xref: /linux/drivers/net/wireless/realtek/rtw88/phy.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 #include "regd.h"
13 #include "sar.h"
14 
15 struct phy_cfg_pair {
16 	u32 addr;
17 	u32 data;
18 };
19 
20 union phy_table_tile {
21 	struct {
22 		struct rtw_phy_cond cond;
23 		struct rtw_phy_cond2 cond2;
24 	} __packed;
25 	struct phy_cfg_pair cfg;
26 };
27 
28 static const u32 db_invert_table[12][8] = {
29 	{10,		13,		16,		20,
30 	 25,		32,		40,		50},
31 	{64,		80,		101,		128,
32 	 160,		201,		256,		318},
33 	{401,		505,		635,		800,
34 	 1007,		1268,		1596,		2010},
35 	{316,		398,		501,		631,
36 	 794,		1000,		1259,		1585},
37 	{1995,		2512,		3162,		3981,
38 	 5012,		6310,		7943,		10000},
39 	{12589,		15849,		19953,		25119,
40 	 31623,		39811,		50119,		63098},
41 	{79433,		100000,		125893,		158489,
42 	 199526,	251189,		316228,		398107},
43 	{501187,	630957,		794328,		1000000,
44 	 1258925,	1584893,	1995262,	2511886},
45 	{3162278,	3981072,	5011872,	6309573,
46 	 7943282,	1000000,	12589254,	15848932},
47 	{19952623,	25118864,	31622777,	39810717,
48 	 50118723,	63095734,	79432823,	100000000},
49 	{125892541,	158489319,	199526232,	251188643,
50 	 316227766,	398107171,	501187234,	630957345},
51 	{794328235,	1000000000,	1258925412,	1584893192,
52 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
53 };
54 
55 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
56 u8 rtw_ofdm_rates[] = {
57 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
58 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
59 	DESC_RATE48M, DESC_RATE54M
60 };
61 u8 rtw_ht_1s_rates[] = {
62 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
63 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
64 	DESC_RATEMCS6, DESC_RATEMCS7
65 };
66 u8 rtw_ht_2s_rates[] = {
67 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
68 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
69 	DESC_RATEMCS14, DESC_RATEMCS15
70 };
71 u8 rtw_vht_1s_rates[] = {
72 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
73 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
74 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
75 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
76 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
77 };
78 u8 rtw_vht_2s_rates[] = {
79 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
80 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
81 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
82 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
83 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
84 };
85 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
86 	rtw_cck_rates, rtw_ofdm_rates,
87 	rtw_ht_1s_rates, rtw_ht_2s_rates,
88 	rtw_vht_1s_rates, rtw_vht_2s_rates
89 };
90 EXPORT_SYMBOL(rtw_rate_section);
91 
92 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
93 	ARRAY_SIZE(rtw_cck_rates),
94 	ARRAY_SIZE(rtw_ofdm_rates),
95 	ARRAY_SIZE(rtw_ht_1s_rates),
96 	ARRAY_SIZE(rtw_ht_2s_rates),
97 	ARRAY_SIZE(rtw_vht_1s_rates),
98 	ARRAY_SIZE(rtw_vht_2s_rates)
99 };
100 EXPORT_SYMBOL(rtw_rate_size);
101 
102 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
103 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
104 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
105 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
106 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
107 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
108 
109 enum rtw_phy_band_type {
110 	PHY_BAND_2G	= 0,
111 	PHY_BAND_5G	= 1,
112 };
113 
114 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
115 {
116 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
117 	u8 i, j;
118 
119 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
120 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
121 			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
122 	}
123 
124 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
125 }
126 
127 void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l)
128 {
129 	const struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th;
130 
131 	rtw_write32_mask(rtwdev,
132 			 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr,
133 			 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask,
134 			 l2h + edcca_th[EDCCA_TH_L2H_IDX].offset);
135 	rtw_write32_mask(rtwdev,
136 			 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr,
137 			 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask,
138 			 h2l + edcca_th[EDCCA_TH_H2L_IDX].offset);
139 }
140 EXPORT_SYMBOL(rtw_phy_set_edcca_th);
141 
142 void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev)
143 {
144 	const struct rtw_chip_info *chip = rtwdev->chip;
145 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
146 
147 	/* turn off in debugfs for debug usage */
148 	if (!rtw_edcca_enabled) {
149 		dm_info->edcca_mode = RTW_EDCCA_NORMAL;
150 		rtw_dbg(rtwdev, RTW_DBG_PHY, "EDCCA disabled, cannot be set\n");
151 		return;
152 	}
153 
154 	switch (rtwdev->regd.dfs_region) {
155 	case NL80211_DFS_ETSI:
156 		dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
157 		dm_info->l2h_th_ini = chip->l2h_th_ini_ad;
158 		break;
159 	case NL80211_DFS_JP:
160 		dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
161 		dm_info->l2h_th_ini = chip->l2h_th_ini_cs;
162 		break;
163 	default:
164 		dm_info->edcca_mode = RTW_EDCCA_NORMAL;
165 		break;
166 	}
167 }
168 
169 static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev)
170 {
171 	const struct rtw_chip_info *chip = rtwdev->chip;
172 
173 	rtw_phy_adaptivity_set_mode(rtwdev);
174 	if (chip->ops->adaptivity_init)
175 		chip->ops->adaptivity_init(rtwdev);
176 }
177 
178 static void rtw_phy_adaptivity(struct rtw_dev *rtwdev)
179 {
180 	if (rtwdev->chip->ops->adaptivity)
181 		rtwdev->chip->ops->adaptivity(rtwdev);
182 }
183 
184 static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
185 {
186 	const struct rtw_chip_info *chip = rtwdev->chip;
187 
188 	if (chip->ops->cfo_init)
189 		chip->ops->cfo_init(rtwdev);
190 }
191 
192 static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev)
193 {
194 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
195 
196 	path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path;
197 	path_div->path_a_cnt = 0;
198 	path_div->path_a_sum = 0;
199 	path_div->path_b_cnt = 0;
200 	path_div->path_b_sum = 0;
201 }
202 
203 void rtw_phy_init(struct rtw_dev *rtwdev)
204 {
205 	const struct rtw_chip_info *chip = rtwdev->chip;
206 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
207 	u32 addr, mask;
208 
209 	dm_info->fa_history[3] = 0;
210 	dm_info->fa_history[2] = 0;
211 	dm_info->fa_history[1] = 0;
212 	dm_info->fa_history[0] = 0;
213 	dm_info->igi_bitmap = 0;
214 	dm_info->igi_history[3] = 0;
215 	dm_info->igi_history[2] = 0;
216 	dm_info->igi_history[1] = 0;
217 
218 	addr = chip->dig[0].addr;
219 	mask = chip->dig[0].mask;
220 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
221 	rtw_phy_cck_pd_init(rtwdev);
222 
223 	dm_info->iqk.done = false;
224 	rtw_phy_adaptivity_init(rtwdev);
225 	rtw_phy_cfo_init(rtwdev);
226 	rtw_phy_tx_path_div_init(rtwdev);
227 }
228 EXPORT_SYMBOL(rtw_phy_init);
229 
230 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
231 {
232 	const struct rtw_chip_info *chip = rtwdev->chip;
233 	struct rtw_hal *hal = &rtwdev->hal;
234 	u32 addr, mask;
235 	u8 path;
236 
237 	if (chip->dig_cck) {
238 		const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
239 		rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
240 	}
241 
242 	for (path = 0; path < hal->rf_path_num; path++) {
243 		addr = chip->dig[path].addr;
244 		mask = chip->dig[path].mask;
245 		rtw_write32_mask(rtwdev, addr, mask, igi);
246 	}
247 }
248 
249 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
250 {
251 	const struct rtw_chip_info *chip = rtwdev->chip;
252 
253 	chip->ops->false_alarm_statistics(rtwdev);
254 }
255 
256 #define RA_FLOOR_TABLE_SIZE	7
257 #define RA_FLOOR_UP_GAP		3
258 
259 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
260 {
261 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
262 	u8 new_level = 0;
263 	int i;
264 
265 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
266 		if (i >= old_level)
267 			table[i] += RA_FLOOR_UP_GAP;
268 
269 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
270 		if (rssi < table[i]) {
271 			new_level = i;
272 			break;
273 		}
274 	}
275 
276 	return new_level;
277 }
278 
279 struct rtw_phy_stat_iter_data {
280 	struct rtw_dev *rtwdev;
281 	u8 min_rssi;
282 };
283 
284 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
285 {
286 	struct rtw_phy_stat_iter_data *iter_data = data;
287 	struct rtw_dev *rtwdev = iter_data->rtwdev;
288 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
289 	u8 rssi;
290 
291 	rssi = ewma_rssi_read(&si->avg_rssi);
292 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
293 
294 	rtw_fw_send_rssi_info(rtwdev, si);
295 
296 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
297 }
298 
299 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
300 {
301 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
302 	struct rtw_phy_stat_iter_data data = {};
303 
304 	data.rtwdev = rtwdev;
305 	data.min_rssi = U8_MAX;
306 	rtw_iterate_stas(rtwdev, rtw_phy_stat_rssi_iter, &data);
307 
308 	dm_info->pre_min_rssi = dm_info->min_rssi;
309 	dm_info->min_rssi = data.min_rssi;
310 }
311 
312 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
313 {
314 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
315 
316 	dm_info->last_pkt_count = dm_info->cur_pkt_count;
317 	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
318 }
319 
320 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
321 {
322 	rtw_phy_stat_rssi(rtwdev);
323 	rtw_phy_stat_false_alarm(rtwdev);
324 	rtw_phy_stat_rate_cnt(rtwdev);
325 }
326 
327 #define DIG_PERF_FA_TH_LOW			250
328 #define DIG_PERF_FA_TH_HIGH			500
329 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
330 #define DIG_PERF_MAX				0x5a
331 #define DIG_PERF_MID				0x40
332 #define DIG_CVRG_FA_TH_LOW			2000
333 #define DIG_CVRG_FA_TH_HIGH			4000
334 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
335 #define DIG_CVRG_MAX				0x2a
336 #define DIG_CVRG_MID				0x26
337 #define DIG_CVRG_MIN				0x1c
338 #define DIG_RSSI_GAIN_OFFSET			15
339 
340 static bool
341 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
342 {
343 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
344 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
345 	u16 *fa_history;
346 	u8 *igi_history;
347 	u8 damping_rssi;
348 	u8 min_rssi;
349 	u8 diff;
350 	u8 igi_bitmap;
351 	bool damping = false;
352 
353 	min_rssi = dm_info->min_rssi;
354 	if (dm_info->damping) {
355 		damping_rssi = dm_info->damping_rssi;
356 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
357 						 damping_rssi - min_rssi;
358 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
359 			dm_info->damping = false;
360 			return false;
361 		}
362 
363 		return true;
364 	}
365 
366 	igi_history = dm_info->igi_history;
367 	fa_history = dm_info->fa_history;
368 	igi_bitmap = dm_info->igi_bitmap & 0xf;
369 	switch (igi_bitmap) {
370 	case 5:
371 		/* down -> up -> down -> up */
372 		if (igi_history[0] > igi_history[1] &&
373 		    igi_history[2] > igi_history[3] &&
374 		    igi_history[0] - igi_history[1] >= 2 &&
375 		    igi_history[2] - igi_history[3] >= 2 &&
376 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
377 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
378 			damping = true;
379 		break;
380 	case 9:
381 		/* up -> down -> down -> up */
382 		if (igi_history[0] > igi_history[1] &&
383 		    igi_history[3] > igi_history[2] &&
384 		    igi_history[0] - igi_history[1] >= 4 &&
385 		    igi_history[3] - igi_history[2] >= 2 &&
386 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
387 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
388 			damping = true;
389 		break;
390 	default:
391 		return false;
392 	}
393 
394 	if (damping) {
395 		dm_info->damping = true;
396 		dm_info->damping_cnt = 0;
397 		dm_info->damping_rssi = min_rssi;
398 	}
399 
400 	return damping;
401 }
402 
403 static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
404 				     struct rtw_dm_info *dm_info,
405 				     u8 *upper, u8 *lower, bool linked)
406 {
407 	u8 dig_max, dig_min, dig_mid;
408 	u8 min_rssi;
409 
410 	if (linked) {
411 		dig_max = DIG_PERF_MAX;
412 		dig_mid = DIG_PERF_MID;
413 		dig_min = rtwdev->chip->dig_min;
414 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
415 	} else {
416 		dig_max = DIG_CVRG_MAX;
417 		dig_mid = DIG_CVRG_MID;
418 		dig_min = DIG_CVRG_MIN;
419 		min_rssi = dig_min;
420 	}
421 
422 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
423 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
424 
425 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
426 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
427 }
428 
429 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
430 				      u16 *fa_th, u8 *step, bool linked)
431 {
432 	u8 min_rssi, pre_min_rssi;
433 
434 	min_rssi = dm_info->min_rssi;
435 	pre_min_rssi = dm_info->pre_min_rssi;
436 	step[0] = 4;
437 	step[1] = 3;
438 	step[2] = 2;
439 
440 	if (linked) {
441 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
442 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
443 		fa_th[2] = DIG_PERF_FA_TH_LOW;
444 		if (pre_min_rssi > min_rssi) {
445 			step[0] = 6;
446 			step[1] = 4;
447 			step[2] = 2;
448 		}
449 	} else {
450 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
451 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
452 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
453 	}
454 }
455 
456 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
457 {
458 	u8 *igi_history;
459 	u16 *fa_history;
460 	u8 igi_bitmap;
461 	bool up;
462 
463 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
464 	igi_history = dm_info->igi_history;
465 	fa_history = dm_info->fa_history;
466 
467 	up = igi > igi_history[0];
468 	igi_bitmap |= up;
469 
470 	igi_history[3] = igi_history[2];
471 	igi_history[2] = igi_history[1];
472 	igi_history[1] = igi_history[0];
473 	igi_history[0] = igi;
474 
475 	fa_history[3] = fa_history[2];
476 	fa_history[2] = fa_history[1];
477 	fa_history[1] = fa_history[0];
478 	fa_history[0] = fa;
479 
480 	dm_info->igi_bitmap = igi_bitmap;
481 }
482 
483 static void rtw_phy_dig(struct rtw_dev *rtwdev)
484 {
485 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
486 	u8 upper_bound, lower_bound;
487 	u8 pre_igi, cur_igi;
488 	u16 fa_th[3], fa_cnt;
489 	u8 level;
490 	u8 step[3];
491 	bool linked;
492 
493 	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
494 		return;
495 
496 	if (rtw_phy_dig_check_damping(dm_info))
497 		return;
498 
499 	linked = !!rtwdev->sta_cnt;
500 
501 	fa_cnt = dm_info->total_fa_cnt;
502 	pre_igi = dm_info->igi_history[0];
503 
504 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
505 
506 	/* test the false alarm count from the highest threshold level first,
507 	 * and increase it by corresponding step size
508 	 *
509 	 * note that the step size is offset by -2, compensate it afterall
510 	 */
511 	cur_igi = pre_igi;
512 	for (level = 0; level < 3; level++) {
513 		if (fa_cnt > fa_th[level]) {
514 			cur_igi += step[level];
515 			break;
516 		}
517 	}
518 	cur_igi -= 2;
519 
520 	/* calculate the upper/lower bound by the minimum rssi we have among
521 	 * the peers connected with us, meanwhile make sure the igi value does
522 	 * not beyond the hardware limitation
523 	 */
524 	rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound,
525 				 linked);
526 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
527 
528 	/* record current igi value and false alarm statistics for further
529 	 * damping checks, and record the trend of igi values
530 	 */
531 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
532 
533 	/* Mitigate beacon loss and connectivity issues, mainly (only?)
534 	 * in the 5 GHz band
535 	 */
536 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A && rtwdev->beacon_loss &&
537 	    linked && dm_info->total_fa_cnt < DIG_PERF_FA_TH_EXTRA_HIGH)
538 		cur_igi = DIG_CVRG_MIN;
539 
540 	if (cur_igi != pre_igi)
541 		rtw_phy_dig_write(rtwdev, cur_igi);
542 }
543 
544 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
545 {
546 	struct rtw_dev *rtwdev = data;
547 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
548 
549 	rtw_update_sta_info(rtwdev, si, false);
550 }
551 
552 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
553 {
554 	if (rtwdev->watch_dog_cnt & 0x3)
555 		return;
556 
557 	rtw_iterate_stas(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
558 }
559 
560 static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
561 {
562 	u8 rate_order;
563 
564 	rate_order = rate_idx;
565 
566 	if (rate_idx >= DESC_RATEVHT4SS_MCS0)
567 		rate_order -= DESC_RATEVHT4SS_MCS0;
568 	else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
569 		rate_order -= DESC_RATEVHT3SS_MCS0;
570 	else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
571 		rate_order -= DESC_RATEVHT2SS_MCS0;
572 	else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
573 		rate_order -= DESC_RATEVHT1SS_MCS0;
574 	else if (rate_idx >= DESC_RATEMCS24)
575 		rate_order -= DESC_RATEMCS24;
576 	else if (rate_idx >= DESC_RATEMCS16)
577 		rate_order -= DESC_RATEMCS16;
578 	else if (rate_idx >= DESC_RATEMCS8)
579 		rate_order -= DESC_RATEMCS8;
580 	else if (rate_idx >= DESC_RATEMCS0)
581 		rate_order -= DESC_RATEMCS0;
582 	else if (rate_idx >= DESC_RATE6M)
583 		rate_order -= DESC_RATE6M;
584 	else
585 		rate_order -= DESC_RATE1M;
586 
587 	if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
588 		rate_order++;
589 
590 	return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
591 }
592 
593 static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
594 {
595 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
596 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
597 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
598 	u32 mask = 0;
599 
600 	mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
601 	if (mask < dm_info->rrsr_mask_min)
602 		dm_info->rrsr_mask_min = mask;
603 }
604 
605 static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
606 {
607 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
608 
609 	dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
610 	rtw_iterate_stas(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
611 	rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
612 }
613 
614 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
615 {
616 	const struct rtw_chip_info *chip = rtwdev->chip;
617 
618 	if (chip->ops->dpk_track)
619 		chip->ops->dpk_track(rtwdev);
620 }
621 
622 struct rtw_rx_addr_match_data {
623 	struct rtw_dev *rtwdev;
624 	struct ieee80211_hdr *hdr;
625 	struct rtw_rx_pkt_stat *pkt_stat;
626 	u8 *bssid;
627 };
628 
629 static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
630 				     struct ieee80211_vif *vif)
631 {
632 	struct rtw_rx_addr_match_data *iter_data = data;
633 	struct rtw_dev *rtwdev = iter_data->rtwdev;
634 	struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
635 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
636 	struct rtw_cfo_track *cfo = &dm_info->cfo_track;
637 	u8 *bssid = iter_data->bssid;
638 	u8 i;
639 
640 	if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
641 		return;
642 
643 	for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
644 		cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
645 		cfo->cfo_cnt[i]++;
646 	}
647 
648 	cfo->packet_count++;
649 }
650 
651 void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
652 			 struct rtw_rx_pkt_stat *pkt_stat)
653 {
654 	struct ieee80211_hdr *hdr = pkt_stat->hdr;
655 	struct rtw_rx_addr_match_data data = {};
656 
657 	if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
658 	    ieee80211_is_ctl(hdr->frame_control))
659 		return;
660 
661 	data.rtwdev = rtwdev;
662 	data.hdr = hdr;
663 	data.pkt_stat = pkt_stat;
664 	data.bssid = get_hdr_bssid(hdr);
665 
666 	rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
667 }
668 EXPORT_SYMBOL(rtw_phy_parsing_cfo);
669 
670 static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
671 {
672 	const struct rtw_chip_info *chip = rtwdev->chip;
673 
674 	if (chip->ops->cfo_track)
675 		chip->ops->cfo_track(rtwdev);
676 }
677 
678 #define CCK_PD_FA_LV1_MIN	1000
679 #define CCK_PD_FA_LV0_MAX	500
680 
681 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
682 {
683 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
684 	u32 cck_fa_avg = dm_info->cck_fa_avg;
685 
686 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
687 		return CCK_PD_LV1;
688 
689 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
690 		return CCK_PD_LV0;
691 
692 	return CCK_PD_LV_MAX;
693 }
694 
695 #define CCK_PD_IGI_LV4_VAL 0x38
696 #define CCK_PD_IGI_LV3_VAL 0x2a
697 #define CCK_PD_IGI_LV2_VAL 0x24
698 #define CCK_PD_RSSI_LV4_VAL 32
699 #define CCK_PD_RSSI_LV3_VAL 32
700 #define CCK_PD_RSSI_LV2_VAL 24
701 
702 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
703 {
704 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
705 	u8 igi = dm_info->igi_history[0];
706 	u8 rssi = dm_info->min_rssi;
707 	u32 cck_fa_avg = dm_info->cck_fa_avg;
708 
709 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
710 		return CCK_PD_LV4;
711 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
712 		return CCK_PD_LV3;
713 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
714 		return CCK_PD_LV2;
715 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
716 		return CCK_PD_LV1;
717 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
718 		return CCK_PD_LV0;
719 
720 	return CCK_PD_LV_MAX;
721 }
722 
723 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
724 {
725 	if (!rtw_is_assoc(rtwdev))
726 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
727 	else
728 		return rtw_phy_cck_pd_lv_link(rtwdev);
729 }
730 
731 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
732 {
733 	const struct rtw_chip_info *chip = rtwdev->chip;
734 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
735 	u32 cck_fa = dm_info->cck_fa_cnt;
736 	u8 level;
737 
738 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
739 		return;
740 
741 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
742 		dm_info->cck_fa_avg = cck_fa;
743 	else
744 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
745 
746 	rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
747 		dm_info->igi_history[0], dm_info->min_rssi,
748 		dm_info->fa_history[0]);
749 	rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
750 		dm_info->cck_fa_avg, dm_info->cck_pd_default);
751 
752 	level = rtw_phy_cck_pd_lv(rtwdev);
753 
754 	if (level >= CCK_PD_LV_MAX)
755 		return;
756 
757 	if (chip->ops->cck_pd_set)
758 		chip->ops->cck_pd_set(rtwdev, level);
759 }
760 
761 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
762 {
763 	rtwdev->chip->ops->pwr_track(rtwdev);
764 }
765 
766 static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
767 {
768 	rtw_fw_update_wl_phy_info(rtwdev);
769 	rtw_phy_ra_info_update(rtwdev);
770 	rtw_phy_rrsr_update(rtwdev);
771 }
772 
773 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
774 {
775 	/* for further calculation */
776 	rtw_phy_statistics(rtwdev);
777 	rtw_phy_dig(rtwdev);
778 	rtw_phy_cck_pd(rtwdev);
779 	rtw_phy_ra_track(rtwdev);
780 	rtw_phy_tx_path_diversity(rtwdev);
781 	rtw_phy_cfo_track(rtwdev);
782 	rtw_phy_dpk_track(rtwdev);
783 	rtw_phy_pwr_track(rtwdev);
784 
785 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_ADAPTIVITY))
786 		rtw_fw_adaptivity(rtwdev);
787 	else
788 		rtw_phy_adaptivity(rtwdev);
789 }
790 
791 #define FRAC_BITS 3
792 
793 static u8 rtw_phy_power_2_db(s8 power)
794 {
795 	if (power <= -100 || power >= 20)
796 		return 0;
797 	else if (power >= 0)
798 		return 100;
799 	else
800 		return 100 + power;
801 }
802 
803 static u64 rtw_phy_db_2_linear(u8 power_db)
804 {
805 	u8 i, j;
806 	u64 linear;
807 
808 	if (power_db > 96)
809 		power_db = 96;
810 	else if (power_db < 1)
811 		return 1;
812 
813 	/* 1dB ~ 96dB */
814 	i = (power_db - 1) >> 3;
815 	j = (power_db - 1) - (i << 3);
816 
817 	linear = db_invert_table[i][j];
818 	linear = i > 2 ? linear << FRAC_BITS : linear;
819 
820 	return linear;
821 }
822 
823 static u8 rtw_phy_linear_2_db(u64 linear)
824 {
825 	u8 i;
826 	u8 j;
827 	u32 dB;
828 
829 	for (i = 0; i < 12; i++) {
830 		for (j = 0; j < 8; j++) {
831 			if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
832 				goto cnt;
833 			else if (i > 2 && linear <= db_invert_table[i][j])
834 				goto cnt;
835 		}
836 	}
837 
838 	return 96; /* maximum 96 dB */
839 
840 cnt:
841 	if (j == 0 && i == 0)
842 		goto end;
843 
844 	if (j == 0) {
845 		if (i != 3) {
846 			if (db_invert_table[i][0] - linear >
847 			    linear - db_invert_table[i - 1][7]) {
848 				i = i - 1;
849 				j = 7;
850 			}
851 		} else {
852 			if (db_invert_table[3][0] - linear >
853 			    linear - db_invert_table[2][7]) {
854 				i = 2;
855 				j = 7;
856 			}
857 		}
858 	} else {
859 		if (db_invert_table[i][j] - linear >
860 		    linear - db_invert_table[i][j - 1]) {
861 			j = j - 1;
862 		}
863 	}
864 end:
865 	dB = (i << 3) + j + 1;
866 
867 	return dB;
868 }
869 
870 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
871 {
872 	s8 power;
873 	u8 power_db;
874 	u64 linear;
875 	u64 sum = 0;
876 	u8 path;
877 
878 	for (path = 0; path < path_num; path++) {
879 		power = rf_power[path];
880 		power_db = rtw_phy_power_2_db(power);
881 		linear = rtw_phy_db_2_linear(power_db);
882 		sum += linear;
883 	}
884 
885 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
886 	switch (path_num) {
887 	case 2:
888 		sum >>= 1;
889 		break;
890 	case 3:
891 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
892 		break;
893 	case 4:
894 		sum >>= 2;
895 		break;
896 	default:
897 		break;
898 	}
899 
900 	return rtw_phy_linear_2_db(sum);
901 }
902 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
903 
904 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
905 		    u32 addr, u32 mask)
906 {
907 	struct rtw_hal *hal = &rtwdev->hal;
908 	const struct rtw_chip_info *chip = rtwdev->chip;
909 	const u32 *base_addr = chip->rf_base_addr;
910 	u32 val, direct_addr;
911 
912 	if (rf_path >= hal->rf_phy_num) {
913 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
914 		return INV_RF_DATA;
915 	}
916 
917 	addr &= 0xff;
918 	direct_addr = base_addr[rf_path] + (addr << 2);
919 	mask &= RFREG_MASK;
920 
921 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
922 
923 	return val;
924 }
925 EXPORT_SYMBOL(rtw_phy_read_rf);
926 
927 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
928 			 u32 addr, u32 mask)
929 {
930 	struct rtw_hal *hal = &rtwdev->hal;
931 	const struct rtw_chip_info *chip = rtwdev->chip;
932 	const struct rtw_rf_sipi_addr *rf_sipi_addr;
933 	const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
934 	u32 val32;
935 	u32 en_pi;
936 	u32 r_addr;
937 	u32 shift;
938 
939 	if (rf_path >= hal->rf_phy_num) {
940 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
941 		return INV_RF_DATA;
942 	}
943 
944 	if (!chip->rf_sipi_read_addr) {
945 		rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
946 		return INV_RF_DATA;
947 	}
948 
949 	rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
950 	rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
951 
952 	addr &= 0xff;
953 
954 	val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
955 	val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
956 	rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
957 
958 	/* toggle read edge of path A */
959 	val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
960 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
961 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
962 
963 	udelay(120);
964 
965 	en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
966 	r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
967 
968 	val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
969 
970 	shift = __ffs(mask);
971 
972 	return (val32 & mask) >> shift;
973 }
974 EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
975 
976 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
977 			       u32 addr, u32 mask, u32 data)
978 {
979 	struct rtw_hal *hal = &rtwdev->hal;
980 	const struct rtw_chip_info *chip = rtwdev->chip;
981 	const u32 *sipi_addr = chip->rf_sipi_addr;
982 	u32 data_and_addr;
983 	u32 old_data = 0;
984 	u32 shift;
985 
986 	if (rf_path >= hal->rf_phy_num) {
987 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
988 		return false;
989 	}
990 
991 	addr &= 0xff;
992 	mask &= RFREG_MASK;
993 
994 	if (mask != RFREG_MASK) {
995 		old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
996 
997 		if (old_data == INV_RF_DATA) {
998 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
999 			return false;
1000 		}
1001 
1002 		shift = __ffs(mask);
1003 		data = ((old_data) & (~mask)) | (data << shift);
1004 	}
1005 
1006 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
1007 
1008 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
1009 
1010 	udelay(13);
1011 
1012 	return true;
1013 }
1014 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
1015 
1016 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1017 			  u32 addr, u32 mask, u32 data)
1018 {
1019 	struct rtw_hal *hal = &rtwdev->hal;
1020 	const struct rtw_chip_info *chip = rtwdev->chip;
1021 	const u32 *base_addr = chip->rf_base_addr;
1022 	u32 direct_addr;
1023 
1024 	if (rf_path >= hal->rf_phy_num) {
1025 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
1026 		return false;
1027 	}
1028 
1029 	addr &= 0xff;
1030 	direct_addr = base_addr[rf_path] + (addr << 2);
1031 	mask &= RFREG_MASK;
1032 
1033 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
1034 
1035 	udelay(1);
1036 
1037 	return true;
1038 }
1039 
1040 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1041 			      u32 addr, u32 mask, u32 data)
1042 {
1043 	if (addr != 0x00)
1044 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
1045 
1046 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
1047 }
1048 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
1049 
1050 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
1051 {
1052 	struct rtw_hal *hal = &rtwdev->hal;
1053 	struct rtw_efuse *efuse = &rtwdev->efuse;
1054 	struct rtw_phy_cond cond = {};
1055 	struct rtw_phy_cond2 cond2 = {};
1056 
1057 	cond.cut = hal->cut_version ? hal->cut_version : 15;
1058 	cond.pkg = pkg ? pkg : 15;
1059 	cond.plat = 0x04;
1060 	cond.rfe = efuse->rfe_option;
1061 
1062 	switch (rtw_hci_type(rtwdev)) {
1063 	case RTW_HCI_TYPE_USB:
1064 		cond.intf = INTF_USB;
1065 		break;
1066 	case RTW_HCI_TYPE_SDIO:
1067 		cond.intf = INTF_SDIO;
1068 		break;
1069 	case RTW_HCI_TYPE_PCIE:
1070 	default:
1071 		cond.intf = INTF_PCIE;
1072 		break;
1073 	}
1074 
1075 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A ||
1076 	    rtwdev->chip->id == RTW_CHIP_TYPE_8821A) {
1077 		cond.rfe = 0;
1078 		cond.rfe |= efuse->ext_lna_2g;
1079 		cond.rfe |= efuse->ext_pa_2g  << 1;
1080 		cond.rfe |= efuse->ext_lna_5g << 2;
1081 		cond.rfe |= efuse->ext_pa_5g  << 3;
1082 		cond.rfe |= efuse->btcoex     << 4;
1083 
1084 		cond2.type_alna = efuse->alna_type;
1085 		cond2.type_glna = efuse->glna_type;
1086 		cond2.type_apa = efuse->apa_type;
1087 		cond2.type_gpa = efuse->gpa_type;
1088 	}
1089 
1090 	hal->phy_cond = cond;
1091 	hal->phy_cond2 = cond2;
1092 
1093 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x cond2=0x%08x\n",
1094 		*((u32 *)&hal->phy_cond), *((u32 *)&hal->phy_cond2));
1095 }
1096 
1097 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond,
1098 			   struct rtw_phy_cond2 cond2)
1099 {
1100 	struct rtw_hal *hal = &rtwdev->hal;
1101 	struct rtw_phy_cond drv_cond = hal->phy_cond;
1102 	struct rtw_phy_cond2 drv_cond2 = hal->phy_cond2;
1103 
1104 	if (cond.cut && cond.cut != drv_cond.cut)
1105 		return false;
1106 
1107 	if (cond.pkg && cond.pkg != drv_cond.pkg)
1108 		return false;
1109 
1110 	if (cond.intf && cond.intf != drv_cond.intf)
1111 		return false;
1112 
1113 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A ||
1114 	    rtwdev->chip->id == RTW_CHIP_TYPE_8821A) {
1115 		if (!(cond.rfe & 0x0f))
1116 			return true;
1117 
1118 		if ((cond.rfe & drv_cond.rfe) != cond.rfe)
1119 			return false;
1120 
1121 		if ((cond.rfe & BIT(0)) && cond2.type_glna != drv_cond2.type_glna)
1122 			return false;
1123 
1124 		if ((cond.rfe & BIT(1)) && cond2.type_gpa != drv_cond2.type_gpa)
1125 			return false;
1126 
1127 		if ((cond.rfe & BIT(2)) && cond2.type_alna != drv_cond2.type_alna)
1128 			return false;
1129 
1130 		if ((cond.rfe & BIT(3)) && cond2.type_apa != drv_cond2.type_apa)
1131 			return false;
1132 	} else {
1133 		if (cond.rfe != drv_cond.rfe)
1134 			return false;
1135 	}
1136 
1137 	return true;
1138 }
1139 
1140 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1141 {
1142 	const union phy_table_tile *p = tbl->data;
1143 	const union phy_table_tile *end = p + tbl->size / 2;
1144 	struct rtw_phy_cond pos_cond = {};
1145 	struct rtw_phy_cond2 pos_cond2 = {};
1146 	bool is_matched = true, is_skipped = false;
1147 
1148 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
1149 
1150 	for (; p < end; p++) {
1151 		if (p->cond.pos) {
1152 			switch (p->cond.branch) {
1153 			case BRANCH_ENDIF:
1154 				is_matched = true;
1155 				is_skipped = false;
1156 				break;
1157 			case BRANCH_ELSE:
1158 				is_matched = is_skipped ? false : true;
1159 				break;
1160 			case BRANCH_IF:
1161 			case BRANCH_ELIF:
1162 			default:
1163 				pos_cond = p->cond;
1164 				pos_cond2 = p->cond2;
1165 				break;
1166 			}
1167 		} else if (p->cond.neg) {
1168 			if (!is_skipped) {
1169 				if (check_positive(rtwdev, pos_cond, pos_cond2)) {
1170 					is_matched = true;
1171 					is_skipped = true;
1172 				} else {
1173 					is_matched = false;
1174 					is_skipped = false;
1175 				}
1176 			} else {
1177 				is_matched = false;
1178 			}
1179 		} else if (is_matched) {
1180 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
1181 		}
1182 	}
1183 }
1184 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
1185 
1186 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
1187 
1188 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
1189 {
1190 	if (rtwdev->chip->is_pwr_by_rate_dec)
1191 		return bcd_to_dec_pwr_by_rate(hex, i);
1192 
1193 	return (hex >> (i * 8)) & 0xFF;
1194 }
1195 
1196 static void
1197 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1198 					 u32 addr, u32 mask, u32 val, u8 *rate,
1199 					 u8 *pwr_by_rate, u8 *rate_num)
1200 {
1201 	int i;
1202 
1203 	switch (addr) {
1204 	case 0xE00:
1205 	case 0x830:
1206 		rate[0] = DESC_RATE6M;
1207 		rate[1] = DESC_RATE9M;
1208 		rate[2] = DESC_RATE12M;
1209 		rate[3] = DESC_RATE18M;
1210 		for (i = 0; i < 4; ++i)
1211 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1212 		*rate_num = 4;
1213 		break;
1214 	case 0xE04:
1215 	case 0x834:
1216 		rate[0] = DESC_RATE24M;
1217 		rate[1] = DESC_RATE36M;
1218 		rate[2] = DESC_RATE48M;
1219 		rate[3] = DESC_RATE54M;
1220 		for (i = 0; i < 4; ++i)
1221 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1222 		*rate_num = 4;
1223 		break;
1224 	case 0xE08:
1225 		rate[0] = DESC_RATE1M;
1226 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1227 		*rate_num = 1;
1228 		break;
1229 	case 0x86C:
1230 		if (mask == 0xffffff00) {
1231 			rate[0] = DESC_RATE2M;
1232 			rate[1] = DESC_RATE5_5M;
1233 			rate[2] = DESC_RATE11M;
1234 			for (i = 1; i < 4; ++i)
1235 				pwr_by_rate[i - 1] =
1236 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1237 			*rate_num = 3;
1238 		} else if (mask == 0x000000ff) {
1239 			rate[0] = DESC_RATE11M;
1240 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1241 			*rate_num = 1;
1242 		}
1243 		break;
1244 	case 0xE10:
1245 	case 0x83C:
1246 		rate[0] = DESC_RATEMCS0;
1247 		rate[1] = DESC_RATEMCS1;
1248 		rate[2] = DESC_RATEMCS2;
1249 		rate[3] = DESC_RATEMCS3;
1250 		for (i = 0; i < 4; ++i)
1251 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1252 		*rate_num = 4;
1253 		break;
1254 	case 0xE14:
1255 	case 0x848:
1256 		rate[0] = DESC_RATEMCS4;
1257 		rate[1] = DESC_RATEMCS5;
1258 		rate[2] = DESC_RATEMCS6;
1259 		rate[3] = DESC_RATEMCS7;
1260 		for (i = 0; i < 4; ++i)
1261 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1262 		*rate_num = 4;
1263 		break;
1264 	case 0xE18:
1265 	case 0x84C:
1266 		rate[0] = DESC_RATEMCS8;
1267 		rate[1] = DESC_RATEMCS9;
1268 		rate[2] = DESC_RATEMCS10;
1269 		rate[3] = DESC_RATEMCS11;
1270 		for (i = 0; i < 4; ++i)
1271 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1272 		*rate_num = 4;
1273 		break;
1274 	case 0xE1C:
1275 	case 0x868:
1276 		rate[0] = DESC_RATEMCS12;
1277 		rate[1] = DESC_RATEMCS13;
1278 		rate[2] = DESC_RATEMCS14;
1279 		rate[3] = DESC_RATEMCS15;
1280 		for (i = 0; i < 4; ++i)
1281 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1282 		*rate_num = 4;
1283 		break;
1284 	case 0x838:
1285 		rate[0] = DESC_RATE1M;
1286 		rate[1] = DESC_RATE2M;
1287 		rate[2] = DESC_RATE5_5M;
1288 		for (i = 1; i < 4; ++i)
1289 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1290 								    val, i);
1291 		*rate_num = 3;
1292 		break;
1293 	case 0xC20:
1294 	case 0xE20:
1295 	case 0x1820:
1296 	case 0x1A20:
1297 		rate[0] = DESC_RATE1M;
1298 		rate[1] = DESC_RATE2M;
1299 		rate[2] = DESC_RATE5_5M;
1300 		rate[3] = DESC_RATE11M;
1301 		for (i = 0; i < 4; ++i)
1302 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1303 		*rate_num = 4;
1304 		break;
1305 	case 0xC24:
1306 	case 0xE24:
1307 	case 0x1824:
1308 	case 0x1A24:
1309 		rate[0] = DESC_RATE6M;
1310 		rate[1] = DESC_RATE9M;
1311 		rate[2] = DESC_RATE12M;
1312 		rate[3] = DESC_RATE18M;
1313 		for (i = 0; i < 4; ++i)
1314 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1315 		*rate_num = 4;
1316 		break;
1317 	case 0xC28:
1318 	case 0xE28:
1319 	case 0x1828:
1320 	case 0x1A28:
1321 		rate[0] = DESC_RATE24M;
1322 		rate[1] = DESC_RATE36M;
1323 		rate[2] = DESC_RATE48M;
1324 		rate[3] = DESC_RATE54M;
1325 		for (i = 0; i < 4; ++i)
1326 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1327 		*rate_num = 4;
1328 		break;
1329 	case 0xC2C:
1330 	case 0xE2C:
1331 	case 0x182C:
1332 	case 0x1A2C:
1333 		rate[0] = DESC_RATEMCS0;
1334 		rate[1] = DESC_RATEMCS1;
1335 		rate[2] = DESC_RATEMCS2;
1336 		rate[3] = DESC_RATEMCS3;
1337 		for (i = 0; i < 4; ++i)
1338 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1339 		*rate_num = 4;
1340 		break;
1341 	case 0xC30:
1342 	case 0xE30:
1343 	case 0x1830:
1344 	case 0x1A30:
1345 		rate[0] = DESC_RATEMCS4;
1346 		rate[1] = DESC_RATEMCS5;
1347 		rate[2] = DESC_RATEMCS6;
1348 		rate[3] = DESC_RATEMCS7;
1349 		for (i = 0; i < 4; ++i)
1350 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1351 		*rate_num = 4;
1352 		break;
1353 	case 0xC34:
1354 	case 0xE34:
1355 	case 0x1834:
1356 	case 0x1A34:
1357 		rate[0] = DESC_RATEMCS8;
1358 		rate[1] = DESC_RATEMCS9;
1359 		rate[2] = DESC_RATEMCS10;
1360 		rate[3] = DESC_RATEMCS11;
1361 		for (i = 0; i < 4; ++i)
1362 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1363 		*rate_num = 4;
1364 		break;
1365 	case 0xC38:
1366 	case 0xE38:
1367 	case 0x1838:
1368 	case 0x1A38:
1369 		rate[0] = DESC_RATEMCS12;
1370 		rate[1] = DESC_RATEMCS13;
1371 		rate[2] = DESC_RATEMCS14;
1372 		rate[3] = DESC_RATEMCS15;
1373 		for (i = 0; i < 4; ++i)
1374 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1375 		*rate_num = 4;
1376 		break;
1377 	case 0xC3C:
1378 	case 0xE3C:
1379 	case 0x183C:
1380 	case 0x1A3C:
1381 		rate[0] = DESC_RATEVHT1SS_MCS0;
1382 		rate[1] = DESC_RATEVHT1SS_MCS1;
1383 		rate[2] = DESC_RATEVHT1SS_MCS2;
1384 		rate[3] = DESC_RATEVHT1SS_MCS3;
1385 		for (i = 0; i < 4; ++i)
1386 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1387 		*rate_num = 4;
1388 		break;
1389 	case 0xC40:
1390 	case 0xE40:
1391 	case 0x1840:
1392 	case 0x1A40:
1393 		rate[0] = DESC_RATEVHT1SS_MCS4;
1394 		rate[1] = DESC_RATEVHT1SS_MCS5;
1395 		rate[2] = DESC_RATEVHT1SS_MCS6;
1396 		rate[3] = DESC_RATEVHT1SS_MCS7;
1397 		for (i = 0; i < 4; ++i)
1398 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1399 		*rate_num = 4;
1400 		break;
1401 	case 0xC44:
1402 	case 0xE44:
1403 	case 0x1844:
1404 	case 0x1A44:
1405 		rate[0] = DESC_RATEVHT1SS_MCS8;
1406 		rate[1] = DESC_RATEVHT1SS_MCS9;
1407 		rate[2] = DESC_RATEVHT2SS_MCS0;
1408 		rate[3] = DESC_RATEVHT2SS_MCS1;
1409 		for (i = 0; i < 4; ++i)
1410 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1411 		*rate_num = 4;
1412 		break;
1413 	case 0xC48:
1414 	case 0xE48:
1415 	case 0x1848:
1416 	case 0x1A48:
1417 		rate[0] = DESC_RATEVHT2SS_MCS2;
1418 		rate[1] = DESC_RATEVHT2SS_MCS3;
1419 		rate[2] = DESC_RATEVHT2SS_MCS4;
1420 		rate[3] = DESC_RATEVHT2SS_MCS5;
1421 		for (i = 0; i < 4; ++i)
1422 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1423 		*rate_num = 4;
1424 		break;
1425 	case 0xC4C:
1426 	case 0xE4C:
1427 	case 0x184C:
1428 	case 0x1A4C:
1429 		rate[0] = DESC_RATEVHT2SS_MCS6;
1430 		rate[1] = DESC_RATEVHT2SS_MCS7;
1431 		rate[2] = DESC_RATEVHT2SS_MCS8;
1432 		rate[3] = DESC_RATEVHT2SS_MCS9;
1433 		for (i = 0; i < 4; ++i)
1434 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1435 		*rate_num = 4;
1436 		break;
1437 	case 0xCD8:
1438 	case 0xED8:
1439 	case 0x18D8:
1440 	case 0x1AD8:
1441 		rate[0] = DESC_RATEMCS16;
1442 		rate[1] = DESC_RATEMCS17;
1443 		rate[2] = DESC_RATEMCS18;
1444 		rate[3] = DESC_RATEMCS19;
1445 		for (i = 0; i < 4; ++i)
1446 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1447 		*rate_num = 4;
1448 		break;
1449 	case 0xCDC:
1450 	case 0xEDC:
1451 	case 0x18DC:
1452 	case 0x1ADC:
1453 		rate[0] = DESC_RATEMCS20;
1454 		rate[1] = DESC_RATEMCS21;
1455 		rate[2] = DESC_RATEMCS22;
1456 		rate[3] = DESC_RATEMCS23;
1457 		for (i = 0; i < 4; ++i)
1458 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1459 		*rate_num = 4;
1460 		break;
1461 	case 0xCE0:
1462 	case 0xEE0:
1463 	case 0x18E0:
1464 	case 0x1AE0:
1465 		rate[0] = DESC_RATEVHT3SS_MCS0;
1466 		rate[1] = DESC_RATEVHT3SS_MCS1;
1467 		rate[2] = DESC_RATEVHT3SS_MCS2;
1468 		rate[3] = DESC_RATEVHT3SS_MCS3;
1469 		for (i = 0; i < 4; ++i)
1470 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1471 		*rate_num = 4;
1472 		break;
1473 	case 0xCE4:
1474 	case 0xEE4:
1475 	case 0x18E4:
1476 	case 0x1AE4:
1477 		rate[0] = DESC_RATEVHT3SS_MCS4;
1478 		rate[1] = DESC_RATEVHT3SS_MCS5;
1479 		rate[2] = DESC_RATEVHT3SS_MCS6;
1480 		rate[3] = DESC_RATEVHT3SS_MCS7;
1481 		for (i = 0; i < 4; ++i)
1482 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1483 		*rate_num = 4;
1484 		break;
1485 	case 0xCE8:
1486 	case 0xEE8:
1487 	case 0x18E8:
1488 	case 0x1AE8:
1489 		rate[0] = DESC_RATEVHT3SS_MCS8;
1490 		rate[1] = DESC_RATEVHT3SS_MCS9;
1491 		for (i = 0; i < 2; ++i)
1492 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1493 		*rate_num = 2;
1494 		break;
1495 	default:
1496 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1497 		break;
1498 	}
1499 }
1500 
1501 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1502 					   u32 band, u32 rfpath, u32 txnum,
1503 					   u32 regaddr, u32 bitmask, u32 data)
1504 {
1505 	struct rtw_hal *hal = &rtwdev->hal;
1506 	u8 rate_num = 0;
1507 	u8 rate;
1508 	u8 rates[RTW_RF_PATH_MAX] = {0};
1509 	s8 offset;
1510 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1511 	int i;
1512 
1513 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1514 						 rates, pwr_by_rate, &rate_num);
1515 
1516 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1517 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1518 		    rate_num > RTW_RF_PATH_MAX))
1519 		return;
1520 
1521 	for (i = 0; i < rate_num; i++) {
1522 		offset = pwr_by_rate[i];
1523 		rate = rates[i];
1524 		if (band == PHY_BAND_2G)
1525 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1526 		else
1527 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1528 	}
1529 }
1530 
1531 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1532 {
1533 	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1534 	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1535 
1536 	for (; p < end; p++) {
1537 		if (p->addr == 0xfe || p->addr == 0xffe) {
1538 			msleep(50);
1539 			continue;
1540 		}
1541 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1542 					       p->tx_num, p->addr, p->bitmask,
1543 					       p->data);
1544 	}
1545 }
1546 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1547 
1548 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1549 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1550 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1551 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1552 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1553 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1554 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1555 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1556 
1557 static int rtw_channel_to_idx(u8 band, u8 channel)
1558 {
1559 	int ch_idx;
1560 	u8 n_channel;
1561 
1562 	if (band == PHY_BAND_2G) {
1563 		ch_idx = channel - 1;
1564 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1565 	} else if (band == PHY_BAND_5G) {
1566 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1567 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1568 			if (rtw_channel_idx_5g[ch_idx] == channel)
1569 				break;
1570 	} else {
1571 		return -1;
1572 	}
1573 
1574 	if (ch_idx >= n_channel)
1575 		return -1;
1576 
1577 	return ch_idx;
1578 }
1579 
1580 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1581 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1582 {
1583 	struct rtw_hal *hal = &rtwdev->hal;
1584 	u8 max_power_index = rtwdev->chip->max_power_index;
1585 	s8 ww;
1586 	int ch_idx;
1587 
1588 	pwr_limit = clamp_t(s8, pwr_limit,
1589 			    -max_power_index, max_power_index);
1590 	ch_idx = rtw_channel_to_idx(band, ch);
1591 
1592 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1593 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1594 		WARN(1,
1595 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1596 		     regd, band, bw, rs, ch_idx, pwr_limit);
1597 		return;
1598 	}
1599 
1600 	if (band == PHY_BAND_2G) {
1601 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1602 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1603 		ww = min_t(s8, ww, pwr_limit);
1604 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1605 	} else if (band == PHY_BAND_5G) {
1606 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1607 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1608 		ww = min_t(s8, ww, pwr_limit);
1609 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1610 	}
1611 }
1612 
1613 /* cross-reference 5G power limits if values are not assigned */
1614 static void
1615 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1616 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1617 {
1618 	struct rtw_hal *hal = &rtwdev->hal;
1619 	u8 max_power_index = rtwdev->chip->max_power_index;
1620 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1621 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1622 
1623 	if (lmt_ht == lmt_vht)
1624 		return;
1625 
1626 	if (lmt_ht == max_power_index)
1627 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1628 
1629 	else if (lmt_vht == max_power_index)
1630 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1631 }
1632 
1633 /* cross-reference power limits for ht and vht */
1634 static void
1635 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1636 {
1637 	u8 rs_idx, rs_ht, rs_vht;
1638 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1639 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1640 
1641 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1642 		rs_ht = rs_cmp[rs_idx][0];
1643 		rs_vht = rs_cmp[rs_idx][1];
1644 
1645 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1646 	}
1647 }
1648 
1649 /* cross-reference power limits for 5G channels */
1650 static void
1651 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1652 {
1653 	u8 ch_idx;
1654 
1655 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1656 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1657 }
1658 
1659 /* cross-reference power limits for 20/40M bandwidth */
1660 static void
1661 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1662 {
1663 	u8 bw;
1664 
1665 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1666 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1667 }
1668 
1669 /* cross-reference power limits */
1670 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1671 {
1672 	u8 regd;
1673 
1674 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1675 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1676 }
1677 
1678 static void
1679 __cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs)
1680 {
1681 	u8 ch;
1682 
1683 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1684 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] =
1685 			hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch];
1686 
1687 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1688 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] =
1689 			hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch];
1690 }
1691 
1692 static void
1693 rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt)
1694 {
1695 	u8 bw, rs;
1696 
1697 	for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1698 		for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1699 			__cfg_txpwr_lmt_by_alt(&rtwdev->hal, regd, regd_alt,
1700 					       bw, rs);
1701 }
1702 
1703 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1704 			     const struct rtw_table *tbl)
1705 {
1706 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1707 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1708 	u32 regd_cfg_flag = 0;
1709 	u8 regd_alt;
1710 	u8 i;
1711 
1712 	for (; p < end; p++) {
1713 		regd_cfg_flag |= BIT(p->regd);
1714 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1715 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1716 	}
1717 
1718 	for (i = 0; i < RTW_REGD_MAX; i++) {
1719 		if (i == RTW_REGD_WW)
1720 			continue;
1721 
1722 		if (regd_cfg_flag & BIT(i))
1723 			continue;
1724 
1725 		rtw_dbg(rtwdev, RTW_DBG_REGD,
1726 			"txpwr regd %d does not be configured\n", i);
1727 
1728 		if (rtw_regd_has_alt(i, &regd_alt) &&
1729 		    regd_cfg_flag & BIT(regd_alt)) {
1730 			rtw_dbg(rtwdev, RTW_DBG_REGD,
1731 				"cfg txpwr regd %d by regd %d as alternative\n",
1732 				i, regd_alt);
1733 
1734 			rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, regd_alt);
1735 			continue;
1736 		}
1737 
1738 		rtw_dbg(rtwdev, RTW_DBG_REGD, "cfg txpwr regd %d by WW\n", i);
1739 		rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, RTW_REGD_WW);
1740 	}
1741 
1742 	rtw_xref_txpwr_lmt(rtwdev);
1743 }
1744 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1745 
1746 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1747 		     u32 addr, u32 data)
1748 {
1749 	rtw_write8(rtwdev, addr, data);
1750 }
1751 EXPORT_SYMBOL(rtw_phy_cfg_mac);
1752 
1753 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1754 		     u32 addr, u32 data)
1755 {
1756 	rtw_write32(rtwdev, addr, data);
1757 }
1758 EXPORT_SYMBOL(rtw_phy_cfg_agc);
1759 
1760 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1761 		    u32 addr, u32 data)
1762 {
1763 	if (addr == 0xfe)
1764 		msleep(50);
1765 	else if (addr == 0xfd)
1766 		mdelay(5);
1767 	else if (addr == 0xfc)
1768 		mdelay(1);
1769 	else if (addr == 0xfb)
1770 		usleep_range(50, 60);
1771 	else if (addr == 0xfa)
1772 		udelay(5);
1773 	else if (addr == 0xf9)
1774 		udelay(1);
1775 	else
1776 		rtw_write32(rtwdev, addr, data);
1777 }
1778 EXPORT_SYMBOL(rtw_phy_cfg_bb);
1779 
1780 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1781 		    u32 addr, u32 data)
1782 {
1783 	if (addr == 0xffe) {
1784 		msleep(50);
1785 	} else if (addr == 0xfe) {
1786 		usleep_range(100, 110);
1787 	} else {
1788 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1789 		udelay(1);
1790 	}
1791 }
1792 EXPORT_SYMBOL(rtw_phy_cfg_rf);
1793 
1794 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1795 {
1796 	const struct rtw_chip_info *chip = rtwdev->chip;
1797 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1798 
1799 	if (!chip->rfk_init_tbl)
1800 		return;
1801 
1802 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1803 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1804 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1805 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1806 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1807 
1808 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1809 
1810 	dpk_info->is_dpk_pwr_on = true;
1811 }
1812 
1813 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1814 {
1815 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1816 	const struct rtw_chip_info *chip = rtwdev->chip;
1817 	u8 rf_path;
1818 
1819 	rtw_load_table(rtwdev, chip->mac_tbl);
1820 	rtw_load_table(rtwdev, chip->bb_tbl);
1821 	rtw_load_table(rtwdev, chip->agc_tbl);
1822 	if (rfe_def->agc_btg_tbl)
1823 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1824 	rtw_load_rfk_table(rtwdev);
1825 
1826 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1827 		const struct rtw_table *tbl;
1828 
1829 		tbl = chip->rf_tbl[rf_path];
1830 		rtw_load_table(rtwdev, tbl);
1831 	}
1832 }
1833 EXPORT_SYMBOL(rtw_phy_load_tables);
1834 
1835 static u8 rtw_get_channel_group(u8 channel, u8 rate)
1836 {
1837 	switch (channel) {
1838 	default:
1839 		WARN_ON(1);
1840 		fallthrough;
1841 	case 1:
1842 	case 2:
1843 	case 36:
1844 	case 38:
1845 	case 40:
1846 	case 42:
1847 		return 0;
1848 	case 3:
1849 	case 4:
1850 	case 5:
1851 	case 44:
1852 	case 46:
1853 	case 48:
1854 	case 50:
1855 		return 1;
1856 	case 6:
1857 	case 7:
1858 	case 8:
1859 	case 52:
1860 	case 54:
1861 	case 56:
1862 	case 58:
1863 		return 2;
1864 	case 9:
1865 	case 10:
1866 	case 11:
1867 	case 60:
1868 	case 62:
1869 	case 64:
1870 		return 3;
1871 	case 12:
1872 	case 13:
1873 	case 100:
1874 	case 102:
1875 	case 104:
1876 	case 106:
1877 		return 4;
1878 	case 14:
1879 		return rate <= DESC_RATE11M ? 5 : 4;
1880 	case 108:
1881 	case 110:
1882 	case 112:
1883 	case 114:
1884 		return 5;
1885 	case 116:
1886 	case 118:
1887 	case 120:
1888 	case 122:
1889 		return 6;
1890 	case 124:
1891 	case 126:
1892 	case 128:
1893 	case 130:
1894 		return 7;
1895 	case 132:
1896 	case 134:
1897 	case 136:
1898 	case 138:
1899 		return 8;
1900 	case 140:
1901 	case 142:
1902 	case 144:
1903 		return 9;
1904 	case 149:
1905 	case 151:
1906 	case 153:
1907 	case 155:
1908 		return 10;
1909 	case 157:
1910 	case 159:
1911 	case 161:
1912 		return 11;
1913 	case 165:
1914 	case 167:
1915 	case 169:
1916 	case 171:
1917 		return 12;
1918 	case 173:
1919 	case 175:
1920 	case 177:
1921 		return 13;
1922 	}
1923 }
1924 
1925 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1926 {
1927 	const struct rtw_chip_info *chip = rtwdev->chip;
1928 	s8 dpd_diff = 0;
1929 
1930 	if (!chip->en_dis_dpd)
1931 		return 0;
1932 
1933 #define RTW_DPD_RATE_CHECK(_rate)					\
1934 	case DESC_RATE ## _rate:					\
1935 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1936 		dpd_diff = -6 * chip->txgi_factor;			\
1937 	break
1938 
1939 	switch (rate) {
1940 	RTW_DPD_RATE_CHECK(6M);
1941 	RTW_DPD_RATE_CHECK(9M);
1942 	RTW_DPD_RATE_CHECK(MCS0);
1943 	RTW_DPD_RATE_CHECK(MCS1);
1944 	RTW_DPD_RATE_CHECK(MCS8);
1945 	RTW_DPD_RATE_CHECK(MCS9);
1946 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1947 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1948 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1949 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1950 	}
1951 #undef RTW_DPD_RATE_CHECK
1952 
1953 	return dpd_diff;
1954 }
1955 
1956 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1957 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1958 					enum rtw_bandwidth bandwidth,
1959 					u8 rate, u8 group)
1960 {
1961 	const struct rtw_chip_info *chip = rtwdev->chip;
1962 	u8 tx_power;
1963 	bool mcs_rate;
1964 	bool above_2ss;
1965 	u8 factor = chip->txgi_factor;
1966 
1967 	if (rate <= DESC_RATE11M)
1968 		tx_power = pwr_idx_2g->cck_base[group];
1969 	else
1970 		tx_power = pwr_idx_2g->bw40_base[group];
1971 
1972 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1973 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1974 
1975 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1976 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1977 		    rate <= DESC_RATEVHT2SS_MCS9);
1978 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1979 		    (rate >= DESC_RATEVHT2SS_MCS0);
1980 
1981 	if (!mcs_rate)
1982 		return tx_power;
1983 
1984 	switch (bandwidth) {
1985 	default:
1986 		WARN_ON(1);
1987 		fallthrough;
1988 	case RTW_CHANNEL_WIDTH_20:
1989 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1990 		if (above_2ss)
1991 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1992 		break;
1993 	case RTW_CHANNEL_WIDTH_40:
1994 		/* bw40 is the base power */
1995 		if (above_2ss)
1996 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1997 		break;
1998 	}
1999 
2000 	return tx_power;
2001 }
2002 
2003 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
2004 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
2005 					enum rtw_bandwidth bandwidth,
2006 					u8 rate, u8 group)
2007 {
2008 	const struct rtw_chip_info *chip = rtwdev->chip;
2009 	u8 tx_power;
2010 	u8 upper, lower;
2011 	bool mcs_rate;
2012 	bool above_2ss;
2013 	u8 factor = chip->txgi_factor;
2014 
2015 	tx_power = pwr_idx_5g->bw40_base[group];
2016 
2017 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
2018 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
2019 		    rate <= DESC_RATEVHT2SS_MCS9);
2020 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
2021 		    (rate >= DESC_RATEVHT2SS_MCS0);
2022 
2023 	if (!mcs_rate) {
2024 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
2025 		return tx_power;
2026 	}
2027 
2028 	switch (bandwidth) {
2029 	default:
2030 		WARN_ON(1);
2031 		fallthrough;
2032 	case RTW_CHANNEL_WIDTH_20:
2033 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
2034 		if (above_2ss)
2035 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
2036 		break;
2037 	case RTW_CHANNEL_WIDTH_40:
2038 		/* bw40 is the base power */
2039 		if (above_2ss)
2040 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
2041 		break;
2042 	case RTW_CHANNEL_WIDTH_80:
2043 		/* the base idx of bw80 is the average of bw40+/bw40- */
2044 		lower = pwr_idx_5g->bw40_base[group];
2045 		upper = pwr_idx_5g->bw40_base[group + 1];
2046 
2047 		tx_power = (lower + upper) / 2;
2048 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
2049 		if (above_2ss)
2050 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
2051 		break;
2052 	}
2053 
2054 	return tx_power;
2055 }
2056 
2057 /* return RTW_RATE_SECTION_MAX to indicate rate is invalid */
2058 static u8 rtw_phy_rate_to_rate_section(u8 rate)
2059 {
2060 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
2061 		return RTW_RATE_SECTION_CCK;
2062 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
2063 		return RTW_RATE_SECTION_OFDM;
2064 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
2065 		return RTW_RATE_SECTION_HT_1S;
2066 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
2067 		return RTW_RATE_SECTION_HT_2S;
2068 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
2069 		return RTW_RATE_SECTION_VHT_1S;
2070 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
2071 		return RTW_RATE_SECTION_VHT_2S;
2072 	else
2073 		return RTW_RATE_SECTION_MAX;
2074 }
2075 
2076 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
2077 				     enum rtw_bandwidth bw, u8 rf_path,
2078 				     u8 rate, u8 channel, u8 regd)
2079 {
2080 	struct rtw_hal *hal = &rtwdev->hal;
2081 	u8 *cch_by_bw = hal->cch_by_bw;
2082 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
2083 	u8 rs = rtw_phy_rate_to_rate_section(rate);
2084 	int ch_idx;
2085 	u8 cur_bw, cur_ch;
2086 	s8 cur_lmt;
2087 
2088 	if (regd > RTW_REGD_WW)
2089 		return power_limit;
2090 
2091 	if (rs == RTW_RATE_SECTION_MAX)
2092 		goto err;
2093 
2094 	/* only 20M BW with cck and ofdm */
2095 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
2096 		bw = RTW_CHANNEL_WIDTH_20;
2097 
2098 	/* only 20/40M BW with ht */
2099 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
2100 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
2101 
2102 	/* select min power limit among [20M BW ~ current BW] */
2103 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
2104 		cur_ch = cch_by_bw[cur_bw];
2105 
2106 		ch_idx = rtw_channel_to_idx(band, cur_ch);
2107 		if (ch_idx < 0)
2108 			goto err;
2109 
2110 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
2111 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
2112 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
2113 
2114 		power_limit = min_t(s8, cur_lmt, power_limit);
2115 	}
2116 
2117 	return power_limit;
2118 
2119 err:
2120 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
2121 	     band, bw, rf_path, rate, channel);
2122 	return (s8)rtwdev->chip->max_power_index;
2123 }
2124 
2125 static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band,
2126 				   u8 rf_path, u8 rate)
2127 {
2128 	u8 rs = rtw_phy_rate_to_rate_section(rate);
2129 	struct rtw_sar_arg arg = {
2130 		.sar_band = sar_band,
2131 		.path = rf_path,
2132 		.rs = rs,
2133 	};
2134 
2135 	if (rs == RTW_RATE_SECTION_MAX)
2136 		goto err;
2137 
2138 	return rtw_query_sar(rtwdev, &arg);
2139 
2140 err:
2141 	WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n",
2142 	     sar_band, rf_path, rate);
2143 	return (s8)rtwdev->chip->max_power_index;
2144 }
2145 
2146 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
2147 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
2148 {
2149 	struct rtw_hal *hal = &rtwdev->hal;
2150 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2151 	struct rtw_txpwr_idx *pwr_idx;
2152 	u8 group, band;
2153 	u8 *base = &pwr_param->pwr_base;
2154 	s8 *offset = &pwr_param->pwr_offset;
2155 	s8 *limit = &pwr_param->pwr_limit;
2156 	s8 *remnant = &pwr_param->pwr_remnant;
2157 	s8 *sar = &pwr_param->pwr_sar;
2158 
2159 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
2160 	group = rtw_get_channel_group(ch, rate);
2161 
2162 	/* base power index for 2.4G/5G */
2163 	if (IS_CH_2G_BAND(ch)) {
2164 		band = PHY_BAND_2G;
2165 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
2166 						      &pwr_idx->pwr_idx_2g,
2167 						      bw, rate, group);
2168 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
2169 	} else {
2170 		band = PHY_BAND_5G;
2171 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
2172 						      &pwr_idx->pwr_idx_5g,
2173 						      bw, rate, group);
2174 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
2175 	}
2176 
2177 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
2178 					    rate, ch, regd);
2179 	*remnant = rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
2180 					  dm_info->txagc_remnant_ofdm[path];
2181 	*sar = rtw_phy_get_tx_power_sar(rtwdev, hal->sar_band, path, rate);
2182 }
2183 
2184 u8
2185 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
2186 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
2187 {
2188 	struct rtw_power_params pwr_param = {0};
2189 	u8 tx_power;
2190 	s8 offset;
2191 
2192 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
2193 				channel, regd, &pwr_param);
2194 
2195 	tx_power = pwr_param.pwr_base;
2196 	offset = min3(pwr_param.pwr_offset,
2197 		      pwr_param.pwr_limit,
2198 		      pwr_param.pwr_sar);
2199 
2200 	if (rtwdev->chip->en_dis_dpd)
2201 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
2202 
2203 	tx_power += offset + pwr_param.pwr_remnant;
2204 
2205 	if (tx_power > rtwdev->chip->max_power_index)
2206 		tx_power = rtwdev->chip->max_power_index;
2207 
2208 	return tx_power;
2209 }
2210 EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
2211 
2212 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
2213 					     u8 ch, u8 path, u8 rs)
2214 {
2215 	struct rtw_hal *hal = &rtwdev->hal;
2216 	u8 regd = rtw_regd_get(rtwdev);
2217 	u8 *rates;
2218 	u8 size;
2219 	u8 rate;
2220 	u8 pwr_idx;
2221 	u8 bw;
2222 	int i;
2223 
2224 	if (rs >= RTW_RATE_SECTION_MAX)
2225 		return;
2226 
2227 	rates = rtw_rate_section[rs];
2228 	size = rtw_rate_size[rs];
2229 	bw = hal->current_band_width;
2230 	for (i = 0; i < size; i++) {
2231 		rate = rates[i];
2232 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
2233 						     bw, ch, regd);
2234 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
2235 	}
2236 }
2237 
2238 /* set tx power level by path for each rates, note that the order of the rates
2239  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
2240  * power index into a four-byte power index register, and calls set_tx_agc to
2241  * write these values into hardware
2242  */
2243 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
2244 					       u8 ch, u8 path)
2245 {
2246 	struct rtw_hal *hal = &rtwdev->hal;
2247 	u8 rs;
2248 
2249 	/* do not need cck rates if we are not in 2.4G */
2250 	if (hal->current_band_type == RTW_BAND_2G)
2251 		rs = RTW_RATE_SECTION_CCK;
2252 	else
2253 		rs = RTW_RATE_SECTION_OFDM;
2254 
2255 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
2256 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
2257 }
2258 
2259 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
2260 {
2261 	const struct rtw_chip_info *chip = rtwdev->chip;
2262 	struct rtw_hal *hal = &rtwdev->hal;
2263 	u8 path;
2264 
2265 	mutex_lock(&hal->tx_power_mutex);
2266 
2267 	for (path = 0; path < hal->rf_path_num; path++)
2268 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
2269 
2270 	chip->ops->set_tx_power_index(rtwdev);
2271 	mutex_unlock(&hal->tx_power_mutex);
2272 }
2273 EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
2274 
2275 static void
2276 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
2277 					u8 rs, u8 size, u8 *rates)
2278 {
2279 	u8 rate;
2280 	u8 base_idx, rate_idx;
2281 	s8 base_2g, base_5g;
2282 
2283 	if (rs >= RTW_RATE_SECTION_VHT_1S)
2284 		base_idx = rates[size - 3];
2285 	else
2286 		base_idx = rates[size - 1];
2287 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
2288 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
2289 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
2290 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
2291 	for (rate = 0; rate < size; rate++) {
2292 		rate_idx = rates[rate];
2293 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
2294 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
2295 	}
2296 }
2297 
2298 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
2299 {
2300 	u8 path;
2301 
2302 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2303 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2304 				RTW_RATE_SECTION_CCK,
2305 				rtw_cck_size, rtw_cck_rates);
2306 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2307 				RTW_RATE_SECTION_OFDM,
2308 				rtw_ofdm_size, rtw_ofdm_rates);
2309 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2310 				RTW_RATE_SECTION_HT_1S,
2311 				rtw_ht_1s_size, rtw_ht_1s_rates);
2312 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2313 				RTW_RATE_SECTION_HT_2S,
2314 				rtw_ht_2s_size, rtw_ht_2s_rates);
2315 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2316 				RTW_RATE_SECTION_VHT_1S,
2317 				rtw_vht_1s_size, rtw_vht_1s_rates);
2318 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2319 				RTW_RATE_SECTION_VHT_2S,
2320 				rtw_vht_2s_size, rtw_vht_2s_rates);
2321 	}
2322 }
2323 
2324 static void
2325 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
2326 {
2327 	s8 base;
2328 	u8 ch;
2329 
2330 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
2331 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
2332 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
2333 	}
2334 
2335 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
2336 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
2337 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2338 	}
2339 }
2340 
2341 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2342 {
2343 	u8 regd, bw, rs;
2344 
2345 	/* default at channel 1 */
2346 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2347 
2348 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2349 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2350 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2351 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2352 }
2353 
2354 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2355 					u8 regd, u8 bw, u8 rs)
2356 {
2357 	struct rtw_hal *hal = &rtwdev->hal;
2358 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2359 	u8 ch;
2360 
2361 	/* 2.4G channels */
2362 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2363 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2364 
2365 	/* 5G channels */
2366 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2367 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2368 }
2369 
2370 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2371 {
2372 	struct rtw_hal *hal = &rtwdev->hal;
2373 	u8 regd, path, rate, rs, bw;
2374 
2375 	/* init tx power by rate offset */
2376 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2377 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2378 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2379 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2380 		}
2381 	}
2382 
2383 	/* init tx power limit */
2384 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2385 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2386 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2387 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2388 							    rs);
2389 }
2390 
2391 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2392 				struct rtw_swing_table *swing_table)
2393 {
2394 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2395 	const struct rtw_pwr_track_tbl *tbl = rfe_def->pwr_track_tbl;
2396 	u8 channel = rtwdev->hal.current_channel;
2397 
2398 	if (IS_CH_2G_BAND(channel)) {
2399 		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2400 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2401 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2402 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2403 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2404 		} else {
2405 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2406 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2407 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2408 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2409 		}
2410 	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2411 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2412 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2413 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2414 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2415 	} else if (IS_CH_5G_BAND_3(channel)) {
2416 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2417 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2418 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2419 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2420 	} else if (IS_CH_5G_BAND_4(channel)) {
2421 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2422 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2423 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2424 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2425 	} else {
2426 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2427 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2428 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2429 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2430 	}
2431 }
2432 EXPORT_SYMBOL(rtw_phy_config_swing_table);
2433 
2434 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2435 {
2436 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2437 
2438 	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2439 	dm_info->thermal_avg[path] =
2440 		ewma_thermal_read(&dm_info->avg_thermal[path]);
2441 }
2442 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2443 
2444 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2445 				      u8 path)
2446 {
2447 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2448 	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2449 
2450 	if (avg == thermal)
2451 		return false;
2452 
2453 	return true;
2454 }
2455 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2456 
2457 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2458 {
2459 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2460 	u8 therm_avg, therm_efuse, therm_delta;
2461 
2462 	therm_avg = dm_info->thermal_avg[path];
2463 	therm_efuse = rtwdev->efuse.thermal_meter[path];
2464 	therm_delta = abs(therm_avg - therm_efuse);
2465 
2466 	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2467 }
2468 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2469 
2470 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2471 			       struct rtw_swing_table *swing_table,
2472 			       u8 tbl_path, u8 therm_path, u8 delta)
2473 {
2474 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2475 	const u8 *delta_swing_table_idx_pos;
2476 	const u8 *delta_swing_table_idx_neg;
2477 
2478 	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2479 		rtw_warn(rtwdev, "power track table overflow\n");
2480 		return 0;
2481 	}
2482 
2483 	if (!swing_table) {
2484 		rtw_warn(rtwdev, "swing table not configured\n");
2485 		return 0;
2486 	}
2487 
2488 	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2489 	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2490 
2491 	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2492 		rtw_warn(rtwdev, "invalid swing table index\n");
2493 		return 0;
2494 	}
2495 
2496 	if (dm_info->thermal_avg[therm_path] >
2497 	    rtwdev->efuse.thermal_meter[therm_path])
2498 		return delta_swing_table_idx_pos[delta];
2499 	else
2500 		return -delta_swing_table_idx_neg[delta];
2501 }
2502 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2503 
2504 bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
2505 {
2506 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2507 	u8 delta_lck;
2508 
2509 	delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
2510 	if (delta_lck >= rtwdev->chip->lck_threshold) {
2511 		dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
2512 		return true;
2513 	}
2514 	return false;
2515 }
2516 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
2517 
2518 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2519 {
2520 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2521 	u8 delta_iqk;
2522 
2523 	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2524 	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2525 		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2526 		return true;
2527 	}
2528 	return false;
2529 }
2530 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2531 
2532 static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev,
2533 				       enum rtw_bb_path tx_path_sel_1ss)
2534 {
2535 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2536 	enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss;
2537 	const struct rtw_chip_info *chip = rtwdev->chip;
2538 
2539 	if (tx_path_sel_1ss == path_div->current_tx_path)
2540 		return;
2541 
2542 	path_div->current_tx_path = tx_path_sel_1ss;
2543 	rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n",
2544 		tx_path_sel_1ss == BB_PATH_A ? "A" : "B");
2545 	chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx,
2546 				  tx_path_sel_1ss, tx_path_sel_cck, false);
2547 }
2548 
2549 static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev)
2550 {
2551 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2552 	enum rtw_bb_path path = path_div->current_tx_path;
2553 	s32 rssi_a = 0, rssi_b = 0;
2554 
2555 	if (path_div->path_a_cnt)
2556 		rssi_a = path_div->path_a_sum / path_div->path_a_cnt;
2557 	else
2558 		rssi_a = 0;
2559 	if (path_div->path_b_cnt)
2560 		rssi_b = path_div->path_b_sum / path_div->path_b_cnt;
2561 	else
2562 		rssi_b = 0;
2563 
2564 	if (rssi_a != rssi_b)
2565 		path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B;
2566 
2567 	path_div->path_a_cnt = 0;
2568 	path_div->path_a_sum = 0;
2569 	path_div->path_b_cnt = 0;
2570 	path_div->path_b_sum = 0;
2571 	rtw_phy_set_tx_path_by_reg(rtwdev, path);
2572 }
2573 
2574 static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev)
2575 {
2576 	if (rtwdev->hal.antenna_rx != BB_PATH_AB) {
2577 		rtw_dbg(rtwdev, RTW_DBG_PATH_DIV,
2578 			"[Return] tx_Path_en=%d, rx_Path_en=%d\n",
2579 			rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx);
2580 		return;
2581 	}
2582 	if (rtwdev->sta_cnt == 0) {
2583 		rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n");
2584 		return;
2585 	}
2586 
2587 	rtw_phy_tx_path_div_select(rtwdev);
2588 }
2589 
2590 void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev)
2591 {
2592 	const struct rtw_chip_info *chip = rtwdev->chip;
2593 
2594 	if (!chip->path_div_supported)
2595 		return;
2596 
2597 	rtw_phy_tx_path_diversity_2ss(rtwdev);
2598 }
2599