1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright(c) 2018-2019 Realtek Corporation 3 */ 4 5 #include <linux/bcd.h> 6 7 #include "main.h" 8 #include "reg.h" 9 #include "fw.h" 10 #include "phy.h" 11 #include "debug.h" 12 #include "regd.h" 13 #include "sar.h" 14 15 struct phy_cfg_pair { 16 u32 addr; 17 u32 data; 18 }; 19 20 union phy_table_tile { 21 struct { 22 struct rtw_phy_cond cond; 23 struct rtw_phy_cond2 cond2; 24 } __packed; 25 struct phy_cfg_pair cfg; 26 }; 27 28 static const u32 db_invert_table[12][8] = { 29 {10, 13, 16, 20, 30 25, 32, 40, 50}, 31 {64, 80, 101, 128, 32 160, 201, 256, 318}, 33 {401, 505, 635, 800, 34 1007, 1268, 1596, 2010}, 35 {316, 398, 501, 631, 36 794, 1000, 1259, 1585}, 37 {1995, 2512, 3162, 3981, 38 5012, 6310, 7943, 10000}, 39 {12589, 15849, 19953, 25119, 40 31623, 39811, 50119, 63098}, 41 {79433, 100000, 125893, 158489, 42 199526, 251189, 316228, 398107}, 43 {501187, 630957, 794328, 1000000, 44 1258925, 1584893, 1995262, 2511886}, 45 {3162278, 3981072, 5011872, 6309573, 46 7943282, 1000000, 12589254, 15848932}, 47 {19952623, 25118864, 31622777, 39810717, 48 50118723, 63095734, 79432823, 100000000}, 49 {125892541, 158489319, 199526232, 251188643, 50 316227766, 398107171, 501187234, 630957345}, 51 {794328235, 1000000000, 1258925412, 1584893192, 52 1995262315, 2511886432U, 3162277660U, 3981071706U} 53 }; 54 55 const u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M }; 56 57 const u8 rtw_ofdm_rates[] = { 58 DESC_RATE6M, DESC_RATE9M, DESC_RATE12M, 59 DESC_RATE18M, DESC_RATE24M, DESC_RATE36M, 60 DESC_RATE48M, DESC_RATE54M 61 }; 62 63 const u8 rtw_ht_1s_rates[] = { 64 DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2, 65 DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5, 66 DESC_RATEMCS6, DESC_RATEMCS7 67 }; 68 69 const u8 rtw_ht_2s_rates[] = { 70 DESC_RATEMCS8, DESC_RATEMCS9, DESC_RATEMCS10, 71 DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13, 72 DESC_RATEMCS14, DESC_RATEMCS15 73 }; 74 75 const u8 rtw_vht_1s_rates[] = { 76 DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1, 77 DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3, 78 DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5, 79 DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7, 80 DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9 81 }; 82 83 const u8 rtw_vht_2s_rates[] = { 84 DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1, 85 DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3, 86 DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5, 87 DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7, 88 DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9 89 }; 90 91 const u8 rtw_ht_3s_rates[] = { 92 DESC_RATEMCS16, DESC_RATEMCS17, DESC_RATEMCS18, 93 DESC_RATEMCS19, DESC_RATEMCS20, DESC_RATEMCS21, 94 DESC_RATEMCS22, DESC_RATEMCS23 95 }; 96 97 const u8 rtw_ht_4s_rates[] = { 98 DESC_RATEMCS24, DESC_RATEMCS25, DESC_RATEMCS26, 99 DESC_RATEMCS27, DESC_RATEMCS28, DESC_RATEMCS29, 100 DESC_RATEMCS30, DESC_RATEMCS31 101 }; 102 103 const u8 rtw_vht_3s_rates[] = { 104 DESC_RATEVHT3SS_MCS0, DESC_RATEVHT3SS_MCS1, 105 DESC_RATEVHT3SS_MCS2, DESC_RATEVHT3SS_MCS3, 106 DESC_RATEVHT3SS_MCS4, DESC_RATEVHT3SS_MCS5, 107 DESC_RATEVHT3SS_MCS6, DESC_RATEVHT3SS_MCS7, 108 DESC_RATEVHT3SS_MCS8, DESC_RATEVHT3SS_MCS9 109 }; 110 111 const u8 rtw_vht_4s_rates[] = { 112 DESC_RATEVHT4SS_MCS0, DESC_RATEVHT4SS_MCS1, 113 DESC_RATEVHT4SS_MCS2, DESC_RATEVHT4SS_MCS3, 114 DESC_RATEVHT4SS_MCS4, DESC_RATEVHT4SS_MCS5, 115 DESC_RATEVHT4SS_MCS6, DESC_RATEVHT4SS_MCS7, 116 DESC_RATEVHT4SS_MCS8, DESC_RATEVHT4SS_MCS9 117 }; 118 119 const u8 * const rtw_rate_section[RTW_RATE_SECTION_NUM] = { 120 rtw_cck_rates, rtw_ofdm_rates, 121 rtw_ht_1s_rates, rtw_ht_2s_rates, 122 rtw_vht_1s_rates, rtw_vht_2s_rates, 123 rtw_ht_3s_rates, rtw_ht_4s_rates, 124 rtw_vht_3s_rates, rtw_vht_4s_rates 125 }; 126 EXPORT_SYMBOL(rtw_rate_section); 127 128 const u8 rtw_rate_size[RTW_RATE_SECTION_NUM] = { 129 ARRAY_SIZE(rtw_cck_rates), 130 ARRAY_SIZE(rtw_ofdm_rates), 131 ARRAY_SIZE(rtw_ht_1s_rates), 132 ARRAY_SIZE(rtw_ht_2s_rates), 133 ARRAY_SIZE(rtw_vht_1s_rates), 134 ARRAY_SIZE(rtw_vht_2s_rates), 135 ARRAY_SIZE(rtw_ht_3s_rates), 136 ARRAY_SIZE(rtw_ht_4s_rates), 137 ARRAY_SIZE(rtw_vht_3s_rates), 138 ARRAY_SIZE(rtw_vht_4s_rates) 139 }; 140 EXPORT_SYMBOL(rtw_rate_size); 141 142 enum rtw_phy_band_type { 143 PHY_BAND_2G = 0, 144 PHY_BAND_5G = 1, 145 }; 146 147 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev) 148 { 149 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 150 u8 i, j; 151 152 for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) { 153 for (j = 0; j < RTW_RF_PATH_MAX; j++) 154 dm_info->cck_pd_lv[i][j] = CCK_PD_LV0; 155 } 156 157 dm_info->cck_fa_avg = CCK_FA_AVG_RESET; 158 } 159 160 void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l) 161 { 162 const struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th; 163 164 rtw_write32_mask(rtwdev, 165 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr, 166 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask, 167 l2h + edcca_th[EDCCA_TH_L2H_IDX].offset); 168 rtw_write32_mask(rtwdev, 169 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr, 170 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask, 171 h2l + edcca_th[EDCCA_TH_H2L_IDX].offset); 172 } 173 EXPORT_SYMBOL(rtw_phy_set_edcca_th); 174 175 void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev) 176 { 177 const struct rtw_chip_info *chip = rtwdev->chip; 178 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 179 180 /* turn off in debugfs for debug usage */ 181 if (!rtw_edcca_enabled) { 182 dm_info->edcca_mode = RTW_EDCCA_NORMAL; 183 rtw_dbg(rtwdev, RTW_DBG_PHY, "EDCCA disabled, cannot be set\n"); 184 return; 185 } 186 187 switch (rtwdev->regd.dfs_region) { 188 case NL80211_DFS_ETSI: 189 dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY; 190 dm_info->l2h_th_ini = chip->l2h_th_ini_ad; 191 break; 192 case NL80211_DFS_JP: 193 dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY; 194 dm_info->l2h_th_ini = chip->l2h_th_ini_cs; 195 break; 196 default: 197 dm_info->edcca_mode = RTW_EDCCA_NORMAL; 198 break; 199 } 200 } 201 202 static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev) 203 { 204 const struct rtw_chip_info *chip = rtwdev->chip; 205 206 rtw_phy_adaptivity_set_mode(rtwdev); 207 if (chip->ops->adaptivity_init) 208 chip->ops->adaptivity_init(rtwdev); 209 } 210 211 static void rtw_phy_adaptivity(struct rtw_dev *rtwdev) 212 { 213 if (rtwdev->chip->ops->adaptivity) 214 rtwdev->chip->ops->adaptivity(rtwdev); 215 } 216 217 static void rtw_phy_cfo_init(struct rtw_dev *rtwdev) 218 { 219 const struct rtw_chip_info *chip = rtwdev->chip; 220 221 if (chip->ops->cfo_init) 222 chip->ops->cfo_init(rtwdev); 223 } 224 225 static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev) 226 { 227 struct rtw_path_div *path_div = &rtwdev->dm_path_div; 228 229 path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path; 230 path_div->path_a_cnt = 0; 231 path_div->path_a_sum = 0; 232 path_div->path_b_cnt = 0; 233 path_div->path_b_sum = 0; 234 } 235 236 void rtw_phy_init(struct rtw_dev *rtwdev) 237 { 238 const struct rtw_chip_info *chip = rtwdev->chip; 239 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 240 u32 addr, mask; 241 242 dm_info->fa_history[3] = 0; 243 dm_info->fa_history[2] = 0; 244 dm_info->fa_history[1] = 0; 245 dm_info->fa_history[0] = 0; 246 dm_info->igi_bitmap = 0; 247 dm_info->igi_history[3] = 0; 248 dm_info->igi_history[2] = 0; 249 dm_info->igi_history[1] = 0; 250 251 addr = chip->dig[0].addr; 252 mask = chip->dig[0].mask; 253 dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask); 254 rtw_phy_cck_pd_init(rtwdev); 255 256 dm_info->iqk.done = false; 257 rtw_phy_adaptivity_init(rtwdev); 258 rtw_phy_cfo_init(rtwdev); 259 rtw_phy_tx_path_div_init(rtwdev); 260 } 261 EXPORT_SYMBOL(rtw_phy_init); 262 263 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi) 264 { 265 const struct rtw_chip_info *chip = rtwdev->chip; 266 struct rtw_hal *hal = &rtwdev->hal; 267 u32 addr, mask; 268 u8 path; 269 270 if (chip->dig_cck) { 271 const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0]; 272 rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1); 273 } 274 275 for (path = 0; path < hal->rf_path_num; path++) { 276 addr = chip->dig[path].addr; 277 mask = chip->dig[path].mask; 278 rtw_write32_mask(rtwdev, addr, mask, igi); 279 } 280 } 281 282 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev) 283 { 284 const struct rtw_chip_info *chip = rtwdev->chip; 285 286 chip->ops->false_alarm_statistics(rtwdev); 287 } 288 289 #define RA_FLOOR_TABLE_SIZE 7 290 #define RA_FLOOR_UP_GAP 3 291 292 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi) 293 { 294 u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100}; 295 u8 new_level = 0; 296 int i; 297 298 for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) 299 if (i >= old_level) 300 table[i] += RA_FLOOR_UP_GAP; 301 302 for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) { 303 if (rssi < table[i]) { 304 new_level = i; 305 break; 306 } 307 } 308 309 return new_level; 310 } 311 312 struct rtw_phy_stat_iter_data { 313 struct rtw_dev *rtwdev; 314 u8 min_rssi; 315 }; 316 317 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta) 318 { 319 struct rtw_phy_stat_iter_data *iter_data = data; 320 struct rtw_dev *rtwdev = iter_data->rtwdev; 321 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 322 u8 rssi; 323 324 rssi = ewma_rssi_read(&si->avg_rssi); 325 si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi); 326 327 rtw_fw_send_rssi_info(rtwdev, si); 328 329 iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi); 330 } 331 332 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev) 333 { 334 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 335 struct rtw_phy_stat_iter_data data = {}; 336 337 data.rtwdev = rtwdev; 338 data.min_rssi = U8_MAX; 339 rtw_iterate_stas(rtwdev, rtw_phy_stat_rssi_iter, &data); 340 341 dm_info->pre_min_rssi = dm_info->min_rssi; 342 dm_info->min_rssi = data.min_rssi; 343 } 344 345 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev) 346 { 347 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 348 349 dm_info->last_pkt_count = dm_info->cur_pkt_count; 350 memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count)); 351 } 352 353 static void rtw_phy_statistics(struct rtw_dev *rtwdev) 354 { 355 rtw_phy_stat_rssi(rtwdev); 356 rtw_phy_stat_false_alarm(rtwdev); 357 rtw_phy_stat_rate_cnt(rtwdev); 358 } 359 360 #define DIG_PERF_FA_TH_LOW 250 361 #define DIG_PERF_FA_TH_HIGH 500 362 #define DIG_PERF_FA_TH_EXTRA_HIGH 750 363 #define DIG_PERF_MAX 0x5a 364 #define DIG_PERF_MID 0x40 365 #define DIG_CVRG_FA_TH_LOW 2000 366 #define DIG_CVRG_FA_TH_HIGH 4000 367 #define DIG_CVRG_FA_TH_EXTRA_HIGH 5000 368 #define DIG_CVRG_MAX 0x2a 369 #define DIG_CVRG_MID 0x26 370 #define DIG_CVRG_MIN 0x1c 371 #define DIG_RSSI_GAIN_OFFSET 15 372 373 static bool 374 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info) 375 { 376 u16 fa_lo = DIG_PERF_FA_TH_LOW; 377 u16 fa_hi = DIG_PERF_FA_TH_HIGH; 378 u16 *fa_history; 379 u8 *igi_history; 380 u8 damping_rssi; 381 u8 min_rssi; 382 u8 diff; 383 u8 igi_bitmap; 384 bool damping = false; 385 386 min_rssi = dm_info->min_rssi; 387 if (dm_info->damping) { 388 damping_rssi = dm_info->damping_rssi; 389 diff = min_rssi > damping_rssi ? min_rssi - damping_rssi : 390 damping_rssi - min_rssi; 391 if (diff > 3 || dm_info->damping_cnt++ > 20) { 392 dm_info->damping = false; 393 return false; 394 } 395 396 return true; 397 } 398 399 igi_history = dm_info->igi_history; 400 fa_history = dm_info->fa_history; 401 igi_bitmap = dm_info->igi_bitmap & 0xf; 402 switch (igi_bitmap) { 403 case 5: 404 /* down -> up -> down -> up */ 405 if (igi_history[0] > igi_history[1] && 406 igi_history[2] > igi_history[3] && 407 igi_history[0] - igi_history[1] >= 2 && 408 igi_history[2] - igi_history[3] >= 2 && 409 fa_history[0] > fa_hi && fa_history[1] < fa_lo && 410 fa_history[2] > fa_hi && fa_history[3] < fa_lo) 411 damping = true; 412 break; 413 case 9: 414 /* up -> down -> down -> up */ 415 if (igi_history[0] > igi_history[1] && 416 igi_history[3] > igi_history[2] && 417 igi_history[0] - igi_history[1] >= 4 && 418 igi_history[3] - igi_history[2] >= 2 && 419 fa_history[0] > fa_hi && fa_history[1] < fa_lo && 420 fa_history[2] < fa_lo && fa_history[3] > fa_hi) 421 damping = true; 422 break; 423 default: 424 return false; 425 } 426 427 if (damping) { 428 dm_info->damping = true; 429 dm_info->damping_cnt = 0; 430 dm_info->damping_rssi = min_rssi; 431 } 432 433 return damping; 434 } 435 436 static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev, 437 struct rtw_dm_info *dm_info, 438 u8 *upper, u8 *lower, bool linked) 439 { 440 u8 dig_max, dig_min, dig_mid; 441 u8 min_rssi; 442 443 if (linked) { 444 dig_max = DIG_PERF_MAX; 445 dig_mid = DIG_PERF_MID; 446 dig_min = rtwdev->chip->dig_min; 447 min_rssi = max_t(u8, dm_info->min_rssi, dig_min); 448 } else { 449 dig_max = DIG_CVRG_MAX; 450 dig_mid = DIG_CVRG_MID; 451 dig_min = DIG_CVRG_MIN; 452 min_rssi = dig_min; 453 } 454 455 /* DIG MAX should be bounded by minimum RSSI with offset +15 */ 456 dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET); 457 458 *lower = clamp_t(u8, min_rssi, dig_min, dig_mid); 459 *upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max); 460 } 461 462 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info, 463 u16 *fa_th, u8 *step, bool linked) 464 { 465 u8 min_rssi, pre_min_rssi; 466 467 min_rssi = dm_info->min_rssi; 468 pre_min_rssi = dm_info->pre_min_rssi; 469 step[0] = 4; 470 step[1] = 3; 471 step[2] = 2; 472 473 if (linked) { 474 fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH; 475 fa_th[1] = DIG_PERF_FA_TH_HIGH; 476 fa_th[2] = DIG_PERF_FA_TH_LOW; 477 if (pre_min_rssi > min_rssi) { 478 step[0] = 6; 479 step[1] = 4; 480 step[2] = 2; 481 } 482 } else { 483 fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH; 484 fa_th[1] = DIG_CVRG_FA_TH_HIGH; 485 fa_th[2] = DIG_CVRG_FA_TH_LOW; 486 } 487 } 488 489 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa) 490 { 491 u8 *igi_history; 492 u16 *fa_history; 493 u8 igi_bitmap; 494 bool up; 495 496 igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe; 497 igi_history = dm_info->igi_history; 498 fa_history = dm_info->fa_history; 499 500 up = igi > igi_history[0]; 501 igi_bitmap |= up; 502 503 igi_history[3] = igi_history[2]; 504 igi_history[2] = igi_history[1]; 505 igi_history[1] = igi_history[0]; 506 igi_history[0] = igi; 507 508 fa_history[3] = fa_history[2]; 509 fa_history[2] = fa_history[1]; 510 fa_history[1] = fa_history[0]; 511 fa_history[0] = fa; 512 513 dm_info->igi_bitmap = igi_bitmap; 514 } 515 516 static void rtw_phy_dig(struct rtw_dev *rtwdev) 517 { 518 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 519 u8 upper_bound, lower_bound; 520 u8 pre_igi, cur_igi; 521 u16 fa_th[3], fa_cnt; 522 u8 level; 523 u8 step[3]; 524 bool linked; 525 526 if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags)) 527 return; 528 529 if (rtw_phy_dig_check_damping(dm_info)) 530 return; 531 532 linked = !!rtwdev->sta_cnt; 533 534 fa_cnt = dm_info->total_fa_cnt; 535 pre_igi = dm_info->igi_history[0]; 536 537 rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked); 538 539 /* test the false alarm count from the highest threshold level first, 540 * and increase it by corresponding step size 541 * 542 * note that the step size is offset by -2, compensate it afterall 543 */ 544 cur_igi = pre_igi; 545 for (level = 0; level < 3; level++) { 546 if (fa_cnt > fa_th[level]) { 547 cur_igi += step[level]; 548 break; 549 } 550 } 551 cur_igi -= 2; 552 553 /* calculate the upper/lower bound by the minimum rssi we have among 554 * the peers connected with us, meanwhile make sure the igi value does 555 * not beyond the hardware limitation 556 */ 557 rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound, 558 linked); 559 cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound); 560 561 /* record current igi value and false alarm statistics for further 562 * damping checks, and record the trend of igi values 563 */ 564 rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt); 565 566 /* Mitigate beacon loss and connectivity issues, mainly (only?) 567 * in the 5 GHz band 568 */ 569 if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A && rtwdev->beacon_loss && 570 linked && dm_info->total_fa_cnt < DIG_PERF_FA_TH_EXTRA_HIGH) 571 cur_igi = DIG_CVRG_MIN; 572 573 if (cur_igi != pre_igi) 574 rtw_phy_dig_write(rtwdev, cur_igi); 575 } 576 577 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta) 578 { 579 struct rtw_dev *rtwdev = data; 580 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 581 582 rtw_update_sta_info(rtwdev, si, false); 583 } 584 585 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev) 586 { 587 if (rtwdev->watch_dog_cnt & 0x3) 588 return; 589 590 rtw_iterate_stas(rtwdev, rtw_phy_ra_info_update_iter, rtwdev); 591 } 592 593 static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx) 594 { 595 u8 rate_order; 596 597 rate_order = rate_idx; 598 599 if (rate_idx >= DESC_RATEVHT4SS_MCS0) 600 rate_order -= DESC_RATEVHT4SS_MCS0; 601 else if (rate_idx >= DESC_RATEVHT3SS_MCS0) 602 rate_order -= DESC_RATEVHT3SS_MCS0; 603 else if (rate_idx >= DESC_RATEVHT2SS_MCS0) 604 rate_order -= DESC_RATEVHT2SS_MCS0; 605 else if (rate_idx >= DESC_RATEVHT1SS_MCS0) 606 rate_order -= DESC_RATEVHT1SS_MCS0; 607 else if (rate_idx >= DESC_RATEMCS24) 608 rate_order -= DESC_RATEMCS24; 609 else if (rate_idx >= DESC_RATEMCS16) 610 rate_order -= DESC_RATEMCS16; 611 else if (rate_idx >= DESC_RATEMCS8) 612 rate_order -= DESC_RATEMCS8; 613 else if (rate_idx >= DESC_RATEMCS0) 614 rate_order -= DESC_RATEMCS0; 615 else if (rate_idx >= DESC_RATE6M) 616 rate_order -= DESC_RATE6M; 617 else 618 rate_order -= DESC_RATE1M; 619 620 if (rate_idx >= DESC_RATEMCS0 || rate_order == 0) 621 rate_order++; 622 623 return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0); 624 } 625 626 static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta) 627 { 628 struct rtw_dev *rtwdev = (struct rtw_dev *)data; 629 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 630 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 631 u32 mask = 0; 632 633 mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate); 634 if (mask < dm_info->rrsr_mask_min) 635 dm_info->rrsr_mask_min = mask; 636 } 637 638 static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev) 639 { 640 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 641 642 dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX; 643 rtw_iterate_stas(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev); 644 rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min); 645 } 646 647 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev) 648 { 649 const struct rtw_chip_info *chip = rtwdev->chip; 650 651 if (chip->ops->dpk_track) 652 chip->ops->dpk_track(rtwdev); 653 } 654 655 struct rtw_rx_addr_match_data { 656 struct rtw_dev *rtwdev; 657 struct ieee80211_hdr *hdr; 658 struct rtw_rx_pkt_stat *pkt_stat; 659 u8 *bssid; 660 }; 661 662 static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac, 663 struct ieee80211_vif *vif) 664 { 665 struct rtw_rx_addr_match_data *iter_data = data; 666 struct rtw_dev *rtwdev = iter_data->rtwdev; 667 struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat; 668 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 669 struct rtw_cfo_track *cfo = &dm_info->cfo_track; 670 u8 *bssid = iter_data->bssid; 671 u8 i; 672 673 if (!ether_addr_equal(vif->bss_conf.bssid, bssid)) 674 return; 675 676 for (i = 0; i < rtwdev->hal.rf_path_num; i++) { 677 cfo->cfo_tail[i] += pkt_stat->cfo_tail[i]; 678 cfo->cfo_cnt[i]++; 679 } 680 681 cfo->packet_count++; 682 } 683 684 void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev, 685 struct rtw_rx_pkt_stat *pkt_stat) 686 { 687 struct ieee80211_hdr *hdr = pkt_stat->hdr; 688 struct rtw_rx_addr_match_data data = {}; 689 690 if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status || 691 ieee80211_is_ctl(hdr->frame_control)) 692 return; 693 694 data.rtwdev = rtwdev; 695 data.hdr = hdr; 696 data.pkt_stat = pkt_stat; 697 data.bssid = get_hdr_bssid(hdr); 698 699 rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data); 700 } 701 EXPORT_SYMBOL(rtw_phy_parsing_cfo); 702 703 static void rtw_phy_cfo_track(struct rtw_dev *rtwdev) 704 { 705 const struct rtw_chip_info *chip = rtwdev->chip; 706 707 if (chip->ops->cfo_track) 708 chip->ops->cfo_track(rtwdev); 709 } 710 711 #define CCK_PD_FA_LV1_MIN 1000 712 #define CCK_PD_FA_LV0_MAX 500 713 714 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev) 715 { 716 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 717 u32 cck_fa_avg = dm_info->cck_fa_avg; 718 719 if (cck_fa_avg > CCK_PD_FA_LV1_MIN) 720 return CCK_PD_LV1; 721 722 if (cck_fa_avg < CCK_PD_FA_LV0_MAX) 723 return CCK_PD_LV0; 724 725 return CCK_PD_LV_MAX; 726 } 727 728 #define CCK_PD_IGI_LV4_VAL 0x38 729 #define CCK_PD_IGI_LV3_VAL 0x2a 730 #define CCK_PD_IGI_LV2_VAL 0x24 731 #define CCK_PD_RSSI_LV4_VAL 32 732 #define CCK_PD_RSSI_LV3_VAL 32 733 #define CCK_PD_RSSI_LV2_VAL 24 734 735 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev) 736 { 737 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 738 u8 igi = dm_info->igi_history[0]; 739 u8 rssi = dm_info->min_rssi; 740 u32 cck_fa_avg = dm_info->cck_fa_avg; 741 742 if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL) 743 return CCK_PD_LV4; 744 if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL) 745 return CCK_PD_LV3; 746 if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL) 747 return CCK_PD_LV2; 748 if (cck_fa_avg > CCK_PD_FA_LV1_MIN) 749 return CCK_PD_LV1; 750 if (cck_fa_avg < CCK_PD_FA_LV0_MAX) 751 return CCK_PD_LV0; 752 753 return CCK_PD_LV_MAX; 754 } 755 756 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev) 757 { 758 if (!rtw_is_assoc(rtwdev)) 759 return rtw_phy_cck_pd_lv_unlink(rtwdev); 760 else 761 return rtw_phy_cck_pd_lv_link(rtwdev); 762 } 763 764 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev) 765 { 766 const struct rtw_chip_info *chip = rtwdev->chip; 767 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 768 u32 cck_fa = dm_info->cck_fa_cnt; 769 u8 level; 770 771 if (rtwdev->hal.current_band_type != RTW_BAND_2G) 772 return; 773 774 if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET) 775 dm_info->cck_fa_avg = cck_fa; 776 else 777 dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2; 778 779 rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n", 780 dm_info->igi_history[0], dm_info->min_rssi, 781 dm_info->fa_history[0]); 782 rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n", 783 dm_info->cck_fa_avg, dm_info->cck_pd_default); 784 785 level = rtw_phy_cck_pd_lv(rtwdev); 786 787 if (level >= CCK_PD_LV_MAX) 788 return; 789 790 if (chip->ops->cck_pd_set) 791 chip->ops->cck_pd_set(rtwdev, level); 792 } 793 794 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev) 795 { 796 rtwdev->chip->ops->pwr_track(rtwdev); 797 } 798 799 static void rtw_phy_ra_track(struct rtw_dev *rtwdev) 800 { 801 rtw_fw_update_wl_phy_info(rtwdev); 802 rtw_phy_ra_info_update(rtwdev); 803 rtw_phy_rrsr_update(rtwdev); 804 } 805 806 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev) 807 { 808 /* for further calculation */ 809 rtw_phy_statistics(rtwdev); 810 rtw_phy_dig(rtwdev); 811 rtw_phy_cck_pd(rtwdev); 812 rtw_phy_ra_track(rtwdev); 813 rtw_phy_tx_path_diversity(rtwdev); 814 rtw_phy_cfo_track(rtwdev); 815 rtw_phy_dpk_track(rtwdev); 816 rtw_phy_pwr_track(rtwdev); 817 818 if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_ADAPTIVITY)) 819 rtw_fw_adaptivity(rtwdev); 820 else 821 rtw_phy_adaptivity(rtwdev); 822 } 823 824 #define FRAC_BITS 3 825 826 static u8 rtw_phy_power_2_db(s8 power) 827 { 828 if (power <= -100 || power >= 20) 829 return 0; 830 else if (power >= 0) 831 return 100; 832 else 833 return 100 + power; 834 } 835 836 static u64 rtw_phy_db_2_linear(u8 power_db) 837 { 838 u8 i, j; 839 u64 linear; 840 841 if (power_db > 96) 842 power_db = 96; 843 else if (power_db < 1) 844 return 1; 845 846 /* 1dB ~ 96dB */ 847 i = (power_db - 1) >> 3; 848 j = (power_db - 1) - (i << 3); 849 850 linear = db_invert_table[i][j]; 851 linear = i > 2 ? linear << FRAC_BITS : linear; 852 853 return linear; 854 } 855 856 static u8 rtw_phy_linear_2_db(u64 linear) 857 { 858 u8 i; 859 u8 j; 860 u32 dB; 861 862 for (i = 0; i < 12; i++) { 863 for (j = 0; j < 8; j++) { 864 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j]) 865 goto cnt; 866 else if (i > 2 && linear <= db_invert_table[i][j]) 867 goto cnt; 868 } 869 } 870 871 return 96; /* maximum 96 dB */ 872 873 cnt: 874 if (j == 0 && i == 0) 875 goto end; 876 877 if (j == 0) { 878 if (i != 3) { 879 if (db_invert_table[i][0] - linear > 880 linear - db_invert_table[i - 1][7]) { 881 i = i - 1; 882 j = 7; 883 } 884 } else { 885 if (db_invert_table[3][0] - linear > 886 linear - db_invert_table[2][7]) { 887 i = 2; 888 j = 7; 889 } 890 } 891 } else { 892 if (db_invert_table[i][j] - linear > 893 linear - db_invert_table[i][j - 1]) { 894 j = j - 1; 895 } 896 } 897 end: 898 dB = (i << 3) + j + 1; 899 900 return dB; 901 } 902 903 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num) 904 { 905 s8 power; 906 u8 power_db; 907 u64 linear; 908 u64 sum = 0; 909 u8 path; 910 911 for (path = 0; path < path_num; path++) { 912 power = rf_power[path]; 913 power_db = rtw_phy_power_2_db(power); 914 linear = rtw_phy_db_2_linear(power_db); 915 sum += linear; 916 } 917 918 sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS; 919 switch (path_num) { 920 case 2: 921 sum >>= 1; 922 break; 923 case 3: 924 sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5; 925 break; 926 case 4: 927 sum >>= 2; 928 break; 929 default: 930 break; 931 } 932 933 return rtw_phy_linear_2_db(sum); 934 } 935 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi); 936 937 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path, 938 u32 addr, u32 mask) 939 { 940 struct rtw_hal *hal = &rtwdev->hal; 941 const struct rtw_chip_info *chip = rtwdev->chip; 942 const u32 *base_addr = chip->rf_base_addr; 943 u32 val, direct_addr; 944 945 if (rf_path >= hal->rf_phy_num) { 946 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path); 947 return INV_RF_DATA; 948 } 949 950 addr &= 0xff; 951 direct_addr = base_addr[rf_path] + (addr << 2); 952 mask &= RFREG_MASK; 953 954 val = rtw_read32_mask(rtwdev, direct_addr, mask); 955 956 return val; 957 } 958 EXPORT_SYMBOL(rtw_phy_read_rf); 959 960 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path, 961 u32 addr, u32 mask) 962 { 963 struct rtw_hal *hal = &rtwdev->hal; 964 const struct rtw_chip_info *chip = rtwdev->chip; 965 const struct rtw_rf_sipi_addr *rf_sipi_addr; 966 const struct rtw_rf_sipi_addr *rf_sipi_addr_a; 967 u32 val32; 968 u32 en_pi; 969 u32 r_addr; 970 u32 shift; 971 972 if (rf_path >= hal->rf_phy_num) { 973 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path); 974 return INV_RF_DATA; 975 } 976 977 if (!chip->rf_sipi_read_addr) { 978 rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n"); 979 return INV_RF_DATA; 980 } 981 982 rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path]; 983 rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A]; 984 985 addr &= 0xff; 986 987 val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2); 988 val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23); 989 rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32); 990 991 /* toggle read edge of path A */ 992 val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2); 993 rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK); 994 rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK); 995 996 udelay(120); 997 998 en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8)); 999 r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read; 1000 1001 val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK); 1002 1003 shift = __ffs(mask); 1004 1005 return (val32 & mask) >> shift; 1006 } 1007 EXPORT_SYMBOL(rtw_phy_read_rf_sipi); 1008 1009 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path, 1010 u32 addr, u32 mask, u32 data) 1011 { 1012 struct rtw_hal *hal = &rtwdev->hal; 1013 const struct rtw_chip_info *chip = rtwdev->chip; 1014 const u32 *sipi_addr = chip->rf_sipi_addr; 1015 u32 data_and_addr; 1016 u32 old_data = 0; 1017 u32 shift; 1018 1019 if (rf_path >= hal->rf_phy_num) { 1020 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path); 1021 return false; 1022 } 1023 1024 addr &= 0xff; 1025 mask &= RFREG_MASK; 1026 1027 if (mask != RFREG_MASK) { 1028 old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK); 1029 1030 if (old_data == INV_RF_DATA) { 1031 rtw_err(rtwdev, "Write fail, rf is disabled\n"); 1032 return false; 1033 } 1034 1035 shift = __ffs(mask); 1036 data = ((old_data) & (~mask)) | (data << shift); 1037 } 1038 1039 data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff; 1040 1041 rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr); 1042 1043 udelay(13); 1044 1045 return true; 1046 } 1047 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi); 1048 1049 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path, 1050 u32 addr, u32 mask, u32 data) 1051 { 1052 struct rtw_hal *hal = &rtwdev->hal; 1053 const struct rtw_chip_info *chip = rtwdev->chip; 1054 const u32 *base_addr = chip->rf_base_addr; 1055 u32 direct_addr; 1056 1057 if (rf_path >= hal->rf_phy_num) { 1058 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path); 1059 return false; 1060 } 1061 1062 addr &= 0xff; 1063 direct_addr = base_addr[rf_path] + (addr << 2); 1064 mask &= RFREG_MASK; 1065 1066 rtw_write32_mask(rtwdev, direct_addr, mask, data); 1067 1068 udelay(1); 1069 1070 return true; 1071 } 1072 1073 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path, 1074 u32 addr, u32 mask, u32 data) 1075 { 1076 if (addr != 0x00) 1077 return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data); 1078 1079 return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data); 1080 } 1081 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix); 1082 1083 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg) 1084 { 1085 struct rtw_hal *hal = &rtwdev->hal; 1086 struct rtw_efuse *efuse = &rtwdev->efuse; 1087 struct rtw_phy_cond cond = {}; 1088 struct rtw_phy_cond2 cond2 = {}; 1089 1090 cond.cut = hal->cut_version ? hal->cut_version : 15; 1091 cond.pkg = pkg ? pkg : 15; 1092 cond.plat = 0x04; 1093 cond.rfe = efuse->rfe_option; 1094 1095 switch (rtw_hci_type(rtwdev)) { 1096 case RTW_HCI_TYPE_USB: 1097 cond.intf = INTF_USB; 1098 break; 1099 case RTW_HCI_TYPE_SDIO: 1100 cond.intf = INTF_SDIO; 1101 break; 1102 case RTW_HCI_TYPE_PCIE: 1103 default: 1104 cond.intf = INTF_PCIE; 1105 break; 1106 } 1107 1108 if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A || 1109 rtwdev->chip->id == RTW_CHIP_TYPE_8821A) { 1110 cond.rfe = 0; 1111 cond.rfe |= efuse->ext_lna_2g; 1112 cond.rfe |= efuse->ext_pa_2g << 1; 1113 cond.rfe |= efuse->ext_lna_5g << 2; 1114 cond.rfe |= efuse->ext_pa_5g << 3; 1115 cond.rfe |= efuse->btcoex << 4; 1116 1117 cond2.type_alna = efuse->alna_type; 1118 cond2.type_glna = efuse->glna_type; 1119 cond2.type_apa = efuse->apa_type; 1120 cond2.type_gpa = efuse->gpa_type; 1121 } 1122 1123 hal->phy_cond = cond; 1124 hal->phy_cond2 = cond2; 1125 1126 rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x cond2=0x%08x\n", 1127 *((u32 *)&hal->phy_cond), *((u32 *)&hal->phy_cond2)); 1128 } 1129 1130 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond, 1131 struct rtw_phy_cond2 cond2) 1132 { 1133 struct rtw_hal *hal = &rtwdev->hal; 1134 struct rtw_phy_cond drv_cond = hal->phy_cond; 1135 struct rtw_phy_cond2 drv_cond2 = hal->phy_cond2; 1136 1137 if (cond.cut && cond.cut != drv_cond.cut) 1138 return false; 1139 1140 if (cond.pkg && cond.pkg != drv_cond.pkg) 1141 return false; 1142 1143 if (cond.intf && cond.intf != drv_cond.intf) 1144 return false; 1145 1146 if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A || 1147 rtwdev->chip->id == RTW_CHIP_TYPE_8821A) { 1148 if (!(cond.rfe & 0x0f)) 1149 return true; 1150 1151 if ((cond.rfe & drv_cond.rfe) != cond.rfe) 1152 return false; 1153 1154 if ((cond.rfe & BIT(0)) && cond2.type_glna != drv_cond2.type_glna) 1155 return false; 1156 1157 if ((cond.rfe & BIT(1)) && cond2.type_gpa != drv_cond2.type_gpa) 1158 return false; 1159 1160 if ((cond.rfe & BIT(2)) && cond2.type_alna != drv_cond2.type_alna) 1161 return false; 1162 1163 if ((cond.rfe & BIT(3)) && cond2.type_apa != drv_cond2.type_apa) 1164 return false; 1165 } else { 1166 if (cond.rfe != drv_cond.rfe) 1167 return false; 1168 } 1169 1170 return true; 1171 } 1172 1173 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl) 1174 { 1175 const union phy_table_tile *p = tbl->data; 1176 const union phy_table_tile *end = p + tbl->size / 2; 1177 struct rtw_phy_cond pos_cond = {}; 1178 struct rtw_phy_cond2 pos_cond2 = {}; 1179 bool is_matched = true, is_skipped = false; 1180 1181 BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair)); 1182 1183 for (; p < end; p++) { 1184 if (p->cond.pos) { 1185 switch (p->cond.branch) { 1186 case BRANCH_ENDIF: 1187 is_matched = true; 1188 is_skipped = false; 1189 break; 1190 case BRANCH_ELSE: 1191 is_matched = is_skipped ? false : true; 1192 break; 1193 case BRANCH_IF: 1194 case BRANCH_ELIF: 1195 default: 1196 pos_cond = p->cond; 1197 pos_cond2 = p->cond2; 1198 break; 1199 } 1200 } else if (p->cond.neg) { 1201 if (!is_skipped) { 1202 if (check_positive(rtwdev, pos_cond, pos_cond2)) { 1203 is_matched = true; 1204 is_skipped = true; 1205 } else { 1206 is_matched = false; 1207 is_skipped = false; 1208 } 1209 } else { 1210 is_matched = false; 1211 } 1212 } else if (is_matched) { 1213 (*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data); 1214 } 1215 } 1216 } 1217 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond); 1218 1219 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8)) 1220 1221 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i) 1222 { 1223 if (rtwdev->chip->is_pwr_by_rate_dec) 1224 return bcd_to_dec_pwr_by_rate(hex, i); 1225 1226 return (hex >> (i * 8)) & 0xFF; 1227 } 1228 1229 static void 1230 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev, 1231 u32 addr, u32 mask, u32 val, u8 *rate, 1232 u8 *pwr_by_rate, u8 *rate_num) 1233 { 1234 int i; 1235 1236 switch (addr) { 1237 case 0xE00: 1238 case 0x830: 1239 rate[0] = DESC_RATE6M; 1240 rate[1] = DESC_RATE9M; 1241 rate[2] = DESC_RATE12M; 1242 rate[3] = DESC_RATE18M; 1243 for (i = 0; i < 4; ++i) 1244 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1245 *rate_num = 4; 1246 break; 1247 case 0xE04: 1248 case 0x834: 1249 rate[0] = DESC_RATE24M; 1250 rate[1] = DESC_RATE36M; 1251 rate[2] = DESC_RATE48M; 1252 rate[3] = DESC_RATE54M; 1253 for (i = 0; i < 4; ++i) 1254 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1255 *rate_num = 4; 1256 break; 1257 case 0xE08: 1258 rate[0] = DESC_RATE1M; 1259 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1); 1260 *rate_num = 1; 1261 break; 1262 case 0x86C: 1263 if (mask == 0xffffff00) { 1264 rate[0] = DESC_RATE2M; 1265 rate[1] = DESC_RATE5_5M; 1266 rate[2] = DESC_RATE11M; 1267 for (i = 1; i < 4; ++i) 1268 pwr_by_rate[i - 1] = 1269 tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1270 *rate_num = 3; 1271 } else if (mask == 0x000000ff) { 1272 rate[0] = DESC_RATE11M; 1273 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0); 1274 *rate_num = 1; 1275 } 1276 break; 1277 case 0xE10: 1278 case 0x83C: 1279 rate[0] = DESC_RATEMCS0; 1280 rate[1] = DESC_RATEMCS1; 1281 rate[2] = DESC_RATEMCS2; 1282 rate[3] = DESC_RATEMCS3; 1283 for (i = 0; i < 4; ++i) 1284 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1285 *rate_num = 4; 1286 break; 1287 case 0xE14: 1288 case 0x848: 1289 rate[0] = DESC_RATEMCS4; 1290 rate[1] = DESC_RATEMCS5; 1291 rate[2] = DESC_RATEMCS6; 1292 rate[3] = DESC_RATEMCS7; 1293 for (i = 0; i < 4; ++i) 1294 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1295 *rate_num = 4; 1296 break; 1297 case 0xE18: 1298 case 0x84C: 1299 rate[0] = DESC_RATEMCS8; 1300 rate[1] = DESC_RATEMCS9; 1301 rate[2] = DESC_RATEMCS10; 1302 rate[3] = DESC_RATEMCS11; 1303 for (i = 0; i < 4; ++i) 1304 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1305 *rate_num = 4; 1306 break; 1307 case 0xE1C: 1308 case 0x868: 1309 rate[0] = DESC_RATEMCS12; 1310 rate[1] = DESC_RATEMCS13; 1311 rate[2] = DESC_RATEMCS14; 1312 rate[3] = DESC_RATEMCS15; 1313 for (i = 0; i < 4; ++i) 1314 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1315 *rate_num = 4; 1316 break; 1317 case 0x838: 1318 rate[0] = DESC_RATE1M; 1319 rate[1] = DESC_RATE2M; 1320 rate[2] = DESC_RATE5_5M; 1321 for (i = 1; i < 4; ++i) 1322 pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev, 1323 val, i); 1324 *rate_num = 3; 1325 break; 1326 case 0xC20: 1327 case 0xE20: 1328 case 0x1820: 1329 case 0x1A20: 1330 rate[0] = DESC_RATE1M; 1331 rate[1] = DESC_RATE2M; 1332 rate[2] = DESC_RATE5_5M; 1333 rate[3] = DESC_RATE11M; 1334 for (i = 0; i < 4; ++i) 1335 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1336 *rate_num = 4; 1337 break; 1338 case 0xC24: 1339 case 0xE24: 1340 case 0x1824: 1341 case 0x1A24: 1342 rate[0] = DESC_RATE6M; 1343 rate[1] = DESC_RATE9M; 1344 rate[2] = DESC_RATE12M; 1345 rate[3] = DESC_RATE18M; 1346 for (i = 0; i < 4; ++i) 1347 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1348 *rate_num = 4; 1349 break; 1350 case 0xC28: 1351 case 0xE28: 1352 case 0x1828: 1353 case 0x1A28: 1354 rate[0] = DESC_RATE24M; 1355 rate[1] = DESC_RATE36M; 1356 rate[2] = DESC_RATE48M; 1357 rate[3] = DESC_RATE54M; 1358 for (i = 0; i < 4; ++i) 1359 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1360 *rate_num = 4; 1361 break; 1362 case 0xC2C: 1363 case 0xE2C: 1364 case 0x182C: 1365 case 0x1A2C: 1366 rate[0] = DESC_RATEMCS0; 1367 rate[1] = DESC_RATEMCS1; 1368 rate[2] = DESC_RATEMCS2; 1369 rate[3] = DESC_RATEMCS3; 1370 for (i = 0; i < 4; ++i) 1371 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1372 *rate_num = 4; 1373 break; 1374 case 0xC30: 1375 case 0xE30: 1376 case 0x1830: 1377 case 0x1A30: 1378 rate[0] = DESC_RATEMCS4; 1379 rate[1] = DESC_RATEMCS5; 1380 rate[2] = DESC_RATEMCS6; 1381 rate[3] = DESC_RATEMCS7; 1382 for (i = 0; i < 4; ++i) 1383 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1384 *rate_num = 4; 1385 break; 1386 case 0xC34: 1387 case 0xE34: 1388 case 0x1834: 1389 case 0x1A34: 1390 rate[0] = DESC_RATEMCS8; 1391 rate[1] = DESC_RATEMCS9; 1392 rate[2] = DESC_RATEMCS10; 1393 rate[3] = DESC_RATEMCS11; 1394 for (i = 0; i < 4; ++i) 1395 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1396 *rate_num = 4; 1397 break; 1398 case 0xC38: 1399 case 0xE38: 1400 case 0x1838: 1401 case 0x1A38: 1402 rate[0] = DESC_RATEMCS12; 1403 rate[1] = DESC_RATEMCS13; 1404 rate[2] = DESC_RATEMCS14; 1405 rate[3] = DESC_RATEMCS15; 1406 for (i = 0; i < 4; ++i) 1407 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1408 *rate_num = 4; 1409 break; 1410 case 0xC3C: 1411 case 0xE3C: 1412 case 0x183C: 1413 case 0x1A3C: 1414 rate[0] = DESC_RATEVHT1SS_MCS0; 1415 rate[1] = DESC_RATEVHT1SS_MCS1; 1416 rate[2] = DESC_RATEVHT1SS_MCS2; 1417 rate[3] = DESC_RATEVHT1SS_MCS3; 1418 for (i = 0; i < 4; ++i) 1419 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1420 *rate_num = 4; 1421 break; 1422 case 0xC40: 1423 case 0xE40: 1424 case 0x1840: 1425 case 0x1A40: 1426 rate[0] = DESC_RATEVHT1SS_MCS4; 1427 rate[1] = DESC_RATEVHT1SS_MCS5; 1428 rate[2] = DESC_RATEVHT1SS_MCS6; 1429 rate[3] = DESC_RATEVHT1SS_MCS7; 1430 for (i = 0; i < 4; ++i) 1431 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1432 *rate_num = 4; 1433 break; 1434 case 0xC44: 1435 case 0xE44: 1436 case 0x1844: 1437 case 0x1A44: 1438 rate[0] = DESC_RATEVHT1SS_MCS8; 1439 rate[1] = DESC_RATEVHT1SS_MCS9; 1440 rate[2] = DESC_RATEVHT2SS_MCS0; 1441 rate[3] = DESC_RATEVHT2SS_MCS1; 1442 for (i = 0; i < 4; ++i) 1443 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1444 *rate_num = 4; 1445 break; 1446 case 0xC48: 1447 case 0xE48: 1448 case 0x1848: 1449 case 0x1A48: 1450 rate[0] = DESC_RATEVHT2SS_MCS2; 1451 rate[1] = DESC_RATEVHT2SS_MCS3; 1452 rate[2] = DESC_RATEVHT2SS_MCS4; 1453 rate[3] = DESC_RATEVHT2SS_MCS5; 1454 for (i = 0; i < 4; ++i) 1455 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1456 *rate_num = 4; 1457 break; 1458 case 0xC4C: 1459 case 0xE4C: 1460 case 0x184C: 1461 case 0x1A4C: 1462 rate[0] = DESC_RATEVHT2SS_MCS6; 1463 rate[1] = DESC_RATEVHT2SS_MCS7; 1464 rate[2] = DESC_RATEVHT2SS_MCS8; 1465 rate[3] = DESC_RATEVHT2SS_MCS9; 1466 for (i = 0; i < 4; ++i) 1467 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1468 *rate_num = 4; 1469 break; 1470 case 0xCD8: 1471 case 0xED8: 1472 case 0x18D8: 1473 case 0x1AD8: 1474 rate[0] = DESC_RATEMCS16; 1475 rate[1] = DESC_RATEMCS17; 1476 rate[2] = DESC_RATEMCS18; 1477 rate[3] = DESC_RATEMCS19; 1478 for (i = 0; i < 4; ++i) 1479 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1480 *rate_num = 4; 1481 break; 1482 case 0xCDC: 1483 case 0xEDC: 1484 case 0x18DC: 1485 case 0x1ADC: 1486 rate[0] = DESC_RATEMCS20; 1487 rate[1] = DESC_RATEMCS21; 1488 rate[2] = DESC_RATEMCS22; 1489 rate[3] = DESC_RATEMCS23; 1490 for (i = 0; i < 4; ++i) 1491 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1492 *rate_num = 4; 1493 break; 1494 case 0xCE0: 1495 case 0xEE0: 1496 case 0x18E0: 1497 case 0x1AE0: 1498 rate[0] = DESC_RATEVHT3SS_MCS0; 1499 rate[1] = DESC_RATEVHT3SS_MCS1; 1500 rate[2] = DESC_RATEVHT3SS_MCS2; 1501 rate[3] = DESC_RATEVHT3SS_MCS3; 1502 for (i = 0; i < 4; ++i) 1503 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1504 *rate_num = 4; 1505 break; 1506 case 0xCE4: 1507 case 0xEE4: 1508 case 0x18E4: 1509 case 0x1AE4: 1510 rate[0] = DESC_RATEVHT3SS_MCS4; 1511 rate[1] = DESC_RATEVHT3SS_MCS5; 1512 rate[2] = DESC_RATEVHT3SS_MCS6; 1513 rate[3] = DESC_RATEVHT3SS_MCS7; 1514 for (i = 0; i < 4; ++i) 1515 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1516 *rate_num = 4; 1517 break; 1518 case 0xCE8: 1519 case 0xEE8: 1520 case 0x18E8: 1521 case 0x1AE8: 1522 rate[0] = DESC_RATEVHT3SS_MCS8; 1523 rate[1] = DESC_RATEVHT3SS_MCS9; 1524 for (i = 0; i < 2; ++i) 1525 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1526 *rate_num = 2; 1527 break; 1528 default: 1529 rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr); 1530 break; 1531 } 1532 } 1533 1534 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev, 1535 u32 band, u32 rfpath, u32 txnum, 1536 u32 regaddr, u32 bitmask, u32 data) 1537 { 1538 struct rtw_hal *hal = &rtwdev->hal; 1539 u8 rate_num = 0; 1540 u8 rate; 1541 u8 rates[RTW_RF_PATH_MAX] = {0}; 1542 s8 offset; 1543 s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0}; 1544 int i; 1545 1546 rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data, 1547 rates, pwr_by_rate, &rate_num); 1548 1549 if (WARN_ON(rfpath >= RTW_RF_PATH_MAX || 1550 (band != PHY_BAND_2G && band != PHY_BAND_5G) || 1551 rate_num > RTW_RF_PATH_MAX)) 1552 return; 1553 1554 for (i = 0; i < rate_num; i++) { 1555 offset = pwr_by_rate[i]; 1556 rate = rates[i]; 1557 if (band == PHY_BAND_2G) 1558 hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset; 1559 else 1560 hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset; 1561 } 1562 } 1563 1564 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl) 1565 { 1566 const struct rtw_phy_pg_cfg_pair *p = tbl->data; 1567 const struct rtw_phy_pg_cfg_pair *end = p + tbl->size; 1568 1569 for (; p < end; p++) { 1570 if (p->addr == 0xfe || p->addr == 0xffe) { 1571 msleep(50); 1572 continue; 1573 } 1574 rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path, 1575 p->tx_num, p->addr, p->bitmask, 1576 p->data); 1577 } 1578 } 1579 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg); 1580 1581 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = { 1582 36, 38, 40, 42, 44, 46, 48, /* Band 1 */ 1583 52, 54, 56, 58, 60, 62, 64, /* Band 2 */ 1584 100, 102, 104, 106, 108, 110, 112, /* Band 3 */ 1585 116, 118, 120, 122, 124, 126, 128, /* Band 3 */ 1586 132, 134, 136, 138, 140, 142, 144, /* Band 3 */ 1587 149, 151, 153, 155, 157, 159, 161, /* Band 4 */ 1588 165, 167, 169, 171, 173, 175, 177}; /* Band 4 */ 1589 1590 static int rtw_channel_to_idx(u8 band, u8 channel) 1591 { 1592 int ch_idx; 1593 u8 n_channel; 1594 1595 if (band == PHY_BAND_2G) { 1596 ch_idx = channel - 1; 1597 n_channel = RTW_MAX_CHANNEL_NUM_2G; 1598 } else if (band == PHY_BAND_5G) { 1599 n_channel = RTW_MAX_CHANNEL_NUM_5G; 1600 for (ch_idx = 0; ch_idx < n_channel; ch_idx++) 1601 if (rtw_channel_idx_5g[ch_idx] == channel) 1602 break; 1603 } else { 1604 return -1; 1605 } 1606 1607 if (ch_idx >= n_channel) 1608 return -1; 1609 1610 return ch_idx; 1611 } 1612 1613 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band, 1614 u8 bw, u8 rs, u8 ch, s8 pwr_limit) 1615 { 1616 struct rtw_hal *hal = &rtwdev->hal; 1617 u8 max_power_index = rtwdev->chip->max_power_index; 1618 s8 ww; 1619 int ch_idx; 1620 1621 pwr_limit = clamp_t(s8, pwr_limit, 1622 -max_power_index, max_power_index); 1623 ch_idx = rtw_channel_to_idx(band, ch); 1624 1625 if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX || 1626 rs >= RTW_RATE_SECTION_NUM || ch_idx < 0) { 1627 WARN(1, 1628 "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n", 1629 regd, band, bw, rs, ch_idx, pwr_limit); 1630 return; 1631 } 1632 1633 if (band == PHY_BAND_2G) { 1634 hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit; 1635 ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx]; 1636 ww = min_t(s8, ww, pwr_limit); 1637 hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww; 1638 } else if (band == PHY_BAND_5G) { 1639 hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit; 1640 ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx]; 1641 ww = min_t(s8, ww, pwr_limit); 1642 hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww; 1643 } 1644 } 1645 1646 /* cross-reference 5G power limits if values are not assigned */ 1647 static void 1648 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd, 1649 u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht) 1650 { 1651 struct rtw_hal *hal = &rtwdev->hal; 1652 u8 max_power_index = rtwdev->chip->max_power_index; 1653 s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx]; 1654 s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx]; 1655 1656 if (lmt_ht == lmt_vht) 1657 return; 1658 1659 if (lmt_ht == max_power_index) 1660 hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht; 1661 1662 else if (lmt_vht == max_power_index) 1663 hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht; 1664 } 1665 1666 /* cross-reference power limits for ht and vht */ 1667 static void 1668 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx) 1669 { 1670 static const u8 rs_cmp[4][2] = { 1671 {RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S}, 1672 {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S}, 1673 {RTW_RATE_SECTION_HT_3S, RTW_RATE_SECTION_VHT_3S}, 1674 {RTW_RATE_SECTION_HT_4S, RTW_RATE_SECTION_VHT_4S} 1675 }; 1676 u8 rs_idx, rs_ht, rs_vht; 1677 1678 for (rs_idx = 0; rs_idx < 4; rs_idx++) { 1679 rs_ht = rs_cmp[rs_idx][0]; 1680 rs_vht = rs_cmp[rs_idx][1]; 1681 1682 rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht); 1683 } 1684 } 1685 1686 /* cross-reference power limits for 5G channels */ 1687 static void 1688 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw) 1689 { 1690 u8 ch_idx; 1691 1692 for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++) 1693 rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx); 1694 } 1695 1696 /* cross-reference power limits for 20/40M bandwidth */ 1697 static void 1698 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd) 1699 { 1700 u8 bw; 1701 1702 for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++) 1703 rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw); 1704 } 1705 1706 /* cross-reference power limits */ 1707 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev) 1708 { 1709 u8 regd; 1710 1711 for (regd = 0; regd < RTW_REGD_MAX; regd++) 1712 rtw_xref_txpwr_lmt_by_bw(rtwdev, regd); 1713 } 1714 1715 static void 1716 __cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs) 1717 { 1718 u8 ch; 1719 1720 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) 1721 hal->tx_pwr_limit_2g[regd][bw][rs][ch] = 1722 hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch]; 1723 1724 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) 1725 hal->tx_pwr_limit_5g[regd][bw][rs][ch] = 1726 hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch]; 1727 } 1728 1729 static void 1730 rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt) 1731 { 1732 u8 bw, rs; 1733 1734 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++) 1735 for (rs = 0; rs < RTW_RATE_SECTION_NUM; rs++) 1736 __cfg_txpwr_lmt_by_alt(&rtwdev->hal, regd, regd_alt, 1737 bw, rs); 1738 } 1739 1740 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev, 1741 const struct rtw_table *tbl) 1742 { 1743 const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data; 1744 const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size; 1745 u32 regd_cfg_flag = 0; 1746 u8 regd_alt; 1747 u8 i; 1748 1749 for (; p < end; p++) { 1750 regd_cfg_flag |= BIT(p->regd); 1751 rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band, 1752 p->bw, p->rs, p->ch, p->txpwr_lmt); 1753 } 1754 1755 for (i = 0; i < RTW_REGD_MAX; i++) { 1756 if (i == RTW_REGD_WW) 1757 continue; 1758 1759 if (regd_cfg_flag & BIT(i)) 1760 continue; 1761 1762 rtw_dbg(rtwdev, RTW_DBG_REGD, 1763 "txpwr regd %d does not be configured\n", i); 1764 1765 if (rtw_regd_has_alt(i, ®d_alt) && 1766 regd_cfg_flag & BIT(regd_alt)) { 1767 rtw_dbg(rtwdev, RTW_DBG_REGD, 1768 "cfg txpwr regd %d by regd %d as alternative\n", 1769 i, regd_alt); 1770 1771 rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, regd_alt); 1772 continue; 1773 } 1774 1775 rtw_dbg(rtwdev, RTW_DBG_REGD, "cfg txpwr regd %d by WW\n", i); 1776 rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, RTW_REGD_WW); 1777 } 1778 1779 rtw_xref_txpwr_lmt(rtwdev); 1780 } 1781 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt); 1782 1783 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl, 1784 u32 addr, u32 data) 1785 { 1786 rtw_write8(rtwdev, addr, data); 1787 } 1788 EXPORT_SYMBOL(rtw_phy_cfg_mac); 1789 1790 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl, 1791 u32 addr, u32 data) 1792 { 1793 rtw_write32(rtwdev, addr, data); 1794 } 1795 EXPORT_SYMBOL(rtw_phy_cfg_agc); 1796 1797 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl, 1798 u32 addr, u32 data) 1799 { 1800 if (addr == 0xfe) 1801 msleep(50); 1802 else if (addr == 0xfd) 1803 mdelay(5); 1804 else if (addr == 0xfc) 1805 mdelay(1); 1806 else if (addr == 0xfb) 1807 usleep_range(50, 60); 1808 else if (addr == 0xfa) 1809 udelay(5); 1810 else if (addr == 0xf9) 1811 udelay(1); 1812 else 1813 rtw_write32(rtwdev, addr, data); 1814 } 1815 EXPORT_SYMBOL(rtw_phy_cfg_bb); 1816 1817 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl, 1818 u32 addr, u32 data) 1819 { 1820 if (addr == 0xffe) { 1821 msleep(50); 1822 } else if (addr == 0xfe) { 1823 usleep_range(100, 110); 1824 } else { 1825 rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data); 1826 udelay(1); 1827 } 1828 } 1829 EXPORT_SYMBOL(rtw_phy_cfg_rf); 1830 1831 static void rtw_load_rfk_table(struct rtw_dev *rtwdev) 1832 { 1833 const struct rtw_chip_info *chip = rtwdev->chip; 1834 struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info; 1835 1836 if (!chip->rfk_init_tbl) 1837 return; 1838 1839 rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1); 1840 rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1); 1841 rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1); 1842 rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1); 1843 rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0); 1844 1845 rtw_load_table(rtwdev, chip->rfk_init_tbl); 1846 1847 dpk_info->is_dpk_pwr_on = true; 1848 } 1849 1850 void rtw_phy_load_tables(struct rtw_dev *rtwdev) 1851 { 1852 const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev); 1853 const struct rtw_chip_info *chip = rtwdev->chip; 1854 u8 rf_path; 1855 1856 rtw_load_table(rtwdev, chip->mac_tbl); 1857 rtw_load_table(rtwdev, chip->bb_tbl); 1858 rtw_load_table(rtwdev, chip->agc_tbl); 1859 if (rfe_def->agc_btg_tbl) 1860 rtw_load_table(rtwdev, rfe_def->agc_btg_tbl); 1861 rtw_load_rfk_table(rtwdev); 1862 1863 for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) { 1864 const struct rtw_table *tbl; 1865 1866 tbl = chip->rf_tbl[rf_path]; 1867 rtw_load_table(rtwdev, tbl); 1868 } 1869 } 1870 EXPORT_SYMBOL(rtw_phy_load_tables); 1871 1872 static u8 rtw_get_channel_group(u8 channel, u8 rate) 1873 { 1874 switch (channel) { 1875 default: 1876 WARN_ON(1); 1877 fallthrough; 1878 case 1: 1879 case 2: 1880 case 36: 1881 case 38: 1882 case 40: 1883 case 42: 1884 return 0; 1885 case 3: 1886 case 4: 1887 case 5: 1888 case 44: 1889 case 46: 1890 case 48: 1891 case 50: 1892 return 1; 1893 case 6: 1894 case 7: 1895 case 8: 1896 case 52: 1897 case 54: 1898 case 56: 1899 case 58: 1900 return 2; 1901 case 9: 1902 case 10: 1903 case 11: 1904 case 60: 1905 case 62: 1906 case 64: 1907 return 3; 1908 case 12: 1909 case 13: 1910 case 100: 1911 case 102: 1912 case 104: 1913 case 106: 1914 return 4; 1915 case 14: 1916 return rate <= DESC_RATE11M ? 5 : 4; 1917 case 108: 1918 case 110: 1919 case 112: 1920 case 114: 1921 return 5; 1922 case 116: 1923 case 118: 1924 case 120: 1925 case 122: 1926 return 6; 1927 case 124: 1928 case 126: 1929 case 128: 1930 case 130: 1931 return 7; 1932 case 132: 1933 case 134: 1934 case 136: 1935 case 138: 1936 return 8; 1937 case 140: 1938 case 142: 1939 case 144: 1940 return 9; 1941 case 149: 1942 case 151: 1943 case 153: 1944 case 155: 1945 return 10; 1946 case 157: 1947 case 159: 1948 case 161: 1949 return 11; 1950 case 165: 1951 case 167: 1952 case 169: 1953 case 171: 1954 return 12; 1955 case 173: 1956 case 175: 1957 case 177: 1958 return 13; 1959 } 1960 } 1961 1962 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate) 1963 { 1964 const struct rtw_chip_info *chip = rtwdev->chip; 1965 s8 dpd_diff = 0; 1966 1967 if (!chip->en_dis_dpd) 1968 return 0; 1969 1970 #define RTW_DPD_RATE_CHECK(_rate) \ 1971 case DESC_RATE ## _rate: \ 1972 if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask) \ 1973 dpd_diff = -6 * chip->txgi_factor; \ 1974 break 1975 1976 switch (rate) { 1977 RTW_DPD_RATE_CHECK(6M); 1978 RTW_DPD_RATE_CHECK(9M); 1979 RTW_DPD_RATE_CHECK(MCS0); 1980 RTW_DPD_RATE_CHECK(MCS1); 1981 RTW_DPD_RATE_CHECK(MCS8); 1982 RTW_DPD_RATE_CHECK(MCS9); 1983 RTW_DPD_RATE_CHECK(VHT1SS_MCS0); 1984 RTW_DPD_RATE_CHECK(VHT1SS_MCS1); 1985 RTW_DPD_RATE_CHECK(VHT2SS_MCS0); 1986 RTW_DPD_RATE_CHECK(VHT2SS_MCS1); 1987 } 1988 #undef RTW_DPD_RATE_CHECK 1989 1990 return dpd_diff; 1991 } 1992 1993 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev, 1994 struct rtw_2g_txpwr_idx *pwr_idx_2g, 1995 enum rtw_bandwidth bandwidth, 1996 u8 rate, u8 group) 1997 { 1998 const struct rtw_chip_info *chip = rtwdev->chip; 1999 bool above_2ss, above_3ss, above_4ss; 2000 u8 factor = chip->txgi_factor; 2001 bool mcs_rate; 2002 u8 tx_power; 2003 2004 if (rate <= DESC_RATE11M) 2005 tx_power = pwr_idx_2g->cck_base[group]; 2006 else 2007 tx_power = pwr_idx_2g->bw40_base[group]; 2008 2009 if (rate >= DESC_RATE6M && rate <= DESC_RATE54M) 2010 tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor; 2011 2012 mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS31) || 2013 (rate >= DESC_RATEVHT1SS_MCS0 && 2014 rate <= DESC_RATEVHT4SS_MCS9); 2015 above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS31) || 2016 (rate >= DESC_RATEVHT2SS_MCS0); 2017 above_3ss = (rate >= DESC_RATEMCS16 && rate <= DESC_RATEMCS31) || 2018 (rate >= DESC_RATEVHT3SS_MCS0); 2019 above_4ss = (rate >= DESC_RATEMCS24 && rate <= DESC_RATEMCS31) || 2020 (rate >= DESC_RATEVHT4SS_MCS0); 2021 2022 if (!mcs_rate) 2023 return tx_power; 2024 2025 switch (bandwidth) { 2026 default: 2027 WARN_ON(1); 2028 fallthrough; 2029 case RTW_CHANNEL_WIDTH_20: 2030 tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor; 2031 if (above_2ss) 2032 tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor; 2033 if (above_3ss) 2034 tx_power += pwr_idx_2g->ht_3s_diff.bw20 * factor; 2035 if (above_4ss) 2036 tx_power += pwr_idx_2g->ht_4s_diff.bw20 * factor; 2037 break; 2038 case RTW_CHANNEL_WIDTH_40: 2039 /* bw40 is the base power */ 2040 if (above_2ss) 2041 tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor; 2042 if (above_3ss) 2043 tx_power += pwr_idx_2g->ht_3s_diff.bw40 * factor; 2044 if (above_4ss) 2045 tx_power += pwr_idx_2g->ht_4s_diff.bw40 * factor; 2046 break; 2047 } 2048 2049 return tx_power; 2050 } 2051 2052 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev, 2053 struct rtw_5g_txpwr_idx *pwr_idx_5g, 2054 enum rtw_bandwidth bandwidth, 2055 u8 rate, u8 group) 2056 { 2057 const struct rtw_chip_info *chip = rtwdev->chip; 2058 bool above_2ss, above_3ss, above_4ss; 2059 u8 factor = chip->txgi_factor; 2060 u8 upper, lower; 2061 bool mcs_rate; 2062 u8 tx_power; 2063 2064 tx_power = pwr_idx_5g->bw40_base[group]; 2065 2066 mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS31) || 2067 (rate >= DESC_RATEVHT1SS_MCS0 && 2068 rate <= DESC_RATEVHT4SS_MCS9); 2069 above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS31) || 2070 (rate >= DESC_RATEVHT2SS_MCS0); 2071 above_3ss = (rate >= DESC_RATEMCS16 && rate <= DESC_RATEMCS31) || 2072 (rate >= DESC_RATEVHT3SS_MCS0); 2073 above_4ss = (rate >= DESC_RATEMCS24 && rate <= DESC_RATEMCS31) || 2074 (rate >= DESC_RATEVHT4SS_MCS0); 2075 2076 if (!mcs_rate) { 2077 tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor; 2078 return tx_power; 2079 } 2080 2081 switch (bandwidth) { 2082 default: 2083 WARN_ON(1); 2084 fallthrough; 2085 case RTW_CHANNEL_WIDTH_20: 2086 tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor; 2087 if (above_2ss) 2088 tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor; 2089 if (above_3ss) 2090 tx_power += pwr_idx_5g->ht_3s_diff.bw20 * factor; 2091 if (above_4ss) 2092 tx_power += pwr_idx_5g->ht_4s_diff.bw20 * factor; 2093 break; 2094 case RTW_CHANNEL_WIDTH_40: 2095 /* bw40 is the base power */ 2096 if (above_2ss) 2097 tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor; 2098 if (above_3ss) 2099 tx_power += pwr_idx_5g->ht_3s_diff.bw40 * factor; 2100 if (above_4ss) 2101 tx_power += pwr_idx_5g->ht_4s_diff.bw40 * factor; 2102 break; 2103 case RTW_CHANNEL_WIDTH_80: 2104 /* the base idx of bw80 is the average of bw40+/bw40- */ 2105 lower = pwr_idx_5g->bw40_base[group]; 2106 upper = pwr_idx_5g->bw40_base[group + 1]; 2107 2108 tx_power = (lower + upper) / 2; 2109 tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor; 2110 if (above_2ss) 2111 tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor; 2112 if (above_3ss) 2113 tx_power += pwr_idx_5g->vht_3s_diff.bw80 * factor; 2114 if (above_4ss) 2115 tx_power += pwr_idx_5g->vht_4s_diff.bw80 * factor; 2116 break; 2117 } 2118 2119 return tx_power; 2120 } 2121 2122 /* return RTW_RATE_SECTION_NUM to indicate rate is invalid */ 2123 static u8 rtw_phy_rate_to_rate_section(u8 rate) 2124 { 2125 if (rate >= DESC_RATE1M && rate <= DESC_RATE11M) 2126 return RTW_RATE_SECTION_CCK; 2127 else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M) 2128 return RTW_RATE_SECTION_OFDM; 2129 else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7) 2130 return RTW_RATE_SECTION_HT_1S; 2131 else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) 2132 return RTW_RATE_SECTION_HT_2S; 2133 else if (rate >= DESC_RATEMCS16 && rate <= DESC_RATEMCS23) 2134 return RTW_RATE_SECTION_HT_3S; 2135 else if (rate >= DESC_RATEMCS24 && rate <= DESC_RATEMCS31) 2136 return RTW_RATE_SECTION_HT_4S; 2137 else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9) 2138 return RTW_RATE_SECTION_VHT_1S; 2139 else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9) 2140 return RTW_RATE_SECTION_VHT_2S; 2141 else if (rate >= DESC_RATEVHT3SS_MCS0 && rate <= DESC_RATEVHT3SS_MCS9) 2142 return RTW_RATE_SECTION_VHT_3S; 2143 else if (rate >= DESC_RATEVHT4SS_MCS0 && rate <= DESC_RATEVHT4SS_MCS9) 2144 return RTW_RATE_SECTION_VHT_4S; 2145 else 2146 return RTW_RATE_SECTION_NUM; 2147 } 2148 2149 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band, 2150 enum rtw_bandwidth bw, u8 rf_path, 2151 u8 rate, u8 channel, u8 regd) 2152 { 2153 struct rtw_hal *hal = &rtwdev->hal; 2154 u8 *cch_by_bw = hal->cch_by_bw; 2155 s8 power_limit = (s8)rtwdev->chip->max_power_index; 2156 u8 rs = rtw_phy_rate_to_rate_section(rate); 2157 int ch_idx; 2158 u8 cur_bw, cur_ch; 2159 s8 cur_lmt; 2160 2161 if (regd > RTW_REGD_WW) 2162 return power_limit; 2163 2164 if (rs == RTW_RATE_SECTION_NUM) 2165 goto err; 2166 2167 /* only 20M BW with cck and ofdm */ 2168 if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM) 2169 bw = RTW_CHANNEL_WIDTH_20; 2170 2171 /* only 20/40M BW with ht */ 2172 if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS31) 2173 bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40); 2174 2175 /* select min power limit among [20M BW ~ current BW] */ 2176 for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) { 2177 cur_ch = cch_by_bw[cur_bw]; 2178 2179 ch_idx = rtw_channel_to_idx(band, cur_ch); 2180 if (ch_idx < 0) 2181 goto err; 2182 2183 cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ? 2184 hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] : 2185 hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx]; 2186 2187 power_limit = min_t(s8, cur_lmt, power_limit); 2188 } 2189 2190 return power_limit; 2191 2192 err: 2193 WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n", 2194 band, bw, rf_path, rate, channel); 2195 return (s8)rtwdev->chip->max_power_index; 2196 } 2197 2198 static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band, 2199 u8 rf_path, u8 rate) 2200 { 2201 u8 rs = rtw_phy_rate_to_rate_section(rate); 2202 struct rtw_sar_arg arg = { 2203 .sar_band = sar_band, 2204 .path = rf_path, 2205 .rs = rs, 2206 }; 2207 2208 if (rs == RTW_RATE_SECTION_NUM) 2209 goto err; 2210 2211 return rtw_query_sar(rtwdev, &arg); 2212 2213 err: 2214 WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n", 2215 sar_band, rf_path, rate); 2216 return (s8)rtwdev->chip->max_power_index; 2217 } 2218 2219 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw, 2220 u8 ch, u8 regd, struct rtw_power_params *pwr_param) 2221 { 2222 struct rtw_hal *hal = &rtwdev->hal; 2223 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2224 struct rtw_txpwr_idx *pwr_idx; 2225 u8 group, band; 2226 u8 *base = &pwr_param->pwr_base; 2227 s8 *offset = &pwr_param->pwr_offset; 2228 s8 *limit = &pwr_param->pwr_limit; 2229 s8 *remnant = &pwr_param->pwr_remnant; 2230 s8 *sar = &pwr_param->pwr_sar; 2231 2232 pwr_idx = &rtwdev->efuse.txpwr_idx_table[path]; 2233 group = rtw_get_channel_group(ch, rate); 2234 2235 /* base power index for 2.4G/5G */ 2236 if (IS_CH_2G_BAND(ch)) { 2237 band = PHY_BAND_2G; 2238 *base = rtw_phy_get_2g_tx_power_index(rtwdev, 2239 &pwr_idx->pwr_idx_2g, 2240 bw, rate, group); 2241 *offset = hal->tx_pwr_by_rate_offset_2g[path][rate]; 2242 } else { 2243 band = PHY_BAND_5G; 2244 *base = rtw_phy_get_5g_tx_power_index(rtwdev, 2245 &pwr_idx->pwr_idx_5g, 2246 bw, rate, group); 2247 *offset = hal->tx_pwr_by_rate_offset_5g[path][rate]; 2248 } 2249 2250 *limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path, 2251 rate, ch, regd); 2252 *remnant = rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck : 2253 dm_info->txagc_remnant_ofdm[path]; 2254 *sar = rtw_phy_get_tx_power_sar(rtwdev, hal->sar_band, path, rate); 2255 } 2256 2257 u8 2258 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate, 2259 enum rtw_bandwidth bandwidth, u8 channel, u8 regd) 2260 { 2261 struct rtw_power_params pwr_param = {0}; 2262 u8 tx_power; 2263 s8 offset; 2264 2265 rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth, 2266 channel, regd, &pwr_param); 2267 2268 tx_power = pwr_param.pwr_base; 2269 offset = min3(pwr_param.pwr_offset, 2270 pwr_param.pwr_limit, 2271 pwr_param.pwr_sar); 2272 2273 if (rtwdev->chip->en_dis_dpd) 2274 offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate); 2275 2276 tx_power += offset + pwr_param.pwr_remnant; 2277 2278 if (tx_power > rtwdev->chip->max_power_index) 2279 tx_power = rtwdev->chip->max_power_index; 2280 2281 return tx_power; 2282 } 2283 EXPORT_SYMBOL(rtw_phy_get_tx_power_index); 2284 2285 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev, 2286 u8 ch, u8 path, u8 rs) 2287 { 2288 struct rtw_hal *hal = &rtwdev->hal; 2289 u8 regd = rtw_regd_get(rtwdev); 2290 const u8 *rates; 2291 u8 size; 2292 u8 rate; 2293 u8 pwr_idx; 2294 u8 bw; 2295 int i; 2296 2297 if (rs >= RTW_RATE_SECTION_NUM) 2298 return; 2299 2300 rates = rtw_rate_section[rs]; 2301 size = rtw_rate_size[rs]; 2302 bw = hal->current_band_width; 2303 for (i = 0; i < size; i++) { 2304 rate = rates[i]; 2305 pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate, 2306 bw, ch, regd); 2307 hal->tx_pwr_tbl[path][rate] = pwr_idx; 2308 } 2309 } 2310 2311 /* set tx power level by path for each rates, note that the order of the rates 2312 * are *very* important, bacause 8822B/8821C combines every four bytes of tx 2313 * power index into a four-byte power index register, and calls set_tx_agc to 2314 * write these values into hardware 2315 */ 2316 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev, 2317 u8 ch, u8 path) 2318 { 2319 struct rtw_hal *hal = &rtwdev->hal; 2320 u8 rs; 2321 2322 /* do not need cck rates if we are not in 2.4G */ 2323 if (hal->current_band_type == RTW_BAND_2G) 2324 rs = RTW_RATE_SECTION_CCK; 2325 else 2326 rs = RTW_RATE_SECTION_OFDM; 2327 2328 for (; rs < RTW_RATE_SECTION_NUM; rs++) 2329 rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs); 2330 } 2331 2332 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel) 2333 { 2334 const struct rtw_chip_info *chip = rtwdev->chip; 2335 struct rtw_hal *hal = &rtwdev->hal; 2336 u8 path; 2337 2338 mutex_lock(&hal->tx_power_mutex); 2339 2340 for (path = 0; path < hal->rf_path_num; path++) 2341 rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path); 2342 2343 chip->ops->set_tx_power_index(rtwdev); 2344 mutex_unlock(&hal->tx_power_mutex); 2345 } 2346 EXPORT_SYMBOL(rtw_phy_set_tx_power_level); 2347 2348 static void 2349 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path, 2350 u8 rs, u8 size, const u8 *rates) 2351 { 2352 u8 rate; 2353 u8 base_idx, rate_idx; 2354 s8 base_2g, base_5g; 2355 2356 if (size == 10) /* VHT rates */ 2357 base_idx = rates[size - 3]; 2358 else 2359 base_idx = rates[size - 1]; 2360 base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx]; 2361 base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx]; 2362 hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g; 2363 hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g; 2364 for (rate = 0; rate < size; rate++) { 2365 rate_idx = rates[rate]; 2366 hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g; 2367 hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g; 2368 } 2369 } 2370 2371 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal) 2372 { 2373 u8 path, rs; 2374 2375 for (path = 0; path < RTW_RF_PATH_MAX; path++) 2376 for (rs = 0; rs < RTW_RATE_SECTION_NUM; rs++) 2377 rtw_phy_tx_power_by_rate_config_by_path(hal, path, rs, 2378 rtw_rate_size[rs], rtw_rate_section[rs]); 2379 } 2380 2381 static void 2382 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs) 2383 { 2384 s8 base; 2385 u8 ch; 2386 2387 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) { 2388 base = hal->tx_pwr_by_rate_base_2g[0][rs]; 2389 hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base; 2390 } 2391 2392 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) { 2393 base = hal->tx_pwr_by_rate_base_5g[0][rs]; 2394 hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base; 2395 } 2396 } 2397 2398 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal) 2399 { 2400 u8 regd, bw, rs; 2401 2402 /* default at channel 1 */ 2403 hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1; 2404 2405 for (regd = 0; regd < RTW_REGD_MAX; regd++) 2406 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++) 2407 for (rs = 0; rs < RTW_RATE_SECTION_NUM; rs++) 2408 __rtw_phy_tx_power_limit_config(hal, regd, bw, rs); 2409 } 2410 2411 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev, 2412 u8 regd, u8 bw, u8 rs) 2413 { 2414 struct rtw_hal *hal = &rtwdev->hal; 2415 s8 max_power_index = (s8)rtwdev->chip->max_power_index; 2416 u8 ch; 2417 2418 /* 2.4G channels */ 2419 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) 2420 hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index; 2421 2422 /* 5G channels */ 2423 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) 2424 hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index; 2425 } 2426 2427 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev) 2428 { 2429 struct rtw_hal *hal = &rtwdev->hal; 2430 u8 regd, path, rate, rs, bw; 2431 2432 /* init tx power by rate offset */ 2433 for (path = 0; path < RTW_RF_PATH_MAX; path++) { 2434 for (rate = 0; rate < DESC_RATE_MAX; rate++) { 2435 hal->tx_pwr_by_rate_offset_2g[path][rate] = 0; 2436 hal->tx_pwr_by_rate_offset_5g[path][rate] = 0; 2437 } 2438 } 2439 2440 /* init tx power limit */ 2441 for (regd = 0; regd < RTW_REGD_MAX; regd++) 2442 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++) 2443 for (rs = 0; rs < RTW_RATE_SECTION_NUM; rs++) 2444 rtw_phy_init_tx_power_limit(rtwdev, regd, bw, 2445 rs); 2446 } 2447 2448 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev, 2449 struct rtw_swing_table *swing_table) 2450 { 2451 const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev); 2452 const struct rtw_pwr_track_tbl *tbl = rfe_def->pwr_track_tbl; 2453 u8 channel = rtwdev->hal.current_channel; 2454 2455 if (IS_CH_2G_BAND(channel)) { 2456 if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) { 2457 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p; 2458 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n; 2459 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p; 2460 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n; 2461 swing_table->p[RF_PATH_C] = tbl->pwrtrk_2g_cckc_p; 2462 swing_table->n[RF_PATH_C] = tbl->pwrtrk_2g_cckc_n; 2463 swing_table->p[RF_PATH_D] = tbl->pwrtrk_2g_cckd_p; 2464 swing_table->n[RF_PATH_D] = tbl->pwrtrk_2g_cckd_n; 2465 } else { 2466 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p; 2467 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n; 2468 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p; 2469 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n; 2470 swing_table->p[RF_PATH_C] = tbl->pwrtrk_2gc_p; 2471 swing_table->n[RF_PATH_C] = tbl->pwrtrk_2gc_n; 2472 swing_table->p[RF_PATH_D] = tbl->pwrtrk_2gd_p; 2473 swing_table->n[RF_PATH_D] = tbl->pwrtrk_2gd_n; 2474 } 2475 } else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) { 2476 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1]; 2477 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1]; 2478 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1]; 2479 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1]; 2480 swing_table->p[RF_PATH_C] = tbl->pwrtrk_5gc_p[RTW_PWR_TRK_5G_1]; 2481 swing_table->n[RF_PATH_C] = tbl->pwrtrk_5gc_n[RTW_PWR_TRK_5G_1]; 2482 swing_table->p[RF_PATH_D] = tbl->pwrtrk_5gd_p[RTW_PWR_TRK_5G_1]; 2483 swing_table->n[RF_PATH_D] = tbl->pwrtrk_5gd_n[RTW_PWR_TRK_5G_1]; 2484 } else if (IS_CH_5G_BAND_3(channel)) { 2485 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2]; 2486 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2]; 2487 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2]; 2488 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2]; 2489 swing_table->p[RF_PATH_C] = tbl->pwrtrk_5gc_p[RTW_PWR_TRK_5G_2]; 2490 swing_table->n[RF_PATH_C] = tbl->pwrtrk_5gc_n[RTW_PWR_TRK_5G_2]; 2491 swing_table->p[RF_PATH_D] = tbl->pwrtrk_5gd_p[RTW_PWR_TRK_5G_2]; 2492 swing_table->n[RF_PATH_D] = tbl->pwrtrk_5gd_n[RTW_PWR_TRK_5G_2]; 2493 } else if (IS_CH_5G_BAND_4(channel)) { 2494 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3]; 2495 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3]; 2496 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3]; 2497 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3]; 2498 swing_table->p[RF_PATH_C] = tbl->pwrtrk_5gc_p[RTW_PWR_TRK_5G_3]; 2499 swing_table->n[RF_PATH_C] = tbl->pwrtrk_5gc_n[RTW_PWR_TRK_5G_3]; 2500 swing_table->p[RF_PATH_D] = tbl->pwrtrk_5gd_p[RTW_PWR_TRK_5G_3]; 2501 swing_table->n[RF_PATH_D] = tbl->pwrtrk_5gd_n[RTW_PWR_TRK_5G_3]; 2502 } else { 2503 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p; 2504 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n; 2505 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p; 2506 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n; 2507 swing_table->p[RF_PATH_C] = tbl->pwrtrk_2gc_p; 2508 swing_table->n[RF_PATH_C] = tbl->pwrtrk_2gc_n; 2509 swing_table->p[RF_PATH_D] = tbl->pwrtrk_2gd_p; 2510 swing_table->n[RF_PATH_D] = tbl->pwrtrk_2gd_n; 2511 } 2512 } 2513 EXPORT_SYMBOL(rtw_phy_config_swing_table); 2514 2515 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path) 2516 { 2517 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2518 2519 ewma_thermal_add(&dm_info->avg_thermal[path], thermal); 2520 dm_info->thermal_avg[path] = 2521 ewma_thermal_read(&dm_info->avg_thermal[path]); 2522 } 2523 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg); 2524 2525 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal, 2526 u8 path) 2527 { 2528 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2529 u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]); 2530 2531 if (avg == thermal) 2532 return false; 2533 2534 return true; 2535 } 2536 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed); 2537 2538 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path) 2539 { 2540 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2541 u8 therm_avg, therm_efuse, therm_delta; 2542 2543 therm_avg = dm_info->thermal_avg[path]; 2544 therm_efuse = rtwdev->efuse.thermal_meter[path]; 2545 therm_delta = abs(therm_avg - therm_efuse); 2546 2547 return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1); 2548 } 2549 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta); 2550 2551 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev, 2552 struct rtw_swing_table *swing_table, 2553 u8 tbl_path, u8 therm_path, u8 delta) 2554 { 2555 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2556 const u8 *delta_swing_table_idx_pos; 2557 const u8 *delta_swing_table_idx_neg; 2558 2559 if (delta >= RTW_PWR_TRK_TBL_SZ) { 2560 rtw_warn(rtwdev, "power track table overflow\n"); 2561 return 0; 2562 } 2563 2564 if (!swing_table) { 2565 rtw_warn(rtwdev, "swing table not configured\n"); 2566 return 0; 2567 } 2568 2569 delta_swing_table_idx_pos = swing_table->p[tbl_path]; 2570 delta_swing_table_idx_neg = swing_table->n[tbl_path]; 2571 2572 if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) { 2573 rtw_warn(rtwdev, "invalid swing table index\n"); 2574 return 0; 2575 } 2576 2577 if (dm_info->thermal_avg[therm_path] > 2578 rtwdev->efuse.thermal_meter[therm_path]) 2579 return delta_swing_table_idx_pos[delta]; 2580 else 2581 return -delta_swing_table_idx_neg[delta]; 2582 } 2583 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx); 2584 2585 bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev) 2586 { 2587 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2588 u8 delta_lck; 2589 2590 delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck); 2591 if (delta_lck >= rtwdev->chip->lck_threshold) { 2592 dm_info->thermal_meter_lck = dm_info->thermal_avg[0]; 2593 return true; 2594 } 2595 return false; 2596 } 2597 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck); 2598 2599 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev) 2600 { 2601 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2602 u8 delta_iqk; 2603 2604 delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k); 2605 if (delta_iqk >= rtwdev->chip->iqk_threshold) { 2606 dm_info->thermal_meter_k = dm_info->thermal_avg[0]; 2607 return true; 2608 } 2609 return false; 2610 } 2611 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk); 2612 2613 static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev, 2614 enum rtw_bb_path tx_path_sel_1ss) 2615 { 2616 struct rtw_path_div *path_div = &rtwdev->dm_path_div; 2617 enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss; 2618 const struct rtw_chip_info *chip = rtwdev->chip; 2619 2620 if (tx_path_sel_1ss == path_div->current_tx_path) 2621 return; 2622 2623 path_div->current_tx_path = tx_path_sel_1ss; 2624 rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n", 2625 tx_path_sel_1ss == BB_PATH_A ? "A" : "B"); 2626 chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx, 2627 tx_path_sel_1ss, tx_path_sel_cck, false); 2628 } 2629 2630 static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev) 2631 { 2632 struct rtw_path_div *path_div = &rtwdev->dm_path_div; 2633 enum rtw_bb_path path = path_div->current_tx_path; 2634 s32 rssi_a = 0, rssi_b = 0; 2635 2636 if (path_div->path_a_cnt) 2637 rssi_a = path_div->path_a_sum / path_div->path_a_cnt; 2638 else 2639 rssi_a = 0; 2640 if (path_div->path_b_cnt) 2641 rssi_b = path_div->path_b_sum / path_div->path_b_cnt; 2642 else 2643 rssi_b = 0; 2644 2645 if (rssi_a != rssi_b) 2646 path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B; 2647 2648 path_div->path_a_cnt = 0; 2649 path_div->path_a_sum = 0; 2650 path_div->path_b_cnt = 0; 2651 path_div->path_b_sum = 0; 2652 rtw_phy_set_tx_path_by_reg(rtwdev, path); 2653 } 2654 2655 static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev) 2656 { 2657 if (rtwdev->hal.antenna_rx != BB_PATH_AB) { 2658 rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, 2659 "[Return] tx_Path_en=%d, rx_Path_en=%d\n", 2660 rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx); 2661 return; 2662 } 2663 if (rtwdev->sta_cnt == 0) { 2664 rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n"); 2665 return; 2666 } 2667 2668 rtw_phy_tx_path_div_select(rtwdev); 2669 } 2670 2671 void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev) 2672 { 2673 const struct rtw_chip_info *chip = rtwdev->chip; 2674 2675 if (!chip->path_div_supported) 2676 return; 2677 2678 rtw_phy_tx_path_diversity_2ss(rtwdev); 2679 } 2680