xref: /linux/drivers/net/wireless/realtek/rtw88/pci.c (revision a1eccc574f977bd21a4ec8ac54bd73a2756bd281)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include "main.h"
8 #include "pci.h"
9 #include "reg.h"
10 #include "tx.h"
11 #include "rx.h"
12 #include "fw.h"
13 #include "ps.h"
14 #include "debug.h"
15 
16 static bool rtw_disable_msi;
17 static bool rtw_pci_disable_aspm;
18 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
19 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
20 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
21 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
22 
23 static u32 rtw_pci_tx_queue_idx_addr[] = {
24 	[RTW_TX_QUEUE_BK]	= RTK_PCI_TXBD_IDX_BKQ,
25 	[RTW_TX_QUEUE_BE]	= RTK_PCI_TXBD_IDX_BEQ,
26 	[RTW_TX_QUEUE_VI]	= RTK_PCI_TXBD_IDX_VIQ,
27 	[RTW_TX_QUEUE_VO]	= RTK_PCI_TXBD_IDX_VOQ,
28 	[RTW_TX_QUEUE_MGMT]	= RTK_PCI_TXBD_IDX_MGMTQ,
29 	[RTW_TX_QUEUE_HI0]	= RTK_PCI_TXBD_IDX_HI0Q,
30 	[RTW_TX_QUEUE_H2C]	= RTK_PCI_TXBD_IDX_H2CQ,
31 };
32 
33 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb,
34 			      enum rtw_tx_queue_type queue)
35 {
36 	switch (queue) {
37 	case RTW_TX_QUEUE_BCN:
38 		return TX_DESC_QSEL_BEACON;
39 	case RTW_TX_QUEUE_H2C:
40 		return TX_DESC_QSEL_H2C;
41 	case RTW_TX_QUEUE_MGMT:
42 		return TX_DESC_QSEL_MGMT;
43 	case RTW_TX_QUEUE_HI0:
44 		return TX_DESC_QSEL_HIGH;
45 	default:
46 		return skb->priority;
47 	}
48 };
49 
50 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
51 {
52 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
53 
54 	return readb(rtwpci->mmap + addr);
55 }
56 
57 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
58 {
59 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
60 
61 	return readw(rtwpci->mmap + addr);
62 }
63 
64 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
65 {
66 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
67 
68 	return readl(rtwpci->mmap + addr);
69 }
70 
71 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
72 {
73 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
74 
75 	writeb(val, rtwpci->mmap + addr);
76 }
77 
78 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
79 {
80 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
81 
82 	writew(val, rtwpci->mmap + addr);
83 }
84 
85 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
86 {
87 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
88 
89 	writel(val, rtwpci->mmap + addr);
90 }
91 
92 static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx)
93 {
94 	int offset = tx_ring->r.desc_size * idx;
95 
96 	return tx_ring->r.head + offset;
97 }
98 
99 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
100 				      struct rtw_pci_tx_ring *tx_ring)
101 {
102 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
103 	struct rtw_pci_tx_data *tx_data;
104 	struct sk_buff *skb, *tmp;
105 	dma_addr_t dma;
106 
107 	/* free every skb remained in tx list */
108 	skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
109 		__skb_unlink(skb, &tx_ring->queue);
110 		tx_data = rtw_pci_get_tx_data(skb);
111 		dma = tx_data->dma;
112 
113 		dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
114 		dev_kfree_skb_any(skb);
115 	}
116 }
117 
118 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
119 				 struct rtw_pci_tx_ring *tx_ring)
120 {
121 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
122 	u8 *head = tx_ring->r.head;
123 	u32 len = tx_ring->r.len;
124 	int ring_sz = len * tx_ring->r.desc_size;
125 
126 	rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
127 
128 	/* free the ring itself */
129 	dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
130 	tx_ring->r.head = NULL;
131 }
132 
133 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
134 				      struct rtw_pci_rx_ring *rx_ring)
135 {
136 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
137 	struct sk_buff *skb;
138 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
139 	dma_addr_t dma;
140 	int i;
141 
142 	for (i = 0; i < rx_ring->r.len; i++) {
143 		skb = rx_ring->buf[i];
144 		if (!skb)
145 			continue;
146 
147 		dma = *((dma_addr_t *)skb->cb);
148 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
149 		dev_kfree_skb(skb);
150 		rx_ring->buf[i] = NULL;
151 	}
152 }
153 
154 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
155 				 struct rtw_pci_rx_ring *rx_ring)
156 {
157 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
158 	u8 *head = rx_ring->r.head;
159 	int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
160 
161 	rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
162 
163 	dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
164 }
165 
166 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
167 {
168 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
169 	struct rtw_pci_tx_ring *tx_ring;
170 	struct rtw_pci_rx_ring *rx_ring;
171 	int i;
172 
173 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
174 		tx_ring = &rtwpci->tx_rings[i];
175 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
176 	}
177 
178 	for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
179 		rx_ring = &rtwpci->rx_rings[i];
180 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
181 	}
182 }
183 
184 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
185 				struct rtw_pci_tx_ring *tx_ring,
186 				u8 desc_size, u32 len)
187 {
188 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
189 	int ring_sz = desc_size * len;
190 	dma_addr_t dma;
191 	u8 *head;
192 
193 	if (len > TRX_BD_IDX_MASK) {
194 		rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
195 		return -EINVAL;
196 	}
197 
198 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
199 	if (!head) {
200 		rtw_err(rtwdev, "failed to allocate tx ring\n");
201 		return -ENOMEM;
202 	}
203 
204 	skb_queue_head_init(&tx_ring->queue);
205 	tx_ring->r.head = head;
206 	tx_ring->r.dma = dma;
207 	tx_ring->r.len = len;
208 	tx_ring->r.desc_size = desc_size;
209 	tx_ring->r.wp = 0;
210 	tx_ring->r.rp = 0;
211 
212 	return 0;
213 }
214 
215 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
216 				 struct rtw_pci_rx_ring *rx_ring,
217 				 u32 idx, u32 desc_sz)
218 {
219 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
220 	struct rtw_pci_rx_buffer_desc *buf_desc;
221 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
222 	dma_addr_t dma;
223 
224 	if (!skb)
225 		return -EINVAL;
226 
227 	dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
228 	if (dma_mapping_error(&pdev->dev, dma))
229 		return -EBUSY;
230 
231 	*((dma_addr_t *)skb->cb) = dma;
232 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
233 						     idx * desc_sz);
234 	memset(buf_desc, 0, sizeof(*buf_desc));
235 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
236 	buf_desc->dma = cpu_to_le32(dma);
237 
238 	return 0;
239 }
240 
241 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
242 					struct rtw_pci_rx_ring *rx_ring,
243 					u32 idx, u32 desc_sz)
244 {
245 	struct device *dev = rtwdev->dev;
246 	struct rtw_pci_rx_buffer_desc *buf_desc;
247 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
248 
249 	dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
250 
251 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
252 						     idx * desc_sz);
253 	memset(buf_desc, 0, sizeof(*buf_desc));
254 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
255 	buf_desc->dma = cpu_to_le32(dma);
256 }
257 
258 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
259 				struct rtw_pci_rx_ring *rx_ring,
260 				u8 desc_size, u32 len)
261 {
262 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
263 	struct sk_buff *skb = NULL;
264 	dma_addr_t dma;
265 	u8 *head;
266 	int ring_sz = desc_size * len;
267 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
268 	int i, allocated;
269 	int ret = 0;
270 
271 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
272 	if (!head) {
273 		rtw_err(rtwdev, "failed to allocate rx ring\n");
274 		return -ENOMEM;
275 	}
276 	rx_ring->r.head = head;
277 
278 	for (i = 0; i < len; i++) {
279 		skb = dev_alloc_skb(buf_sz);
280 		if (!skb) {
281 			allocated = i;
282 			ret = -ENOMEM;
283 			goto err_out;
284 		}
285 
286 		memset(skb->data, 0, buf_sz);
287 		rx_ring->buf[i] = skb;
288 		ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
289 		if (ret) {
290 			allocated = i;
291 			dev_kfree_skb_any(skb);
292 			goto err_out;
293 		}
294 	}
295 
296 	rx_ring->r.dma = dma;
297 	rx_ring->r.len = len;
298 	rx_ring->r.desc_size = desc_size;
299 	rx_ring->r.wp = 0;
300 	rx_ring->r.rp = 0;
301 
302 	return 0;
303 
304 err_out:
305 	for (i = 0; i < allocated; i++) {
306 		skb = rx_ring->buf[i];
307 		if (!skb)
308 			continue;
309 		dma = *((dma_addr_t *)skb->cb);
310 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
311 		dev_kfree_skb_any(skb);
312 		rx_ring->buf[i] = NULL;
313 	}
314 	dma_free_coherent(&pdev->dev, ring_sz, head, dma);
315 
316 	rtw_err(rtwdev, "failed to init rx buffer\n");
317 
318 	return ret;
319 }
320 
321 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
322 {
323 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
324 	struct rtw_pci_tx_ring *tx_ring;
325 	struct rtw_pci_rx_ring *rx_ring;
326 	const struct rtw_chip_info *chip = rtwdev->chip;
327 	int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
328 	int tx_desc_size, rx_desc_size;
329 	u32 len;
330 	int ret;
331 
332 	tx_desc_size = chip->tx_buf_desc_sz;
333 
334 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
335 		tx_ring = &rtwpci->tx_rings[i];
336 		len = max_num_of_tx_queue(i);
337 		ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
338 		if (ret)
339 			goto out;
340 	}
341 
342 	rx_desc_size = chip->rx_buf_desc_sz;
343 
344 	for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
345 		rx_ring = &rtwpci->rx_rings[j];
346 		ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
347 					   RTK_MAX_RX_DESC_NUM);
348 		if (ret)
349 			goto out;
350 	}
351 
352 	return 0;
353 
354 out:
355 	tx_alloced = i;
356 	for (i = 0; i < tx_alloced; i++) {
357 		tx_ring = &rtwpci->tx_rings[i];
358 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
359 	}
360 
361 	rx_alloced = j;
362 	for (j = 0; j < rx_alloced; j++) {
363 		rx_ring = &rtwpci->rx_rings[j];
364 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
365 	}
366 
367 	return ret;
368 }
369 
370 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
371 {
372 	rtw_pci_free_trx_ring(rtwdev);
373 }
374 
375 static int rtw_pci_init(struct rtw_dev *rtwdev)
376 {
377 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
378 	int ret = 0;
379 
380 	rtwpci->irq_mask[0] = IMR_HIGHDOK |
381 			      IMR_MGNTDOK |
382 			      IMR_BKDOK |
383 			      IMR_BEDOK |
384 			      IMR_VIDOK |
385 			      IMR_VODOK |
386 			      IMR_ROK |
387 			      IMR_BCNDMAINT_E |
388 			      IMR_C2HCMD |
389 			      0;
390 	rtwpci->irq_mask[1] = IMR_TXFOVW |
391 			      0;
392 	rtwpci->irq_mask[3] = IMR_H2CDOK |
393 			      0;
394 	spin_lock_init(&rtwpci->irq_lock);
395 	spin_lock_init(&rtwpci->hwirq_lock);
396 	ret = rtw_pci_init_trx_ring(rtwdev);
397 
398 	return ret;
399 }
400 
401 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
402 {
403 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
404 	u32 len;
405 	u8 tmp;
406 	dma_addr_t dma;
407 
408 	tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
409 	rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
410 
411 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
412 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
413 
414 	if (!rtw_chip_wcpu_11n(rtwdev)) {
415 		len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
416 		dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
417 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
418 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
419 		rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
420 		rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
421 	}
422 
423 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
424 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
425 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
426 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
427 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
428 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
429 
430 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
431 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
432 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
433 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
434 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
435 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
436 
437 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
438 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
439 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
440 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
441 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
442 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
443 
444 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
445 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
446 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
447 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
448 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
449 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
450 
451 	len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
452 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
453 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
454 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
455 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
456 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
457 
458 	len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
459 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
460 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
461 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
462 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
463 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
464 
465 	len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
466 	dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
467 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
468 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
469 	rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
470 	rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
471 
472 	/* reset read/write point */
473 	rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
474 
475 	/* reset H2C Queue index in a single write */
476 	if (rtw_chip_wcpu_11ac(rtwdev))
477 		rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
478 				BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
479 }
480 
481 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
482 {
483 	rtw_pci_reset_buf_desc(rtwdev);
484 }
485 
486 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
487 				     struct rtw_pci *rtwpci, bool exclude_rx)
488 {
489 	unsigned long flags;
490 	u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
491 
492 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
493 
494 	rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
495 	rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
496 	if (rtw_chip_wcpu_11ac(rtwdev))
497 		rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
498 
499 	rtwpci->irq_enabled = true;
500 
501 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
502 }
503 
504 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
505 				      struct rtw_pci *rtwpci)
506 {
507 	unsigned long flags;
508 
509 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
510 
511 	if (!rtwpci->irq_enabled)
512 		goto out;
513 
514 	rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
515 	rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
516 	if (rtw_chip_wcpu_11ac(rtwdev))
517 		rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
518 
519 	rtwpci->irq_enabled = false;
520 
521 out:
522 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
523 }
524 
525 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
526 {
527 	/* reset dma and rx tag */
528 	rtw_write32_set(rtwdev, RTK_PCI_CTRL,
529 			BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
530 	rtwpci->rx_tag = 0;
531 }
532 
533 static int rtw_pci_setup(struct rtw_dev *rtwdev)
534 {
535 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
536 
537 	rtw_pci_reset_trx_ring(rtwdev);
538 	rtw_pci_dma_reset(rtwdev, rtwpci);
539 
540 	return 0;
541 }
542 
543 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
544 {
545 	struct rtw_pci_tx_ring *tx_ring;
546 	enum rtw_tx_queue_type queue;
547 
548 	rtw_pci_reset_trx_ring(rtwdev);
549 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
550 		tx_ring = &rtwpci->tx_rings[queue];
551 		rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
552 	}
553 }
554 
555 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
556 {
557 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
558 
559 	if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
560 		return;
561 
562 	napi_enable(&rtwpci->napi);
563 }
564 
565 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
566 {
567 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
568 
569 	if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
570 		return;
571 
572 	napi_synchronize(&rtwpci->napi);
573 	napi_disable(&rtwpci->napi);
574 }
575 
576 static int rtw_pci_start(struct rtw_dev *rtwdev)
577 {
578 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
579 
580 	rtw_pci_napi_start(rtwdev);
581 
582 	spin_lock_bh(&rtwpci->irq_lock);
583 	rtwpci->running = true;
584 	rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
585 	spin_unlock_bh(&rtwpci->irq_lock);
586 
587 	return 0;
588 }
589 
590 static void rtw_pci_stop(struct rtw_dev *rtwdev)
591 {
592 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
593 	struct pci_dev *pdev = rtwpci->pdev;
594 
595 	spin_lock_bh(&rtwpci->irq_lock);
596 	rtwpci->running = false;
597 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
598 	spin_unlock_bh(&rtwpci->irq_lock);
599 
600 	synchronize_irq(pdev->irq);
601 	rtw_pci_napi_stop(rtwdev);
602 
603 	spin_lock_bh(&rtwpci->irq_lock);
604 	rtw_pci_dma_release(rtwdev, rtwpci);
605 	spin_unlock_bh(&rtwpci->irq_lock);
606 }
607 
608 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
609 {
610 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
611 	struct rtw_pci_tx_ring *tx_ring;
612 	enum rtw_tx_queue_type queue;
613 	bool tx_empty = true;
614 
615 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
616 		goto enter_deep_ps;
617 
618 	lockdep_assert_held(&rtwpci->irq_lock);
619 
620 	/* Deep PS state is not allowed to TX-DMA */
621 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
622 		/* BCN queue is rsvd page, does not have DMA interrupt
623 		 * H2C queue is managed by firmware
624 		 */
625 		if (queue == RTW_TX_QUEUE_BCN ||
626 		    queue == RTW_TX_QUEUE_H2C)
627 			continue;
628 
629 		tx_ring = &rtwpci->tx_rings[queue];
630 
631 		/* check if there is any skb DMAing */
632 		if (skb_queue_len(&tx_ring->queue)) {
633 			tx_empty = false;
634 			break;
635 		}
636 	}
637 
638 	if (!tx_empty) {
639 		rtw_dbg(rtwdev, RTW_DBG_PS,
640 			"TX path not empty, cannot enter deep power save state\n");
641 		return;
642 	}
643 enter_deep_ps:
644 	set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
645 	rtw_power_mode_change(rtwdev, true);
646 }
647 
648 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
649 {
650 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
651 
652 	lockdep_assert_held(&rtwpci->irq_lock);
653 
654 	if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
655 		rtw_power_mode_change(rtwdev, false);
656 }
657 
658 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
659 {
660 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
661 
662 	spin_lock_bh(&rtwpci->irq_lock);
663 
664 	if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
665 		rtw_pci_deep_ps_enter(rtwdev);
666 
667 	if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
668 		rtw_pci_deep_ps_leave(rtwdev);
669 
670 	spin_unlock_bh(&rtwpci->irq_lock);
671 }
672 
673 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
674 				      struct rtw_pci_tx_ring *ring)
675 {
676 	struct sk_buff *prev = skb_dequeue(&ring->queue);
677 	struct rtw_pci_tx_data *tx_data;
678 	dma_addr_t dma;
679 
680 	if (!prev)
681 		return;
682 
683 	tx_data = rtw_pci_get_tx_data(prev);
684 	dma = tx_data->dma;
685 	dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
686 	dev_kfree_skb_any(prev);
687 }
688 
689 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
690 			      struct rtw_pci_rx_ring *rx_ring,
691 			      u32 idx)
692 {
693 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
694 	const struct rtw_chip_info *chip = rtwdev->chip;
695 	struct rtw_pci_rx_buffer_desc *buf_desc;
696 	u32 desc_sz = chip->rx_buf_desc_sz;
697 	u16 total_pkt_size;
698 
699 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
700 						     idx * desc_sz);
701 	total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
702 
703 	/* rx tag mismatch, throw a warning */
704 	if (total_pkt_size != rtwpci->rx_tag)
705 		rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
706 
707 	rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
708 }
709 
710 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
711 {
712 	u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
713 	u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
714 
715 	return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
716 }
717 
718 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
719 {
720 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
721 	struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
722 	u32 cur_rp;
723 	u8 i;
724 
725 	/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
726 	 * bit dynamic, it's hard to define a reasonable fixed total timeout to
727 	 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
728 	 * polling times, so we just use for loop with udelay here.
729 	 */
730 	for (i = 0; i < 30; i++) {
731 		cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
732 		if (cur_rp == ring->r.wp)
733 			return;
734 
735 		udelay(1);
736 	}
737 
738 	if (!drop)
739 		rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
740 }
741 
742 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
743 				   bool drop)
744 {
745 	u8 q;
746 
747 	for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
748 		/* It may be not necessary to flush BCN and H2C tx queues. */
749 		if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C)
750 			continue;
751 
752 		if (pci_queues & BIT(q))
753 			__pci_flush_queue(rtwdev, q, drop);
754 	}
755 }
756 
757 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
758 {
759 	u32 pci_queues = 0;
760 	u8 i;
761 
762 	/* If all of the hardware queues are requested to flush,
763 	 * flush all of the pci queues.
764 	 */
765 	if (queues == BIT(rtwdev->hw->queues) - 1) {
766 		pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
767 	} else {
768 		for (i = 0; i < rtwdev->hw->queues; i++)
769 			if (queues & BIT(i))
770 				pci_queues |= BIT(rtw_tx_ac_to_hwq(i));
771 	}
772 
773 	__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
774 }
775 
776 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev,
777 				      enum rtw_tx_queue_type queue)
778 {
779 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
780 	struct rtw_pci_tx_ring *ring;
781 	u32 bd_idx;
782 
783 	ring = &rtwpci->tx_rings[queue];
784 	bd_idx = rtw_pci_tx_queue_idx_addr[queue];
785 
786 	spin_lock_bh(&rtwpci->irq_lock);
787 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
788 		rtw_pci_deep_ps_leave(rtwdev);
789 	rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
790 	spin_unlock_bh(&rtwpci->irq_lock);
791 }
792 
793 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
794 {
795 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
796 	enum rtw_tx_queue_type queue;
797 
798 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
799 		if (test_and_clear_bit(queue, rtwpci->tx_queued))
800 			rtw_pci_tx_kick_off_queue(rtwdev, queue);
801 }
802 
803 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
804 				 struct rtw_tx_pkt_info *pkt_info,
805 				 struct sk_buff *skb,
806 				 enum rtw_tx_queue_type queue)
807 {
808 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
809 	const struct rtw_chip_info *chip = rtwdev->chip;
810 	struct rtw_pci_tx_ring *ring;
811 	struct rtw_pci_tx_data *tx_data;
812 	dma_addr_t dma;
813 	u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
814 	u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
815 	u32 size;
816 	u32 psb_len;
817 	u8 *pkt_desc;
818 	struct rtw_pci_tx_buffer_desc *buf_desc;
819 
820 	ring = &rtwpci->tx_rings[queue];
821 
822 	size = skb->len;
823 
824 	if (queue == RTW_TX_QUEUE_BCN)
825 		rtw_pci_release_rsvd_page(rtwpci, ring);
826 	else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
827 		return -ENOSPC;
828 
829 	pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
830 	memset(pkt_desc, 0, tx_pkt_desc_sz);
831 	pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
832 	rtw_tx_fill_tx_desc(pkt_info, skb);
833 	dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
834 			     DMA_TO_DEVICE);
835 	if (dma_mapping_error(&rtwpci->pdev->dev, dma))
836 		return -EBUSY;
837 
838 	/* after this we got dma mapped, there is no way back */
839 	buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
840 	memset(buf_desc, 0, tx_buf_desc_sz);
841 	psb_len = (skb->len - 1) / 128 + 1;
842 	if (queue == RTW_TX_QUEUE_BCN)
843 		psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
844 
845 	buf_desc[0].psb_len = cpu_to_le16(psb_len);
846 	buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
847 	buf_desc[0].dma = cpu_to_le32(dma);
848 	buf_desc[1].buf_size = cpu_to_le16(size);
849 	buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
850 
851 	tx_data = rtw_pci_get_tx_data(skb);
852 	tx_data->dma = dma;
853 	tx_data->sn = pkt_info->sn;
854 
855 	spin_lock_bh(&rtwpci->irq_lock);
856 
857 	skb_queue_tail(&ring->queue, skb);
858 
859 	if (queue == RTW_TX_QUEUE_BCN)
860 		goto out_unlock;
861 
862 	/* update write-index, and kick it off later */
863 	set_bit(queue, rtwpci->tx_queued);
864 	if (++ring->r.wp >= ring->r.len)
865 		ring->r.wp = 0;
866 
867 out_unlock:
868 	spin_unlock_bh(&rtwpci->irq_lock);
869 
870 	return 0;
871 }
872 
873 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
874 					u32 size)
875 {
876 	struct sk_buff *skb;
877 	struct rtw_tx_pkt_info pkt_info = {0};
878 	u8 reg_bcn_work;
879 	int ret;
880 
881 	skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
882 	if (!skb)
883 		return -ENOMEM;
884 
885 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
886 	if (ret) {
887 		rtw_err(rtwdev, "failed to write rsvd page data\n");
888 		return ret;
889 	}
890 
891 	/* reserved pages go through beacon queue */
892 	reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
893 	reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
894 	rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
895 
896 	return 0;
897 }
898 
899 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
900 {
901 	struct sk_buff *skb;
902 	struct rtw_tx_pkt_info pkt_info = {0};
903 	int ret;
904 
905 	skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
906 	if (!skb)
907 		return -ENOMEM;
908 
909 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
910 	if (ret) {
911 		rtw_err(rtwdev, "failed to write h2c data\n");
912 		return ret;
913 	}
914 
915 	rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
916 
917 	return 0;
918 }
919 
920 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
921 			    struct rtw_tx_pkt_info *pkt_info,
922 			    struct sk_buff *skb)
923 {
924 	enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
925 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
926 	struct rtw_pci_tx_ring *ring;
927 	int ret;
928 
929 	ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
930 	if (ret)
931 		return ret;
932 
933 	ring = &rtwpci->tx_rings[queue];
934 	spin_lock_bh(&rtwpci->irq_lock);
935 	if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
936 		ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
937 		ring->queue_stopped = true;
938 	}
939 	spin_unlock_bh(&rtwpci->irq_lock);
940 
941 	return 0;
942 }
943 
944 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
945 			   u8 hw_queue)
946 {
947 	struct ieee80211_hw *hw = rtwdev->hw;
948 	struct ieee80211_tx_info *info;
949 	struct rtw_pci_tx_ring *ring;
950 	struct rtw_pci_tx_data *tx_data;
951 	struct sk_buff *skb;
952 	u32 count;
953 	u32 bd_idx_addr;
954 	u32 bd_idx, cur_rp, rp_idx;
955 	u16 q_map;
956 
957 	ring = &rtwpci->tx_rings[hw_queue];
958 
959 	bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
960 	bd_idx = rtw_read32(rtwdev, bd_idx_addr);
961 	cur_rp = bd_idx >> 16;
962 	cur_rp &= TRX_BD_IDX_MASK;
963 	rp_idx = ring->r.rp;
964 	if (cur_rp >= ring->r.rp)
965 		count = cur_rp - ring->r.rp;
966 	else
967 		count = ring->r.len - (ring->r.rp - cur_rp);
968 
969 	while (count--) {
970 		skb = skb_dequeue(&ring->queue);
971 		if (!skb) {
972 			rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
973 				count, hw_queue, bd_idx, ring->r.rp, cur_rp);
974 			break;
975 		}
976 		tx_data = rtw_pci_get_tx_data(skb);
977 		dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
978 				 DMA_TO_DEVICE);
979 
980 		/* just free command packets from host to card */
981 		if (hw_queue == RTW_TX_QUEUE_H2C) {
982 			dev_kfree_skb_irq(skb);
983 			continue;
984 		}
985 
986 		if (ring->queue_stopped &&
987 		    avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
988 			q_map = skb_get_queue_mapping(skb);
989 			ieee80211_wake_queue(hw, q_map);
990 			ring->queue_stopped = false;
991 		}
992 
993 		if (++rp_idx >= ring->r.len)
994 			rp_idx = 0;
995 
996 		skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
997 
998 		info = IEEE80211_SKB_CB(skb);
999 
1000 		/* enqueue to wait for tx report */
1001 		if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
1002 			rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
1003 			continue;
1004 		}
1005 
1006 		/* always ACK for others, then they won't be marked as drop */
1007 		if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1008 			info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1009 		else
1010 			info->flags |= IEEE80211_TX_STAT_ACK;
1011 
1012 		ieee80211_tx_info_clear_status(info);
1013 		ieee80211_tx_status_irqsafe(hw, skb);
1014 	}
1015 
1016 	ring->r.rp = cur_rp;
1017 }
1018 
1019 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1020 {
1021 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1022 	struct napi_struct *napi = &rtwpci->napi;
1023 
1024 	napi_schedule(napi);
1025 }
1026 
1027 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1028 				     struct rtw_pci *rtwpci)
1029 {
1030 	struct rtw_pci_rx_ring *ring;
1031 	int count = 0;
1032 	u32 tmp, cur_wp;
1033 
1034 	ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1035 	tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1036 	cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1037 	if (cur_wp >= ring->r.wp)
1038 		count = cur_wp - ring->r.wp;
1039 	else
1040 		count = ring->r.len - (ring->r.wp - cur_wp);
1041 
1042 	return count;
1043 }
1044 
1045 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1046 			   u8 hw_queue, u32 limit)
1047 {
1048 	const struct rtw_chip_info *chip = rtwdev->chip;
1049 	struct napi_struct *napi = &rtwpci->napi;
1050 	struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1051 	struct rtw_rx_pkt_stat pkt_stat;
1052 	struct ieee80211_rx_status rx_status;
1053 	struct sk_buff *skb, *new;
1054 	u32 cur_rp = ring->r.rp;
1055 	u32 count, rx_done = 0;
1056 	u32 pkt_offset;
1057 	u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1058 	u32 buf_desc_sz = chip->rx_buf_desc_sz;
1059 	u32 new_len;
1060 	u8 *rx_desc;
1061 	dma_addr_t dma;
1062 
1063 	count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1064 	count = min(count, limit);
1065 
1066 	while (count--) {
1067 		rtw_pci_dma_check(rtwdev, ring, cur_rp);
1068 		skb = ring->buf[cur_rp];
1069 		dma = *((dma_addr_t *)skb->cb);
1070 		dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1071 					DMA_FROM_DEVICE);
1072 		rx_desc = skb->data;
1073 		chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1074 
1075 		/* offset from rx_desc to payload */
1076 		pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1077 			     pkt_stat.shift;
1078 
1079 		/* allocate a new skb for this frame,
1080 		 * discard the frame if none available
1081 		 */
1082 		new_len = pkt_stat.pkt_len + pkt_offset;
1083 		new = dev_alloc_skb(new_len);
1084 		if (WARN_ONCE(!new, "rx routine starvation\n"))
1085 			goto next_rp;
1086 
1087 		/* put the DMA data including rx_desc from phy to new skb */
1088 		skb_put_data(new, skb->data, new_len);
1089 
1090 		if (pkt_stat.is_c2h) {
1091 			rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1092 		} else {
1093 			/* remove rx_desc */
1094 			skb_pull(new, pkt_offset);
1095 
1096 			rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1097 			memcpy(new->cb, &rx_status, sizeof(rx_status));
1098 			ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1099 			rx_done++;
1100 		}
1101 
1102 next_rp:
1103 		/* new skb delivered to mac80211, re-enable original skb DMA */
1104 		rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1105 					    buf_desc_sz);
1106 
1107 		/* host read next element in ring */
1108 		if (++cur_rp >= ring->r.len)
1109 			cur_rp = 0;
1110 	}
1111 
1112 	ring->r.rp = cur_rp;
1113 	/* 'rp', the last position we have read, is seen as previous posistion
1114 	 * of 'wp' that is used to calculate 'count' next time.
1115 	 */
1116 	ring->r.wp = cur_rp;
1117 	rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1118 
1119 	return rx_done;
1120 }
1121 
1122 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1123 				   struct rtw_pci *rtwpci, u32 *irq_status)
1124 {
1125 	unsigned long flags;
1126 
1127 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1128 
1129 	irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1130 	irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1131 	if (rtw_chip_wcpu_11ac(rtwdev))
1132 		irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1133 	else
1134 		irq_status[3] = 0;
1135 	irq_status[0] &= rtwpci->irq_mask[0];
1136 	irq_status[1] &= rtwpci->irq_mask[1];
1137 	irq_status[3] &= rtwpci->irq_mask[3];
1138 	rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1139 	rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1140 	if (rtw_chip_wcpu_11ac(rtwdev))
1141 		rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1142 
1143 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1144 }
1145 
1146 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1147 {
1148 	struct rtw_dev *rtwdev = dev;
1149 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1150 
1151 	/* disable RTW PCI interrupt to avoid more interrupts before the end of
1152 	 * thread function
1153 	 *
1154 	 * disable HIMR here to also avoid new HISR flag being raised before
1155 	 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1156 	 * are cleared, the edge-triggered interrupt will not be generated when
1157 	 * a new HISR flag is set.
1158 	 */
1159 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1160 
1161 	return IRQ_WAKE_THREAD;
1162 }
1163 
1164 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1165 {
1166 	struct rtw_dev *rtwdev = dev;
1167 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1168 	u32 irq_status[4];
1169 	bool rx = false;
1170 
1171 	spin_lock_bh(&rtwpci->irq_lock);
1172 	rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1173 
1174 	if (irq_status[0] & IMR_MGNTDOK)
1175 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1176 	if (irq_status[0] & IMR_HIGHDOK)
1177 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1178 	if (irq_status[0] & IMR_BEDOK)
1179 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1180 	if (irq_status[0] & IMR_BKDOK)
1181 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1182 	if (irq_status[0] & IMR_VODOK)
1183 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1184 	if (irq_status[0] & IMR_VIDOK)
1185 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1186 	if (irq_status[3] & IMR_H2CDOK)
1187 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1188 	if (irq_status[0] & IMR_ROK) {
1189 		rtw_pci_rx_isr(rtwdev);
1190 		rx = true;
1191 	}
1192 	if (unlikely(irq_status[0] & IMR_C2HCMD))
1193 		rtw_fw_c2h_cmd_isr(rtwdev);
1194 
1195 	/* all of the jobs for this interrupt have been done */
1196 	if (rtwpci->running)
1197 		rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1198 	spin_unlock_bh(&rtwpci->irq_lock);
1199 
1200 	return IRQ_HANDLED;
1201 }
1202 
1203 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1204 			      struct pci_dev *pdev)
1205 {
1206 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1207 	unsigned long len;
1208 	u8 bar_id = 2;
1209 	int ret;
1210 
1211 	ret = pci_request_regions(pdev, KBUILD_MODNAME);
1212 	if (ret) {
1213 		rtw_err(rtwdev, "failed to request pci regions\n");
1214 		return ret;
1215 	}
1216 
1217 	len = pci_resource_len(pdev, bar_id);
1218 	rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1219 	if (!rtwpci->mmap) {
1220 		pci_release_regions(pdev);
1221 		rtw_err(rtwdev, "failed to map pci memory\n");
1222 		return -ENOMEM;
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1229 				 struct pci_dev *pdev)
1230 {
1231 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1232 
1233 	if (rtwpci->mmap) {
1234 		pci_iounmap(pdev, rtwpci->mmap);
1235 		pci_release_regions(pdev);
1236 	}
1237 }
1238 
1239 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1240 {
1241 	u16 write_addr;
1242 	u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1243 	u8 flag;
1244 	u8 cnt;
1245 
1246 	write_addr = addr & BITS_DBI_ADDR_MASK;
1247 	write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1248 	rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1249 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1250 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1251 
1252 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1253 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1254 		if (flag == 0)
1255 			return;
1256 
1257 		udelay(10);
1258 	}
1259 
1260 	WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1261 }
1262 
1263 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1264 {
1265 	u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1266 	u8 flag;
1267 	u8 cnt;
1268 
1269 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1270 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1271 
1272 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1273 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1274 		if (flag == 0) {
1275 			read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1276 			*value = rtw_read8(rtwdev, read_addr);
1277 			return 0;
1278 		}
1279 
1280 		udelay(10);
1281 	}
1282 
1283 	WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1284 	return -EIO;
1285 }
1286 
1287 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1288 {
1289 	u8 page;
1290 	u8 wflag;
1291 	u8 cnt;
1292 
1293 	rtw_write16(rtwdev, REG_MDIO_V1, data);
1294 
1295 	page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1296 	page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1297 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1298 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1299 	rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1300 
1301 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1302 		wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1303 					BIT_MDIO_WFLAG_V1);
1304 		if (wflag == 0)
1305 			return;
1306 
1307 		udelay(10);
1308 	}
1309 
1310 	WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1311 }
1312 
1313 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1314 {
1315 	u8 value;
1316 	int ret;
1317 
1318 	if (rtw_pci_disable_aspm)
1319 		return;
1320 
1321 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1322 	if (ret) {
1323 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1324 		return;
1325 	}
1326 
1327 	if (enable)
1328 		value |= BIT_CLKREQ_SW_EN;
1329 	else
1330 		value &= ~BIT_CLKREQ_SW_EN;
1331 
1332 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1333 }
1334 
1335 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
1336 {
1337 	u8 value;
1338 	int ret;
1339 
1340 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1341 	if (ret) {
1342 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1343 		return;
1344 	}
1345 
1346 	if (enable)
1347 		value &= ~BIT_CLKREQ_N_PAD;
1348 	else
1349 		value |= BIT_CLKREQ_N_PAD;
1350 
1351 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1352 }
1353 
1354 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1355 {
1356 	u8 value;
1357 	int ret;
1358 
1359 	if (rtw_pci_disable_aspm)
1360 		return;
1361 
1362 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1363 	if (ret) {
1364 		rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1365 		return;
1366 	}
1367 
1368 	if (enable)
1369 		value |= BIT_L1_SW_EN;
1370 	else
1371 		value &= ~BIT_L1_SW_EN;
1372 
1373 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1374 }
1375 
1376 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1377 {
1378 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1379 
1380 	/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1381 	 * only be enabled when host supports it.
1382 	 *
1383 	 * And ASPM mechanism should be enabled when driver/firmware enters
1384 	 * power save mode, without having heavy traffic. Because we've
1385 	 * experienced some inter-operability issues that the link tends
1386 	 * to enter L1 state on the fly even when driver is having high
1387 	 * throughput. This is probably because the ASPM behavior slightly
1388 	 * varies from different SOC.
1389 	 */
1390 	if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
1391 		return;
1392 
1393 	if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
1394 	    (!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
1395 		rtw_pci_aspm_set(rtwdev, enter);
1396 }
1397 
1398 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1399 {
1400 	const struct rtw_chip_info *chip = rtwdev->chip;
1401 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1402 	struct pci_dev *pdev = rtwpci->pdev;
1403 	u16 link_ctrl;
1404 	int ret;
1405 
1406 	/* RTL8822CE has enabled REFCLK auto calibration, it does not need
1407 	 * to add clock delay to cover the REFCLK timing gap.
1408 	 */
1409 	if (chip->id == RTW_CHIP_TYPE_8822C)
1410 		rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1411 
1412 	/* Though there is standard PCIE configuration space to set the
1413 	 * link control register, but by Realtek's design, driver should
1414 	 * check if host supports CLKREQ/ASPM to enable the HW module.
1415 	 *
1416 	 * These functions are implemented by two HW modules associated,
1417 	 * one is responsible to access PCIE configuration space to
1418 	 * follow the host settings, and another is in charge of doing
1419 	 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1420 	 * the host does not support it, and due to some reasons or wrong
1421 	 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1422 	 * loss if HW misbehaves on the link.
1423 	 *
1424 	 * Hence it's designed that driver should first check the PCIE
1425 	 * configuration space is sync'ed and enabled, then driver can turn
1426 	 * on the other module that is actually working on the mechanism.
1427 	 */
1428 	ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1429 	if (ret) {
1430 		rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1431 		return;
1432 	}
1433 
1434 	if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1435 		rtw_pci_clkreq_set(rtwdev, true);
1436 
1437 	rtwpci->link_ctrl = link_ctrl;
1438 }
1439 
1440 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1441 {
1442 	const struct rtw_chip_info *chip = rtwdev->chip;
1443 
1444 	switch (chip->id) {
1445 	case RTW_CHIP_TYPE_8822C:
1446 		if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1447 			rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1448 					 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1449 		break;
1450 	default:
1451 		break;
1452 	}
1453 }
1454 
1455 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1456 {
1457 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1458 	const struct rtw_chip_info *chip = rtwdev->chip;
1459 	struct pci_dev *pdev = rtwpci->pdev;
1460 	const struct rtw_intf_phy_para *para;
1461 	u16 cut;
1462 	u16 value;
1463 	u16 offset;
1464 	int i;
1465 	int ret;
1466 
1467 	cut = BIT(0) << rtwdev->hal.cut_version;
1468 
1469 	for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1470 		para = &chip->intf_table->gen1_para[i];
1471 		if (!(para->cut_mask & cut))
1472 			continue;
1473 		if (para->offset == 0xffff)
1474 			break;
1475 		offset = para->offset;
1476 		value = para->value;
1477 		if (para->ip_sel == RTW_IP_SEL_PHY)
1478 			rtw_mdio_write(rtwdev, offset, value, true);
1479 		else
1480 			rtw_dbi_write8(rtwdev, offset, value);
1481 	}
1482 
1483 	for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1484 		para = &chip->intf_table->gen2_para[i];
1485 		if (!(para->cut_mask & cut))
1486 			continue;
1487 		if (para->offset == 0xffff)
1488 			break;
1489 		offset = para->offset;
1490 		value = para->value;
1491 		if (para->ip_sel == RTW_IP_SEL_PHY)
1492 			rtw_mdio_write(rtwdev, offset, value, false);
1493 		else
1494 			rtw_dbi_write8(rtwdev, offset, value);
1495 	}
1496 
1497 	rtw_pci_link_cfg(rtwdev);
1498 
1499 	/* Disable 8821ce completion timeout by default */
1500 	if (chip->id == RTW_CHIP_TYPE_8821C) {
1501 		ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
1502 					       PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
1503 		if (ret)
1504 			rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
1505 				ret);
1506 	}
1507 }
1508 
1509 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1510 {
1511 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1512 	struct rtw_dev *rtwdev = hw->priv;
1513 	const struct rtw_chip_info *chip = rtwdev->chip;
1514 	struct rtw_efuse *efuse = &rtwdev->efuse;
1515 
1516 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1517 		rtw_pci_clkreq_pad_low(rtwdev, true);
1518 	return 0;
1519 }
1520 
1521 static int __maybe_unused rtw_pci_resume(struct device *dev)
1522 {
1523 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1524 	struct rtw_dev *rtwdev = hw->priv;
1525 	const struct rtw_chip_info *chip = rtwdev->chip;
1526 	struct rtw_efuse *efuse = &rtwdev->efuse;
1527 
1528 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1529 		rtw_pci_clkreq_pad_low(rtwdev, false);
1530 	return 0;
1531 }
1532 
1533 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1534 EXPORT_SYMBOL(rtw_pm_ops);
1535 
1536 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1537 {
1538 	int ret;
1539 
1540 	ret = pci_enable_device(pdev);
1541 	if (ret) {
1542 		rtw_err(rtwdev, "failed to enable pci device\n");
1543 		return ret;
1544 	}
1545 
1546 	pci_set_master(pdev);
1547 	pci_set_drvdata(pdev, rtwdev->hw);
1548 	SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1549 
1550 	return 0;
1551 }
1552 
1553 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1554 {
1555 	pci_clear_master(pdev);
1556 	pci_disable_device(pdev);
1557 }
1558 
1559 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1560 {
1561 	struct rtw_pci *rtwpci;
1562 	int ret;
1563 
1564 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1565 	rtwpci->pdev = pdev;
1566 
1567 	/* after this driver can access to hw registers */
1568 	ret = rtw_pci_io_mapping(rtwdev, pdev);
1569 	if (ret) {
1570 		rtw_err(rtwdev, "failed to request pci io region\n");
1571 		goto err_out;
1572 	}
1573 
1574 	ret = rtw_pci_init(rtwdev);
1575 	if (ret) {
1576 		rtw_err(rtwdev, "failed to allocate pci resources\n");
1577 		goto err_io_unmap;
1578 	}
1579 
1580 	return 0;
1581 
1582 err_io_unmap:
1583 	rtw_pci_io_unmapping(rtwdev, pdev);
1584 
1585 err_out:
1586 	return ret;
1587 }
1588 
1589 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1590 {
1591 	rtw_pci_deinit(rtwdev);
1592 	rtw_pci_io_unmapping(rtwdev, pdev);
1593 }
1594 
1595 static struct rtw_hci_ops rtw_pci_ops = {
1596 	.tx_write = rtw_pci_tx_write,
1597 	.tx_kick_off = rtw_pci_tx_kick_off,
1598 	.flush_queues = rtw_pci_flush_queues,
1599 	.setup = rtw_pci_setup,
1600 	.start = rtw_pci_start,
1601 	.stop = rtw_pci_stop,
1602 	.deep_ps = rtw_pci_deep_ps,
1603 	.link_ps = rtw_pci_link_ps,
1604 	.interface_cfg = rtw_pci_interface_cfg,
1605 
1606 	.read8 = rtw_pci_read8,
1607 	.read16 = rtw_pci_read16,
1608 	.read32 = rtw_pci_read32,
1609 	.write8 = rtw_pci_write8,
1610 	.write16 = rtw_pci_write16,
1611 	.write32 = rtw_pci_write32,
1612 	.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1613 	.write_data_h2c = rtw_pci_write_data_h2c,
1614 };
1615 
1616 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1617 {
1618 	unsigned int flags = PCI_IRQ_LEGACY;
1619 	int ret;
1620 
1621 	if (!rtw_disable_msi)
1622 		flags |= PCI_IRQ_MSI;
1623 
1624 	ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1625 	if (ret < 0) {
1626 		rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1627 		return ret;
1628 	}
1629 
1630 	ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1631 					rtw_pci_interrupt_handler,
1632 					rtw_pci_interrupt_threadfn,
1633 					IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1634 	if (ret) {
1635 		rtw_err(rtwdev, "failed to request irq %d\n", ret);
1636 		pci_free_irq_vectors(pdev);
1637 	}
1638 
1639 	return ret;
1640 }
1641 
1642 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1643 {
1644 	devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1645 	pci_free_irq_vectors(pdev);
1646 }
1647 
1648 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1649 {
1650 	struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1651 	struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1652 					      priv);
1653 	int work_done = 0;
1654 
1655 	if (rtwpci->rx_no_aspm)
1656 		rtw_pci_link_ps(rtwdev, false);
1657 
1658 	while (work_done < budget) {
1659 		u32 work_done_once;
1660 
1661 		work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1662 						 budget - work_done);
1663 		if (work_done_once == 0)
1664 			break;
1665 		work_done += work_done_once;
1666 	}
1667 	if (work_done < budget) {
1668 		napi_complete_done(napi, work_done);
1669 		spin_lock_bh(&rtwpci->irq_lock);
1670 		if (rtwpci->running)
1671 			rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1672 		spin_unlock_bh(&rtwpci->irq_lock);
1673 		/* When ISR happens during polling and before napi_complete
1674 		 * while no further data is received. Data on the dma_ring will
1675 		 * not be processed immediately. Check whether dma ring is
1676 		 * empty and perform napi_schedule accordingly.
1677 		 */
1678 		if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1679 			napi_schedule(napi);
1680 	}
1681 	if (rtwpci->rx_no_aspm)
1682 		rtw_pci_link_ps(rtwdev, true);
1683 
1684 	return work_done;
1685 }
1686 
1687 static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
1688 {
1689 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1690 
1691 	init_dummy_netdev(&rtwpci->netdev);
1692 	netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
1693 }
1694 
1695 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1696 {
1697 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1698 
1699 	rtw_pci_napi_stop(rtwdev);
1700 	netif_napi_del(&rtwpci->napi);
1701 }
1702 
1703 int rtw_pci_probe(struct pci_dev *pdev,
1704 		  const struct pci_device_id *id)
1705 {
1706 	struct pci_dev *bridge = pci_upstream_bridge(pdev);
1707 	struct ieee80211_hw *hw;
1708 	struct rtw_dev *rtwdev;
1709 	struct rtw_pci *rtwpci;
1710 	int drv_data_size;
1711 	int ret;
1712 
1713 	drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1714 	hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1715 	if (!hw) {
1716 		dev_err(&pdev->dev, "failed to allocate hw\n");
1717 		return -ENOMEM;
1718 	}
1719 
1720 	rtwdev = hw->priv;
1721 	rtwdev->hw = hw;
1722 	rtwdev->dev = &pdev->dev;
1723 	rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1724 	rtwdev->hci.ops = &rtw_pci_ops;
1725 	rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1726 
1727 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1728 	atomic_set(&rtwpci->link_usage, 1);
1729 
1730 	ret = rtw_core_init(rtwdev);
1731 	if (ret)
1732 		goto err_release_hw;
1733 
1734 	rtw_dbg(rtwdev, RTW_DBG_PCI,
1735 		"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1736 		pdev->vendor, pdev->device, pdev->revision);
1737 
1738 	ret = rtw_pci_claim(rtwdev, pdev);
1739 	if (ret) {
1740 		rtw_err(rtwdev, "failed to claim pci device\n");
1741 		goto err_deinit_core;
1742 	}
1743 
1744 	ret = rtw_pci_setup_resource(rtwdev, pdev);
1745 	if (ret) {
1746 		rtw_err(rtwdev, "failed to setup pci resources\n");
1747 		goto err_pci_declaim;
1748 	}
1749 
1750 	rtw_pci_napi_init(rtwdev);
1751 
1752 	ret = rtw_chip_info_setup(rtwdev);
1753 	if (ret) {
1754 		rtw_err(rtwdev, "failed to setup chip information\n");
1755 		goto err_destroy_pci;
1756 	}
1757 
1758 	/* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
1759 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
1760 		rtwpci->rx_no_aspm = true;
1761 
1762 	rtw_pci_phy_cfg(rtwdev);
1763 
1764 	ret = rtw_register_hw(rtwdev, hw);
1765 	if (ret) {
1766 		rtw_err(rtwdev, "failed to register hw\n");
1767 		goto err_destroy_pci;
1768 	}
1769 
1770 	ret = rtw_pci_request_irq(rtwdev, pdev);
1771 	if (ret) {
1772 		ieee80211_unregister_hw(hw);
1773 		goto err_destroy_pci;
1774 	}
1775 
1776 	return 0;
1777 
1778 err_destroy_pci:
1779 	rtw_pci_napi_deinit(rtwdev);
1780 	rtw_pci_destroy(rtwdev, pdev);
1781 
1782 err_pci_declaim:
1783 	rtw_pci_declaim(rtwdev, pdev);
1784 
1785 err_deinit_core:
1786 	rtw_core_deinit(rtwdev);
1787 
1788 err_release_hw:
1789 	ieee80211_free_hw(hw);
1790 
1791 	return ret;
1792 }
1793 EXPORT_SYMBOL(rtw_pci_probe);
1794 
1795 void rtw_pci_remove(struct pci_dev *pdev)
1796 {
1797 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1798 	struct rtw_dev *rtwdev;
1799 	struct rtw_pci *rtwpci;
1800 
1801 	if (!hw)
1802 		return;
1803 
1804 	rtwdev = hw->priv;
1805 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1806 
1807 	rtw_unregister_hw(rtwdev, hw);
1808 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1809 	rtw_pci_napi_deinit(rtwdev);
1810 	rtw_pci_destroy(rtwdev, pdev);
1811 	rtw_pci_declaim(rtwdev, pdev);
1812 	rtw_pci_free_irq(rtwdev, pdev);
1813 	rtw_core_deinit(rtwdev);
1814 	ieee80211_free_hw(hw);
1815 }
1816 EXPORT_SYMBOL(rtw_pci_remove);
1817 
1818 void rtw_pci_shutdown(struct pci_dev *pdev)
1819 {
1820 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1821 	struct rtw_dev *rtwdev;
1822 	const struct rtw_chip_info *chip;
1823 
1824 	if (!hw)
1825 		return;
1826 
1827 	rtwdev = hw->priv;
1828 	chip = rtwdev->chip;
1829 
1830 	if (chip->ops->shutdown)
1831 		chip->ops->shutdown(rtwdev);
1832 
1833 	pci_set_power_state(pdev, PCI_D3hot);
1834 }
1835 EXPORT_SYMBOL(rtw_pci_shutdown);
1836 
1837 MODULE_AUTHOR("Realtek Corporation");
1838 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
1839 MODULE_LICENSE("Dual BSD/GPL");
1840