xref: /linux/drivers/net/wireless/realtek/rtw88/phy.c (revision 7bb377107c72a40ab7505341f8626c8eb79a0cb7)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 
13 struct phy_cfg_pair {
14 	u32 addr;
15 	u32 data;
16 };
17 
18 union phy_table_tile {
19 	struct rtw_phy_cond cond;
20 	struct phy_cfg_pair cfg;
21 };
22 
23 static const u32 db_invert_table[12][8] = {
24 	{10,		13,		16,		20,
25 	 25,		32,		40,		50},
26 	{64,		80,		101,		128,
27 	 160,		201,		256,		318},
28 	{401,		505,		635,		800,
29 	 1007,		1268,		1596,		2010},
30 	{316,		398,		501,		631,
31 	 794,		1000,		1259,		1585},
32 	{1995,		2512,		3162,		3981,
33 	 5012,		6310,		7943,		10000},
34 	{12589,		15849,		19953,		25119,
35 	 31623,		39811,		50119,		63098},
36 	{79433,		100000,		125893,		158489,
37 	 199526,	251189,		316228,		398107},
38 	{501187,	630957,		794328,		1000000,
39 	 1258925,	1584893,	1995262,	2511886},
40 	{3162278,	3981072,	5011872,	6309573,
41 	 7943282,	1000000,	12589254,	15848932},
42 	{19952623,	25118864,	31622777,	39810717,
43 	 50118723,	63095734,	79432823,	100000000},
44 	{125892541,	158489319,	199526232,	251188643,
45 	 316227766,	398107171,	501187234,	630957345},
46 	{794328235,	1000000000,	1258925412,	1584893192,
47 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
48 };
49 
50 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
51 u8 rtw_ofdm_rates[] = {
52 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
53 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
54 	DESC_RATE48M, DESC_RATE54M
55 };
56 u8 rtw_ht_1s_rates[] = {
57 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
58 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
59 	DESC_RATEMCS6, DESC_RATEMCS7
60 };
61 u8 rtw_ht_2s_rates[] = {
62 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
63 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
64 	DESC_RATEMCS14, DESC_RATEMCS15
65 };
66 u8 rtw_vht_1s_rates[] = {
67 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
68 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
69 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
70 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
71 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
72 };
73 u8 rtw_vht_2s_rates[] = {
74 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
75 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
76 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
77 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
78 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
79 };
80 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
81 	rtw_cck_rates, rtw_ofdm_rates,
82 	rtw_ht_1s_rates, rtw_ht_2s_rates,
83 	rtw_vht_1s_rates, rtw_vht_2s_rates
84 };
85 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
86 	ARRAY_SIZE(rtw_cck_rates),
87 	ARRAY_SIZE(rtw_ofdm_rates),
88 	ARRAY_SIZE(rtw_ht_1s_rates),
89 	ARRAY_SIZE(rtw_ht_2s_rates),
90 	ARRAY_SIZE(rtw_vht_1s_rates),
91 	ARRAY_SIZE(rtw_vht_2s_rates)
92 };
93 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
94 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
95 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
96 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
97 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
98 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
99 
100 enum rtw_phy_band_type {
101 	PHY_BAND_2G	= 0,
102 	PHY_BAND_5G	= 1,
103 };
104 
105 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
106 {
107 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
108 	u8 i, j;
109 
110 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
111 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
112 			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
113 	}
114 
115 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
116 }
117 
118 void rtw_phy_init(struct rtw_dev *rtwdev)
119 {
120 	struct rtw_chip_info *chip = rtwdev->chip;
121 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
122 	u32 addr, mask;
123 
124 	dm_info->fa_history[3] = 0;
125 	dm_info->fa_history[2] = 0;
126 	dm_info->fa_history[1] = 0;
127 	dm_info->fa_history[0] = 0;
128 	dm_info->igi_bitmap = 0;
129 	dm_info->igi_history[3] = 0;
130 	dm_info->igi_history[2] = 0;
131 	dm_info->igi_history[1] = 0;
132 
133 	addr = chip->dig[0].addr;
134 	mask = chip->dig[0].mask;
135 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
136 	rtw_phy_cck_pd_init(rtwdev);
137 }
138 
139 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
140 {
141 	struct rtw_chip_info *chip = rtwdev->chip;
142 	struct rtw_hal *hal = &rtwdev->hal;
143 	const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
144 	u32 addr, mask;
145 	u8 path;
146 
147 	if (dig_cck)
148 		rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
149 
150 	for (path = 0; path < hal->rf_path_num; path++) {
151 		addr = chip->dig[path].addr;
152 		mask = chip->dig[path].mask;
153 		rtw_write32_mask(rtwdev, addr, mask, igi);
154 	}
155 }
156 
157 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
158 {
159 	struct rtw_chip_info *chip = rtwdev->chip;
160 
161 	chip->ops->false_alarm_statistics(rtwdev);
162 }
163 
164 #define RA_FLOOR_TABLE_SIZE	7
165 #define RA_FLOOR_UP_GAP		3
166 
167 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
168 {
169 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
170 	u8 new_level = 0;
171 	int i;
172 
173 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
174 		if (i >= old_level)
175 			table[i] += RA_FLOOR_UP_GAP;
176 
177 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
178 		if (rssi < table[i]) {
179 			new_level = i;
180 			break;
181 		}
182 	}
183 
184 	return new_level;
185 }
186 
187 struct rtw_phy_stat_iter_data {
188 	struct rtw_dev *rtwdev;
189 	u8 min_rssi;
190 };
191 
192 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
193 {
194 	struct rtw_phy_stat_iter_data *iter_data = data;
195 	struct rtw_dev *rtwdev = iter_data->rtwdev;
196 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
197 	u8 rssi;
198 
199 	rssi = ewma_rssi_read(&si->avg_rssi);
200 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
201 
202 	rtw_fw_send_rssi_info(rtwdev, si);
203 
204 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
205 }
206 
207 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
208 {
209 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
210 	struct rtw_phy_stat_iter_data data = {};
211 
212 	data.rtwdev = rtwdev;
213 	data.min_rssi = U8_MAX;
214 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
215 
216 	dm_info->pre_min_rssi = dm_info->min_rssi;
217 	dm_info->min_rssi = data.min_rssi;
218 }
219 
220 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
221 {
222 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
223 
224 	dm_info->last_pkt_count = dm_info->cur_pkt_count;
225 	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
226 }
227 
228 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
229 {
230 	rtw_phy_stat_rssi(rtwdev);
231 	rtw_phy_stat_false_alarm(rtwdev);
232 	rtw_phy_stat_rate_cnt(rtwdev);
233 }
234 
235 #define DIG_PERF_FA_TH_LOW			250
236 #define DIG_PERF_FA_TH_HIGH			500
237 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
238 #define DIG_PERF_MAX				0x5a
239 #define DIG_PERF_MID				0x40
240 #define DIG_CVRG_FA_TH_LOW			2000
241 #define DIG_CVRG_FA_TH_HIGH			4000
242 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
243 #define DIG_CVRG_MAX				0x2a
244 #define DIG_CVRG_MID				0x26
245 #define DIG_CVRG_MIN				0x1c
246 #define DIG_RSSI_GAIN_OFFSET			15
247 
248 static bool
249 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
250 {
251 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
252 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
253 	u16 *fa_history;
254 	u8 *igi_history;
255 	u8 damping_rssi;
256 	u8 min_rssi;
257 	u8 diff;
258 	u8 igi_bitmap;
259 	bool damping = false;
260 
261 	min_rssi = dm_info->min_rssi;
262 	if (dm_info->damping) {
263 		damping_rssi = dm_info->damping_rssi;
264 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
265 						 damping_rssi - min_rssi;
266 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
267 			dm_info->damping = false;
268 			return false;
269 		}
270 
271 		return true;
272 	}
273 
274 	igi_history = dm_info->igi_history;
275 	fa_history = dm_info->fa_history;
276 	igi_bitmap = dm_info->igi_bitmap & 0xf;
277 	switch (igi_bitmap) {
278 	case 5:
279 		/* down -> up -> down -> up */
280 		if (igi_history[0] > igi_history[1] &&
281 		    igi_history[2] > igi_history[3] &&
282 		    igi_history[0] - igi_history[1] >= 2 &&
283 		    igi_history[2] - igi_history[3] >= 2 &&
284 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
285 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
286 			damping = true;
287 		break;
288 	case 9:
289 		/* up -> down -> down -> up */
290 		if (igi_history[0] > igi_history[1] &&
291 		    igi_history[3] > igi_history[2] &&
292 		    igi_history[0] - igi_history[1] >= 4 &&
293 		    igi_history[3] - igi_history[2] >= 2 &&
294 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
295 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
296 			damping = true;
297 		break;
298 	default:
299 		return false;
300 	}
301 
302 	if (damping) {
303 		dm_info->damping = true;
304 		dm_info->damping_cnt = 0;
305 		dm_info->damping_rssi = min_rssi;
306 	}
307 
308 	return damping;
309 }
310 
311 static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
312 				     u8 *upper, u8 *lower, bool linked)
313 {
314 	u8 dig_max, dig_min, dig_mid;
315 	u8 min_rssi;
316 
317 	if (linked) {
318 		dig_max = DIG_PERF_MAX;
319 		dig_mid = DIG_PERF_MID;
320 		/* 22B=0x1c, 22C=0x20 */
321 		dig_min = 0x1c;
322 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
323 	} else {
324 		dig_max = DIG_CVRG_MAX;
325 		dig_mid = DIG_CVRG_MID;
326 		dig_min = DIG_CVRG_MIN;
327 		min_rssi = dig_min;
328 	}
329 
330 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
331 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
332 
333 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
334 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
335 }
336 
337 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
338 				      u16 *fa_th, u8 *step, bool linked)
339 {
340 	u8 min_rssi, pre_min_rssi;
341 
342 	min_rssi = dm_info->min_rssi;
343 	pre_min_rssi = dm_info->pre_min_rssi;
344 	step[0] = 4;
345 	step[1] = 3;
346 	step[2] = 2;
347 
348 	if (linked) {
349 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
350 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
351 		fa_th[2] = DIG_PERF_FA_TH_LOW;
352 		if (pre_min_rssi > min_rssi) {
353 			step[0] = 6;
354 			step[1] = 4;
355 			step[2] = 2;
356 		}
357 	} else {
358 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
359 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
360 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
361 	}
362 }
363 
364 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
365 {
366 	u8 *igi_history;
367 	u16 *fa_history;
368 	u8 igi_bitmap;
369 	bool up;
370 
371 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
372 	igi_history = dm_info->igi_history;
373 	fa_history = dm_info->fa_history;
374 
375 	up = igi > igi_history[0];
376 	igi_bitmap |= up;
377 
378 	igi_history[3] = igi_history[2];
379 	igi_history[2] = igi_history[1];
380 	igi_history[1] = igi_history[0];
381 	igi_history[0] = igi;
382 
383 	fa_history[3] = fa_history[2];
384 	fa_history[2] = fa_history[1];
385 	fa_history[1] = fa_history[0];
386 	fa_history[0] = fa;
387 
388 	dm_info->igi_bitmap = igi_bitmap;
389 }
390 
391 static void rtw_phy_dig(struct rtw_dev *rtwdev)
392 {
393 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
394 	u8 upper_bound, lower_bound;
395 	u8 pre_igi, cur_igi;
396 	u16 fa_th[3], fa_cnt;
397 	u8 level;
398 	u8 step[3];
399 	bool linked;
400 
401 	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
402 		return;
403 
404 	if (rtw_phy_dig_check_damping(dm_info))
405 		return;
406 
407 	linked = !!rtwdev->sta_cnt;
408 
409 	fa_cnt = dm_info->total_fa_cnt;
410 	pre_igi = dm_info->igi_history[0];
411 
412 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
413 
414 	/* test the false alarm count from the highest threshold level first,
415 	 * and increase it by corresponding step size
416 	 *
417 	 * note that the step size is offset by -2, compensate it afterall
418 	 */
419 	cur_igi = pre_igi;
420 	for (level = 0; level < 3; level++) {
421 		if (fa_cnt > fa_th[level]) {
422 			cur_igi += step[level];
423 			break;
424 		}
425 	}
426 	cur_igi -= 2;
427 
428 	/* calculate the upper/lower bound by the minimum rssi we have among
429 	 * the peers connected with us, meanwhile make sure the igi value does
430 	 * not beyond the hardware limitation
431 	 */
432 	rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
433 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
434 
435 	/* record current igi value and false alarm statistics for further
436 	 * damping checks, and record the trend of igi values
437 	 */
438 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
439 
440 	if (cur_igi != pre_igi)
441 		rtw_phy_dig_write(rtwdev, cur_igi);
442 }
443 
444 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
445 {
446 	struct rtw_dev *rtwdev = data;
447 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
448 
449 	rtw_update_sta_info(rtwdev, si);
450 }
451 
452 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
453 {
454 	if (rtwdev->watch_dog_cnt & 0x3)
455 		return;
456 
457 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
458 }
459 
460 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
461 {
462 	struct rtw_chip_info *chip = rtwdev->chip;
463 
464 	if (chip->ops->dpk_track)
465 		chip->ops->dpk_track(rtwdev);
466 }
467 
468 #define CCK_PD_FA_LV1_MIN	1000
469 #define CCK_PD_FA_LV0_MAX	500
470 
471 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
472 {
473 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
474 	u32 cck_fa_avg = dm_info->cck_fa_avg;
475 
476 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
477 		return CCK_PD_LV1;
478 
479 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
480 		return CCK_PD_LV0;
481 
482 	return CCK_PD_LV_MAX;
483 }
484 
485 #define CCK_PD_IGI_LV4_VAL 0x38
486 #define CCK_PD_IGI_LV3_VAL 0x2a
487 #define CCK_PD_IGI_LV2_VAL 0x24
488 #define CCK_PD_RSSI_LV4_VAL 32
489 #define CCK_PD_RSSI_LV3_VAL 32
490 #define CCK_PD_RSSI_LV2_VAL 24
491 
492 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
493 {
494 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
495 	u8 igi = dm_info->igi_history[0];
496 	u8 rssi = dm_info->min_rssi;
497 	u32 cck_fa_avg = dm_info->cck_fa_avg;
498 
499 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
500 		return CCK_PD_LV4;
501 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
502 		return CCK_PD_LV3;
503 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
504 		return CCK_PD_LV2;
505 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
506 		return CCK_PD_LV1;
507 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
508 		return CCK_PD_LV0;
509 
510 	return CCK_PD_LV_MAX;
511 }
512 
513 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
514 {
515 	if (!rtw_is_assoc(rtwdev))
516 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
517 	else
518 		return rtw_phy_cck_pd_lv_link(rtwdev);
519 }
520 
521 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
522 {
523 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
524 	struct rtw_chip_info *chip = rtwdev->chip;
525 	u32 cck_fa = dm_info->cck_fa_cnt;
526 	u8 level;
527 
528 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
529 		return;
530 
531 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
532 		dm_info->cck_fa_avg = cck_fa;
533 	else
534 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
535 
536 	level = rtw_phy_cck_pd_lv(rtwdev);
537 
538 	if (level >= CCK_PD_LV_MAX)
539 		return;
540 
541 	if (chip->ops->cck_pd_set)
542 		chip->ops->cck_pd_set(rtwdev, level);
543 }
544 
545 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
546 {
547 	rtwdev->chip->ops->pwr_track(rtwdev);
548 }
549 
550 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
551 {
552 	/* for further calculation */
553 	rtw_phy_statistics(rtwdev);
554 	rtw_phy_dig(rtwdev);
555 	rtw_phy_cck_pd(rtwdev);
556 	rtw_phy_ra_info_update(rtwdev);
557 	rtw_phy_dpk_track(rtwdev);
558 	rtw_phy_pwr_track(rtwdev);
559 }
560 
561 #define FRAC_BITS 3
562 
563 static u8 rtw_phy_power_2_db(s8 power)
564 {
565 	if (power <= -100 || power >= 20)
566 		return 0;
567 	else if (power >= 0)
568 		return 100;
569 	else
570 		return 100 + power;
571 }
572 
573 static u64 rtw_phy_db_2_linear(u8 power_db)
574 {
575 	u8 i, j;
576 	u64 linear;
577 
578 	if (power_db > 96)
579 		power_db = 96;
580 	else if (power_db < 1)
581 		return 1;
582 
583 	/* 1dB ~ 96dB */
584 	i = (power_db - 1) >> 3;
585 	j = (power_db - 1) - (i << 3);
586 
587 	linear = db_invert_table[i][j];
588 	linear = i > 2 ? linear << FRAC_BITS : linear;
589 
590 	return linear;
591 }
592 
593 static u8 rtw_phy_linear_2_db(u64 linear)
594 {
595 	u8 i;
596 	u8 j;
597 	u32 dB;
598 
599 	if (linear >= db_invert_table[11][7])
600 		return 96; /* maximum 96 dB */
601 
602 	for (i = 0; i < 12; i++) {
603 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
604 			break;
605 		else if (i > 2 && linear <= db_invert_table[i][7])
606 			break;
607 	}
608 
609 	for (j = 0; j < 8; j++) {
610 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
611 			break;
612 		else if (i > 2 && linear <= db_invert_table[i][j])
613 			break;
614 	}
615 
616 	if (j == 0 && i == 0)
617 		goto end;
618 
619 	if (j == 0) {
620 		if (i != 3) {
621 			if (db_invert_table[i][0] - linear >
622 			    linear - db_invert_table[i - 1][7]) {
623 				i = i - 1;
624 				j = 7;
625 			}
626 		} else {
627 			if (db_invert_table[3][0] - linear >
628 			    linear - db_invert_table[2][7]) {
629 				i = 2;
630 				j = 7;
631 			}
632 		}
633 	} else {
634 		if (db_invert_table[i][j] - linear >
635 		    linear - db_invert_table[i][j - 1]) {
636 			j = j - 1;
637 		}
638 	}
639 end:
640 	dB = (i << 3) + j + 1;
641 
642 	return dB;
643 }
644 
645 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
646 {
647 	s8 power;
648 	u8 power_db;
649 	u64 linear;
650 	u64 sum = 0;
651 	u8 path;
652 
653 	for (path = 0; path < path_num; path++) {
654 		power = rf_power[path];
655 		power_db = rtw_phy_power_2_db(power);
656 		linear = rtw_phy_db_2_linear(power_db);
657 		sum += linear;
658 	}
659 
660 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
661 	switch (path_num) {
662 	case 2:
663 		sum >>= 1;
664 		break;
665 	case 3:
666 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
667 		break;
668 	case 4:
669 		sum >>= 2;
670 		break;
671 	default:
672 		break;
673 	}
674 
675 	return rtw_phy_linear_2_db(sum);
676 }
677 
678 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
679 		    u32 addr, u32 mask)
680 {
681 	struct rtw_hal *hal = &rtwdev->hal;
682 	struct rtw_chip_info *chip = rtwdev->chip;
683 	const u32 *base_addr = chip->rf_base_addr;
684 	u32 val, direct_addr;
685 
686 	if (rf_path >= hal->rf_phy_num) {
687 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
688 		return INV_RF_DATA;
689 	}
690 
691 	addr &= 0xff;
692 	direct_addr = base_addr[rf_path] + (addr << 2);
693 	mask &= RFREG_MASK;
694 
695 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
696 
697 	return val;
698 }
699 
700 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
701 			 u32 addr, u32 mask)
702 {
703 	struct rtw_hal *hal = &rtwdev->hal;
704 	struct rtw_chip_info *chip = rtwdev->chip;
705 	const struct rtw_rf_sipi_addr *rf_sipi_addr;
706 	const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
707 	u32 val32;
708 	u32 en_pi;
709 	u32 r_addr;
710 	u32 shift;
711 
712 	if (rf_path >= hal->rf_phy_num) {
713 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
714 		return INV_RF_DATA;
715 	}
716 
717 	if (!chip->rf_sipi_read_addr) {
718 		rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
719 		return INV_RF_DATA;
720 	}
721 
722 	rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
723 	rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
724 
725 	addr &= 0xff;
726 
727 	val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
728 	val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
729 	rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
730 
731 	/* toggle read edge of path A */
732 	val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
733 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
734 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
735 
736 	udelay(120);
737 
738 	en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
739 	r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
740 
741 	val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
742 
743 	shift = __ffs(mask);
744 
745 	return (val32 & mask) >> shift;
746 }
747 
748 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
749 			       u32 addr, u32 mask, u32 data)
750 {
751 	struct rtw_hal *hal = &rtwdev->hal;
752 	struct rtw_chip_info *chip = rtwdev->chip;
753 	u32 *sipi_addr = chip->rf_sipi_addr;
754 	u32 data_and_addr;
755 	u32 old_data = 0;
756 	u32 shift;
757 
758 	if (rf_path >= hal->rf_phy_num) {
759 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
760 		return false;
761 	}
762 
763 	addr &= 0xff;
764 	mask &= RFREG_MASK;
765 
766 	if (mask != RFREG_MASK) {
767 		old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
768 
769 		if (old_data == INV_RF_DATA) {
770 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
771 			return false;
772 		}
773 
774 		shift = __ffs(mask);
775 		data = ((old_data) & (~mask)) | (data << shift);
776 	}
777 
778 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
779 
780 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
781 
782 	udelay(13);
783 
784 	return true;
785 }
786 
787 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
788 			  u32 addr, u32 mask, u32 data)
789 {
790 	struct rtw_hal *hal = &rtwdev->hal;
791 	struct rtw_chip_info *chip = rtwdev->chip;
792 	const u32 *base_addr = chip->rf_base_addr;
793 	u32 direct_addr;
794 
795 	if (rf_path >= hal->rf_phy_num) {
796 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
797 		return false;
798 	}
799 
800 	addr &= 0xff;
801 	direct_addr = base_addr[rf_path] + (addr << 2);
802 	mask &= RFREG_MASK;
803 
804 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
805 
806 	udelay(1);
807 
808 	return true;
809 }
810 
811 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
812 			      u32 addr, u32 mask, u32 data)
813 {
814 	if (addr != 0x00)
815 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
816 
817 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
818 }
819 
820 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
821 {
822 	struct rtw_hal *hal = &rtwdev->hal;
823 	struct rtw_efuse *efuse = &rtwdev->efuse;
824 	struct rtw_phy_cond cond = {0};
825 
826 	cond.cut = hal->cut_version ? hal->cut_version : 15;
827 	cond.pkg = pkg ? pkg : 15;
828 	cond.plat = 0x04;
829 	cond.rfe = efuse->rfe_option;
830 
831 	switch (rtw_hci_type(rtwdev)) {
832 	case RTW_HCI_TYPE_USB:
833 		cond.intf = INTF_USB;
834 		break;
835 	case RTW_HCI_TYPE_SDIO:
836 		cond.intf = INTF_SDIO;
837 		break;
838 	case RTW_HCI_TYPE_PCIE:
839 	default:
840 		cond.intf = INTF_PCIE;
841 		break;
842 	}
843 
844 	hal->phy_cond = cond;
845 
846 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
847 }
848 
849 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
850 {
851 	struct rtw_hal *hal = &rtwdev->hal;
852 	struct rtw_phy_cond drv_cond = hal->phy_cond;
853 
854 	if (cond.cut && cond.cut != drv_cond.cut)
855 		return false;
856 
857 	if (cond.pkg && cond.pkg != drv_cond.pkg)
858 		return false;
859 
860 	if (cond.intf && cond.intf != drv_cond.intf)
861 		return false;
862 
863 	if (cond.rfe != drv_cond.rfe)
864 		return false;
865 
866 	return true;
867 }
868 
869 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
870 {
871 	const union phy_table_tile *p = tbl->data;
872 	const union phy_table_tile *end = p + tbl->size / 2;
873 	struct rtw_phy_cond pos_cond = {0};
874 	bool is_matched = true, is_skipped = false;
875 
876 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
877 
878 	for (; p < end; p++) {
879 		if (p->cond.pos) {
880 			switch (p->cond.branch) {
881 			case BRANCH_ENDIF:
882 				is_matched = true;
883 				is_skipped = false;
884 				break;
885 			case BRANCH_ELSE:
886 				is_matched = is_skipped ? false : true;
887 				break;
888 			case BRANCH_IF:
889 			case BRANCH_ELIF:
890 			default:
891 				pos_cond = p->cond;
892 				break;
893 			}
894 		} else if (p->cond.neg) {
895 			if (!is_skipped) {
896 				if (check_positive(rtwdev, pos_cond)) {
897 					is_matched = true;
898 					is_skipped = true;
899 				} else {
900 					is_matched = false;
901 					is_skipped = false;
902 				}
903 			} else {
904 				is_matched = false;
905 			}
906 		} else if (is_matched) {
907 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
908 		}
909 	}
910 }
911 
912 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
913 
914 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
915 {
916 	if (rtwdev->chip->is_pwr_by_rate_dec)
917 		return bcd_to_dec_pwr_by_rate(hex, i);
918 
919 	return (hex >> (i * 8)) & 0xFF;
920 }
921 
922 static void
923 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
924 					 u32 addr, u32 mask, u32 val, u8 *rate,
925 					 u8 *pwr_by_rate, u8 *rate_num)
926 {
927 	int i;
928 
929 	switch (addr) {
930 	case 0xE00:
931 	case 0x830:
932 		rate[0] = DESC_RATE6M;
933 		rate[1] = DESC_RATE9M;
934 		rate[2] = DESC_RATE12M;
935 		rate[3] = DESC_RATE18M;
936 		for (i = 0; i < 4; ++i)
937 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
938 		*rate_num = 4;
939 		break;
940 	case 0xE04:
941 	case 0x834:
942 		rate[0] = DESC_RATE24M;
943 		rate[1] = DESC_RATE36M;
944 		rate[2] = DESC_RATE48M;
945 		rate[3] = DESC_RATE54M;
946 		for (i = 0; i < 4; ++i)
947 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
948 		*rate_num = 4;
949 		break;
950 	case 0xE08:
951 		rate[0] = DESC_RATE1M;
952 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
953 		*rate_num = 1;
954 		break;
955 	case 0x86C:
956 		if (mask == 0xffffff00) {
957 			rate[0] = DESC_RATE2M;
958 			rate[1] = DESC_RATE5_5M;
959 			rate[2] = DESC_RATE11M;
960 			for (i = 1; i < 4; ++i)
961 				pwr_by_rate[i - 1] =
962 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
963 			*rate_num = 3;
964 		} else if (mask == 0x000000ff) {
965 			rate[0] = DESC_RATE11M;
966 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
967 			*rate_num = 1;
968 		}
969 		break;
970 	case 0xE10:
971 	case 0x83C:
972 		rate[0] = DESC_RATEMCS0;
973 		rate[1] = DESC_RATEMCS1;
974 		rate[2] = DESC_RATEMCS2;
975 		rate[3] = DESC_RATEMCS3;
976 		for (i = 0; i < 4; ++i)
977 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
978 		*rate_num = 4;
979 		break;
980 	case 0xE14:
981 	case 0x848:
982 		rate[0] = DESC_RATEMCS4;
983 		rate[1] = DESC_RATEMCS5;
984 		rate[2] = DESC_RATEMCS6;
985 		rate[3] = DESC_RATEMCS7;
986 		for (i = 0; i < 4; ++i)
987 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
988 		*rate_num = 4;
989 		break;
990 	case 0xE18:
991 	case 0x84C:
992 		rate[0] = DESC_RATEMCS8;
993 		rate[1] = DESC_RATEMCS9;
994 		rate[2] = DESC_RATEMCS10;
995 		rate[3] = DESC_RATEMCS11;
996 		for (i = 0; i < 4; ++i)
997 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
998 		*rate_num = 4;
999 		break;
1000 	case 0xE1C:
1001 	case 0x868:
1002 		rate[0] = DESC_RATEMCS12;
1003 		rate[1] = DESC_RATEMCS13;
1004 		rate[2] = DESC_RATEMCS14;
1005 		rate[3] = DESC_RATEMCS15;
1006 		for (i = 0; i < 4; ++i)
1007 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1008 		*rate_num = 4;
1009 		break;
1010 	case 0x838:
1011 		rate[0] = DESC_RATE1M;
1012 		rate[1] = DESC_RATE2M;
1013 		rate[2] = DESC_RATE5_5M;
1014 		for (i = 1; i < 4; ++i)
1015 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1016 								    val, i);
1017 		*rate_num = 3;
1018 		break;
1019 	case 0xC20:
1020 	case 0xE20:
1021 	case 0x1820:
1022 	case 0x1A20:
1023 		rate[0] = DESC_RATE1M;
1024 		rate[1] = DESC_RATE2M;
1025 		rate[2] = DESC_RATE5_5M;
1026 		rate[3] = DESC_RATE11M;
1027 		for (i = 0; i < 4; ++i)
1028 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1029 		*rate_num = 4;
1030 		break;
1031 	case 0xC24:
1032 	case 0xE24:
1033 	case 0x1824:
1034 	case 0x1A24:
1035 		rate[0] = DESC_RATE6M;
1036 		rate[1] = DESC_RATE9M;
1037 		rate[2] = DESC_RATE12M;
1038 		rate[3] = DESC_RATE18M;
1039 		for (i = 0; i < 4; ++i)
1040 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1041 		*rate_num = 4;
1042 		break;
1043 	case 0xC28:
1044 	case 0xE28:
1045 	case 0x1828:
1046 	case 0x1A28:
1047 		rate[0] = DESC_RATE24M;
1048 		rate[1] = DESC_RATE36M;
1049 		rate[2] = DESC_RATE48M;
1050 		rate[3] = DESC_RATE54M;
1051 		for (i = 0; i < 4; ++i)
1052 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1053 		*rate_num = 4;
1054 		break;
1055 	case 0xC2C:
1056 	case 0xE2C:
1057 	case 0x182C:
1058 	case 0x1A2C:
1059 		rate[0] = DESC_RATEMCS0;
1060 		rate[1] = DESC_RATEMCS1;
1061 		rate[2] = DESC_RATEMCS2;
1062 		rate[3] = DESC_RATEMCS3;
1063 		for (i = 0; i < 4; ++i)
1064 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1065 		*rate_num = 4;
1066 		break;
1067 	case 0xC30:
1068 	case 0xE30:
1069 	case 0x1830:
1070 	case 0x1A30:
1071 		rate[0] = DESC_RATEMCS4;
1072 		rate[1] = DESC_RATEMCS5;
1073 		rate[2] = DESC_RATEMCS6;
1074 		rate[3] = DESC_RATEMCS7;
1075 		for (i = 0; i < 4; ++i)
1076 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1077 		*rate_num = 4;
1078 		break;
1079 	case 0xC34:
1080 	case 0xE34:
1081 	case 0x1834:
1082 	case 0x1A34:
1083 		rate[0] = DESC_RATEMCS8;
1084 		rate[1] = DESC_RATEMCS9;
1085 		rate[2] = DESC_RATEMCS10;
1086 		rate[3] = DESC_RATEMCS11;
1087 		for (i = 0; i < 4; ++i)
1088 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1089 		*rate_num = 4;
1090 		break;
1091 	case 0xC38:
1092 	case 0xE38:
1093 	case 0x1838:
1094 	case 0x1A38:
1095 		rate[0] = DESC_RATEMCS12;
1096 		rate[1] = DESC_RATEMCS13;
1097 		rate[2] = DESC_RATEMCS14;
1098 		rate[3] = DESC_RATEMCS15;
1099 		for (i = 0; i < 4; ++i)
1100 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1101 		*rate_num = 4;
1102 		break;
1103 	case 0xC3C:
1104 	case 0xE3C:
1105 	case 0x183C:
1106 	case 0x1A3C:
1107 		rate[0] = DESC_RATEVHT1SS_MCS0;
1108 		rate[1] = DESC_RATEVHT1SS_MCS1;
1109 		rate[2] = DESC_RATEVHT1SS_MCS2;
1110 		rate[3] = DESC_RATEVHT1SS_MCS3;
1111 		for (i = 0; i < 4; ++i)
1112 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1113 		*rate_num = 4;
1114 		break;
1115 	case 0xC40:
1116 	case 0xE40:
1117 	case 0x1840:
1118 	case 0x1A40:
1119 		rate[0] = DESC_RATEVHT1SS_MCS4;
1120 		rate[1] = DESC_RATEVHT1SS_MCS5;
1121 		rate[2] = DESC_RATEVHT1SS_MCS6;
1122 		rate[3] = DESC_RATEVHT1SS_MCS7;
1123 		for (i = 0; i < 4; ++i)
1124 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1125 		*rate_num = 4;
1126 		break;
1127 	case 0xC44:
1128 	case 0xE44:
1129 	case 0x1844:
1130 	case 0x1A44:
1131 		rate[0] = DESC_RATEVHT1SS_MCS8;
1132 		rate[1] = DESC_RATEVHT1SS_MCS9;
1133 		rate[2] = DESC_RATEVHT2SS_MCS0;
1134 		rate[3] = DESC_RATEVHT2SS_MCS1;
1135 		for (i = 0; i < 4; ++i)
1136 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1137 		*rate_num = 4;
1138 		break;
1139 	case 0xC48:
1140 	case 0xE48:
1141 	case 0x1848:
1142 	case 0x1A48:
1143 		rate[0] = DESC_RATEVHT2SS_MCS2;
1144 		rate[1] = DESC_RATEVHT2SS_MCS3;
1145 		rate[2] = DESC_RATEVHT2SS_MCS4;
1146 		rate[3] = DESC_RATEVHT2SS_MCS5;
1147 		for (i = 0; i < 4; ++i)
1148 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1149 		*rate_num = 4;
1150 		break;
1151 	case 0xC4C:
1152 	case 0xE4C:
1153 	case 0x184C:
1154 	case 0x1A4C:
1155 		rate[0] = DESC_RATEVHT2SS_MCS6;
1156 		rate[1] = DESC_RATEVHT2SS_MCS7;
1157 		rate[2] = DESC_RATEVHT2SS_MCS8;
1158 		rate[3] = DESC_RATEVHT2SS_MCS9;
1159 		for (i = 0; i < 4; ++i)
1160 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1161 		*rate_num = 4;
1162 		break;
1163 	case 0xCD8:
1164 	case 0xED8:
1165 	case 0x18D8:
1166 	case 0x1AD8:
1167 		rate[0] = DESC_RATEMCS16;
1168 		rate[1] = DESC_RATEMCS17;
1169 		rate[2] = DESC_RATEMCS18;
1170 		rate[3] = DESC_RATEMCS19;
1171 		for (i = 0; i < 4; ++i)
1172 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1173 		*rate_num = 4;
1174 		break;
1175 	case 0xCDC:
1176 	case 0xEDC:
1177 	case 0x18DC:
1178 	case 0x1ADC:
1179 		rate[0] = DESC_RATEMCS20;
1180 		rate[1] = DESC_RATEMCS21;
1181 		rate[2] = DESC_RATEMCS22;
1182 		rate[3] = DESC_RATEMCS23;
1183 		for (i = 0; i < 4; ++i)
1184 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1185 		*rate_num = 4;
1186 		break;
1187 	case 0xCE0:
1188 	case 0xEE0:
1189 	case 0x18E0:
1190 	case 0x1AE0:
1191 		rate[0] = DESC_RATEVHT3SS_MCS0;
1192 		rate[1] = DESC_RATEVHT3SS_MCS1;
1193 		rate[2] = DESC_RATEVHT3SS_MCS2;
1194 		rate[3] = DESC_RATEVHT3SS_MCS3;
1195 		for (i = 0; i < 4; ++i)
1196 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1197 		*rate_num = 4;
1198 		break;
1199 	case 0xCE4:
1200 	case 0xEE4:
1201 	case 0x18E4:
1202 	case 0x1AE4:
1203 		rate[0] = DESC_RATEVHT3SS_MCS4;
1204 		rate[1] = DESC_RATEVHT3SS_MCS5;
1205 		rate[2] = DESC_RATEVHT3SS_MCS6;
1206 		rate[3] = DESC_RATEVHT3SS_MCS7;
1207 		for (i = 0; i < 4; ++i)
1208 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1209 		*rate_num = 4;
1210 		break;
1211 	case 0xCE8:
1212 	case 0xEE8:
1213 	case 0x18E8:
1214 	case 0x1AE8:
1215 		rate[0] = DESC_RATEVHT3SS_MCS8;
1216 		rate[1] = DESC_RATEVHT3SS_MCS9;
1217 		for (i = 0; i < 2; ++i)
1218 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1219 		*rate_num = 2;
1220 		break;
1221 	default:
1222 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1223 		break;
1224 	}
1225 }
1226 
1227 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1228 					   u32 band, u32 rfpath, u32 txnum,
1229 					   u32 regaddr, u32 bitmask, u32 data)
1230 {
1231 	struct rtw_hal *hal = &rtwdev->hal;
1232 	u8 rate_num = 0;
1233 	u8 rate;
1234 	u8 rates[RTW_RF_PATH_MAX] = {0};
1235 	s8 offset;
1236 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1237 	int i;
1238 
1239 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1240 						 rates, pwr_by_rate, &rate_num);
1241 
1242 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1243 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1244 		    rate_num > RTW_RF_PATH_MAX))
1245 		return;
1246 
1247 	for (i = 0; i < rate_num; i++) {
1248 		offset = pwr_by_rate[i];
1249 		rate = rates[i];
1250 		if (band == PHY_BAND_2G)
1251 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1252 		else if (band == PHY_BAND_5G)
1253 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1254 		else
1255 			continue;
1256 	}
1257 }
1258 
1259 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1260 {
1261 	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1262 	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1263 
1264 	for (; p < end; p++) {
1265 		if (p->addr == 0xfe || p->addr == 0xffe) {
1266 			msleep(50);
1267 			continue;
1268 		}
1269 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1270 					       p->tx_num, p->addr, p->bitmask,
1271 					       p->data);
1272 	}
1273 }
1274 
1275 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1276 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1277 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1278 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1279 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1280 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1281 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1282 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1283 
1284 static int rtw_channel_to_idx(u8 band, u8 channel)
1285 {
1286 	int ch_idx;
1287 	u8 n_channel;
1288 
1289 	if (band == PHY_BAND_2G) {
1290 		ch_idx = channel - 1;
1291 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1292 	} else if (band == PHY_BAND_5G) {
1293 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1294 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1295 			if (rtw_channel_idx_5g[ch_idx] == channel)
1296 				break;
1297 	} else {
1298 		return -1;
1299 	}
1300 
1301 	if (ch_idx >= n_channel)
1302 		return -1;
1303 
1304 	return ch_idx;
1305 }
1306 
1307 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1308 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1309 {
1310 	struct rtw_hal *hal = &rtwdev->hal;
1311 	u8 max_power_index = rtwdev->chip->max_power_index;
1312 	s8 ww;
1313 	int ch_idx;
1314 
1315 	pwr_limit = clamp_t(s8, pwr_limit,
1316 			    -max_power_index, max_power_index);
1317 	ch_idx = rtw_channel_to_idx(band, ch);
1318 
1319 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1320 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1321 		WARN(1,
1322 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1323 		     regd, band, bw, rs, ch_idx, pwr_limit);
1324 		return;
1325 	}
1326 
1327 	if (band == PHY_BAND_2G) {
1328 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1329 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1330 		ww = min_t(s8, ww, pwr_limit);
1331 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1332 	} else if (band == PHY_BAND_5G) {
1333 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1334 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1335 		ww = min_t(s8, ww, pwr_limit);
1336 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1337 	}
1338 }
1339 
1340 /* cross-reference 5G power limits if values are not assigned */
1341 static void
1342 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1343 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1344 {
1345 	struct rtw_hal *hal = &rtwdev->hal;
1346 	u8 max_power_index = rtwdev->chip->max_power_index;
1347 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1348 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1349 
1350 	if (lmt_ht == lmt_vht)
1351 		return;
1352 
1353 	if (lmt_ht == max_power_index)
1354 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1355 
1356 	else if (lmt_vht == max_power_index)
1357 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1358 }
1359 
1360 /* cross-reference power limits for ht and vht */
1361 static void
1362 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1363 {
1364 	u8 rs_idx, rs_ht, rs_vht;
1365 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1366 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1367 
1368 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1369 		rs_ht = rs_cmp[rs_idx][0];
1370 		rs_vht = rs_cmp[rs_idx][1];
1371 
1372 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1373 	}
1374 }
1375 
1376 /* cross-reference power limits for 5G channels */
1377 static void
1378 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1379 {
1380 	u8 ch_idx;
1381 
1382 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1383 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1384 }
1385 
1386 /* cross-reference power limits for 20/40M bandwidth */
1387 static void
1388 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1389 {
1390 	u8 bw;
1391 
1392 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1393 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1394 }
1395 
1396 /* cross-reference power limits */
1397 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1398 {
1399 	u8 regd;
1400 
1401 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1402 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1403 }
1404 
1405 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1406 			     const struct rtw_table *tbl)
1407 {
1408 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1409 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1410 
1411 	for (; p < end; p++) {
1412 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1413 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1414 	}
1415 
1416 	rtw_xref_txpwr_lmt(rtwdev);
1417 }
1418 
1419 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1420 		     u32 addr, u32 data)
1421 {
1422 	rtw_write8(rtwdev, addr, data);
1423 }
1424 
1425 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1426 		     u32 addr, u32 data)
1427 {
1428 	rtw_write32(rtwdev, addr, data);
1429 }
1430 
1431 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1432 		    u32 addr, u32 data)
1433 {
1434 	if (addr == 0xfe)
1435 		msleep(50);
1436 	else if (addr == 0xfd)
1437 		mdelay(5);
1438 	else if (addr == 0xfc)
1439 		mdelay(1);
1440 	else if (addr == 0xfb)
1441 		usleep_range(50, 60);
1442 	else if (addr == 0xfa)
1443 		udelay(5);
1444 	else if (addr == 0xf9)
1445 		udelay(1);
1446 	else
1447 		rtw_write32(rtwdev, addr, data);
1448 }
1449 
1450 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1451 		    u32 addr, u32 data)
1452 {
1453 	if (addr == 0xffe) {
1454 		msleep(50);
1455 	} else if (addr == 0xfe) {
1456 		usleep_range(100, 110);
1457 	} else {
1458 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1459 		udelay(1);
1460 	}
1461 }
1462 
1463 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1464 {
1465 	struct rtw_chip_info *chip = rtwdev->chip;
1466 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1467 
1468 	if (!chip->rfk_init_tbl)
1469 		return;
1470 
1471 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1472 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1473 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1474 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1475 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1476 
1477 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1478 
1479 	dpk_info->is_dpk_pwr_on = true;
1480 }
1481 
1482 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1483 {
1484 	struct rtw_chip_info *chip = rtwdev->chip;
1485 	u8 rf_path;
1486 
1487 	rtw_load_table(rtwdev, chip->mac_tbl);
1488 	rtw_load_table(rtwdev, chip->bb_tbl);
1489 	rtw_load_table(rtwdev, chip->agc_tbl);
1490 	rtw_load_rfk_table(rtwdev);
1491 
1492 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1493 		const struct rtw_table *tbl;
1494 
1495 		tbl = chip->rf_tbl[rf_path];
1496 		rtw_load_table(rtwdev, tbl);
1497 	}
1498 }
1499 
1500 static u8 rtw_get_channel_group(u8 channel)
1501 {
1502 	switch (channel) {
1503 	default:
1504 		WARN_ON(1);
1505 		/* fall through */
1506 	case 1:
1507 	case 2:
1508 	case 36:
1509 	case 38:
1510 	case 40:
1511 	case 42:
1512 		return 0;
1513 	case 3:
1514 	case 4:
1515 	case 5:
1516 	case 44:
1517 	case 46:
1518 	case 48:
1519 	case 50:
1520 		return 1;
1521 	case 6:
1522 	case 7:
1523 	case 8:
1524 	case 52:
1525 	case 54:
1526 	case 56:
1527 	case 58:
1528 		return 2;
1529 	case 9:
1530 	case 10:
1531 	case 11:
1532 	case 60:
1533 	case 62:
1534 	case 64:
1535 		return 3;
1536 	case 12:
1537 	case 13:
1538 	case 100:
1539 	case 102:
1540 	case 104:
1541 	case 106:
1542 		return 4;
1543 	case 14:
1544 	case 108:
1545 	case 110:
1546 	case 112:
1547 	case 114:
1548 		return 5;
1549 	case 116:
1550 	case 118:
1551 	case 120:
1552 	case 122:
1553 		return 6;
1554 	case 124:
1555 	case 126:
1556 	case 128:
1557 	case 130:
1558 		return 7;
1559 	case 132:
1560 	case 134:
1561 	case 136:
1562 	case 138:
1563 		return 8;
1564 	case 140:
1565 	case 142:
1566 	case 144:
1567 		return 9;
1568 	case 149:
1569 	case 151:
1570 	case 153:
1571 	case 155:
1572 		return 10;
1573 	case 157:
1574 	case 159:
1575 	case 161:
1576 		return 11;
1577 	case 165:
1578 	case 167:
1579 	case 169:
1580 	case 171:
1581 		return 12;
1582 	case 173:
1583 	case 175:
1584 	case 177:
1585 		return 13;
1586 	}
1587 }
1588 
1589 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1590 {
1591 	struct rtw_chip_info *chip = rtwdev->chip;
1592 	s8 dpd_diff = 0;
1593 
1594 	if (!chip->en_dis_dpd)
1595 		return 0;
1596 
1597 #define RTW_DPD_RATE_CHECK(_rate)					\
1598 	case DESC_RATE ## _rate:					\
1599 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1600 		dpd_diff = -6 * chip->txgi_factor;			\
1601 	break
1602 
1603 	switch (rate) {
1604 	RTW_DPD_RATE_CHECK(6M);
1605 	RTW_DPD_RATE_CHECK(9M);
1606 	RTW_DPD_RATE_CHECK(MCS0);
1607 	RTW_DPD_RATE_CHECK(MCS1);
1608 	RTW_DPD_RATE_CHECK(MCS8);
1609 	RTW_DPD_RATE_CHECK(MCS9);
1610 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1611 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1612 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1613 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1614 	}
1615 #undef RTW_DPD_RATE_CHECK
1616 
1617 	return dpd_diff;
1618 }
1619 
1620 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1621 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1622 					enum rtw_bandwidth bandwidth,
1623 					u8 rate, u8 group)
1624 {
1625 	struct rtw_chip_info *chip = rtwdev->chip;
1626 	u8 tx_power;
1627 	bool mcs_rate;
1628 	bool above_2ss;
1629 	u8 factor = chip->txgi_factor;
1630 
1631 	if (rate <= DESC_RATE11M)
1632 		tx_power = pwr_idx_2g->cck_base[group];
1633 	else
1634 		tx_power = pwr_idx_2g->bw40_base[group];
1635 
1636 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1637 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1638 
1639 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1640 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1641 		    rate <= DESC_RATEVHT2SS_MCS9);
1642 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1643 		    (rate >= DESC_RATEVHT2SS_MCS0);
1644 
1645 	if (!mcs_rate)
1646 		return tx_power;
1647 
1648 	switch (bandwidth) {
1649 	default:
1650 		WARN_ON(1);
1651 		/* fall through */
1652 	case RTW_CHANNEL_WIDTH_20:
1653 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1654 		if (above_2ss)
1655 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1656 		break;
1657 	case RTW_CHANNEL_WIDTH_40:
1658 		/* bw40 is the base power */
1659 		if (above_2ss)
1660 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1661 		break;
1662 	}
1663 
1664 	return tx_power;
1665 }
1666 
1667 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1668 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1669 					enum rtw_bandwidth bandwidth,
1670 					u8 rate, u8 group)
1671 {
1672 	struct rtw_chip_info *chip = rtwdev->chip;
1673 	u8 tx_power;
1674 	u8 upper, lower;
1675 	bool mcs_rate;
1676 	bool above_2ss;
1677 	u8 factor = chip->txgi_factor;
1678 
1679 	tx_power = pwr_idx_5g->bw40_base[group];
1680 
1681 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1682 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1683 		    rate <= DESC_RATEVHT2SS_MCS9);
1684 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1685 		    (rate >= DESC_RATEVHT2SS_MCS0);
1686 
1687 	if (!mcs_rate) {
1688 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1689 		return tx_power;
1690 	}
1691 
1692 	switch (bandwidth) {
1693 	default:
1694 		WARN_ON(1);
1695 		/* fall through */
1696 	case RTW_CHANNEL_WIDTH_20:
1697 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1698 		if (above_2ss)
1699 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1700 		break;
1701 	case RTW_CHANNEL_WIDTH_40:
1702 		/* bw40 is the base power */
1703 		if (above_2ss)
1704 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1705 		break;
1706 	case RTW_CHANNEL_WIDTH_80:
1707 		/* the base idx of bw80 is the average of bw40+/bw40- */
1708 		lower = pwr_idx_5g->bw40_base[group];
1709 		upper = pwr_idx_5g->bw40_base[group + 1];
1710 
1711 		tx_power = (lower + upper) / 2;
1712 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1713 		if (above_2ss)
1714 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1715 		break;
1716 	}
1717 
1718 	return tx_power;
1719 }
1720 
1721 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1722 				     enum rtw_bandwidth bw, u8 rf_path,
1723 				     u8 rate, u8 channel, u8 regd)
1724 {
1725 	struct rtw_hal *hal = &rtwdev->hal;
1726 	u8 *cch_by_bw = hal->cch_by_bw;
1727 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
1728 	u8 rs;
1729 	int ch_idx;
1730 	u8 cur_bw, cur_ch;
1731 	s8 cur_lmt;
1732 
1733 	if (regd > RTW_REGD_WW)
1734 		return power_limit;
1735 
1736 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1737 		rs = RTW_RATE_SECTION_CCK;
1738 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1739 		rs = RTW_RATE_SECTION_OFDM;
1740 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1741 		rs = RTW_RATE_SECTION_HT_1S;
1742 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1743 		rs = RTW_RATE_SECTION_HT_2S;
1744 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1745 		rs = RTW_RATE_SECTION_VHT_1S;
1746 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1747 		rs = RTW_RATE_SECTION_VHT_2S;
1748 	else
1749 		goto err;
1750 
1751 	/* only 20M BW with cck and ofdm */
1752 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1753 		bw = RTW_CHANNEL_WIDTH_20;
1754 
1755 	/* only 20/40M BW with ht */
1756 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1757 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1758 
1759 	/* select min power limit among [20M BW ~ current BW] */
1760 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1761 		cur_ch = cch_by_bw[cur_bw];
1762 
1763 		ch_idx = rtw_channel_to_idx(band, cur_ch);
1764 		if (ch_idx < 0)
1765 			goto err;
1766 
1767 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1768 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1769 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1770 
1771 		power_limit = min_t(s8, cur_lmt, power_limit);
1772 	}
1773 
1774 	return power_limit;
1775 
1776 err:
1777 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1778 	     band, bw, rf_path, rate, channel);
1779 	return (s8)rtwdev->chip->max_power_index;
1780 }
1781 
1782 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1783 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1784 {
1785 	struct rtw_hal *hal = &rtwdev->hal;
1786 	struct rtw_txpwr_idx *pwr_idx;
1787 	u8 group, band;
1788 	u8 *base = &pwr_param->pwr_base;
1789 	s8 *offset = &pwr_param->pwr_offset;
1790 	s8 *limit = &pwr_param->pwr_limit;
1791 
1792 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1793 	group = rtw_get_channel_group(ch);
1794 
1795 	/* base power index for 2.4G/5G */
1796 	if (IS_CH_2G_BAND(ch)) {
1797 		band = PHY_BAND_2G;
1798 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
1799 						      &pwr_idx->pwr_idx_2g,
1800 						      bw, rate, group);
1801 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1802 	} else {
1803 		band = PHY_BAND_5G;
1804 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
1805 						      &pwr_idx->pwr_idx_5g,
1806 						      bw, rate, group);
1807 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1808 	}
1809 
1810 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1811 					    rate, ch, regd);
1812 }
1813 
1814 u8
1815 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1816 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1817 {
1818 	struct rtw_power_params pwr_param = {0};
1819 	u8 tx_power;
1820 	s8 offset;
1821 
1822 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1823 				channel, regd, &pwr_param);
1824 
1825 	tx_power = pwr_param.pwr_base;
1826 	offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1827 
1828 	if (rtwdev->chip->en_dis_dpd)
1829 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1830 
1831 	tx_power += offset;
1832 
1833 	if (tx_power > rtwdev->chip->max_power_index)
1834 		tx_power = rtwdev->chip->max_power_index;
1835 
1836 	return tx_power;
1837 }
1838 
1839 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1840 					     u8 ch, u8 path, u8 rs)
1841 {
1842 	struct rtw_hal *hal = &rtwdev->hal;
1843 	u8 regd = rtwdev->regd.txpwr_regd;
1844 	u8 *rates;
1845 	u8 size;
1846 	u8 rate;
1847 	u8 pwr_idx;
1848 	u8 bw;
1849 	int i;
1850 
1851 	if (rs >= RTW_RATE_SECTION_MAX)
1852 		return;
1853 
1854 	rates = rtw_rate_section[rs];
1855 	size = rtw_rate_size[rs];
1856 	bw = hal->current_band_width;
1857 	for (i = 0; i < size; i++) {
1858 		rate = rates[i];
1859 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1860 						     bw, ch, regd);
1861 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
1862 	}
1863 }
1864 
1865 /* set tx power level by path for each rates, note that the order of the rates
1866  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1867  * power index into a four-byte power index register, and calls set_tx_agc to
1868  * write these values into hardware
1869  */
1870 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1871 					       u8 ch, u8 path)
1872 {
1873 	struct rtw_hal *hal = &rtwdev->hal;
1874 	u8 rs;
1875 
1876 	/* do not need cck rates if we are not in 2.4G */
1877 	if (hal->current_band_type == RTW_BAND_2G)
1878 		rs = RTW_RATE_SECTION_CCK;
1879 	else
1880 		rs = RTW_RATE_SECTION_OFDM;
1881 
1882 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
1883 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1884 }
1885 
1886 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1887 {
1888 	struct rtw_chip_info *chip = rtwdev->chip;
1889 	struct rtw_hal *hal = &rtwdev->hal;
1890 	u8 path;
1891 
1892 	mutex_lock(&hal->tx_power_mutex);
1893 
1894 	for (path = 0; path < hal->rf_path_num; path++)
1895 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1896 
1897 	chip->ops->set_tx_power_index(rtwdev);
1898 	mutex_unlock(&hal->tx_power_mutex);
1899 }
1900 
1901 static void
1902 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1903 					u8 rs, u8 size, u8 *rates)
1904 {
1905 	u8 rate;
1906 	u8 base_idx, rate_idx;
1907 	s8 base_2g, base_5g;
1908 
1909 	if (rs >= RTW_RATE_SECTION_VHT_1S)
1910 		base_idx = rates[size - 3];
1911 	else
1912 		base_idx = rates[size - 1];
1913 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1914 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1915 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1916 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1917 	for (rate = 0; rate < size; rate++) {
1918 		rate_idx = rates[rate];
1919 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1920 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1921 	}
1922 }
1923 
1924 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1925 {
1926 	u8 path;
1927 
1928 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1929 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1930 				RTW_RATE_SECTION_CCK,
1931 				rtw_cck_size, rtw_cck_rates);
1932 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1933 				RTW_RATE_SECTION_OFDM,
1934 				rtw_ofdm_size, rtw_ofdm_rates);
1935 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1936 				RTW_RATE_SECTION_HT_1S,
1937 				rtw_ht_1s_size, rtw_ht_1s_rates);
1938 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1939 				RTW_RATE_SECTION_HT_2S,
1940 				rtw_ht_2s_size, rtw_ht_2s_rates);
1941 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1942 				RTW_RATE_SECTION_VHT_1S,
1943 				rtw_vht_1s_size, rtw_vht_1s_rates);
1944 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1945 				RTW_RATE_SECTION_VHT_2S,
1946 				rtw_vht_2s_size, rtw_vht_2s_rates);
1947 	}
1948 }
1949 
1950 static void
1951 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1952 {
1953 	s8 base;
1954 	u8 ch;
1955 
1956 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1957 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
1958 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1959 	}
1960 
1961 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1962 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
1963 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
1964 	}
1965 }
1966 
1967 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
1968 {
1969 	u8 regd, bw, rs;
1970 
1971 	/* default at channel 1 */
1972 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
1973 
1974 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1975 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1976 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1977 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
1978 }
1979 
1980 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
1981 					u8 regd, u8 bw, u8 rs)
1982 {
1983 	struct rtw_hal *hal = &rtwdev->hal;
1984 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
1985 	u8 ch;
1986 
1987 	/* 2.4G channels */
1988 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1989 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
1990 
1991 	/* 5G channels */
1992 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1993 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
1994 }
1995 
1996 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
1997 {
1998 	struct rtw_hal *hal = &rtwdev->hal;
1999 	u8 regd, path, rate, rs, bw;
2000 
2001 	/* init tx power by rate offset */
2002 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2003 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2004 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2005 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2006 		}
2007 	}
2008 
2009 	/* init tx power limit */
2010 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2011 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2012 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2013 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2014 							    rs);
2015 }
2016 
2017 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2018 				struct rtw_swing_table *swing_table)
2019 {
2020 	const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2021 	u8 channel = rtwdev->hal.current_channel;
2022 
2023 	if (IS_CH_2G_BAND(channel)) {
2024 		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2025 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2026 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2027 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2028 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2029 		} else {
2030 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2031 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2032 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2033 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2034 		}
2035 	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2036 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2037 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2038 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2039 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2040 	} else if (IS_CH_5G_BAND_3(channel)) {
2041 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2042 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2043 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2044 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2045 	} else if (IS_CH_5G_BAND_4(channel)) {
2046 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2047 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2048 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2049 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2050 	} else {
2051 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2052 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2053 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2054 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2055 	}
2056 }
2057 
2058 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2059 {
2060 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2061 
2062 	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2063 	dm_info->thermal_avg[path] =
2064 		ewma_thermal_read(&dm_info->avg_thermal[path]);
2065 }
2066 
2067 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2068 				      u8 path)
2069 {
2070 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2071 	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2072 
2073 	if (avg == thermal)
2074 		return false;
2075 
2076 	return true;
2077 }
2078 
2079 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2080 {
2081 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2082 	u8 therm_avg, therm_efuse, therm_delta;
2083 
2084 	therm_avg = dm_info->thermal_avg[path];
2085 	therm_efuse = rtwdev->efuse.thermal_meter[path];
2086 	therm_delta = abs(therm_avg - therm_efuse);
2087 
2088 	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2089 }
2090 
2091 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2092 			       struct rtw_swing_table *swing_table,
2093 			       u8 tbl_path, u8 therm_path, u8 delta)
2094 {
2095 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2096 	const u8 *delta_swing_table_idx_pos;
2097 	const u8 *delta_swing_table_idx_neg;
2098 
2099 	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2100 		rtw_warn(rtwdev, "power track table overflow\n");
2101 		return 0;
2102 	}
2103 
2104 	if (!swing_table) {
2105 		rtw_warn(rtwdev, "swing table not configured\n");
2106 		return 0;
2107 	}
2108 
2109 	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2110 	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2111 
2112 	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2113 		rtw_warn(rtwdev, "invalid swing table index\n");
2114 		return 0;
2115 	}
2116 
2117 	if (dm_info->thermal_avg[therm_path] >
2118 	    rtwdev->efuse.thermal_meter[therm_path])
2119 		return delta_swing_table_idx_pos[delta];
2120 	else
2121 		return -delta_swing_table_idx_neg[delta];
2122 }
2123 
2124 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2125 {
2126 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2127 	u8 delta_iqk;
2128 
2129 	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2130 	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2131 		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2132 		return true;
2133 	}
2134 	return false;
2135 }
2136