1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright(c) 2018-2019 Realtek Corporation 3 */ 4 5 #include <linux/bcd.h> 6 7 #include "main.h" 8 #include "reg.h" 9 #include "fw.h" 10 #include "phy.h" 11 #include "debug.h" 12 #include "regd.h" 13 #include "sar.h" 14 15 struct phy_cfg_pair { 16 u32 addr; 17 u32 data; 18 }; 19 20 union phy_table_tile { 21 struct rtw_phy_cond cond; 22 struct phy_cfg_pair cfg; 23 }; 24 25 static const u32 db_invert_table[12][8] = { 26 {10, 13, 16, 20, 27 25, 32, 40, 50}, 28 {64, 80, 101, 128, 29 160, 201, 256, 318}, 30 {401, 505, 635, 800, 31 1007, 1268, 1596, 2010}, 32 {316, 398, 501, 631, 33 794, 1000, 1259, 1585}, 34 {1995, 2512, 3162, 3981, 35 5012, 6310, 7943, 10000}, 36 {12589, 15849, 19953, 25119, 37 31623, 39811, 50119, 63098}, 38 {79433, 100000, 125893, 158489, 39 199526, 251189, 316228, 398107}, 40 {501187, 630957, 794328, 1000000, 41 1258925, 1584893, 1995262, 2511886}, 42 {3162278, 3981072, 5011872, 6309573, 43 7943282, 1000000, 12589254, 15848932}, 44 {19952623, 25118864, 31622777, 39810717, 45 50118723, 63095734, 79432823, 100000000}, 46 {125892541, 158489319, 199526232, 251188643, 47 316227766, 398107171, 501187234, 630957345}, 48 {794328235, 1000000000, 1258925412, 1584893192, 49 1995262315, 2511886432U, 3162277660U, 3981071706U} 50 }; 51 52 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M }; 53 u8 rtw_ofdm_rates[] = { 54 DESC_RATE6M, DESC_RATE9M, DESC_RATE12M, 55 DESC_RATE18M, DESC_RATE24M, DESC_RATE36M, 56 DESC_RATE48M, DESC_RATE54M 57 }; 58 u8 rtw_ht_1s_rates[] = { 59 DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2, 60 DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5, 61 DESC_RATEMCS6, DESC_RATEMCS7 62 }; 63 u8 rtw_ht_2s_rates[] = { 64 DESC_RATEMCS8, DESC_RATEMCS9, DESC_RATEMCS10, 65 DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13, 66 DESC_RATEMCS14, DESC_RATEMCS15 67 }; 68 u8 rtw_vht_1s_rates[] = { 69 DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1, 70 DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3, 71 DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5, 72 DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7, 73 DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9 74 }; 75 u8 rtw_vht_2s_rates[] = { 76 DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1, 77 DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3, 78 DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5, 79 DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7, 80 DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9 81 }; 82 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = { 83 rtw_cck_rates, rtw_ofdm_rates, 84 rtw_ht_1s_rates, rtw_ht_2s_rates, 85 rtw_vht_1s_rates, rtw_vht_2s_rates 86 }; 87 EXPORT_SYMBOL(rtw_rate_section); 88 89 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = { 90 ARRAY_SIZE(rtw_cck_rates), 91 ARRAY_SIZE(rtw_ofdm_rates), 92 ARRAY_SIZE(rtw_ht_1s_rates), 93 ARRAY_SIZE(rtw_ht_2s_rates), 94 ARRAY_SIZE(rtw_vht_1s_rates), 95 ARRAY_SIZE(rtw_vht_2s_rates) 96 }; 97 EXPORT_SYMBOL(rtw_rate_size); 98 99 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates); 100 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates); 101 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates); 102 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates); 103 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates); 104 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates); 105 106 enum rtw_phy_band_type { 107 PHY_BAND_2G = 0, 108 PHY_BAND_5G = 1, 109 }; 110 111 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev) 112 { 113 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 114 u8 i, j; 115 116 for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) { 117 for (j = 0; j < RTW_RF_PATH_MAX; j++) 118 dm_info->cck_pd_lv[i][j] = CCK_PD_LV0; 119 } 120 121 dm_info->cck_fa_avg = CCK_FA_AVG_RESET; 122 } 123 124 void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l) 125 { 126 const struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th; 127 128 rtw_write32_mask(rtwdev, 129 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr, 130 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask, 131 l2h + edcca_th[EDCCA_TH_L2H_IDX].offset); 132 rtw_write32_mask(rtwdev, 133 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr, 134 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask, 135 h2l + edcca_th[EDCCA_TH_H2L_IDX].offset); 136 } 137 EXPORT_SYMBOL(rtw_phy_set_edcca_th); 138 139 void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev) 140 { 141 const struct rtw_chip_info *chip = rtwdev->chip; 142 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 143 144 /* turn off in debugfs for debug usage */ 145 if (!rtw_edcca_enabled) { 146 dm_info->edcca_mode = RTW_EDCCA_NORMAL; 147 rtw_dbg(rtwdev, RTW_DBG_PHY, "EDCCA disabled, cannot be set\n"); 148 return; 149 } 150 151 switch (rtwdev->regd.dfs_region) { 152 case NL80211_DFS_ETSI: 153 dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY; 154 dm_info->l2h_th_ini = chip->l2h_th_ini_ad; 155 break; 156 case NL80211_DFS_JP: 157 dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY; 158 dm_info->l2h_th_ini = chip->l2h_th_ini_cs; 159 break; 160 default: 161 dm_info->edcca_mode = RTW_EDCCA_NORMAL; 162 break; 163 } 164 } 165 166 static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev) 167 { 168 const struct rtw_chip_info *chip = rtwdev->chip; 169 170 rtw_phy_adaptivity_set_mode(rtwdev); 171 if (chip->ops->adaptivity_init) 172 chip->ops->adaptivity_init(rtwdev); 173 } 174 175 static void rtw_phy_adaptivity(struct rtw_dev *rtwdev) 176 { 177 if (rtwdev->chip->ops->adaptivity) 178 rtwdev->chip->ops->adaptivity(rtwdev); 179 } 180 181 static void rtw_phy_cfo_init(struct rtw_dev *rtwdev) 182 { 183 const struct rtw_chip_info *chip = rtwdev->chip; 184 185 if (chip->ops->cfo_init) 186 chip->ops->cfo_init(rtwdev); 187 } 188 189 static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev) 190 { 191 struct rtw_path_div *path_div = &rtwdev->dm_path_div; 192 193 path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path; 194 path_div->path_a_cnt = 0; 195 path_div->path_a_sum = 0; 196 path_div->path_b_cnt = 0; 197 path_div->path_b_sum = 0; 198 } 199 200 void rtw_phy_init(struct rtw_dev *rtwdev) 201 { 202 const struct rtw_chip_info *chip = rtwdev->chip; 203 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 204 u32 addr, mask; 205 206 dm_info->fa_history[3] = 0; 207 dm_info->fa_history[2] = 0; 208 dm_info->fa_history[1] = 0; 209 dm_info->fa_history[0] = 0; 210 dm_info->igi_bitmap = 0; 211 dm_info->igi_history[3] = 0; 212 dm_info->igi_history[2] = 0; 213 dm_info->igi_history[1] = 0; 214 215 addr = chip->dig[0].addr; 216 mask = chip->dig[0].mask; 217 dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask); 218 rtw_phy_cck_pd_init(rtwdev); 219 220 dm_info->iqk.done = false; 221 rtw_phy_adaptivity_init(rtwdev); 222 rtw_phy_cfo_init(rtwdev); 223 rtw_phy_tx_path_div_init(rtwdev); 224 } 225 EXPORT_SYMBOL(rtw_phy_init); 226 227 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi) 228 { 229 const struct rtw_chip_info *chip = rtwdev->chip; 230 struct rtw_hal *hal = &rtwdev->hal; 231 u32 addr, mask; 232 u8 path; 233 234 if (chip->dig_cck) { 235 const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0]; 236 rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1); 237 } 238 239 for (path = 0; path < hal->rf_path_num; path++) { 240 addr = chip->dig[path].addr; 241 mask = chip->dig[path].mask; 242 rtw_write32_mask(rtwdev, addr, mask, igi); 243 } 244 } 245 246 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev) 247 { 248 const struct rtw_chip_info *chip = rtwdev->chip; 249 250 chip->ops->false_alarm_statistics(rtwdev); 251 } 252 253 #define RA_FLOOR_TABLE_SIZE 7 254 #define RA_FLOOR_UP_GAP 3 255 256 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi) 257 { 258 u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100}; 259 u8 new_level = 0; 260 int i; 261 262 for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) 263 if (i >= old_level) 264 table[i] += RA_FLOOR_UP_GAP; 265 266 for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) { 267 if (rssi < table[i]) { 268 new_level = i; 269 break; 270 } 271 } 272 273 return new_level; 274 } 275 276 struct rtw_phy_stat_iter_data { 277 struct rtw_dev *rtwdev; 278 u8 min_rssi; 279 }; 280 281 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta) 282 { 283 struct rtw_phy_stat_iter_data *iter_data = data; 284 struct rtw_dev *rtwdev = iter_data->rtwdev; 285 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 286 u8 rssi; 287 288 rssi = ewma_rssi_read(&si->avg_rssi); 289 si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi); 290 291 rtw_fw_send_rssi_info(rtwdev, si); 292 293 iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi); 294 } 295 296 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev) 297 { 298 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 299 struct rtw_phy_stat_iter_data data = {}; 300 301 data.rtwdev = rtwdev; 302 data.min_rssi = U8_MAX; 303 rtw_iterate_stas(rtwdev, rtw_phy_stat_rssi_iter, &data); 304 305 dm_info->pre_min_rssi = dm_info->min_rssi; 306 dm_info->min_rssi = data.min_rssi; 307 } 308 309 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev) 310 { 311 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 312 313 dm_info->last_pkt_count = dm_info->cur_pkt_count; 314 memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count)); 315 } 316 317 static void rtw_phy_statistics(struct rtw_dev *rtwdev) 318 { 319 rtw_phy_stat_rssi(rtwdev); 320 rtw_phy_stat_false_alarm(rtwdev); 321 rtw_phy_stat_rate_cnt(rtwdev); 322 } 323 324 #define DIG_PERF_FA_TH_LOW 250 325 #define DIG_PERF_FA_TH_HIGH 500 326 #define DIG_PERF_FA_TH_EXTRA_HIGH 750 327 #define DIG_PERF_MAX 0x5a 328 #define DIG_PERF_MID 0x40 329 #define DIG_CVRG_FA_TH_LOW 2000 330 #define DIG_CVRG_FA_TH_HIGH 4000 331 #define DIG_CVRG_FA_TH_EXTRA_HIGH 5000 332 #define DIG_CVRG_MAX 0x2a 333 #define DIG_CVRG_MID 0x26 334 #define DIG_CVRG_MIN 0x1c 335 #define DIG_RSSI_GAIN_OFFSET 15 336 337 static bool 338 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info) 339 { 340 u16 fa_lo = DIG_PERF_FA_TH_LOW; 341 u16 fa_hi = DIG_PERF_FA_TH_HIGH; 342 u16 *fa_history; 343 u8 *igi_history; 344 u8 damping_rssi; 345 u8 min_rssi; 346 u8 diff; 347 u8 igi_bitmap; 348 bool damping = false; 349 350 min_rssi = dm_info->min_rssi; 351 if (dm_info->damping) { 352 damping_rssi = dm_info->damping_rssi; 353 diff = min_rssi > damping_rssi ? min_rssi - damping_rssi : 354 damping_rssi - min_rssi; 355 if (diff > 3 || dm_info->damping_cnt++ > 20) { 356 dm_info->damping = false; 357 return false; 358 } 359 360 return true; 361 } 362 363 igi_history = dm_info->igi_history; 364 fa_history = dm_info->fa_history; 365 igi_bitmap = dm_info->igi_bitmap & 0xf; 366 switch (igi_bitmap) { 367 case 5: 368 /* down -> up -> down -> up */ 369 if (igi_history[0] > igi_history[1] && 370 igi_history[2] > igi_history[3] && 371 igi_history[0] - igi_history[1] >= 2 && 372 igi_history[2] - igi_history[3] >= 2 && 373 fa_history[0] > fa_hi && fa_history[1] < fa_lo && 374 fa_history[2] > fa_hi && fa_history[3] < fa_lo) 375 damping = true; 376 break; 377 case 9: 378 /* up -> down -> down -> up */ 379 if (igi_history[0] > igi_history[1] && 380 igi_history[3] > igi_history[2] && 381 igi_history[0] - igi_history[1] >= 4 && 382 igi_history[3] - igi_history[2] >= 2 && 383 fa_history[0] > fa_hi && fa_history[1] < fa_lo && 384 fa_history[2] < fa_lo && fa_history[3] > fa_hi) 385 damping = true; 386 break; 387 default: 388 return false; 389 } 390 391 if (damping) { 392 dm_info->damping = true; 393 dm_info->damping_cnt = 0; 394 dm_info->damping_rssi = min_rssi; 395 } 396 397 return damping; 398 } 399 400 static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev, 401 struct rtw_dm_info *dm_info, 402 u8 *upper, u8 *lower, bool linked) 403 { 404 u8 dig_max, dig_min, dig_mid; 405 u8 min_rssi; 406 407 if (linked) { 408 dig_max = DIG_PERF_MAX; 409 dig_mid = DIG_PERF_MID; 410 dig_min = rtwdev->chip->dig_min; 411 min_rssi = max_t(u8, dm_info->min_rssi, dig_min); 412 } else { 413 dig_max = DIG_CVRG_MAX; 414 dig_mid = DIG_CVRG_MID; 415 dig_min = DIG_CVRG_MIN; 416 min_rssi = dig_min; 417 } 418 419 /* DIG MAX should be bounded by minimum RSSI with offset +15 */ 420 dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET); 421 422 *lower = clamp_t(u8, min_rssi, dig_min, dig_mid); 423 *upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max); 424 } 425 426 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info, 427 u16 *fa_th, u8 *step, bool linked) 428 { 429 u8 min_rssi, pre_min_rssi; 430 431 min_rssi = dm_info->min_rssi; 432 pre_min_rssi = dm_info->pre_min_rssi; 433 step[0] = 4; 434 step[1] = 3; 435 step[2] = 2; 436 437 if (linked) { 438 fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH; 439 fa_th[1] = DIG_PERF_FA_TH_HIGH; 440 fa_th[2] = DIG_PERF_FA_TH_LOW; 441 if (pre_min_rssi > min_rssi) { 442 step[0] = 6; 443 step[1] = 4; 444 step[2] = 2; 445 } 446 } else { 447 fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH; 448 fa_th[1] = DIG_CVRG_FA_TH_HIGH; 449 fa_th[2] = DIG_CVRG_FA_TH_LOW; 450 } 451 } 452 453 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa) 454 { 455 u8 *igi_history; 456 u16 *fa_history; 457 u8 igi_bitmap; 458 bool up; 459 460 igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe; 461 igi_history = dm_info->igi_history; 462 fa_history = dm_info->fa_history; 463 464 up = igi > igi_history[0]; 465 igi_bitmap |= up; 466 467 igi_history[3] = igi_history[2]; 468 igi_history[2] = igi_history[1]; 469 igi_history[1] = igi_history[0]; 470 igi_history[0] = igi; 471 472 fa_history[3] = fa_history[2]; 473 fa_history[2] = fa_history[1]; 474 fa_history[1] = fa_history[0]; 475 fa_history[0] = fa; 476 477 dm_info->igi_bitmap = igi_bitmap; 478 } 479 480 static void rtw_phy_dig(struct rtw_dev *rtwdev) 481 { 482 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 483 u8 upper_bound, lower_bound; 484 u8 pre_igi, cur_igi; 485 u16 fa_th[3], fa_cnt; 486 u8 level; 487 u8 step[3]; 488 bool linked; 489 490 if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags)) 491 return; 492 493 if (rtw_phy_dig_check_damping(dm_info)) 494 return; 495 496 linked = !!rtwdev->sta_cnt; 497 498 fa_cnt = dm_info->total_fa_cnt; 499 pre_igi = dm_info->igi_history[0]; 500 501 rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked); 502 503 /* test the false alarm count from the highest threshold level first, 504 * and increase it by corresponding step size 505 * 506 * note that the step size is offset by -2, compensate it afterall 507 */ 508 cur_igi = pre_igi; 509 for (level = 0; level < 3; level++) { 510 if (fa_cnt > fa_th[level]) { 511 cur_igi += step[level]; 512 break; 513 } 514 } 515 cur_igi -= 2; 516 517 /* calculate the upper/lower bound by the minimum rssi we have among 518 * the peers connected with us, meanwhile make sure the igi value does 519 * not beyond the hardware limitation 520 */ 521 rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound, 522 linked); 523 cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound); 524 525 /* record current igi value and false alarm statistics for further 526 * damping checks, and record the trend of igi values 527 */ 528 rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt); 529 530 if (cur_igi != pre_igi) 531 rtw_phy_dig_write(rtwdev, cur_igi); 532 } 533 534 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta) 535 { 536 struct rtw_dev *rtwdev = data; 537 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 538 539 rtw_update_sta_info(rtwdev, si, false); 540 } 541 542 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev) 543 { 544 if (rtwdev->watch_dog_cnt & 0x3) 545 return; 546 547 rtw_iterate_stas(rtwdev, rtw_phy_ra_info_update_iter, rtwdev); 548 } 549 550 static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx) 551 { 552 u8 rate_order; 553 554 rate_order = rate_idx; 555 556 if (rate_idx >= DESC_RATEVHT4SS_MCS0) 557 rate_order -= DESC_RATEVHT4SS_MCS0; 558 else if (rate_idx >= DESC_RATEVHT3SS_MCS0) 559 rate_order -= DESC_RATEVHT3SS_MCS0; 560 else if (rate_idx >= DESC_RATEVHT2SS_MCS0) 561 rate_order -= DESC_RATEVHT2SS_MCS0; 562 else if (rate_idx >= DESC_RATEVHT1SS_MCS0) 563 rate_order -= DESC_RATEVHT1SS_MCS0; 564 else if (rate_idx >= DESC_RATEMCS24) 565 rate_order -= DESC_RATEMCS24; 566 else if (rate_idx >= DESC_RATEMCS16) 567 rate_order -= DESC_RATEMCS16; 568 else if (rate_idx >= DESC_RATEMCS8) 569 rate_order -= DESC_RATEMCS8; 570 else if (rate_idx >= DESC_RATEMCS0) 571 rate_order -= DESC_RATEMCS0; 572 else if (rate_idx >= DESC_RATE6M) 573 rate_order -= DESC_RATE6M; 574 else 575 rate_order -= DESC_RATE1M; 576 577 if (rate_idx >= DESC_RATEMCS0 || rate_order == 0) 578 rate_order++; 579 580 return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0); 581 } 582 583 static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta) 584 { 585 struct rtw_dev *rtwdev = (struct rtw_dev *)data; 586 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 587 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 588 u32 mask = 0; 589 590 mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate); 591 if (mask < dm_info->rrsr_mask_min) 592 dm_info->rrsr_mask_min = mask; 593 } 594 595 static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev) 596 { 597 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 598 599 dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX; 600 rtw_iterate_stas(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev); 601 rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min); 602 } 603 604 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev) 605 { 606 const struct rtw_chip_info *chip = rtwdev->chip; 607 608 if (chip->ops->dpk_track) 609 chip->ops->dpk_track(rtwdev); 610 } 611 612 struct rtw_rx_addr_match_data { 613 struct rtw_dev *rtwdev; 614 struct ieee80211_hdr *hdr; 615 struct rtw_rx_pkt_stat *pkt_stat; 616 u8 *bssid; 617 }; 618 619 static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac, 620 struct ieee80211_vif *vif) 621 { 622 struct rtw_rx_addr_match_data *iter_data = data; 623 struct rtw_dev *rtwdev = iter_data->rtwdev; 624 struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat; 625 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 626 struct rtw_cfo_track *cfo = &dm_info->cfo_track; 627 u8 *bssid = iter_data->bssid; 628 u8 i; 629 630 if (!ether_addr_equal(vif->bss_conf.bssid, bssid)) 631 return; 632 633 for (i = 0; i < rtwdev->hal.rf_path_num; i++) { 634 cfo->cfo_tail[i] += pkt_stat->cfo_tail[i]; 635 cfo->cfo_cnt[i]++; 636 } 637 638 cfo->packet_count++; 639 } 640 641 void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev, 642 struct rtw_rx_pkt_stat *pkt_stat) 643 { 644 struct ieee80211_hdr *hdr = pkt_stat->hdr; 645 struct rtw_rx_addr_match_data data = {}; 646 647 if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status || 648 ieee80211_is_ctl(hdr->frame_control)) 649 return; 650 651 data.rtwdev = rtwdev; 652 data.hdr = hdr; 653 data.pkt_stat = pkt_stat; 654 data.bssid = get_hdr_bssid(hdr); 655 656 rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data); 657 } 658 EXPORT_SYMBOL(rtw_phy_parsing_cfo); 659 660 static void rtw_phy_cfo_track(struct rtw_dev *rtwdev) 661 { 662 const struct rtw_chip_info *chip = rtwdev->chip; 663 664 if (chip->ops->cfo_track) 665 chip->ops->cfo_track(rtwdev); 666 } 667 668 #define CCK_PD_FA_LV1_MIN 1000 669 #define CCK_PD_FA_LV0_MAX 500 670 671 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev) 672 { 673 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 674 u32 cck_fa_avg = dm_info->cck_fa_avg; 675 676 if (cck_fa_avg > CCK_PD_FA_LV1_MIN) 677 return CCK_PD_LV1; 678 679 if (cck_fa_avg < CCK_PD_FA_LV0_MAX) 680 return CCK_PD_LV0; 681 682 return CCK_PD_LV_MAX; 683 } 684 685 #define CCK_PD_IGI_LV4_VAL 0x38 686 #define CCK_PD_IGI_LV3_VAL 0x2a 687 #define CCK_PD_IGI_LV2_VAL 0x24 688 #define CCK_PD_RSSI_LV4_VAL 32 689 #define CCK_PD_RSSI_LV3_VAL 32 690 #define CCK_PD_RSSI_LV2_VAL 24 691 692 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev) 693 { 694 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 695 u8 igi = dm_info->igi_history[0]; 696 u8 rssi = dm_info->min_rssi; 697 u32 cck_fa_avg = dm_info->cck_fa_avg; 698 699 if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL) 700 return CCK_PD_LV4; 701 if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL) 702 return CCK_PD_LV3; 703 if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL) 704 return CCK_PD_LV2; 705 if (cck_fa_avg > CCK_PD_FA_LV1_MIN) 706 return CCK_PD_LV1; 707 if (cck_fa_avg < CCK_PD_FA_LV0_MAX) 708 return CCK_PD_LV0; 709 710 return CCK_PD_LV_MAX; 711 } 712 713 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev) 714 { 715 if (!rtw_is_assoc(rtwdev)) 716 return rtw_phy_cck_pd_lv_unlink(rtwdev); 717 else 718 return rtw_phy_cck_pd_lv_link(rtwdev); 719 } 720 721 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev) 722 { 723 const struct rtw_chip_info *chip = rtwdev->chip; 724 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 725 u32 cck_fa = dm_info->cck_fa_cnt; 726 u8 level; 727 728 if (rtwdev->hal.current_band_type != RTW_BAND_2G) 729 return; 730 731 if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET) 732 dm_info->cck_fa_avg = cck_fa; 733 else 734 dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2; 735 736 rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n", 737 dm_info->igi_history[0], dm_info->min_rssi, 738 dm_info->fa_history[0]); 739 rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n", 740 dm_info->cck_fa_avg, dm_info->cck_pd_default); 741 742 level = rtw_phy_cck_pd_lv(rtwdev); 743 744 if (level >= CCK_PD_LV_MAX) 745 return; 746 747 if (chip->ops->cck_pd_set) 748 chip->ops->cck_pd_set(rtwdev, level); 749 } 750 751 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev) 752 { 753 rtwdev->chip->ops->pwr_track(rtwdev); 754 } 755 756 static void rtw_phy_ra_track(struct rtw_dev *rtwdev) 757 { 758 rtw_fw_update_wl_phy_info(rtwdev); 759 rtw_phy_ra_info_update(rtwdev); 760 rtw_phy_rrsr_update(rtwdev); 761 } 762 763 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev) 764 { 765 /* for further calculation */ 766 rtw_phy_statistics(rtwdev); 767 rtw_phy_dig(rtwdev); 768 rtw_phy_cck_pd(rtwdev); 769 rtw_phy_ra_track(rtwdev); 770 rtw_phy_tx_path_diversity(rtwdev); 771 rtw_phy_cfo_track(rtwdev); 772 rtw_phy_dpk_track(rtwdev); 773 rtw_phy_pwr_track(rtwdev); 774 775 if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_ADAPTIVITY)) 776 rtw_fw_adaptivity(rtwdev); 777 else 778 rtw_phy_adaptivity(rtwdev); 779 } 780 781 #define FRAC_BITS 3 782 783 static u8 rtw_phy_power_2_db(s8 power) 784 { 785 if (power <= -100 || power >= 20) 786 return 0; 787 else if (power >= 0) 788 return 100; 789 else 790 return 100 + power; 791 } 792 793 static u64 rtw_phy_db_2_linear(u8 power_db) 794 { 795 u8 i, j; 796 u64 linear; 797 798 if (power_db > 96) 799 power_db = 96; 800 else if (power_db < 1) 801 return 1; 802 803 /* 1dB ~ 96dB */ 804 i = (power_db - 1) >> 3; 805 j = (power_db - 1) - (i << 3); 806 807 linear = db_invert_table[i][j]; 808 linear = i > 2 ? linear << FRAC_BITS : linear; 809 810 return linear; 811 } 812 813 static u8 rtw_phy_linear_2_db(u64 linear) 814 { 815 u8 i; 816 u8 j; 817 u32 dB; 818 819 for (i = 0; i < 12; i++) { 820 for (j = 0; j < 8; j++) { 821 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j]) 822 goto cnt; 823 else if (i > 2 && linear <= db_invert_table[i][j]) 824 goto cnt; 825 } 826 } 827 828 return 96; /* maximum 96 dB */ 829 830 cnt: 831 if (j == 0 && i == 0) 832 goto end; 833 834 if (j == 0) { 835 if (i != 3) { 836 if (db_invert_table[i][0] - linear > 837 linear - db_invert_table[i - 1][7]) { 838 i = i - 1; 839 j = 7; 840 } 841 } else { 842 if (db_invert_table[3][0] - linear > 843 linear - db_invert_table[2][7]) { 844 i = 2; 845 j = 7; 846 } 847 } 848 } else { 849 if (db_invert_table[i][j] - linear > 850 linear - db_invert_table[i][j - 1]) { 851 j = j - 1; 852 } 853 } 854 end: 855 dB = (i << 3) + j + 1; 856 857 return dB; 858 } 859 860 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num) 861 { 862 s8 power; 863 u8 power_db; 864 u64 linear; 865 u64 sum = 0; 866 u8 path; 867 868 for (path = 0; path < path_num; path++) { 869 power = rf_power[path]; 870 power_db = rtw_phy_power_2_db(power); 871 linear = rtw_phy_db_2_linear(power_db); 872 sum += linear; 873 } 874 875 sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS; 876 switch (path_num) { 877 case 2: 878 sum >>= 1; 879 break; 880 case 3: 881 sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5; 882 break; 883 case 4: 884 sum >>= 2; 885 break; 886 default: 887 break; 888 } 889 890 return rtw_phy_linear_2_db(sum); 891 } 892 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi); 893 894 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path, 895 u32 addr, u32 mask) 896 { 897 struct rtw_hal *hal = &rtwdev->hal; 898 const struct rtw_chip_info *chip = rtwdev->chip; 899 const u32 *base_addr = chip->rf_base_addr; 900 u32 val, direct_addr; 901 902 if (rf_path >= hal->rf_phy_num) { 903 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path); 904 return INV_RF_DATA; 905 } 906 907 addr &= 0xff; 908 direct_addr = base_addr[rf_path] + (addr << 2); 909 mask &= RFREG_MASK; 910 911 val = rtw_read32_mask(rtwdev, direct_addr, mask); 912 913 return val; 914 } 915 EXPORT_SYMBOL(rtw_phy_read_rf); 916 917 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path, 918 u32 addr, u32 mask) 919 { 920 struct rtw_hal *hal = &rtwdev->hal; 921 const struct rtw_chip_info *chip = rtwdev->chip; 922 const struct rtw_rf_sipi_addr *rf_sipi_addr; 923 const struct rtw_rf_sipi_addr *rf_sipi_addr_a; 924 u32 val32; 925 u32 en_pi; 926 u32 r_addr; 927 u32 shift; 928 929 if (rf_path >= hal->rf_phy_num) { 930 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path); 931 return INV_RF_DATA; 932 } 933 934 if (!chip->rf_sipi_read_addr) { 935 rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n"); 936 return INV_RF_DATA; 937 } 938 939 rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path]; 940 rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A]; 941 942 addr &= 0xff; 943 944 val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2); 945 val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23); 946 rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32); 947 948 /* toggle read edge of path A */ 949 val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2); 950 rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK); 951 rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK); 952 953 udelay(120); 954 955 en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8)); 956 r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read; 957 958 val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK); 959 960 shift = __ffs(mask); 961 962 return (val32 & mask) >> shift; 963 } 964 EXPORT_SYMBOL(rtw_phy_read_rf_sipi); 965 966 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path, 967 u32 addr, u32 mask, u32 data) 968 { 969 struct rtw_hal *hal = &rtwdev->hal; 970 const struct rtw_chip_info *chip = rtwdev->chip; 971 const u32 *sipi_addr = chip->rf_sipi_addr; 972 u32 data_and_addr; 973 u32 old_data = 0; 974 u32 shift; 975 976 if (rf_path >= hal->rf_phy_num) { 977 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path); 978 return false; 979 } 980 981 addr &= 0xff; 982 mask &= RFREG_MASK; 983 984 if (mask != RFREG_MASK) { 985 old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK); 986 987 if (old_data == INV_RF_DATA) { 988 rtw_err(rtwdev, "Write fail, rf is disabled\n"); 989 return false; 990 } 991 992 shift = __ffs(mask); 993 data = ((old_data) & (~mask)) | (data << shift); 994 } 995 996 data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff; 997 998 rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr); 999 1000 udelay(13); 1001 1002 return true; 1003 } 1004 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi); 1005 1006 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path, 1007 u32 addr, u32 mask, u32 data) 1008 { 1009 struct rtw_hal *hal = &rtwdev->hal; 1010 const struct rtw_chip_info *chip = rtwdev->chip; 1011 const u32 *base_addr = chip->rf_base_addr; 1012 u32 direct_addr; 1013 1014 if (rf_path >= hal->rf_phy_num) { 1015 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path); 1016 return false; 1017 } 1018 1019 addr &= 0xff; 1020 direct_addr = base_addr[rf_path] + (addr << 2); 1021 mask &= RFREG_MASK; 1022 1023 rtw_write32_mask(rtwdev, direct_addr, mask, data); 1024 1025 udelay(1); 1026 1027 return true; 1028 } 1029 1030 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path, 1031 u32 addr, u32 mask, u32 data) 1032 { 1033 if (addr != 0x00) 1034 return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data); 1035 1036 return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data); 1037 } 1038 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix); 1039 1040 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg) 1041 { 1042 struct rtw_hal *hal = &rtwdev->hal; 1043 struct rtw_efuse *efuse = &rtwdev->efuse; 1044 struct rtw_phy_cond cond = {0}; 1045 1046 cond.cut = hal->cut_version ? hal->cut_version : 15; 1047 cond.pkg = pkg ? pkg : 15; 1048 cond.plat = 0x04; 1049 cond.rfe = efuse->rfe_option; 1050 1051 switch (rtw_hci_type(rtwdev)) { 1052 case RTW_HCI_TYPE_USB: 1053 cond.intf = INTF_USB; 1054 break; 1055 case RTW_HCI_TYPE_SDIO: 1056 cond.intf = INTF_SDIO; 1057 break; 1058 case RTW_HCI_TYPE_PCIE: 1059 default: 1060 cond.intf = INTF_PCIE; 1061 break; 1062 } 1063 1064 hal->phy_cond = cond; 1065 1066 rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond)); 1067 } 1068 1069 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond) 1070 { 1071 struct rtw_hal *hal = &rtwdev->hal; 1072 struct rtw_phy_cond drv_cond = hal->phy_cond; 1073 1074 if (cond.cut && cond.cut != drv_cond.cut) 1075 return false; 1076 1077 if (cond.pkg && cond.pkg != drv_cond.pkg) 1078 return false; 1079 1080 if (cond.intf && cond.intf != drv_cond.intf) 1081 return false; 1082 1083 if (cond.rfe != drv_cond.rfe) 1084 return false; 1085 1086 return true; 1087 } 1088 1089 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl) 1090 { 1091 const union phy_table_tile *p = tbl->data; 1092 const union phy_table_tile *end = p + tbl->size / 2; 1093 struct rtw_phy_cond pos_cond = {0}; 1094 bool is_matched = true, is_skipped = false; 1095 1096 BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair)); 1097 1098 for (; p < end; p++) { 1099 if (p->cond.pos) { 1100 switch (p->cond.branch) { 1101 case BRANCH_ENDIF: 1102 is_matched = true; 1103 is_skipped = false; 1104 break; 1105 case BRANCH_ELSE: 1106 is_matched = is_skipped ? false : true; 1107 break; 1108 case BRANCH_IF: 1109 case BRANCH_ELIF: 1110 default: 1111 pos_cond = p->cond; 1112 break; 1113 } 1114 } else if (p->cond.neg) { 1115 if (!is_skipped) { 1116 if (check_positive(rtwdev, pos_cond)) { 1117 is_matched = true; 1118 is_skipped = true; 1119 } else { 1120 is_matched = false; 1121 is_skipped = false; 1122 } 1123 } else { 1124 is_matched = false; 1125 } 1126 } else if (is_matched) { 1127 (*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data); 1128 } 1129 } 1130 } 1131 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond); 1132 1133 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8)) 1134 1135 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i) 1136 { 1137 if (rtwdev->chip->is_pwr_by_rate_dec) 1138 return bcd_to_dec_pwr_by_rate(hex, i); 1139 1140 return (hex >> (i * 8)) & 0xFF; 1141 } 1142 1143 static void 1144 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev, 1145 u32 addr, u32 mask, u32 val, u8 *rate, 1146 u8 *pwr_by_rate, u8 *rate_num) 1147 { 1148 int i; 1149 1150 switch (addr) { 1151 case 0xE00: 1152 case 0x830: 1153 rate[0] = DESC_RATE6M; 1154 rate[1] = DESC_RATE9M; 1155 rate[2] = DESC_RATE12M; 1156 rate[3] = DESC_RATE18M; 1157 for (i = 0; i < 4; ++i) 1158 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1159 *rate_num = 4; 1160 break; 1161 case 0xE04: 1162 case 0x834: 1163 rate[0] = DESC_RATE24M; 1164 rate[1] = DESC_RATE36M; 1165 rate[2] = DESC_RATE48M; 1166 rate[3] = DESC_RATE54M; 1167 for (i = 0; i < 4; ++i) 1168 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1169 *rate_num = 4; 1170 break; 1171 case 0xE08: 1172 rate[0] = DESC_RATE1M; 1173 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1); 1174 *rate_num = 1; 1175 break; 1176 case 0x86C: 1177 if (mask == 0xffffff00) { 1178 rate[0] = DESC_RATE2M; 1179 rate[1] = DESC_RATE5_5M; 1180 rate[2] = DESC_RATE11M; 1181 for (i = 1; i < 4; ++i) 1182 pwr_by_rate[i - 1] = 1183 tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1184 *rate_num = 3; 1185 } else if (mask == 0x000000ff) { 1186 rate[0] = DESC_RATE11M; 1187 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0); 1188 *rate_num = 1; 1189 } 1190 break; 1191 case 0xE10: 1192 case 0x83C: 1193 rate[0] = DESC_RATEMCS0; 1194 rate[1] = DESC_RATEMCS1; 1195 rate[2] = DESC_RATEMCS2; 1196 rate[3] = DESC_RATEMCS3; 1197 for (i = 0; i < 4; ++i) 1198 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1199 *rate_num = 4; 1200 break; 1201 case 0xE14: 1202 case 0x848: 1203 rate[0] = DESC_RATEMCS4; 1204 rate[1] = DESC_RATEMCS5; 1205 rate[2] = DESC_RATEMCS6; 1206 rate[3] = DESC_RATEMCS7; 1207 for (i = 0; i < 4; ++i) 1208 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1209 *rate_num = 4; 1210 break; 1211 case 0xE18: 1212 case 0x84C: 1213 rate[0] = DESC_RATEMCS8; 1214 rate[1] = DESC_RATEMCS9; 1215 rate[2] = DESC_RATEMCS10; 1216 rate[3] = DESC_RATEMCS11; 1217 for (i = 0; i < 4; ++i) 1218 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1219 *rate_num = 4; 1220 break; 1221 case 0xE1C: 1222 case 0x868: 1223 rate[0] = DESC_RATEMCS12; 1224 rate[1] = DESC_RATEMCS13; 1225 rate[2] = DESC_RATEMCS14; 1226 rate[3] = DESC_RATEMCS15; 1227 for (i = 0; i < 4; ++i) 1228 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1229 *rate_num = 4; 1230 break; 1231 case 0x838: 1232 rate[0] = DESC_RATE1M; 1233 rate[1] = DESC_RATE2M; 1234 rate[2] = DESC_RATE5_5M; 1235 for (i = 1; i < 4; ++i) 1236 pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev, 1237 val, i); 1238 *rate_num = 3; 1239 break; 1240 case 0xC20: 1241 case 0xE20: 1242 case 0x1820: 1243 case 0x1A20: 1244 rate[0] = DESC_RATE1M; 1245 rate[1] = DESC_RATE2M; 1246 rate[2] = DESC_RATE5_5M; 1247 rate[3] = DESC_RATE11M; 1248 for (i = 0; i < 4; ++i) 1249 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1250 *rate_num = 4; 1251 break; 1252 case 0xC24: 1253 case 0xE24: 1254 case 0x1824: 1255 case 0x1A24: 1256 rate[0] = DESC_RATE6M; 1257 rate[1] = DESC_RATE9M; 1258 rate[2] = DESC_RATE12M; 1259 rate[3] = DESC_RATE18M; 1260 for (i = 0; i < 4; ++i) 1261 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1262 *rate_num = 4; 1263 break; 1264 case 0xC28: 1265 case 0xE28: 1266 case 0x1828: 1267 case 0x1A28: 1268 rate[0] = DESC_RATE24M; 1269 rate[1] = DESC_RATE36M; 1270 rate[2] = DESC_RATE48M; 1271 rate[3] = DESC_RATE54M; 1272 for (i = 0; i < 4; ++i) 1273 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1274 *rate_num = 4; 1275 break; 1276 case 0xC2C: 1277 case 0xE2C: 1278 case 0x182C: 1279 case 0x1A2C: 1280 rate[0] = DESC_RATEMCS0; 1281 rate[1] = DESC_RATEMCS1; 1282 rate[2] = DESC_RATEMCS2; 1283 rate[3] = DESC_RATEMCS3; 1284 for (i = 0; i < 4; ++i) 1285 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1286 *rate_num = 4; 1287 break; 1288 case 0xC30: 1289 case 0xE30: 1290 case 0x1830: 1291 case 0x1A30: 1292 rate[0] = DESC_RATEMCS4; 1293 rate[1] = DESC_RATEMCS5; 1294 rate[2] = DESC_RATEMCS6; 1295 rate[3] = DESC_RATEMCS7; 1296 for (i = 0; i < 4; ++i) 1297 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1298 *rate_num = 4; 1299 break; 1300 case 0xC34: 1301 case 0xE34: 1302 case 0x1834: 1303 case 0x1A34: 1304 rate[0] = DESC_RATEMCS8; 1305 rate[1] = DESC_RATEMCS9; 1306 rate[2] = DESC_RATEMCS10; 1307 rate[3] = DESC_RATEMCS11; 1308 for (i = 0; i < 4; ++i) 1309 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1310 *rate_num = 4; 1311 break; 1312 case 0xC38: 1313 case 0xE38: 1314 case 0x1838: 1315 case 0x1A38: 1316 rate[0] = DESC_RATEMCS12; 1317 rate[1] = DESC_RATEMCS13; 1318 rate[2] = DESC_RATEMCS14; 1319 rate[3] = DESC_RATEMCS15; 1320 for (i = 0; i < 4; ++i) 1321 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1322 *rate_num = 4; 1323 break; 1324 case 0xC3C: 1325 case 0xE3C: 1326 case 0x183C: 1327 case 0x1A3C: 1328 rate[0] = DESC_RATEVHT1SS_MCS0; 1329 rate[1] = DESC_RATEVHT1SS_MCS1; 1330 rate[2] = DESC_RATEVHT1SS_MCS2; 1331 rate[3] = DESC_RATEVHT1SS_MCS3; 1332 for (i = 0; i < 4; ++i) 1333 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1334 *rate_num = 4; 1335 break; 1336 case 0xC40: 1337 case 0xE40: 1338 case 0x1840: 1339 case 0x1A40: 1340 rate[0] = DESC_RATEVHT1SS_MCS4; 1341 rate[1] = DESC_RATEVHT1SS_MCS5; 1342 rate[2] = DESC_RATEVHT1SS_MCS6; 1343 rate[3] = DESC_RATEVHT1SS_MCS7; 1344 for (i = 0; i < 4; ++i) 1345 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1346 *rate_num = 4; 1347 break; 1348 case 0xC44: 1349 case 0xE44: 1350 case 0x1844: 1351 case 0x1A44: 1352 rate[0] = DESC_RATEVHT1SS_MCS8; 1353 rate[1] = DESC_RATEVHT1SS_MCS9; 1354 rate[2] = DESC_RATEVHT2SS_MCS0; 1355 rate[3] = DESC_RATEVHT2SS_MCS1; 1356 for (i = 0; i < 4; ++i) 1357 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1358 *rate_num = 4; 1359 break; 1360 case 0xC48: 1361 case 0xE48: 1362 case 0x1848: 1363 case 0x1A48: 1364 rate[0] = DESC_RATEVHT2SS_MCS2; 1365 rate[1] = DESC_RATEVHT2SS_MCS3; 1366 rate[2] = DESC_RATEVHT2SS_MCS4; 1367 rate[3] = DESC_RATEVHT2SS_MCS5; 1368 for (i = 0; i < 4; ++i) 1369 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1370 *rate_num = 4; 1371 break; 1372 case 0xC4C: 1373 case 0xE4C: 1374 case 0x184C: 1375 case 0x1A4C: 1376 rate[0] = DESC_RATEVHT2SS_MCS6; 1377 rate[1] = DESC_RATEVHT2SS_MCS7; 1378 rate[2] = DESC_RATEVHT2SS_MCS8; 1379 rate[3] = DESC_RATEVHT2SS_MCS9; 1380 for (i = 0; i < 4; ++i) 1381 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1382 *rate_num = 4; 1383 break; 1384 case 0xCD8: 1385 case 0xED8: 1386 case 0x18D8: 1387 case 0x1AD8: 1388 rate[0] = DESC_RATEMCS16; 1389 rate[1] = DESC_RATEMCS17; 1390 rate[2] = DESC_RATEMCS18; 1391 rate[3] = DESC_RATEMCS19; 1392 for (i = 0; i < 4; ++i) 1393 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1394 *rate_num = 4; 1395 break; 1396 case 0xCDC: 1397 case 0xEDC: 1398 case 0x18DC: 1399 case 0x1ADC: 1400 rate[0] = DESC_RATEMCS20; 1401 rate[1] = DESC_RATEMCS21; 1402 rate[2] = DESC_RATEMCS22; 1403 rate[3] = DESC_RATEMCS23; 1404 for (i = 0; i < 4; ++i) 1405 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1406 *rate_num = 4; 1407 break; 1408 case 0xCE0: 1409 case 0xEE0: 1410 case 0x18E0: 1411 case 0x1AE0: 1412 rate[0] = DESC_RATEVHT3SS_MCS0; 1413 rate[1] = DESC_RATEVHT3SS_MCS1; 1414 rate[2] = DESC_RATEVHT3SS_MCS2; 1415 rate[3] = DESC_RATEVHT3SS_MCS3; 1416 for (i = 0; i < 4; ++i) 1417 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1418 *rate_num = 4; 1419 break; 1420 case 0xCE4: 1421 case 0xEE4: 1422 case 0x18E4: 1423 case 0x1AE4: 1424 rate[0] = DESC_RATEVHT3SS_MCS4; 1425 rate[1] = DESC_RATEVHT3SS_MCS5; 1426 rate[2] = DESC_RATEVHT3SS_MCS6; 1427 rate[3] = DESC_RATEVHT3SS_MCS7; 1428 for (i = 0; i < 4; ++i) 1429 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1430 *rate_num = 4; 1431 break; 1432 case 0xCE8: 1433 case 0xEE8: 1434 case 0x18E8: 1435 case 0x1AE8: 1436 rate[0] = DESC_RATEVHT3SS_MCS8; 1437 rate[1] = DESC_RATEVHT3SS_MCS9; 1438 for (i = 0; i < 2; ++i) 1439 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i); 1440 *rate_num = 2; 1441 break; 1442 default: 1443 rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr); 1444 break; 1445 } 1446 } 1447 1448 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev, 1449 u32 band, u32 rfpath, u32 txnum, 1450 u32 regaddr, u32 bitmask, u32 data) 1451 { 1452 struct rtw_hal *hal = &rtwdev->hal; 1453 u8 rate_num = 0; 1454 u8 rate; 1455 u8 rates[RTW_RF_PATH_MAX] = {0}; 1456 s8 offset; 1457 s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0}; 1458 int i; 1459 1460 rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data, 1461 rates, pwr_by_rate, &rate_num); 1462 1463 if (WARN_ON(rfpath >= RTW_RF_PATH_MAX || 1464 (band != PHY_BAND_2G && band != PHY_BAND_5G) || 1465 rate_num > RTW_RF_PATH_MAX)) 1466 return; 1467 1468 for (i = 0; i < rate_num; i++) { 1469 offset = pwr_by_rate[i]; 1470 rate = rates[i]; 1471 if (band == PHY_BAND_2G) 1472 hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset; 1473 else if (band == PHY_BAND_5G) 1474 hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset; 1475 else 1476 continue; 1477 } 1478 } 1479 1480 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl) 1481 { 1482 const struct rtw_phy_pg_cfg_pair *p = tbl->data; 1483 const struct rtw_phy_pg_cfg_pair *end = p + tbl->size; 1484 1485 for (; p < end; p++) { 1486 if (p->addr == 0xfe || p->addr == 0xffe) { 1487 msleep(50); 1488 continue; 1489 } 1490 rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path, 1491 p->tx_num, p->addr, p->bitmask, 1492 p->data); 1493 } 1494 } 1495 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg); 1496 1497 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = { 1498 36, 38, 40, 42, 44, 46, 48, /* Band 1 */ 1499 52, 54, 56, 58, 60, 62, 64, /* Band 2 */ 1500 100, 102, 104, 106, 108, 110, 112, /* Band 3 */ 1501 116, 118, 120, 122, 124, 126, 128, /* Band 3 */ 1502 132, 134, 136, 138, 140, 142, 144, /* Band 3 */ 1503 149, 151, 153, 155, 157, 159, 161, /* Band 4 */ 1504 165, 167, 169, 171, 173, 175, 177}; /* Band 4 */ 1505 1506 static int rtw_channel_to_idx(u8 band, u8 channel) 1507 { 1508 int ch_idx; 1509 u8 n_channel; 1510 1511 if (band == PHY_BAND_2G) { 1512 ch_idx = channel - 1; 1513 n_channel = RTW_MAX_CHANNEL_NUM_2G; 1514 } else if (band == PHY_BAND_5G) { 1515 n_channel = RTW_MAX_CHANNEL_NUM_5G; 1516 for (ch_idx = 0; ch_idx < n_channel; ch_idx++) 1517 if (rtw_channel_idx_5g[ch_idx] == channel) 1518 break; 1519 } else { 1520 return -1; 1521 } 1522 1523 if (ch_idx >= n_channel) 1524 return -1; 1525 1526 return ch_idx; 1527 } 1528 1529 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band, 1530 u8 bw, u8 rs, u8 ch, s8 pwr_limit) 1531 { 1532 struct rtw_hal *hal = &rtwdev->hal; 1533 u8 max_power_index = rtwdev->chip->max_power_index; 1534 s8 ww; 1535 int ch_idx; 1536 1537 pwr_limit = clamp_t(s8, pwr_limit, 1538 -max_power_index, max_power_index); 1539 ch_idx = rtw_channel_to_idx(band, ch); 1540 1541 if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX || 1542 rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) { 1543 WARN(1, 1544 "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n", 1545 regd, band, bw, rs, ch_idx, pwr_limit); 1546 return; 1547 } 1548 1549 if (band == PHY_BAND_2G) { 1550 hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit; 1551 ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx]; 1552 ww = min_t(s8, ww, pwr_limit); 1553 hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww; 1554 } else if (band == PHY_BAND_5G) { 1555 hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit; 1556 ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx]; 1557 ww = min_t(s8, ww, pwr_limit); 1558 hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww; 1559 } 1560 } 1561 1562 /* cross-reference 5G power limits if values are not assigned */ 1563 static void 1564 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd, 1565 u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht) 1566 { 1567 struct rtw_hal *hal = &rtwdev->hal; 1568 u8 max_power_index = rtwdev->chip->max_power_index; 1569 s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx]; 1570 s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx]; 1571 1572 if (lmt_ht == lmt_vht) 1573 return; 1574 1575 if (lmt_ht == max_power_index) 1576 hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht; 1577 1578 else if (lmt_vht == max_power_index) 1579 hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht; 1580 } 1581 1582 /* cross-reference power limits for ht and vht */ 1583 static void 1584 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx) 1585 { 1586 u8 rs_idx, rs_ht, rs_vht; 1587 u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S}, 1588 {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} }; 1589 1590 for (rs_idx = 0; rs_idx < 2; rs_idx++) { 1591 rs_ht = rs_cmp[rs_idx][0]; 1592 rs_vht = rs_cmp[rs_idx][1]; 1593 1594 rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht); 1595 } 1596 } 1597 1598 /* cross-reference power limits for 5G channels */ 1599 static void 1600 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw) 1601 { 1602 u8 ch_idx; 1603 1604 for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++) 1605 rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx); 1606 } 1607 1608 /* cross-reference power limits for 20/40M bandwidth */ 1609 static void 1610 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd) 1611 { 1612 u8 bw; 1613 1614 for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++) 1615 rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw); 1616 } 1617 1618 /* cross-reference power limits */ 1619 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev) 1620 { 1621 u8 regd; 1622 1623 for (regd = 0; regd < RTW_REGD_MAX; regd++) 1624 rtw_xref_txpwr_lmt_by_bw(rtwdev, regd); 1625 } 1626 1627 static void 1628 __cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs) 1629 { 1630 u8 ch; 1631 1632 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) 1633 hal->tx_pwr_limit_2g[regd][bw][rs][ch] = 1634 hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch]; 1635 1636 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) 1637 hal->tx_pwr_limit_5g[regd][bw][rs][ch] = 1638 hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch]; 1639 } 1640 1641 static void 1642 rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt) 1643 { 1644 u8 bw, rs; 1645 1646 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++) 1647 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++) 1648 __cfg_txpwr_lmt_by_alt(&rtwdev->hal, regd, regd_alt, 1649 bw, rs); 1650 } 1651 1652 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev, 1653 const struct rtw_table *tbl) 1654 { 1655 const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data; 1656 const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size; 1657 u32 regd_cfg_flag = 0; 1658 u8 regd_alt; 1659 u8 i; 1660 1661 for (; p < end; p++) { 1662 regd_cfg_flag |= BIT(p->regd); 1663 rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band, 1664 p->bw, p->rs, p->ch, p->txpwr_lmt); 1665 } 1666 1667 for (i = 0; i < RTW_REGD_MAX; i++) { 1668 if (i == RTW_REGD_WW) 1669 continue; 1670 1671 if (regd_cfg_flag & BIT(i)) 1672 continue; 1673 1674 rtw_dbg(rtwdev, RTW_DBG_REGD, 1675 "txpwr regd %d does not be configured\n", i); 1676 1677 if (rtw_regd_has_alt(i, ®d_alt) && 1678 regd_cfg_flag & BIT(regd_alt)) { 1679 rtw_dbg(rtwdev, RTW_DBG_REGD, 1680 "cfg txpwr regd %d by regd %d as alternative\n", 1681 i, regd_alt); 1682 1683 rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, regd_alt); 1684 continue; 1685 } 1686 1687 rtw_dbg(rtwdev, RTW_DBG_REGD, "cfg txpwr regd %d by WW\n", i); 1688 rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, RTW_REGD_WW); 1689 } 1690 1691 rtw_xref_txpwr_lmt(rtwdev); 1692 } 1693 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt); 1694 1695 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl, 1696 u32 addr, u32 data) 1697 { 1698 rtw_write8(rtwdev, addr, data); 1699 } 1700 EXPORT_SYMBOL(rtw_phy_cfg_mac); 1701 1702 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl, 1703 u32 addr, u32 data) 1704 { 1705 rtw_write32(rtwdev, addr, data); 1706 } 1707 EXPORT_SYMBOL(rtw_phy_cfg_agc); 1708 1709 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl, 1710 u32 addr, u32 data) 1711 { 1712 if (addr == 0xfe) 1713 msleep(50); 1714 else if (addr == 0xfd) 1715 mdelay(5); 1716 else if (addr == 0xfc) 1717 mdelay(1); 1718 else if (addr == 0xfb) 1719 usleep_range(50, 60); 1720 else if (addr == 0xfa) 1721 udelay(5); 1722 else if (addr == 0xf9) 1723 udelay(1); 1724 else 1725 rtw_write32(rtwdev, addr, data); 1726 } 1727 EXPORT_SYMBOL(rtw_phy_cfg_bb); 1728 1729 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl, 1730 u32 addr, u32 data) 1731 { 1732 if (addr == 0xffe) { 1733 msleep(50); 1734 } else if (addr == 0xfe) { 1735 usleep_range(100, 110); 1736 } else { 1737 rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data); 1738 udelay(1); 1739 } 1740 } 1741 EXPORT_SYMBOL(rtw_phy_cfg_rf); 1742 1743 static void rtw_load_rfk_table(struct rtw_dev *rtwdev) 1744 { 1745 const struct rtw_chip_info *chip = rtwdev->chip; 1746 struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info; 1747 1748 if (!chip->rfk_init_tbl) 1749 return; 1750 1751 rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1); 1752 rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1); 1753 rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1); 1754 rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1); 1755 rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0); 1756 1757 rtw_load_table(rtwdev, chip->rfk_init_tbl); 1758 1759 dpk_info->is_dpk_pwr_on = true; 1760 } 1761 1762 void rtw_phy_load_tables(struct rtw_dev *rtwdev) 1763 { 1764 const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev); 1765 const struct rtw_chip_info *chip = rtwdev->chip; 1766 u8 rf_path; 1767 1768 rtw_load_table(rtwdev, chip->mac_tbl); 1769 rtw_load_table(rtwdev, chip->bb_tbl); 1770 rtw_load_table(rtwdev, chip->agc_tbl); 1771 if (rfe_def->agc_btg_tbl) 1772 rtw_load_table(rtwdev, rfe_def->agc_btg_tbl); 1773 rtw_load_rfk_table(rtwdev); 1774 1775 for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) { 1776 const struct rtw_table *tbl; 1777 1778 tbl = chip->rf_tbl[rf_path]; 1779 rtw_load_table(rtwdev, tbl); 1780 } 1781 } 1782 EXPORT_SYMBOL(rtw_phy_load_tables); 1783 1784 static u8 rtw_get_channel_group(u8 channel, u8 rate) 1785 { 1786 switch (channel) { 1787 default: 1788 WARN_ON(1); 1789 fallthrough; 1790 case 1: 1791 case 2: 1792 case 36: 1793 case 38: 1794 case 40: 1795 case 42: 1796 return 0; 1797 case 3: 1798 case 4: 1799 case 5: 1800 case 44: 1801 case 46: 1802 case 48: 1803 case 50: 1804 return 1; 1805 case 6: 1806 case 7: 1807 case 8: 1808 case 52: 1809 case 54: 1810 case 56: 1811 case 58: 1812 return 2; 1813 case 9: 1814 case 10: 1815 case 11: 1816 case 60: 1817 case 62: 1818 case 64: 1819 return 3; 1820 case 12: 1821 case 13: 1822 case 100: 1823 case 102: 1824 case 104: 1825 case 106: 1826 return 4; 1827 case 14: 1828 return rate <= DESC_RATE11M ? 5 : 4; 1829 case 108: 1830 case 110: 1831 case 112: 1832 case 114: 1833 return 5; 1834 case 116: 1835 case 118: 1836 case 120: 1837 case 122: 1838 return 6; 1839 case 124: 1840 case 126: 1841 case 128: 1842 case 130: 1843 return 7; 1844 case 132: 1845 case 134: 1846 case 136: 1847 case 138: 1848 return 8; 1849 case 140: 1850 case 142: 1851 case 144: 1852 return 9; 1853 case 149: 1854 case 151: 1855 case 153: 1856 case 155: 1857 return 10; 1858 case 157: 1859 case 159: 1860 case 161: 1861 return 11; 1862 case 165: 1863 case 167: 1864 case 169: 1865 case 171: 1866 return 12; 1867 case 173: 1868 case 175: 1869 case 177: 1870 return 13; 1871 } 1872 } 1873 1874 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate) 1875 { 1876 const struct rtw_chip_info *chip = rtwdev->chip; 1877 s8 dpd_diff = 0; 1878 1879 if (!chip->en_dis_dpd) 1880 return 0; 1881 1882 #define RTW_DPD_RATE_CHECK(_rate) \ 1883 case DESC_RATE ## _rate: \ 1884 if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask) \ 1885 dpd_diff = -6 * chip->txgi_factor; \ 1886 break 1887 1888 switch (rate) { 1889 RTW_DPD_RATE_CHECK(6M); 1890 RTW_DPD_RATE_CHECK(9M); 1891 RTW_DPD_RATE_CHECK(MCS0); 1892 RTW_DPD_RATE_CHECK(MCS1); 1893 RTW_DPD_RATE_CHECK(MCS8); 1894 RTW_DPD_RATE_CHECK(MCS9); 1895 RTW_DPD_RATE_CHECK(VHT1SS_MCS0); 1896 RTW_DPD_RATE_CHECK(VHT1SS_MCS1); 1897 RTW_DPD_RATE_CHECK(VHT2SS_MCS0); 1898 RTW_DPD_RATE_CHECK(VHT2SS_MCS1); 1899 } 1900 #undef RTW_DPD_RATE_CHECK 1901 1902 return dpd_diff; 1903 } 1904 1905 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev, 1906 struct rtw_2g_txpwr_idx *pwr_idx_2g, 1907 enum rtw_bandwidth bandwidth, 1908 u8 rate, u8 group) 1909 { 1910 const struct rtw_chip_info *chip = rtwdev->chip; 1911 u8 tx_power; 1912 bool mcs_rate; 1913 bool above_2ss; 1914 u8 factor = chip->txgi_factor; 1915 1916 if (rate <= DESC_RATE11M) 1917 tx_power = pwr_idx_2g->cck_base[group]; 1918 else 1919 tx_power = pwr_idx_2g->bw40_base[group]; 1920 1921 if (rate >= DESC_RATE6M && rate <= DESC_RATE54M) 1922 tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor; 1923 1924 mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) || 1925 (rate >= DESC_RATEVHT1SS_MCS0 && 1926 rate <= DESC_RATEVHT2SS_MCS9); 1927 above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) || 1928 (rate >= DESC_RATEVHT2SS_MCS0); 1929 1930 if (!mcs_rate) 1931 return tx_power; 1932 1933 switch (bandwidth) { 1934 default: 1935 WARN_ON(1); 1936 fallthrough; 1937 case RTW_CHANNEL_WIDTH_20: 1938 tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor; 1939 if (above_2ss) 1940 tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor; 1941 break; 1942 case RTW_CHANNEL_WIDTH_40: 1943 /* bw40 is the base power */ 1944 if (above_2ss) 1945 tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor; 1946 break; 1947 } 1948 1949 return tx_power; 1950 } 1951 1952 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev, 1953 struct rtw_5g_txpwr_idx *pwr_idx_5g, 1954 enum rtw_bandwidth bandwidth, 1955 u8 rate, u8 group) 1956 { 1957 const struct rtw_chip_info *chip = rtwdev->chip; 1958 u8 tx_power; 1959 u8 upper, lower; 1960 bool mcs_rate; 1961 bool above_2ss; 1962 u8 factor = chip->txgi_factor; 1963 1964 tx_power = pwr_idx_5g->bw40_base[group]; 1965 1966 mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) || 1967 (rate >= DESC_RATEVHT1SS_MCS0 && 1968 rate <= DESC_RATEVHT2SS_MCS9); 1969 above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) || 1970 (rate >= DESC_RATEVHT2SS_MCS0); 1971 1972 if (!mcs_rate) { 1973 tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor; 1974 return tx_power; 1975 } 1976 1977 switch (bandwidth) { 1978 default: 1979 WARN_ON(1); 1980 fallthrough; 1981 case RTW_CHANNEL_WIDTH_20: 1982 tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor; 1983 if (above_2ss) 1984 tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor; 1985 break; 1986 case RTW_CHANNEL_WIDTH_40: 1987 /* bw40 is the base power */ 1988 if (above_2ss) 1989 tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor; 1990 break; 1991 case RTW_CHANNEL_WIDTH_80: 1992 /* the base idx of bw80 is the average of bw40+/bw40- */ 1993 lower = pwr_idx_5g->bw40_base[group]; 1994 upper = pwr_idx_5g->bw40_base[group + 1]; 1995 1996 tx_power = (lower + upper) / 2; 1997 tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor; 1998 if (above_2ss) 1999 tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor; 2000 break; 2001 } 2002 2003 return tx_power; 2004 } 2005 2006 /* return RTW_RATE_SECTION_MAX to indicate rate is invalid */ 2007 static u8 rtw_phy_rate_to_rate_section(u8 rate) 2008 { 2009 if (rate >= DESC_RATE1M && rate <= DESC_RATE11M) 2010 return RTW_RATE_SECTION_CCK; 2011 else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M) 2012 return RTW_RATE_SECTION_OFDM; 2013 else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7) 2014 return RTW_RATE_SECTION_HT_1S; 2015 else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) 2016 return RTW_RATE_SECTION_HT_2S; 2017 else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9) 2018 return RTW_RATE_SECTION_VHT_1S; 2019 else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9) 2020 return RTW_RATE_SECTION_VHT_2S; 2021 else 2022 return RTW_RATE_SECTION_MAX; 2023 } 2024 2025 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band, 2026 enum rtw_bandwidth bw, u8 rf_path, 2027 u8 rate, u8 channel, u8 regd) 2028 { 2029 struct rtw_hal *hal = &rtwdev->hal; 2030 u8 *cch_by_bw = hal->cch_by_bw; 2031 s8 power_limit = (s8)rtwdev->chip->max_power_index; 2032 u8 rs = rtw_phy_rate_to_rate_section(rate); 2033 int ch_idx; 2034 u8 cur_bw, cur_ch; 2035 s8 cur_lmt; 2036 2037 if (regd > RTW_REGD_WW) 2038 return power_limit; 2039 2040 if (rs == RTW_RATE_SECTION_MAX) 2041 goto err; 2042 2043 /* only 20M BW with cck and ofdm */ 2044 if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM) 2045 bw = RTW_CHANNEL_WIDTH_20; 2046 2047 /* only 20/40M BW with ht */ 2048 if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S) 2049 bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40); 2050 2051 /* select min power limit among [20M BW ~ current BW] */ 2052 for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) { 2053 cur_ch = cch_by_bw[cur_bw]; 2054 2055 ch_idx = rtw_channel_to_idx(band, cur_ch); 2056 if (ch_idx < 0) 2057 goto err; 2058 2059 cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ? 2060 hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] : 2061 hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx]; 2062 2063 power_limit = min_t(s8, cur_lmt, power_limit); 2064 } 2065 2066 return power_limit; 2067 2068 err: 2069 WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n", 2070 band, bw, rf_path, rate, channel); 2071 return (s8)rtwdev->chip->max_power_index; 2072 } 2073 2074 static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band, 2075 u8 rf_path, u8 rate) 2076 { 2077 u8 rs = rtw_phy_rate_to_rate_section(rate); 2078 struct rtw_sar_arg arg = { 2079 .sar_band = sar_band, 2080 .path = rf_path, 2081 .rs = rs, 2082 }; 2083 2084 if (rs == RTW_RATE_SECTION_MAX) 2085 goto err; 2086 2087 return rtw_query_sar(rtwdev, &arg); 2088 2089 err: 2090 WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n", 2091 sar_band, rf_path, rate); 2092 return (s8)rtwdev->chip->max_power_index; 2093 } 2094 2095 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw, 2096 u8 ch, u8 regd, struct rtw_power_params *pwr_param) 2097 { 2098 struct rtw_hal *hal = &rtwdev->hal; 2099 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2100 struct rtw_txpwr_idx *pwr_idx; 2101 u8 group, band; 2102 u8 *base = &pwr_param->pwr_base; 2103 s8 *offset = &pwr_param->pwr_offset; 2104 s8 *limit = &pwr_param->pwr_limit; 2105 s8 *remnant = &pwr_param->pwr_remnant; 2106 s8 *sar = &pwr_param->pwr_sar; 2107 2108 pwr_idx = &rtwdev->efuse.txpwr_idx_table[path]; 2109 group = rtw_get_channel_group(ch, rate); 2110 2111 /* base power index for 2.4G/5G */ 2112 if (IS_CH_2G_BAND(ch)) { 2113 band = PHY_BAND_2G; 2114 *base = rtw_phy_get_2g_tx_power_index(rtwdev, 2115 &pwr_idx->pwr_idx_2g, 2116 bw, rate, group); 2117 *offset = hal->tx_pwr_by_rate_offset_2g[path][rate]; 2118 } else { 2119 band = PHY_BAND_5G; 2120 *base = rtw_phy_get_5g_tx_power_index(rtwdev, 2121 &pwr_idx->pwr_idx_5g, 2122 bw, rate, group); 2123 *offset = hal->tx_pwr_by_rate_offset_5g[path][rate]; 2124 } 2125 2126 *limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path, 2127 rate, ch, regd); 2128 *remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck : 2129 dm_info->txagc_remnant_ofdm); 2130 *sar = rtw_phy_get_tx_power_sar(rtwdev, hal->sar_band, path, rate); 2131 } 2132 2133 u8 2134 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate, 2135 enum rtw_bandwidth bandwidth, u8 channel, u8 regd) 2136 { 2137 struct rtw_power_params pwr_param = {0}; 2138 u8 tx_power; 2139 s8 offset; 2140 2141 rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth, 2142 channel, regd, &pwr_param); 2143 2144 tx_power = pwr_param.pwr_base; 2145 offset = min3(pwr_param.pwr_offset, 2146 pwr_param.pwr_limit, 2147 pwr_param.pwr_sar); 2148 2149 if (rtwdev->chip->en_dis_dpd) 2150 offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate); 2151 2152 tx_power += offset + pwr_param.pwr_remnant; 2153 2154 if (tx_power > rtwdev->chip->max_power_index) 2155 tx_power = rtwdev->chip->max_power_index; 2156 2157 return tx_power; 2158 } 2159 EXPORT_SYMBOL(rtw_phy_get_tx_power_index); 2160 2161 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev, 2162 u8 ch, u8 path, u8 rs) 2163 { 2164 struct rtw_hal *hal = &rtwdev->hal; 2165 u8 regd = rtw_regd_get(rtwdev); 2166 u8 *rates; 2167 u8 size; 2168 u8 rate; 2169 u8 pwr_idx; 2170 u8 bw; 2171 int i; 2172 2173 if (rs >= RTW_RATE_SECTION_MAX) 2174 return; 2175 2176 rates = rtw_rate_section[rs]; 2177 size = rtw_rate_size[rs]; 2178 bw = hal->current_band_width; 2179 for (i = 0; i < size; i++) { 2180 rate = rates[i]; 2181 pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate, 2182 bw, ch, regd); 2183 hal->tx_pwr_tbl[path][rate] = pwr_idx; 2184 } 2185 } 2186 2187 /* set tx power level by path for each rates, note that the order of the rates 2188 * are *very* important, bacause 8822B/8821C combines every four bytes of tx 2189 * power index into a four-byte power index register, and calls set_tx_agc to 2190 * write these values into hardware 2191 */ 2192 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev, 2193 u8 ch, u8 path) 2194 { 2195 struct rtw_hal *hal = &rtwdev->hal; 2196 u8 rs; 2197 2198 /* do not need cck rates if we are not in 2.4G */ 2199 if (hal->current_band_type == RTW_BAND_2G) 2200 rs = RTW_RATE_SECTION_CCK; 2201 else 2202 rs = RTW_RATE_SECTION_OFDM; 2203 2204 for (; rs < RTW_RATE_SECTION_MAX; rs++) 2205 rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs); 2206 } 2207 2208 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel) 2209 { 2210 const struct rtw_chip_info *chip = rtwdev->chip; 2211 struct rtw_hal *hal = &rtwdev->hal; 2212 u8 path; 2213 2214 mutex_lock(&hal->tx_power_mutex); 2215 2216 for (path = 0; path < hal->rf_path_num; path++) 2217 rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path); 2218 2219 chip->ops->set_tx_power_index(rtwdev); 2220 mutex_unlock(&hal->tx_power_mutex); 2221 } 2222 EXPORT_SYMBOL(rtw_phy_set_tx_power_level); 2223 2224 static void 2225 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path, 2226 u8 rs, u8 size, u8 *rates) 2227 { 2228 u8 rate; 2229 u8 base_idx, rate_idx; 2230 s8 base_2g, base_5g; 2231 2232 if (rs >= RTW_RATE_SECTION_VHT_1S) 2233 base_idx = rates[size - 3]; 2234 else 2235 base_idx = rates[size - 1]; 2236 base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx]; 2237 base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx]; 2238 hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g; 2239 hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g; 2240 for (rate = 0; rate < size; rate++) { 2241 rate_idx = rates[rate]; 2242 hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g; 2243 hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g; 2244 } 2245 } 2246 2247 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal) 2248 { 2249 u8 path; 2250 2251 for (path = 0; path < RTW_RF_PATH_MAX; path++) { 2252 rtw_phy_tx_power_by_rate_config_by_path(hal, path, 2253 RTW_RATE_SECTION_CCK, 2254 rtw_cck_size, rtw_cck_rates); 2255 rtw_phy_tx_power_by_rate_config_by_path(hal, path, 2256 RTW_RATE_SECTION_OFDM, 2257 rtw_ofdm_size, rtw_ofdm_rates); 2258 rtw_phy_tx_power_by_rate_config_by_path(hal, path, 2259 RTW_RATE_SECTION_HT_1S, 2260 rtw_ht_1s_size, rtw_ht_1s_rates); 2261 rtw_phy_tx_power_by_rate_config_by_path(hal, path, 2262 RTW_RATE_SECTION_HT_2S, 2263 rtw_ht_2s_size, rtw_ht_2s_rates); 2264 rtw_phy_tx_power_by_rate_config_by_path(hal, path, 2265 RTW_RATE_SECTION_VHT_1S, 2266 rtw_vht_1s_size, rtw_vht_1s_rates); 2267 rtw_phy_tx_power_by_rate_config_by_path(hal, path, 2268 RTW_RATE_SECTION_VHT_2S, 2269 rtw_vht_2s_size, rtw_vht_2s_rates); 2270 } 2271 } 2272 2273 static void 2274 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs) 2275 { 2276 s8 base; 2277 u8 ch; 2278 2279 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) { 2280 base = hal->tx_pwr_by_rate_base_2g[0][rs]; 2281 hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base; 2282 } 2283 2284 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) { 2285 base = hal->tx_pwr_by_rate_base_5g[0][rs]; 2286 hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base; 2287 } 2288 } 2289 2290 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal) 2291 { 2292 u8 regd, bw, rs; 2293 2294 /* default at channel 1 */ 2295 hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1; 2296 2297 for (regd = 0; regd < RTW_REGD_MAX; regd++) 2298 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++) 2299 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++) 2300 __rtw_phy_tx_power_limit_config(hal, regd, bw, rs); 2301 } 2302 2303 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev, 2304 u8 regd, u8 bw, u8 rs) 2305 { 2306 struct rtw_hal *hal = &rtwdev->hal; 2307 s8 max_power_index = (s8)rtwdev->chip->max_power_index; 2308 u8 ch; 2309 2310 /* 2.4G channels */ 2311 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) 2312 hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index; 2313 2314 /* 5G channels */ 2315 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) 2316 hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index; 2317 } 2318 2319 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev) 2320 { 2321 struct rtw_hal *hal = &rtwdev->hal; 2322 u8 regd, path, rate, rs, bw; 2323 2324 /* init tx power by rate offset */ 2325 for (path = 0; path < RTW_RF_PATH_MAX; path++) { 2326 for (rate = 0; rate < DESC_RATE_MAX; rate++) { 2327 hal->tx_pwr_by_rate_offset_2g[path][rate] = 0; 2328 hal->tx_pwr_by_rate_offset_5g[path][rate] = 0; 2329 } 2330 } 2331 2332 /* init tx power limit */ 2333 for (regd = 0; regd < RTW_REGD_MAX; regd++) 2334 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++) 2335 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++) 2336 rtw_phy_init_tx_power_limit(rtwdev, regd, bw, 2337 rs); 2338 } 2339 2340 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev, 2341 struct rtw_swing_table *swing_table) 2342 { 2343 const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl; 2344 u8 channel = rtwdev->hal.current_channel; 2345 2346 if (IS_CH_2G_BAND(channel)) { 2347 if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) { 2348 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p; 2349 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n; 2350 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p; 2351 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n; 2352 } else { 2353 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p; 2354 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n; 2355 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p; 2356 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n; 2357 } 2358 } else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) { 2359 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1]; 2360 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1]; 2361 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1]; 2362 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1]; 2363 } else if (IS_CH_5G_BAND_3(channel)) { 2364 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2]; 2365 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2]; 2366 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2]; 2367 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2]; 2368 } else if (IS_CH_5G_BAND_4(channel)) { 2369 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3]; 2370 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3]; 2371 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3]; 2372 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3]; 2373 } else { 2374 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p; 2375 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n; 2376 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p; 2377 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n; 2378 } 2379 } 2380 EXPORT_SYMBOL(rtw_phy_config_swing_table); 2381 2382 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path) 2383 { 2384 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2385 2386 ewma_thermal_add(&dm_info->avg_thermal[path], thermal); 2387 dm_info->thermal_avg[path] = 2388 ewma_thermal_read(&dm_info->avg_thermal[path]); 2389 } 2390 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg); 2391 2392 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal, 2393 u8 path) 2394 { 2395 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2396 u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]); 2397 2398 if (avg == thermal) 2399 return false; 2400 2401 return true; 2402 } 2403 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed); 2404 2405 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path) 2406 { 2407 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2408 u8 therm_avg, therm_efuse, therm_delta; 2409 2410 therm_avg = dm_info->thermal_avg[path]; 2411 therm_efuse = rtwdev->efuse.thermal_meter[path]; 2412 therm_delta = abs(therm_avg - therm_efuse); 2413 2414 return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1); 2415 } 2416 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta); 2417 2418 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev, 2419 struct rtw_swing_table *swing_table, 2420 u8 tbl_path, u8 therm_path, u8 delta) 2421 { 2422 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2423 const u8 *delta_swing_table_idx_pos; 2424 const u8 *delta_swing_table_idx_neg; 2425 2426 if (delta >= RTW_PWR_TRK_TBL_SZ) { 2427 rtw_warn(rtwdev, "power track table overflow\n"); 2428 return 0; 2429 } 2430 2431 if (!swing_table) { 2432 rtw_warn(rtwdev, "swing table not configured\n"); 2433 return 0; 2434 } 2435 2436 delta_swing_table_idx_pos = swing_table->p[tbl_path]; 2437 delta_swing_table_idx_neg = swing_table->n[tbl_path]; 2438 2439 if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) { 2440 rtw_warn(rtwdev, "invalid swing table index\n"); 2441 return 0; 2442 } 2443 2444 if (dm_info->thermal_avg[therm_path] > 2445 rtwdev->efuse.thermal_meter[therm_path]) 2446 return delta_swing_table_idx_pos[delta]; 2447 else 2448 return -delta_swing_table_idx_neg[delta]; 2449 } 2450 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx); 2451 2452 bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev) 2453 { 2454 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2455 u8 delta_lck; 2456 2457 delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck); 2458 if (delta_lck >= rtwdev->chip->lck_threshold) { 2459 dm_info->thermal_meter_lck = dm_info->thermal_avg[0]; 2460 return true; 2461 } 2462 return false; 2463 } 2464 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck); 2465 2466 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev) 2467 { 2468 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2469 u8 delta_iqk; 2470 2471 delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k); 2472 if (delta_iqk >= rtwdev->chip->iqk_threshold) { 2473 dm_info->thermal_meter_k = dm_info->thermal_avg[0]; 2474 return true; 2475 } 2476 return false; 2477 } 2478 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk); 2479 2480 static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev, 2481 enum rtw_bb_path tx_path_sel_1ss) 2482 { 2483 struct rtw_path_div *path_div = &rtwdev->dm_path_div; 2484 enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss; 2485 const struct rtw_chip_info *chip = rtwdev->chip; 2486 2487 if (tx_path_sel_1ss == path_div->current_tx_path) 2488 return; 2489 2490 path_div->current_tx_path = tx_path_sel_1ss; 2491 rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n", 2492 tx_path_sel_1ss == BB_PATH_A ? "A" : "B"); 2493 chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx, 2494 tx_path_sel_1ss, tx_path_sel_cck, false); 2495 } 2496 2497 static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev) 2498 { 2499 struct rtw_path_div *path_div = &rtwdev->dm_path_div; 2500 enum rtw_bb_path path = path_div->current_tx_path; 2501 s32 rssi_a = 0, rssi_b = 0; 2502 2503 if (path_div->path_a_cnt) 2504 rssi_a = path_div->path_a_sum / path_div->path_a_cnt; 2505 else 2506 rssi_a = 0; 2507 if (path_div->path_b_cnt) 2508 rssi_b = path_div->path_b_sum / path_div->path_b_cnt; 2509 else 2510 rssi_b = 0; 2511 2512 if (rssi_a != rssi_b) 2513 path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B; 2514 2515 path_div->path_a_cnt = 0; 2516 path_div->path_a_sum = 0; 2517 path_div->path_b_cnt = 0; 2518 path_div->path_b_sum = 0; 2519 rtw_phy_set_tx_path_by_reg(rtwdev, path); 2520 } 2521 2522 static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev) 2523 { 2524 if (rtwdev->hal.antenna_rx != BB_PATH_AB) { 2525 rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, 2526 "[Return] tx_Path_en=%d, rx_Path_en=%d\n", 2527 rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx); 2528 return; 2529 } 2530 if (rtwdev->sta_cnt == 0) { 2531 rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n"); 2532 return; 2533 } 2534 2535 rtw_phy_tx_path_div_select(rtwdev); 2536 } 2537 2538 void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev) 2539 { 2540 const struct rtw_chip_info *chip = rtwdev->chip; 2541 2542 if (!chip->path_div_supported) 2543 return; 2544 2545 rtw_phy_tx_path_diversity_2ss(rtwdev); 2546 } 2547