xref: /linux/drivers/net/wireless/realtek/rtw88/pci.c (revision 19d17ab7c68b62180e0537f92400a6f798019775)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include "main.h"
8 #include "pci.h"
9 #include "reg.h"
10 #include "tx.h"
11 #include "rx.h"
12 #include "fw.h"
13 #include "ps.h"
14 #include "debug.h"
15 
16 static bool rtw_disable_msi;
17 static bool rtw_pci_disable_aspm;
18 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
19 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
20 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
21 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
22 
23 static u32 rtw_pci_tx_queue_idx_addr[] = {
24 	[RTW_TX_QUEUE_BK]	= RTK_PCI_TXBD_IDX_BKQ,
25 	[RTW_TX_QUEUE_BE]	= RTK_PCI_TXBD_IDX_BEQ,
26 	[RTW_TX_QUEUE_VI]	= RTK_PCI_TXBD_IDX_VIQ,
27 	[RTW_TX_QUEUE_VO]	= RTK_PCI_TXBD_IDX_VOQ,
28 	[RTW_TX_QUEUE_MGMT]	= RTK_PCI_TXBD_IDX_MGMTQ,
29 	[RTW_TX_QUEUE_HI0]	= RTK_PCI_TXBD_IDX_HI0Q,
30 	[RTW_TX_QUEUE_H2C]	= RTK_PCI_TXBD_IDX_H2CQ,
31 };
32 
33 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, u8 queue)
34 {
35 	switch (queue) {
36 	case RTW_TX_QUEUE_BCN:
37 		return TX_DESC_QSEL_BEACON;
38 	case RTW_TX_QUEUE_H2C:
39 		return TX_DESC_QSEL_H2C;
40 	case RTW_TX_QUEUE_MGMT:
41 		return TX_DESC_QSEL_MGMT;
42 	case RTW_TX_QUEUE_HI0:
43 		return TX_DESC_QSEL_HIGH;
44 	default:
45 		return skb->priority;
46 	}
47 };
48 
49 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
50 {
51 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
52 
53 	return readb(rtwpci->mmap + addr);
54 }
55 
56 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
57 {
58 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
59 
60 	return readw(rtwpci->mmap + addr);
61 }
62 
63 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
64 {
65 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
66 
67 	return readl(rtwpci->mmap + addr);
68 }
69 
70 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
71 {
72 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
73 
74 	writeb(val, rtwpci->mmap + addr);
75 }
76 
77 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
78 {
79 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
80 
81 	writew(val, rtwpci->mmap + addr);
82 }
83 
84 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
85 {
86 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
87 
88 	writel(val, rtwpci->mmap + addr);
89 }
90 
91 static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx)
92 {
93 	int offset = tx_ring->r.desc_size * idx;
94 
95 	return tx_ring->r.head + offset;
96 }
97 
98 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
99 				      struct rtw_pci_tx_ring *tx_ring)
100 {
101 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
102 	struct rtw_pci_tx_data *tx_data;
103 	struct sk_buff *skb, *tmp;
104 	dma_addr_t dma;
105 
106 	/* free every skb remained in tx list */
107 	skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
108 		__skb_unlink(skb, &tx_ring->queue);
109 		tx_data = rtw_pci_get_tx_data(skb);
110 		dma = tx_data->dma;
111 
112 		dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
113 		dev_kfree_skb_any(skb);
114 	}
115 }
116 
117 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
118 				 struct rtw_pci_tx_ring *tx_ring)
119 {
120 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
121 	u8 *head = tx_ring->r.head;
122 	u32 len = tx_ring->r.len;
123 	int ring_sz = len * tx_ring->r.desc_size;
124 
125 	rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
126 
127 	/* free the ring itself */
128 	dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
129 	tx_ring->r.head = NULL;
130 }
131 
132 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
133 				      struct rtw_pci_rx_ring *rx_ring)
134 {
135 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
136 	struct sk_buff *skb;
137 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
138 	dma_addr_t dma;
139 	int i;
140 
141 	for (i = 0; i < rx_ring->r.len; i++) {
142 		skb = rx_ring->buf[i];
143 		if (!skb)
144 			continue;
145 
146 		dma = *((dma_addr_t *)skb->cb);
147 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
148 		dev_kfree_skb(skb);
149 		rx_ring->buf[i] = NULL;
150 	}
151 }
152 
153 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
154 				 struct rtw_pci_rx_ring *rx_ring)
155 {
156 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
157 	u8 *head = rx_ring->r.head;
158 	int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
159 
160 	rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
161 
162 	dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
163 }
164 
165 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
166 {
167 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
168 	struct rtw_pci_tx_ring *tx_ring;
169 	struct rtw_pci_rx_ring *rx_ring;
170 	int i;
171 
172 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
173 		tx_ring = &rtwpci->tx_rings[i];
174 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
175 	}
176 
177 	for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
178 		rx_ring = &rtwpci->rx_rings[i];
179 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
180 	}
181 }
182 
183 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
184 				struct rtw_pci_tx_ring *tx_ring,
185 				u8 desc_size, u32 len)
186 {
187 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
188 	int ring_sz = desc_size * len;
189 	dma_addr_t dma;
190 	u8 *head;
191 
192 	if (len > TRX_BD_IDX_MASK) {
193 		rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
194 		return -EINVAL;
195 	}
196 
197 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
198 	if (!head) {
199 		rtw_err(rtwdev, "failed to allocate tx ring\n");
200 		return -ENOMEM;
201 	}
202 
203 	skb_queue_head_init(&tx_ring->queue);
204 	tx_ring->r.head = head;
205 	tx_ring->r.dma = dma;
206 	tx_ring->r.len = len;
207 	tx_ring->r.desc_size = desc_size;
208 	tx_ring->r.wp = 0;
209 	tx_ring->r.rp = 0;
210 
211 	return 0;
212 }
213 
214 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
215 				 struct rtw_pci_rx_ring *rx_ring,
216 				 u32 idx, u32 desc_sz)
217 {
218 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
219 	struct rtw_pci_rx_buffer_desc *buf_desc;
220 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
221 	dma_addr_t dma;
222 
223 	if (!skb)
224 		return -EINVAL;
225 
226 	dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
227 	if (dma_mapping_error(&pdev->dev, dma))
228 		return -EBUSY;
229 
230 	*((dma_addr_t *)skb->cb) = dma;
231 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
232 						     idx * desc_sz);
233 	memset(buf_desc, 0, sizeof(*buf_desc));
234 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
235 	buf_desc->dma = cpu_to_le32(dma);
236 
237 	return 0;
238 }
239 
240 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
241 					struct rtw_pci_rx_ring *rx_ring,
242 					u32 idx, u32 desc_sz)
243 {
244 	struct device *dev = rtwdev->dev;
245 	struct rtw_pci_rx_buffer_desc *buf_desc;
246 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
247 
248 	dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
249 
250 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
251 						     idx * desc_sz);
252 	memset(buf_desc, 0, sizeof(*buf_desc));
253 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
254 	buf_desc->dma = cpu_to_le32(dma);
255 }
256 
257 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
258 				struct rtw_pci_rx_ring *rx_ring,
259 				u8 desc_size, u32 len)
260 {
261 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
262 	struct sk_buff *skb = NULL;
263 	dma_addr_t dma;
264 	u8 *head;
265 	int ring_sz = desc_size * len;
266 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
267 	int i, allocated;
268 	int ret = 0;
269 
270 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
271 	if (!head) {
272 		rtw_err(rtwdev, "failed to allocate rx ring\n");
273 		return -ENOMEM;
274 	}
275 	rx_ring->r.head = head;
276 
277 	for (i = 0; i < len; i++) {
278 		skb = dev_alloc_skb(buf_sz);
279 		if (!skb) {
280 			allocated = i;
281 			ret = -ENOMEM;
282 			goto err_out;
283 		}
284 
285 		memset(skb->data, 0, buf_sz);
286 		rx_ring->buf[i] = skb;
287 		ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
288 		if (ret) {
289 			allocated = i;
290 			dev_kfree_skb_any(skb);
291 			goto err_out;
292 		}
293 	}
294 
295 	rx_ring->r.dma = dma;
296 	rx_ring->r.len = len;
297 	rx_ring->r.desc_size = desc_size;
298 	rx_ring->r.wp = 0;
299 	rx_ring->r.rp = 0;
300 
301 	return 0;
302 
303 err_out:
304 	for (i = 0; i < allocated; i++) {
305 		skb = rx_ring->buf[i];
306 		if (!skb)
307 			continue;
308 		dma = *((dma_addr_t *)skb->cb);
309 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
310 		dev_kfree_skb_any(skb);
311 		rx_ring->buf[i] = NULL;
312 	}
313 	dma_free_coherent(&pdev->dev, ring_sz, head, dma);
314 
315 	rtw_err(rtwdev, "failed to init rx buffer\n");
316 
317 	return ret;
318 }
319 
320 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
321 {
322 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
323 	struct rtw_pci_tx_ring *tx_ring;
324 	struct rtw_pci_rx_ring *rx_ring;
325 	const struct rtw_chip_info *chip = rtwdev->chip;
326 	int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
327 	int tx_desc_size, rx_desc_size;
328 	u32 len;
329 	int ret;
330 
331 	tx_desc_size = chip->tx_buf_desc_sz;
332 
333 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
334 		tx_ring = &rtwpci->tx_rings[i];
335 		len = max_num_of_tx_queue(i);
336 		ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
337 		if (ret)
338 			goto out;
339 	}
340 
341 	rx_desc_size = chip->rx_buf_desc_sz;
342 
343 	for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
344 		rx_ring = &rtwpci->rx_rings[j];
345 		ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
346 					   RTK_MAX_RX_DESC_NUM);
347 		if (ret)
348 			goto out;
349 	}
350 
351 	return 0;
352 
353 out:
354 	tx_alloced = i;
355 	for (i = 0; i < tx_alloced; i++) {
356 		tx_ring = &rtwpci->tx_rings[i];
357 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
358 	}
359 
360 	rx_alloced = j;
361 	for (j = 0; j < rx_alloced; j++) {
362 		rx_ring = &rtwpci->rx_rings[j];
363 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
364 	}
365 
366 	return ret;
367 }
368 
369 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
370 {
371 	rtw_pci_free_trx_ring(rtwdev);
372 }
373 
374 static int rtw_pci_init(struct rtw_dev *rtwdev)
375 {
376 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
377 	int ret = 0;
378 
379 	rtwpci->irq_mask[0] = IMR_HIGHDOK |
380 			      IMR_MGNTDOK |
381 			      IMR_BKDOK |
382 			      IMR_BEDOK |
383 			      IMR_VIDOK |
384 			      IMR_VODOK |
385 			      IMR_ROK |
386 			      IMR_BCNDMAINT_E |
387 			      IMR_C2HCMD |
388 			      0;
389 	rtwpci->irq_mask[1] = IMR_TXFOVW |
390 			      0;
391 	rtwpci->irq_mask[3] = IMR_H2CDOK |
392 			      0;
393 	spin_lock_init(&rtwpci->irq_lock);
394 	spin_lock_init(&rtwpci->hwirq_lock);
395 	ret = rtw_pci_init_trx_ring(rtwdev);
396 
397 	return ret;
398 }
399 
400 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
401 {
402 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
403 	u32 len;
404 	u8 tmp;
405 	dma_addr_t dma;
406 
407 	tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
408 	rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
409 
410 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
411 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
412 
413 	if (!rtw_chip_wcpu_11n(rtwdev)) {
414 		len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
415 		dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
416 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
417 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
418 		rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
419 		rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
420 	}
421 
422 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
423 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
424 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
425 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
426 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
427 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
428 
429 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
430 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
431 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
432 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
433 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
434 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
435 
436 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
437 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
438 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
439 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
440 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
441 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
442 
443 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
444 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
445 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
446 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
447 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
448 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
449 
450 	len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
451 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
452 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
453 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
454 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
455 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
456 
457 	len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
458 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
459 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
460 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
461 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
462 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
463 
464 	len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
465 	dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
466 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
467 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
468 	rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
469 	rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
470 
471 	/* reset read/write point */
472 	rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
473 
474 	/* reset H2C Queue index in a single write */
475 	if (rtw_chip_wcpu_11ac(rtwdev))
476 		rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
477 				BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
478 }
479 
480 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
481 {
482 	rtw_pci_reset_buf_desc(rtwdev);
483 }
484 
485 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
486 				     struct rtw_pci *rtwpci, bool exclude_rx)
487 {
488 	unsigned long flags;
489 	u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
490 
491 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
492 
493 	rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
494 	rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
495 	if (rtw_chip_wcpu_11ac(rtwdev))
496 		rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
497 
498 	rtwpci->irq_enabled = true;
499 
500 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
501 }
502 
503 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
504 				      struct rtw_pci *rtwpci)
505 {
506 	unsigned long flags;
507 
508 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
509 
510 	if (!rtwpci->irq_enabled)
511 		goto out;
512 
513 	rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
514 	rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
515 	if (rtw_chip_wcpu_11ac(rtwdev))
516 		rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
517 
518 	rtwpci->irq_enabled = false;
519 
520 out:
521 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
522 }
523 
524 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
525 {
526 	/* reset dma and rx tag */
527 	rtw_write32_set(rtwdev, RTK_PCI_CTRL,
528 			BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
529 	rtwpci->rx_tag = 0;
530 }
531 
532 static int rtw_pci_setup(struct rtw_dev *rtwdev)
533 {
534 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
535 
536 	rtw_pci_reset_trx_ring(rtwdev);
537 	rtw_pci_dma_reset(rtwdev, rtwpci);
538 
539 	return 0;
540 }
541 
542 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
543 {
544 	struct rtw_pci_tx_ring *tx_ring;
545 	u8 queue;
546 
547 	rtw_pci_reset_trx_ring(rtwdev);
548 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
549 		tx_ring = &rtwpci->tx_rings[queue];
550 		rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
551 	}
552 }
553 
554 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
555 {
556 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
557 
558 	if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
559 		return;
560 
561 	napi_enable(&rtwpci->napi);
562 }
563 
564 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
565 {
566 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
567 
568 	if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
569 		return;
570 
571 	napi_synchronize(&rtwpci->napi);
572 	napi_disable(&rtwpci->napi);
573 }
574 
575 static int rtw_pci_start(struct rtw_dev *rtwdev)
576 {
577 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
578 
579 	rtw_pci_napi_start(rtwdev);
580 
581 	spin_lock_bh(&rtwpci->irq_lock);
582 	rtwpci->running = true;
583 	rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
584 	spin_unlock_bh(&rtwpci->irq_lock);
585 
586 	return 0;
587 }
588 
589 static void rtw_pci_stop(struct rtw_dev *rtwdev)
590 {
591 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
592 	struct pci_dev *pdev = rtwpci->pdev;
593 
594 	spin_lock_bh(&rtwpci->irq_lock);
595 	rtwpci->running = false;
596 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
597 	spin_unlock_bh(&rtwpci->irq_lock);
598 
599 	synchronize_irq(pdev->irq);
600 	rtw_pci_napi_stop(rtwdev);
601 
602 	spin_lock_bh(&rtwpci->irq_lock);
603 	rtw_pci_dma_release(rtwdev, rtwpci);
604 	spin_unlock_bh(&rtwpci->irq_lock);
605 }
606 
607 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
608 {
609 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
610 	struct rtw_pci_tx_ring *tx_ring;
611 	bool tx_empty = true;
612 	u8 queue;
613 
614 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
615 		goto enter_deep_ps;
616 
617 	lockdep_assert_held(&rtwpci->irq_lock);
618 
619 	/* Deep PS state is not allowed to TX-DMA */
620 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
621 		/* BCN queue is rsvd page, does not have DMA interrupt
622 		 * H2C queue is managed by firmware
623 		 */
624 		if (queue == RTW_TX_QUEUE_BCN ||
625 		    queue == RTW_TX_QUEUE_H2C)
626 			continue;
627 
628 		tx_ring = &rtwpci->tx_rings[queue];
629 
630 		/* check if there is any skb DMAing */
631 		if (skb_queue_len(&tx_ring->queue)) {
632 			tx_empty = false;
633 			break;
634 		}
635 	}
636 
637 	if (!tx_empty) {
638 		rtw_dbg(rtwdev, RTW_DBG_PS,
639 			"TX path not empty, cannot enter deep power save state\n");
640 		return;
641 	}
642 enter_deep_ps:
643 	set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
644 	rtw_power_mode_change(rtwdev, true);
645 }
646 
647 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
648 {
649 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
650 
651 	lockdep_assert_held(&rtwpci->irq_lock);
652 
653 	if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
654 		rtw_power_mode_change(rtwdev, false);
655 }
656 
657 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
658 {
659 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
660 
661 	spin_lock_bh(&rtwpci->irq_lock);
662 
663 	if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
664 		rtw_pci_deep_ps_enter(rtwdev);
665 
666 	if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
667 		rtw_pci_deep_ps_leave(rtwdev);
668 
669 	spin_unlock_bh(&rtwpci->irq_lock);
670 }
671 
672 static u8 ac_to_hwq[] = {
673 	[IEEE80211_AC_VO] = RTW_TX_QUEUE_VO,
674 	[IEEE80211_AC_VI] = RTW_TX_QUEUE_VI,
675 	[IEEE80211_AC_BE] = RTW_TX_QUEUE_BE,
676 	[IEEE80211_AC_BK] = RTW_TX_QUEUE_BK,
677 };
678 
679 static_assert(ARRAY_SIZE(ac_to_hwq) == IEEE80211_NUM_ACS);
680 
681 static u8 rtw_hw_queue_mapping(struct sk_buff *skb)
682 {
683 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
684 	__le16 fc = hdr->frame_control;
685 	u8 q_mapping = skb_get_queue_mapping(skb);
686 	u8 queue;
687 
688 	if (unlikely(ieee80211_is_beacon(fc)))
689 		queue = RTW_TX_QUEUE_BCN;
690 	else if (unlikely(ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)))
691 		queue = RTW_TX_QUEUE_MGMT;
692 	else if (is_broadcast_ether_addr(hdr->addr1) ||
693 		 is_multicast_ether_addr(hdr->addr1))
694 		queue = RTW_TX_QUEUE_HI0;
695 	else if (WARN_ON_ONCE(q_mapping >= ARRAY_SIZE(ac_to_hwq)))
696 		queue = ac_to_hwq[IEEE80211_AC_BE];
697 	else
698 		queue = ac_to_hwq[q_mapping];
699 
700 	return queue;
701 }
702 
703 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
704 				      struct rtw_pci_tx_ring *ring)
705 {
706 	struct sk_buff *prev = skb_dequeue(&ring->queue);
707 	struct rtw_pci_tx_data *tx_data;
708 	dma_addr_t dma;
709 
710 	if (!prev)
711 		return;
712 
713 	tx_data = rtw_pci_get_tx_data(prev);
714 	dma = tx_data->dma;
715 	dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
716 	dev_kfree_skb_any(prev);
717 }
718 
719 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
720 			      struct rtw_pci_rx_ring *rx_ring,
721 			      u32 idx)
722 {
723 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
724 	const struct rtw_chip_info *chip = rtwdev->chip;
725 	struct rtw_pci_rx_buffer_desc *buf_desc;
726 	u32 desc_sz = chip->rx_buf_desc_sz;
727 	u16 total_pkt_size;
728 
729 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
730 						     idx * desc_sz);
731 	total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
732 
733 	/* rx tag mismatch, throw a warning */
734 	if (total_pkt_size != rtwpci->rx_tag)
735 		rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
736 
737 	rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
738 }
739 
740 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
741 {
742 	u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
743 	u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
744 
745 	return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
746 }
747 
748 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
749 {
750 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
751 	struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
752 	u32 cur_rp;
753 	u8 i;
754 
755 	/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
756 	 * bit dynamic, it's hard to define a reasonable fixed total timeout to
757 	 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
758 	 * polling times, so we just use for loop with udelay here.
759 	 */
760 	for (i = 0; i < 30; i++) {
761 		cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
762 		if (cur_rp == ring->r.wp)
763 			return;
764 
765 		udelay(1);
766 	}
767 
768 	if (!drop)
769 		rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
770 }
771 
772 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
773 				   bool drop)
774 {
775 	u8 q;
776 
777 	for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
778 		/* It may be not necessary to flush BCN and H2C tx queues. */
779 		if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C)
780 			continue;
781 
782 		if (pci_queues & BIT(q))
783 			__pci_flush_queue(rtwdev, q, drop);
784 	}
785 }
786 
787 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
788 {
789 	u32 pci_queues = 0;
790 	u8 i;
791 
792 	/* If all of the hardware queues are requested to flush,
793 	 * flush all of the pci queues.
794 	 */
795 	if (queues == BIT(rtwdev->hw->queues) - 1) {
796 		pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
797 	} else {
798 		for (i = 0; i < rtwdev->hw->queues; i++)
799 			if (queues & BIT(i))
800 				pci_queues |= BIT(ac_to_hwq[i]);
801 	}
802 
803 	__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
804 }
805 
806 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, u8 queue)
807 {
808 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
809 	struct rtw_pci_tx_ring *ring;
810 	u32 bd_idx;
811 
812 	ring = &rtwpci->tx_rings[queue];
813 	bd_idx = rtw_pci_tx_queue_idx_addr[queue];
814 
815 	spin_lock_bh(&rtwpci->irq_lock);
816 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
817 		rtw_pci_deep_ps_leave(rtwdev);
818 	rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
819 	spin_unlock_bh(&rtwpci->irq_lock);
820 }
821 
822 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
823 {
824 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
825 	u8 queue;
826 
827 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
828 		if (test_and_clear_bit(queue, rtwpci->tx_queued))
829 			rtw_pci_tx_kick_off_queue(rtwdev, queue);
830 }
831 
832 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
833 				 struct rtw_tx_pkt_info *pkt_info,
834 				 struct sk_buff *skb, u8 queue)
835 {
836 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
837 	const struct rtw_chip_info *chip = rtwdev->chip;
838 	struct rtw_pci_tx_ring *ring;
839 	struct rtw_pci_tx_data *tx_data;
840 	dma_addr_t dma;
841 	u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
842 	u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
843 	u32 size;
844 	u32 psb_len;
845 	u8 *pkt_desc;
846 	struct rtw_pci_tx_buffer_desc *buf_desc;
847 
848 	ring = &rtwpci->tx_rings[queue];
849 
850 	size = skb->len;
851 
852 	if (queue == RTW_TX_QUEUE_BCN)
853 		rtw_pci_release_rsvd_page(rtwpci, ring);
854 	else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
855 		return -ENOSPC;
856 
857 	pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
858 	memset(pkt_desc, 0, tx_pkt_desc_sz);
859 	pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
860 	rtw_tx_fill_tx_desc(pkt_info, skb);
861 	dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
862 			     DMA_TO_DEVICE);
863 	if (dma_mapping_error(&rtwpci->pdev->dev, dma))
864 		return -EBUSY;
865 
866 	/* after this we got dma mapped, there is no way back */
867 	buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
868 	memset(buf_desc, 0, tx_buf_desc_sz);
869 	psb_len = (skb->len - 1) / 128 + 1;
870 	if (queue == RTW_TX_QUEUE_BCN)
871 		psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
872 
873 	buf_desc[0].psb_len = cpu_to_le16(psb_len);
874 	buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
875 	buf_desc[0].dma = cpu_to_le32(dma);
876 	buf_desc[1].buf_size = cpu_to_le16(size);
877 	buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
878 
879 	tx_data = rtw_pci_get_tx_data(skb);
880 	tx_data->dma = dma;
881 	tx_data->sn = pkt_info->sn;
882 
883 	spin_lock_bh(&rtwpci->irq_lock);
884 
885 	skb_queue_tail(&ring->queue, skb);
886 
887 	if (queue == RTW_TX_QUEUE_BCN)
888 		goto out_unlock;
889 
890 	/* update write-index, and kick it off later */
891 	set_bit(queue, rtwpci->tx_queued);
892 	if (++ring->r.wp >= ring->r.len)
893 		ring->r.wp = 0;
894 
895 out_unlock:
896 	spin_unlock_bh(&rtwpci->irq_lock);
897 
898 	return 0;
899 }
900 
901 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
902 					u32 size)
903 {
904 	struct sk_buff *skb;
905 	struct rtw_tx_pkt_info pkt_info = {0};
906 	u8 reg_bcn_work;
907 	int ret;
908 
909 	skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
910 	if (!skb)
911 		return -ENOMEM;
912 
913 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
914 	if (ret) {
915 		rtw_err(rtwdev, "failed to write rsvd page data\n");
916 		return ret;
917 	}
918 
919 	/* reserved pages go through beacon queue */
920 	reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
921 	reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
922 	rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
923 
924 	return 0;
925 }
926 
927 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
928 {
929 	struct sk_buff *skb;
930 	struct rtw_tx_pkt_info pkt_info = {0};
931 	int ret;
932 
933 	skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
934 	if (!skb)
935 		return -ENOMEM;
936 
937 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
938 	if (ret) {
939 		rtw_err(rtwdev, "failed to write h2c data\n");
940 		return ret;
941 	}
942 
943 	rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
944 
945 	return 0;
946 }
947 
948 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
949 			    struct rtw_tx_pkt_info *pkt_info,
950 			    struct sk_buff *skb)
951 {
952 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
953 	struct rtw_pci_tx_ring *ring;
954 	u8 queue = rtw_hw_queue_mapping(skb);
955 	int ret;
956 
957 	ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
958 	if (ret)
959 		return ret;
960 
961 	ring = &rtwpci->tx_rings[queue];
962 	spin_lock_bh(&rtwpci->irq_lock);
963 	if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
964 		ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
965 		ring->queue_stopped = true;
966 	}
967 	spin_unlock_bh(&rtwpci->irq_lock);
968 
969 	return 0;
970 }
971 
972 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
973 			   u8 hw_queue)
974 {
975 	struct ieee80211_hw *hw = rtwdev->hw;
976 	struct ieee80211_tx_info *info;
977 	struct rtw_pci_tx_ring *ring;
978 	struct rtw_pci_tx_data *tx_data;
979 	struct sk_buff *skb;
980 	u32 count;
981 	u32 bd_idx_addr;
982 	u32 bd_idx, cur_rp, rp_idx;
983 	u16 q_map;
984 
985 	ring = &rtwpci->tx_rings[hw_queue];
986 
987 	bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
988 	bd_idx = rtw_read32(rtwdev, bd_idx_addr);
989 	cur_rp = bd_idx >> 16;
990 	cur_rp &= TRX_BD_IDX_MASK;
991 	rp_idx = ring->r.rp;
992 	if (cur_rp >= ring->r.rp)
993 		count = cur_rp - ring->r.rp;
994 	else
995 		count = ring->r.len - (ring->r.rp - cur_rp);
996 
997 	while (count--) {
998 		skb = skb_dequeue(&ring->queue);
999 		if (!skb) {
1000 			rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
1001 				count, hw_queue, bd_idx, ring->r.rp, cur_rp);
1002 			break;
1003 		}
1004 		tx_data = rtw_pci_get_tx_data(skb);
1005 		dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
1006 				 DMA_TO_DEVICE);
1007 
1008 		/* just free command packets from host to card */
1009 		if (hw_queue == RTW_TX_QUEUE_H2C) {
1010 			dev_kfree_skb_irq(skb);
1011 			continue;
1012 		}
1013 
1014 		if (ring->queue_stopped &&
1015 		    avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
1016 			q_map = skb_get_queue_mapping(skb);
1017 			ieee80211_wake_queue(hw, q_map);
1018 			ring->queue_stopped = false;
1019 		}
1020 
1021 		if (++rp_idx >= ring->r.len)
1022 			rp_idx = 0;
1023 
1024 		skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
1025 
1026 		info = IEEE80211_SKB_CB(skb);
1027 
1028 		/* enqueue to wait for tx report */
1029 		if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
1030 			rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
1031 			continue;
1032 		}
1033 
1034 		/* always ACK for others, then they won't be marked as drop */
1035 		if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1036 			info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1037 		else
1038 			info->flags |= IEEE80211_TX_STAT_ACK;
1039 
1040 		ieee80211_tx_info_clear_status(info);
1041 		ieee80211_tx_status_irqsafe(hw, skb);
1042 	}
1043 
1044 	ring->r.rp = cur_rp;
1045 }
1046 
1047 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1048 {
1049 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1050 	struct napi_struct *napi = &rtwpci->napi;
1051 
1052 	napi_schedule(napi);
1053 }
1054 
1055 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1056 				     struct rtw_pci *rtwpci)
1057 {
1058 	struct rtw_pci_rx_ring *ring;
1059 	int count = 0;
1060 	u32 tmp, cur_wp;
1061 
1062 	ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1063 	tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1064 	cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1065 	if (cur_wp >= ring->r.wp)
1066 		count = cur_wp - ring->r.wp;
1067 	else
1068 		count = ring->r.len - (ring->r.wp - cur_wp);
1069 
1070 	return count;
1071 }
1072 
1073 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1074 			   u8 hw_queue, u32 limit)
1075 {
1076 	const struct rtw_chip_info *chip = rtwdev->chip;
1077 	struct napi_struct *napi = &rtwpci->napi;
1078 	struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1079 	struct rtw_rx_pkt_stat pkt_stat;
1080 	struct ieee80211_rx_status rx_status;
1081 	struct sk_buff *skb, *new;
1082 	u32 cur_rp = ring->r.rp;
1083 	u32 count, rx_done = 0;
1084 	u32 pkt_offset;
1085 	u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1086 	u32 buf_desc_sz = chip->rx_buf_desc_sz;
1087 	u32 new_len;
1088 	u8 *rx_desc;
1089 	dma_addr_t dma;
1090 
1091 	count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1092 	count = min(count, limit);
1093 
1094 	while (count--) {
1095 		rtw_pci_dma_check(rtwdev, ring, cur_rp);
1096 		skb = ring->buf[cur_rp];
1097 		dma = *((dma_addr_t *)skb->cb);
1098 		dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1099 					DMA_FROM_DEVICE);
1100 		rx_desc = skb->data;
1101 		chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1102 
1103 		/* offset from rx_desc to payload */
1104 		pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1105 			     pkt_stat.shift;
1106 
1107 		/* allocate a new skb for this frame,
1108 		 * discard the frame if none available
1109 		 */
1110 		new_len = pkt_stat.pkt_len + pkt_offset;
1111 		new = dev_alloc_skb(new_len);
1112 		if (WARN_ONCE(!new, "rx routine starvation\n"))
1113 			goto next_rp;
1114 
1115 		/* put the DMA data including rx_desc from phy to new skb */
1116 		skb_put_data(new, skb->data, new_len);
1117 
1118 		if (pkt_stat.is_c2h) {
1119 			rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1120 		} else {
1121 			/* remove rx_desc */
1122 			skb_pull(new, pkt_offset);
1123 
1124 			rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1125 			memcpy(new->cb, &rx_status, sizeof(rx_status));
1126 			ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1127 			rx_done++;
1128 		}
1129 
1130 next_rp:
1131 		/* new skb delivered to mac80211, re-enable original skb DMA */
1132 		rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1133 					    buf_desc_sz);
1134 
1135 		/* host read next element in ring */
1136 		if (++cur_rp >= ring->r.len)
1137 			cur_rp = 0;
1138 	}
1139 
1140 	ring->r.rp = cur_rp;
1141 	/* 'rp', the last position we have read, is seen as previous posistion
1142 	 * of 'wp' that is used to calculate 'count' next time.
1143 	 */
1144 	ring->r.wp = cur_rp;
1145 	rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1146 
1147 	return rx_done;
1148 }
1149 
1150 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1151 				   struct rtw_pci *rtwpci, u32 *irq_status)
1152 {
1153 	unsigned long flags;
1154 
1155 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1156 
1157 	irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1158 	irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1159 	if (rtw_chip_wcpu_11ac(rtwdev))
1160 		irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1161 	else
1162 		irq_status[3] = 0;
1163 	irq_status[0] &= rtwpci->irq_mask[0];
1164 	irq_status[1] &= rtwpci->irq_mask[1];
1165 	irq_status[3] &= rtwpci->irq_mask[3];
1166 	rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1167 	rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1168 	if (rtw_chip_wcpu_11ac(rtwdev))
1169 		rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1170 
1171 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1172 }
1173 
1174 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1175 {
1176 	struct rtw_dev *rtwdev = dev;
1177 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1178 
1179 	/* disable RTW PCI interrupt to avoid more interrupts before the end of
1180 	 * thread function
1181 	 *
1182 	 * disable HIMR here to also avoid new HISR flag being raised before
1183 	 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1184 	 * are cleared, the edge-triggered interrupt will not be generated when
1185 	 * a new HISR flag is set.
1186 	 */
1187 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1188 
1189 	return IRQ_WAKE_THREAD;
1190 }
1191 
1192 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1193 {
1194 	struct rtw_dev *rtwdev = dev;
1195 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1196 	u32 irq_status[4];
1197 	bool rx = false;
1198 
1199 	spin_lock_bh(&rtwpci->irq_lock);
1200 	rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1201 
1202 	if (irq_status[0] & IMR_MGNTDOK)
1203 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1204 	if (irq_status[0] & IMR_HIGHDOK)
1205 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1206 	if (irq_status[0] & IMR_BEDOK)
1207 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1208 	if (irq_status[0] & IMR_BKDOK)
1209 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1210 	if (irq_status[0] & IMR_VODOK)
1211 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1212 	if (irq_status[0] & IMR_VIDOK)
1213 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1214 	if (irq_status[3] & IMR_H2CDOK)
1215 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1216 	if (irq_status[0] & IMR_ROK) {
1217 		rtw_pci_rx_isr(rtwdev);
1218 		rx = true;
1219 	}
1220 	if (unlikely(irq_status[0] & IMR_C2HCMD))
1221 		rtw_fw_c2h_cmd_isr(rtwdev);
1222 
1223 	/* all of the jobs for this interrupt have been done */
1224 	if (rtwpci->running)
1225 		rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1226 	spin_unlock_bh(&rtwpci->irq_lock);
1227 
1228 	return IRQ_HANDLED;
1229 }
1230 
1231 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1232 			      struct pci_dev *pdev)
1233 {
1234 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1235 	unsigned long len;
1236 	u8 bar_id = 2;
1237 	int ret;
1238 
1239 	ret = pci_request_regions(pdev, KBUILD_MODNAME);
1240 	if (ret) {
1241 		rtw_err(rtwdev, "failed to request pci regions\n");
1242 		return ret;
1243 	}
1244 
1245 	len = pci_resource_len(pdev, bar_id);
1246 	rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1247 	if (!rtwpci->mmap) {
1248 		pci_release_regions(pdev);
1249 		rtw_err(rtwdev, "failed to map pci memory\n");
1250 		return -ENOMEM;
1251 	}
1252 
1253 	return 0;
1254 }
1255 
1256 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1257 				 struct pci_dev *pdev)
1258 {
1259 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1260 
1261 	if (rtwpci->mmap) {
1262 		pci_iounmap(pdev, rtwpci->mmap);
1263 		pci_release_regions(pdev);
1264 	}
1265 }
1266 
1267 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1268 {
1269 	u16 write_addr;
1270 	u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1271 	u8 flag;
1272 	u8 cnt;
1273 
1274 	write_addr = addr & BITS_DBI_ADDR_MASK;
1275 	write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1276 	rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1277 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1278 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1279 
1280 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1281 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1282 		if (flag == 0)
1283 			return;
1284 
1285 		udelay(10);
1286 	}
1287 
1288 	WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1289 }
1290 
1291 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1292 {
1293 	u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1294 	u8 flag;
1295 	u8 cnt;
1296 
1297 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1298 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1299 
1300 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1301 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1302 		if (flag == 0) {
1303 			read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1304 			*value = rtw_read8(rtwdev, read_addr);
1305 			return 0;
1306 		}
1307 
1308 		udelay(10);
1309 	}
1310 
1311 	WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1312 	return -EIO;
1313 }
1314 
1315 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1316 {
1317 	u8 page;
1318 	u8 wflag;
1319 	u8 cnt;
1320 
1321 	rtw_write16(rtwdev, REG_MDIO_V1, data);
1322 
1323 	page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1324 	page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1325 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1326 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1327 	rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1328 
1329 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1330 		wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1331 					BIT_MDIO_WFLAG_V1);
1332 		if (wflag == 0)
1333 			return;
1334 
1335 		udelay(10);
1336 	}
1337 
1338 	WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1339 }
1340 
1341 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1342 {
1343 	u8 value;
1344 	int ret;
1345 
1346 	if (rtw_pci_disable_aspm)
1347 		return;
1348 
1349 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1350 	if (ret) {
1351 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1352 		return;
1353 	}
1354 
1355 	if (enable)
1356 		value |= BIT_CLKREQ_SW_EN;
1357 	else
1358 		value &= ~BIT_CLKREQ_SW_EN;
1359 
1360 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1361 }
1362 
1363 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
1364 {
1365 	u8 value;
1366 	int ret;
1367 
1368 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1369 	if (ret) {
1370 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1371 		return;
1372 	}
1373 
1374 	if (enable)
1375 		value &= ~BIT_CLKREQ_N_PAD;
1376 	else
1377 		value |= BIT_CLKREQ_N_PAD;
1378 
1379 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1380 }
1381 
1382 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1383 {
1384 	u8 value;
1385 	int ret;
1386 
1387 	if (rtw_pci_disable_aspm)
1388 		return;
1389 
1390 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1391 	if (ret) {
1392 		rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1393 		return;
1394 	}
1395 
1396 	if (enable)
1397 		value |= BIT_L1_SW_EN;
1398 	else
1399 		value &= ~BIT_L1_SW_EN;
1400 
1401 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1402 }
1403 
1404 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1405 {
1406 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1407 
1408 	/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1409 	 * only be enabled when host supports it.
1410 	 *
1411 	 * And ASPM mechanism should be enabled when driver/firmware enters
1412 	 * power save mode, without having heavy traffic. Because we've
1413 	 * experienced some inter-operability issues that the link tends
1414 	 * to enter L1 state on the fly even when driver is having high
1415 	 * throughput. This is probably because the ASPM behavior slightly
1416 	 * varies from different SOC.
1417 	 */
1418 	if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
1419 		return;
1420 
1421 	if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
1422 	    (!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
1423 		rtw_pci_aspm_set(rtwdev, enter);
1424 }
1425 
1426 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1427 {
1428 	const struct rtw_chip_info *chip = rtwdev->chip;
1429 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1430 	struct pci_dev *pdev = rtwpci->pdev;
1431 	u16 link_ctrl;
1432 	int ret;
1433 
1434 	/* RTL8822CE has enabled REFCLK auto calibration, it does not need
1435 	 * to add clock delay to cover the REFCLK timing gap.
1436 	 */
1437 	if (chip->id == RTW_CHIP_TYPE_8822C)
1438 		rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1439 
1440 	/* Though there is standard PCIE configuration space to set the
1441 	 * link control register, but by Realtek's design, driver should
1442 	 * check if host supports CLKREQ/ASPM to enable the HW module.
1443 	 *
1444 	 * These functions are implemented by two HW modules associated,
1445 	 * one is responsible to access PCIE configuration space to
1446 	 * follow the host settings, and another is in charge of doing
1447 	 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1448 	 * the host does not support it, and due to some reasons or wrong
1449 	 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1450 	 * loss if HW misbehaves on the link.
1451 	 *
1452 	 * Hence it's designed that driver should first check the PCIE
1453 	 * configuration space is sync'ed and enabled, then driver can turn
1454 	 * on the other module that is actually working on the mechanism.
1455 	 */
1456 	ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1457 	if (ret) {
1458 		rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1459 		return;
1460 	}
1461 
1462 	if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1463 		rtw_pci_clkreq_set(rtwdev, true);
1464 
1465 	rtwpci->link_ctrl = link_ctrl;
1466 }
1467 
1468 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1469 {
1470 	const struct rtw_chip_info *chip = rtwdev->chip;
1471 
1472 	switch (chip->id) {
1473 	case RTW_CHIP_TYPE_8822C:
1474 		if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1475 			rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1476 					 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1477 		break;
1478 	default:
1479 		break;
1480 	}
1481 }
1482 
1483 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1484 {
1485 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1486 	const struct rtw_chip_info *chip = rtwdev->chip;
1487 	struct pci_dev *pdev = rtwpci->pdev;
1488 	const struct rtw_intf_phy_para *para;
1489 	u16 cut;
1490 	u16 value;
1491 	u16 offset;
1492 	int i;
1493 	int ret;
1494 
1495 	cut = BIT(0) << rtwdev->hal.cut_version;
1496 
1497 	for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1498 		para = &chip->intf_table->gen1_para[i];
1499 		if (!(para->cut_mask & cut))
1500 			continue;
1501 		if (para->offset == 0xffff)
1502 			break;
1503 		offset = para->offset;
1504 		value = para->value;
1505 		if (para->ip_sel == RTW_IP_SEL_PHY)
1506 			rtw_mdio_write(rtwdev, offset, value, true);
1507 		else
1508 			rtw_dbi_write8(rtwdev, offset, value);
1509 	}
1510 
1511 	for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1512 		para = &chip->intf_table->gen2_para[i];
1513 		if (!(para->cut_mask & cut))
1514 			continue;
1515 		if (para->offset == 0xffff)
1516 			break;
1517 		offset = para->offset;
1518 		value = para->value;
1519 		if (para->ip_sel == RTW_IP_SEL_PHY)
1520 			rtw_mdio_write(rtwdev, offset, value, false);
1521 		else
1522 			rtw_dbi_write8(rtwdev, offset, value);
1523 	}
1524 
1525 	rtw_pci_link_cfg(rtwdev);
1526 
1527 	/* Disable 8821ce completion timeout by default */
1528 	if (chip->id == RTW_CHIP_TYPE_8821C) {
1529 		ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
1530 					       PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
1531 		if (ret)
1532 			rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
1533 				ret);
1534 	}
1535 }
1536 
1537 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1538 {
1539 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1540 	struct rtw_dev *rtwdev = hw->priv;
1541 	const struct rtw_chip_info *chip = rtwdev->chip;
1542 	struct rtw_efuse *efuse = &rtwdev->efuse;
1543 
1544 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1545 		rtw_pci_clkreq_pad_low(rtwdev, true);
1546 	return 0;
1547 }
1548 
1549 static int __maybe_unused rtw_pci_resume(struct device *dev)
1550 {
1551 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1552 	struct rtw_dev *rtwdev = hw->priv;
1553 	const struct rtw_chip_info *chip = rtwdev->chip;
1554 	struct rtw_efuse *efuse = &rtwdev->efuse;
1555 
1556 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1557 		rtw_pci_clkreq_pad_low(rtwdev, false);
1558 	return 0;
1559 }
1560 
1561 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1562 EXPORT_SYMBOL(rtw_pm_ops);
1563 
1564 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1565 {
1566 	int ret;
1567 
1568 	ret = pci_enable_device(pdev);
1569 	if (ret) {
1570 		rtw_err(rtwdev, "failed to enable pci device\n");
1571 		return ret;
1572 	}
1573 
1574 	pci_set_master(pdev);
1575 	pci_set_drvdata(pdev, rtwdev->hw);
1576 	SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1577 
1578 	return 0;
1579 }
1580 
1581 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1582 {
1583 	pci_clear_master(pdev);
1584 	pci_disable_device(pdev);
1585 }
1586 
1587 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1588 {
1589 	struct rtw_pci *rtwpci;
1590 	int ret;
1591 
1592 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1593 	rtwpci->pdev = pdev;
1594 
1595 	/* after this driver can access to hw registers */
1596 	ret = rtw_pci_io_mapping(rtwdev, pdev);
1597 	if (ret) {
1598 		rtw_err(rtwdev, "failed to request pci io region\n");
1599 		goto err_out;
1600 	}
1601 
1602 	ret = rtw_pci_init(rtwdev);
1603 	if (ret) {
1604 		rtw_err(rtwdev, "failed to allocate pci resources\n");
1605 		goto err_io_unmap;
1606 	}
1607 
1608 	return 0;
1609 
1610 err_io_unmap:
1611 	rtw_pci_io_unmapping(rtwdev, pdev);
1612 
1613 err_out:
1614 	return ret;
1615 }
1616 
1617 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1618 {
1619 	rtw_pci_deinit(rtwdev);
1620 	rtw_pci_io_unmapping(rtwdev, pdev);
1621 }
1622 
1623 static struct rtw_hci_ops rtw_pci_ops = {
1624 	.tx_write = rtw_pci_tx_write,
1625 	.tx_kick_off = rtw_pci_tx_kick_off,
1626 	.flush_queues = rtw_pci_flush_queues,
1627 	.setup = rtw_pci_setup,
1628 	.start = rtw_pci_start,
1629 	.stop = rtw_pci_stop,
1630 	.deep_ps = rtw_pci_deep_ps,
1631 	.link_ps = rtw_pci_link_ps,
1632 	.interface_cfg = rtw_pci_interface_cfg,
1633 
1634 	.read8 = rtw_pci_read8,
1635 	.read16 = rtw_pci_read16,
1636 	.read32 = rtw_pci_read32,
1637 	.write8 = rtw_pci_write8,
1638 	.write16 = rtw_pci_write16,
1639 	.write32 = rtw_pci_write32,
1640 	.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1641 	.write_data_h2c = rtw_pci_write_data_h2c,
1642 };
1643 
1644 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1645 {
1646 	unsigned int flags = PCI_IRQ_LEGACY;
1647 	int ret;
1648 
1649 	if (!rtw_disable_msi)
1650 		flags |= PCI_IRQ_MSI;
1651 
1652 	ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1653 	if (ret < 0) {
1654 		rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1655 		return ret;
1656 	}
1657 
1658 	ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1659 					rtw_pci_interrupt_handler,
1660 					rtw_pci_interrupt_threadfn,
1661 					IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1662 	if (ret) {
1663 		rtw_err(rtwdev, "failed to request irq %d\n", ret);
1664 		pci_free_irq_vectors(pdev);
1665 	}
1666 
1667 	return ret;
1668 }
1669 
1670 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1671 {
1672 	devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1673 	pci_free_irq_vectors(pdev);
1674 }
1675 
1676 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1677 {
1678 	struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1679 	struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1680 					      priv);
1681 	int work_done = 0;
1682 
1683 	if (rtwpci->rx_no_aspm)
1684 		rtw_pci_link_ps(rtwdev, false);
1685 
1686 	while (work_done < budget) {
1687 		u32 work_done_once;
1688 
1689 		work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1690 						 budget - work_done);
1691 		if (work_done_once == 0)
1692 			break;
1693 		work_done += work_done_once;
1694 	}
1695 	if (work_done < budget) {
1696 		napi_complete_done(napi, work_done);
1697 		spin_lock_bh(&rtwpci->irq_lock);
1698 		if (rtwpci->running)
1699 			rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1700 		spin_unlock_bh(&rtwpci->irq_lock);
1701 		/* When ISR happens during polling and before napi_complete
1702 		 * while no further data is received. Data on the dma_ring will
1703 		 * not be processed immediately. Check whether dma ring is
1704 		 * empty and perform napi_schedule accordingly.
1705 		 */
1706 		if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1707 			napi_schedule(napi);
1708 	}
1709 	if (rtwpci->rx_no_aspm)
1710 		rtw_pci_link_ps(rtwdev, true);
1711 
1712 	return work_done;
1713 }
1714 
1715 static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
1716 {
1717 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1718 
1719 	init_dummy_netdev(&rtwpci->netdev);
1720 	netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
1721 }
1722 
1723 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1724 {
1725 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1726 
1727 	rtw_pci_napi_stop(rtwdev);
1728 	netif_napi_del(&rtwpci->napi);
1729 }
1730 
1731 int rtw_pci_probe(struct pci_dev *pdev,
1732 		  const struct pci_device_id *id)
1733 {
1734 	struct pci_dev *bridge = pci_upstream_bridge(pdev);
1735 	struct ieee80211_hw *hw;
1736 	struct rtw_dev *rtwdev;
1737 	struct rtw_pci *rtwpci;
1738 	int drv_data_size;
1739 	int ret;
1740 
1741 	drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1742 	hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1743 	if (!hw) {
1744 		dev_err(&pdev->dev, "failed to allocate hw\n");
1745 		return -ENOMEM;
1746 	}
1747 
1748 	rtwdev = hw->priv;
1749 	rtwdev->hw = hw;
1750 	rtwdev->dev = &pdev->dev;
1751 	rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1752 	rtwdev->hci.ops = &rtw_pci_ops;
1753 	rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1754 
1755 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1756 	atomic_set(&rtwpci->link_usage, 1);
1757 
1758 	ret = rtw_core_init(rtwdev);
1759 	if (ret)
1760 		goto err_release_hw;
1761 
1762 	rtw_dbg(rtwdev, RTW_DBG_PCI,
1763 		"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1764 		pdev->vendor, pdev->device, pdev->revision);
1765 
1766 	ret = rtw_pci_claim(rtwdev, pdev);
1767 	if (ret) {
1768 		rtw_err(rtwdev, "failed to claim pci device\n");
1769 		goto err_deinit_core;
1770 	}
1771 
1772 	ret = rtw_pci_setup_resource(rtwdev, pdev);
1773 	if (ret) {
1774 		rtw_err(rtwdev, "failed to setup pci resources\n");
1775 		goto err_pci_declaim;
1776 	}
1777 
1778 	rtw_pci_napi_init(rtwdev);
1779 
1780 	ret = rtw_chip_info_setup(rtwdev);
1781 	if (ret) {
1782 		rtw_err(rtwdev, "failed to setup chip information\n");
1783 		goto err_destroy_pci;
1784 	}
1785 
1786 	/* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
1787 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
1788 		rtwpci->rx_no_aspm = true;
1789 
1790 	rtw_pci_phy_cfg(rtwdev);
1791 
1792 	ret = rtw_register_hw(rtwdev, hw);
1793 	if (ret) {
1794 		rtw_err(rtwdev, "failed to register hw\n");
1795 		goto err_destroy_pci;
1796 	}
1797 
1798 	ret = rtw_pci_request_irq(rtwdev, pdev);
1799 	if (ret) {
1800 		ieee80211_unregister_hw(hw);
1801 		goto err_destroy_pci;
1802 	}
1803 
1804 	return 0;
1805 
1806 err_destroy_pci:
1807 	rtw_pci_napi_deinit(rtwdev);
1808 	rtw_pci_destroy(rtwdev, pdev);
1809 
1810 err_pci_declaim:
1811 	rtw_pci_declaim(rtwdev, pdev);
1812 
1813 err_deinit_core:
1814 	rtw_core_deinit(rtwdev);
1815 
1816 err_release_hw:
1817 	ieee80211_free_hw(hw);
1818 
1819 	return ret;
1820 }
1821 EXPORT_SYMBOL(rtw_pci_probe);
1822 
1823 void rtw_pci_remove(struct pci_dev *pdev)
1824 {
1825 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1826 	struct rtw_dev *rtwdev;
1827 	struct rtw_pci *rtwpci;
1828 
1829 	if (!hw)
1830 		return;
1831 
1832 	rtwdev = hw->priv;
1833 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1834 
1835 	rtw_unregister_hw(rtwdev, hw);
1836 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1837 	rtw_pci_napi_deinit(rtwdev);
1838 	rtw_pci_destroy(rtwdev, pdev);
1839 	rtw_pci_declaim(rtwdev, pdev);
1840 	rtw_pci_free_irq(rtwdev, pdev);
1841 	rtw_core_deinit(rtwdev);
1842 	ieee80211_free_hw(hw);
1843 }
1844 EXPORT_SYMBOL(rtw_pci_remove);
1845 
1846 void rtw_pci_shutdown(struct pci_dev *pdev)
1847 {
1848 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1849 	struct rtw_dev *rtwdev;
1850 	const struct rtw_chip_info *chip;
1851 
1852 	if (!hw)
1853 		return;
1854 
1855 	rtwdev = hw->priv;
1856 	chip = rtwdev->chip;
1857 
1858 	if (chip->ops->shutdown)
1859 		chip->ops->shutdown(rtwdev);
1860 
1861 	pci_set_power_state(pdev, PCI_D3hot);
1862 }
1863 EXPORT_SYMBOL(rtw_pci_shutdown);
1864 
1865 MODULE_AUTHOR("Realtek Corporation");
1866 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
1867 MODULE_LICENSE("Dual BSD/GPL");
1868