMBOL(rtw_phy_load_tables);
1667 
1668 static u8 rtw_get_channel_group(u8 channel, u8 rate)
1669 {
1670 	switch (channel) {
1671 	default:
1672 		WARN_ON(1);
1673 		fallthrough;
1674 	case 1:
1675 	case 2:
1676 	case 36:
1677 	case 38:
1678 	case 40:
1679 	case 42:
1680 		return 0;
1681 	case 3:
1682 	case 4:
1683 	case 5:
1684 	case 44:
1685 	case 46:
1686 	case 48:
1687 	case 50:
1688 		return 1;
1689 	case 6:
1690 	case 7:
1691 	case 8:
1692 	case 52:
1693 	case 54:
1694 	case 56:
1695 	case 58:
1696 		return 2;
1697 	case 9:
1698 	case 10:
1699 	case 11:
1700 	case 60:
1701 	case 62:
1702 	case 64:
1703 		return 3;
1704 	case 12:
1705 	case 13:
1706 	case 100:
1707 	case 102:
1708 	case 104:
1709 	case 106:
1710 		return 4;
1711 	case 14:
1712 		return rate <= DESC_RATE11M ? 5 : 4;
1713 	case 108:
1714 	case 110:
1715 	case 112:
1716 	case 114:
1717 		return 5;
1718 	case 116:
1719 	case 118:
1720 	case 120:
1721 	case 122:
1722 		return 6;
1723 	case 124:
1724 	case 126:
1725 	case 128:
1726 	case 130:
1727 		return 7;
1728 	case 132:
1729 	case 134:
1730 	case 136:
1731 	case 138:
1732 		return 8;
1733 	case 140:
1734 	case 142:
1735 	case 144:
1736 		return 9;
1737 	case 149:
1738 	case 151:
1739 	case 153:
1740 	case 155:
1741 		return 10;
1742 	case 157:
1743 	case 159:
1744 	case 161:
1745 		return 11;
1746 	case 165:
1747 	case 167:
1748 	case 169:
1749 	case 171:
1750 		return 12;
1751 	case 173:
1752 	case 175:
1753 	case 177:
1754 		return 13;
1755 	}
1756 }
1757 
1758 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1759 {
1760 	struct rtw_chip_info *chip = rtwdev->chip;
1761 	s8 dpd_diff = 0;
1762 
1763 	if (!chip->en_dis_dpd)
1764 		return 0;
1765 
1766 #define RTW_DPD_RATE_CHECK(_rate)					\
1767 	case DESC_RATE ## _rate:					\
1768 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1769 		dpd_diff = -6 * chip->txgi_factor;			\
1770 	break
1771 
1772 	switch (rate) {
1773 	RTW_DPD_RATE_CHECK(6M);
1774 	RTW_DPD_RATE_CHECK(9M);
1775 	RTW_DPD_RATE_CHECK(MCS0);
1776 	RTW_DPD_RATE_CHECK(MCS1);
1777 	RTW_DPD_RATE_CHECK(MCS8);
1778 	RTW_DPD_RATE_CHECK(MCS9);
1779 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1780 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1781 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1782 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1783 	}
1784 #undef RTW_DPD_RATE_CHECK
1785 
1786 	return dpd_diff;
1787 }
1788 
1789 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1790 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1791 					enum rtw_bandwidth bandwidth,
1792 					u8 rate, u8 group)
1793 {
1794 	struct rtw_chip_info *chip = rtwdev->chip;
1795 	u8 tx_power;
1796 	bool mcs_rate;
1797 	bool above_2ss;
1798 	u8 factor = chip->txgi_factor;
1799 
1800 	if (rate <= DESC_RATE11M)
1801 		tx_power = pwr_idx_2g->cck_base[group];
1802 	else
1803 		tx_power = pwr_idx_2g->bw40_base[group];
1804 
1805 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1806 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1807 
1808 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1809 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1810 		    rate <= DESC_RATEVHT2SS_MCS9);
1811 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1812 		    (rate >= DESC_RATEVHT2SS_MCS0);
1813 
1814 	if (!mcs_rate)
1815 		return tx_power;
1816 
1817 	switch (bandwidth) {
1818 	default:
1819 		WARN_ON(1);
1820 		fallthrough;
1821 	case RTW_CHANNEL_WIDTH_20:
1822 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1823 		if (above_2ss)
1824 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1825 		break;
1826 	case RTW_CHANNEL_WIDTH_40:
1827 		/* bw40 is the base power */
1828 		if (above_2ss)
1829 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1830 		break;
1831 	}
1832 
1833 	return tx_power;
1834 }
1835 
1836 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1837 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1838 					enum rtw_bandwidth bandwidth,
1839 					u8 rate, u8 group)
1840 {
1841 	struct rtw_chip_info *chip = rtwdev->chip;
1842 	u8 tx_power;
1843 	u8 upper, lower;
1844 	bool mcs_rate;
1845 	bool above_2ss;
1846 	u8 factor = chip->txgi_factor;
1847 
1848 	tx_power = pwr_idx_5g->bw40_base[group];
1849 
1850 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1851 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1852 		    rate <= DESC_RATEVHT2SS_MCS9);
1853 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1854 		    (rate >= DESC_RATEVHT2SS_MCS0);
1855 
1856 	if (!mcs_rate) {
1857 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1858 		return tx_power;
1859 	}
1860 
1861 	switch (bandwidth) {
1862 	default:
1863 		WARN_ON(1);
1864 		fallthrough;
1865 	case RTW_CHANNEL_WIDTH_20:
1866 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1867 		if (above_2ss)
1868 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1869 		break;
1870 	case RTW_CHANNEL_WIDTH_40:
1871 		/* bw40 is the base power */
1872 		if (above_2ss)
1873 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1874 		break;
1875 	case RTW_CHANNEL_WIDTH_80:
1876 		/* the base idx of bw80 is the average of bw40+/bw40- */
1877 		lower = pwr_idx_5g->bw40_base[group];
1878 		upper = pwr_idx_5g->bw40_base[group + 1];
1879 
1880 		tx_power = (lower + upper) / 2;
1881 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1882 		if (above_2ss)
1883 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1884 		break;
1885 	}
1886 
1887 	return tx_power;
1888 }
1889 
1890 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1891 				     enum rtw_bandwidth bw, u8 rf_path,
1892 				     u8 rate, u8 channel, u8 regd)
1893 {
1894 	struct rtw_hal *hal = &rtwdev->hal;
1895 	u8 *cch_by_bw = hal->cch_by_bw;
1896 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
1897 	u8 rs;
1898 	int ch_idx;
1899 	u8 cur_bw, cur_ch;
1900 	s8 cur_lmt;
1901 
1902 	if (regd > RTW_REGD_WW)
1903 		return power_limit;
1904 
1905 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1906 		rs = RTW_RATE_SECTION_CCK;
1907 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1908 		rs = RTW_RATE_SECTION_OFDM;
1909 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1910 		rs = RTW_RATE_SECTION_HT_1S;
1911 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1912 		rs = RTW_RATE_SECTION_HT_2S;
1913 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1914 		rs = RTW_RATE_SECTION_VHT_1S;
1915 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1916 		rs = RTW_RATE_SECTION_VHT_2S;
1917 	else
1918 		goto err;
1919 
1920 	/* only 20M BW with cck and ofdm */
1921 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1922 		bw = RTW_CHANNEL_WIDTH_20;
1923 
1924 	/* only 20/40M BW with ht */
1925 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1926 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1927 
1928 	/* select min power limit among [20M BW ~ current BW] */
1929 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1930 		cur_ch = cch_by_bw[cur_bw];
1931 
1932 		ch_idx = rtw_channel_to_idx(band, cur_ch);
1933 		if (ch_idx < 0)
1934 			goto err;
1935 
1936 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1937 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1938 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1939 
1940 		power_limit = min_t(s8, cur_lmt, power_limit);
1941 	}
1942 
1943 	return power_limit;
1944 
1945 err:
1946 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1947 	     band, bw, rf_path, rate, channel);
1948 	return (s8)rtwdev->chip->max_power_index;
1949 }
1950 
1951 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1952 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1953 {
1954 	struct rtw_hal *hal = &rtwdev->hal;
1955 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1956 	struct rtw_txpwr_idx *pwr_idx;
1957 	u8 group, band;
1958 	u8 *base = &pwr_param->pwr_base;
1959 	s8 *offset = &pwr_param->pwr_offset;
1960 	s8 *limit = &pwr_param->pwr_limit;
1961 	s8 *remnant = &pwr_param->pwr_remnant;
1962 
1963 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1964 	group = rtw_get_channel_group(ch, rate);
1965 
1966 	/* base power index for 2.4G/5G */
1967 	if (IS_CH_2G_BAND(ch)) {
1968 		band = PHY_BAND_2G;
1969 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
1970 						      &pwr_idx->pwr_idx_2g,
1971 						      bw, rate, group);
1972 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1973 	} else {
1974 		band = PHY_BAND_5G;
1975 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
1976 						      &pwr_idx->pwr_idx_5g,
1977 						      bw, rate, group);
1978 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1979 	}
1980 
1981 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1982 					    rate, ch, regd);
1983 	*remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
1984 		    dm_info->txagc_remnant_ofdm);
1985 }
1986 
1987 u8
1988 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1989 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1990 {
1991 	struct rtw_power_params pwr_param = {0};
1992 	u8 tx_power;
1993 	s8 offset;
1994 
1995 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1996 				channel, regd, &pwr_param);
1997 
1998 	tx_power = pwr_param.pwr_base;
1999 	offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
2000 
2001 	if (rtwdev->chip->en_dis_dpd)
2002 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
2003 
2004 	tx_power += offset + pwr_param.pwr_remnant;
2005 
2006 	if (tx_power > rtwdev->chip->max_power_index)
2007 		tx_power = rtwdev->chip->max_power_index;
2008 
2009 	return tx_power;
2010 }
2011 EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
2012 
2013 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
2014 					     u8 ch, u8 path, u8 rs)
2015 {
2016 	struct rtw_hal *hal = &rtwdev->hal;
2017 	u8 regd = rtwdev->regd.txpwr_regd;
2018 	u8 *rates;
2019 	u8 size;
2020 	u8 rate;
2021 	u8 pwr_idx;
2022 	u8 bw;
2023 	int i;
2024 
2025 	if (rs >= RTW_RATE_SECTION_MAX)
2026 		return;
2027 
2028 	rates = rtw_rate_section[rs];
2029 	size = rtw_rate_size[rs];
2030 	bw = hal->current_band_width;
2031 	for (i = 0; i < size; i++) {
2032 		rate = rates[i];
2033 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
2034 						     bw, ch, regd);
2035 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
2036 	}
2037 }
2038 
2039 /* set tx power level by path for each rates, note that the order of the rates
2040  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
2041  * power index into a four-byte power index register, and calls set_tx_agc to
2042  * write these values into hardware
2043  */
2044 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
2045 					       u8 ch, u8 path)
2046 {
2047 	struct rtw_hal *hal = &rtwdev->hal;
2048 	u8 rs;
2049 
2050 	/* do not need cck rates if we are not in 2.4G */
2051 	if (hal->current_band_type == RTW_BAND_2G)
2052 		rs = RTW_RATE_SECTION_CCK;
2053 	else
2054 		rs = RTW_RATE_SECTION_OFDM;
2055 
2056 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
2057 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
2058 }
2059 
2060 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
2061 {
2062 	struct rtw_chip_info *chip = rtwdev->chip;
2063 	struct rtw_hal *hal = &rtwdev->hal;
2064 	u8 path;
2065 
2066 	mutex_lock(&hal->tx_power_mutex);
2067 
2068 	for (path = 0; path < hal->rf_path_num; path++)
2069 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
2070 
2071 	chip->ops->set_tx_power_index(rtwdev);
2072 	mutex_unlock(&hal->tx_power_mutex);
2073 }
2074 EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
2075 
2076 static void
2077 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
2078 					u8 rs, u8 size, u8 *rates)
2079 {
2080 	u8 rate;
2081 	u8 base_idx, rate_idx;
2082 	s8 base_2g, base_5g;
2083 
2084 	if (rs >= RTW_RATE_SECTION_VHT_1S)
2085 		base_idx = rates[size - 3];
2086 	else
2087 		base_idx = rates[size - 1];
2088 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
2089 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
2090 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
2091 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
2092 	for (rate = 0; rate < size; rate++) {
2093 		rate_idx = rates[rate];
2094 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
2095 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
2096 	}
2097 }
2098 
2099 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
2100 {
2101 	u8 path;
2102 
2103 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2104 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2105 				RTW_RATE_SECTION_CCK,
2106 				rtw_cck_size, rtw_cck_rates);
2107 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2108 				RTW_RATE_SECTION_OFDM,
2109 				rtw_ofdm_size, rtw_ofdm_rates);
2110 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2111 				RTW_RATE_SECTION_HT_1S,
2112 				rtw_ht_1s_size, rtw_ht_1s_rates);
2113 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2114 				RTW_RATE_SECTION_HT_2S,
2115 				rtw_ht_2s_size, rtw_ht_2s_rates);
2116 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2117 				RTW_RATE_SECTION_VHT_1S,
2118 				rtw_vht_1s_size, rtw_vht_1s_rates);
2119 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2120 				RTW_RATE_SECTION_VHT_2S,
2121 				rtw_vht_2s_size, rtw_vht_2s_rates);
2122 	}
2123 }
2124 
2125 static void
2126 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
2127 {
2128 	s8 base;
2129 	u8 ch;
2130 
2131 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
2132 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
2133 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
2134 	}
2135 
2136 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
2137 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
2138 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2139 	}
2140 }
2141 
2142 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2143 {
2144 	u8 regd, bw, rs;
2145 
2146 	/* default at channel 1 */
2147 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2148 
2149 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2150 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2151 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2152 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2153 }
2154 
2155 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2156 					u8 regd, u8 bw, u8 rs)
2157 {
2158 	struct rtw_hal *hal = &rtwdev->hal;
2159 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2160 	u8 ch;
2161 
2162 	/* 2.4G channels */
2163 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2164 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2165 
2166 	/* 5G channels */
2167 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2168 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2169 }
2170 
2171 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2172 {
2173 	struct rtw_hal *hal = &rtwdev->hal;
2174 	u8 regd, path, rate, rs, bw;
2175 
2176 	/* init tx power by rate offset */
2177 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2178 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2179 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2180 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2181 		}
2182 	}
2183 
2184 	/* init tx power limit */
2185 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2186 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2187 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2188 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2189 							    rs);
2190 }
2191 
2192 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2193 				struct rtw_swing_table *swing_table)
2194 {
2195 	const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2196 	u8 channel = rtwdev->hal.current_channel;
2197 
2198 	if (IS_CH_2G_BAND(channel)) {
2199 		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2200 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2201 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2202 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2203 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2204 		} else {
2205 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2206 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2207 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2208 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2209 		}
2210 	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2211 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2212 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2213 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2214 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2215 	} else if (IS_CH_5G_BAND_3(channel)) {
2216 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2217 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2218 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2219 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2220 	} else if (IS_CH_5G_BAND_4(channel)) {
2221 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2222 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2223 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2224 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2225 	} else {
2226 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2227 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2228 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2229 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2230 	}
2231 }
2232 EXPORT_SYMBOL(rtw_phy_config_swing_table);
2233 
2234 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2235 {
2236 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2237 
2238 	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2239 	dm_info->thermal_avg[path] =
2240 		ewma_thermal_read(&dm_info->avg_thermal[path]);
2241 }
2242 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2243 
2244 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2245 				      u8 path)
2246 {
2247 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2248 	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2249 
2250 	if (avg == thermal)
2251 		return false;
2252 
2253 	return true;
2254 }
2255 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2256 
2257 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2258 {
2259 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2260 	u8 therm_avg, therm_efuse, therm_delta;
2261 
2262 	therm_avg = dm_info->thermal_avg[path];
2263 	therm_efuse = rtwdev->efuse.thermal_meter[path];
2264 	therm_delta = abs(therm_avg - therm_efuse);
2265 
2266 	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2267 }
2268 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2269 
2270 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2271 			       struct rtw_swing_table *swing_table,
2272 			       u8 tbl_path, u8 therm_path, u8 delta)
2273 {
2274 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2275 	const u8 *delta_swing_table_idx_pos;
2276 	const u8 *delta_swing_table_idx_neg;
2277 
2278 	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2279 		rtw_warn(rtwdev, "power track table overflow\n");
2280 		return 0;
2281 	}
2282 
2283 	if (!swing_table) {
2284 		rtw_warn(rtwdev, "swing table not configured\n");
2285 		return 0;
2286 	}
2287 
2288 	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2289 	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2290 
2291 	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2292 		rtw_warn(rtwdev, "invalid swing table index\n");
2293 		return 0;
2294 	}
2295 
2296 	if (dm_info->thermal_avg[therm_path] >
2297 	    rtwdev->efuse.thermal_meter[therm_path])
2298 		return delta_swing_table_idx_pos[delta];
2299 	else
2300 		return -delta_swing_table_idx_neg[delta];
2301 }
2302 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2303 
2304 bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
2305 {
2306 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2307 	u8 delta_lck;
2308 
2309 	delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
2310 	if (delta_lck >= rtwdev->chip->lck_threshold) {
2311 		dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
2312 		return true;
2313 	}
2314 	return false;
2315 }
2316 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
2317 
2318 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2319 {
2320 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2321 	u8 delta_iqk;
2322 
2323 	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2324 	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2325 		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2326 		return true;
2327 	}
2328 	return false;
2329 }
2330 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2331 
2332 static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev,
2333 				       enum rtw_bb_path tx_path_sel_1ss)
2334 {
2335 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2336 	enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss;
2337 	struct rtw_chip_info *chip = rtwdev->chip;
2338 
2339 	if (tx_path_sel_1ss == path_div->current_tx_path)
2340 		return;
2341 
2342 	path_div->current_tx_path = tx_path_sel_1ss;
2343 	rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n",
2344 		tx_path_sel_1ss == BB_PATH_A ? "A" : "B");
2345 	chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx,
2346 				  tx_path_sel_1ss, tx_path_sel_cck, false);
2347 }
2348 
2349 static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev)
2350 {
2351 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2352 	enum rtw_bb_path path = path_div->current_tx_path;
2353 	s32 rssi_a = 0, rssi_b = 0;
2354 
2355 	if (path_div->path_a_cnt)
2356 		rssi_a = path_div->path_a_sum / path_div->path_a_cnt;
2357 	else
2358 		rssi_a = 0;
2359 	if (path_div->path_b_cnt)
2360 		rssi_b = path_div->path_b_sum / path_div->path_b_cnt;
2361 	else
2362 		rssi_b = 0;
2363 
2364 	if (rssi_a != rssi_b)
2365 		path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B;
2366 
2367 	path_div->path_a_cnt = 0;
2368 	path_div->path_a_sum = 0;
2369 	path_div->path_b_cnt = 0;
2370 	path_div->path_b_sum = 0;
2371 	rtw_phy_set_tx_path_by_reg(rtwdev, path);
2372 }
2373 
2374 static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev)
2375 {
2376 	if (rtwdev->hal.antenna_rx != BB_PATH_AB) {
2377 		rtw_dbg(rtwdev, RTW_DBG_PATH_DIV,
2378 			"[Return] tx_Path_en=%d, rx_Path_en=%d\n",
2379 			rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx);
2380 		return;
2381 	}
2382 	if (rtwdev->sta_cnt == 0) {
2383 		rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n");
2384 		return;
2385 	}
2386 
2387 	rtw_phy_tx_path_div_select(rtwdev);
2388 }
2389 
2390 void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev)
2391 {
2392 	struct rtw_chip_info *chip = rtwdev->chip;
2393 
2394 	if (!chip->path_div_supported)
2395 		return;
2396 
2397 	rtw_phy_tx_path_diversity_2ss(rtwdev);
2398 }
2399