xref: /linux/drivers/net/wireless/realtek/rtw88/main.c (revision f2745dc0ba3dadd8fa2b2c33f48253d78e133a12)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/devcoredump.h>
6 
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 
22 bool rtw_disable_lps_deep_mode;
23 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
24 bool rtw_bf_support = true;
25 unsigned int rtw_debug_mask;
26 EXPORT_SYMBOL(rtw_debug_mask);
27 /* EDCCA is enabled during normal behavior. For debugging purpose in
28  * a noisy environment, it can be disabled via edcca debugfs. Because
29  * all rtw88 devices will probably be affected if environment is noisy,
30  * rtw_edcca_enabled is just declared by driver instead of by device.
31  * So, turning it off will take effect for all rtw88 devices before
32  * there is a tough reason to maintain rtw_edcca_enabled by device.
33  */
34 bool rtw_edcca_enabled = true;
35 
36 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
37 module_param_named(support_bf, rtw_bf_support, bool, 0644);
38 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
39 
40 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
41 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
42 MODULE_PARM_DESC(debug_mask, "Debugging mask");
43 
44 static struct ieee80211_channel rtw_channeltable_2g[] = {
45 	{.center_freq = 2412, .hw_value = 1,},
46 	{.center_freq = 2417, .hw_value = 2,},
47 	{.center_freq = 2422, .hw_value = 3,},
48 	{.center_freq = 2427, .hw_value = 4,},
49 	{.center_freq = 2432, .hw_value = 5,},
50 	{.center_freq = 2437, .hw_value = 6,},
51 	{.center_freq = 2442, .hw_value = 7,},
52 	{.center_freq = 2447, .hw_value = 8,},
53 	{.center_freq = 2452, .hw_value = 9,},
54 	{.center_freq = 2457, .hw_value = 10,},
55 	{.center_freq = 2462, .hw_value = 11,},
56 	{.center_freq = 2467, .hw_value = 12,},
57 	{.center_freq = 2472, .hw_value = 13,},
58 	{.center_freq = 2484, .hw_value = 14,},
59 };
60 
61 static struct ieee80211_channel rtw_channeltable_5g[] = {
62 	{.center_freq = 5180, .hw_value = 36,},
63 	{.center_freq = 5200, .hw_value = 40,},
64 	{.center_freq = 5220, .hw_value = 44,},
65 	{.center_freq = 5240, .hw_value = 48,},
66 	{.center_freq = 5260, .hw_value = 52,},
67 	{.center_freq = 5280, .hw_value = 56,},
68 	{.center_freq = 5300, .hw_value = 60,},
69 	{.center_freq = 5320, .hw_value = 64,},
70 	{.center_freq = 5500, .hw_value = 100,},
71 	{.center_freq = 5520, .hw_value = 104,},
72 	{.center_freq = 5540, .hw_value = 108,},
73 	{.center_freq = 5560, .hw_value = 112,},
74 	{.center_freq = 5580, .hw_value = 116,},
75 	{.center_freq = 5600, .hw_value = 120,},
76 	{.center_freq = 5620, .hw_value = 124,},
77 	{.center_freq = 5640, .hw_value = 128,},
78 	{.center_freq = 5660, .hw_value = 132,},
79 	{.center_freq = 5680, .hw_value = 136,},
80 	{.center_freq = 5700, .hw_value = 140,},
81 	{.center_freq = 5720, .hw_value = 144,},
82 	{.center_freq = 5745, .hw_value = 149,},
83 	{.center_freq = 5765, .hw_value = 153,},
84 	{.center_freq = 5785, .hw_value = 157,},
85 	{.center_freq = 5805, .hw_value = 161,},
86 	{.center_freq = 5825, .hw_value = 165,
87 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
88 };
89 
90 static struct ieee80211_rate rtw_ratetable[] = {
91 	{.bitrate = 10, .hw_value = 0x00,},
92 	{.bitrate = 20, .hw_value = 0x01,},
93 	{.bitrate = 55, .hw_value = 0x02,},
94 	{.bitrate = 110, .hw_value = 0x03,},
95 	{.bitrate = 60, .hw_value = 0x04,},
96 	{.bitrate = 90, .hw_value = 0x05,},
97 	{.bitrate = 120, .hw_value = 0x06,},
98 	{.bitrate = 180, .hw_value = 0x07,},
99 	{.bitrate = 240, .hw_value = 0x08,},
100 	{.bitrate = 360, .hw_value = 0x09,},
101 	{.bitrate = 480, .hw_value = 0x0a,},
102 	{.bitrate = 540, .hw_value = 0x0b,},
103 };
104 
105 u16 rtw_desc_to_bitrate(u8 desc_rate)
106 {
107 	struct ieee80211_rate rate;
108 
109 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
110 		return 0;
111 
112 	rate = rtw_ratetable[desc_rate];
113 
114 	return rate.bitrate;
115 }
116 
117 static struct ieee80211_supported_band rtw_band_2ghz = {
118 	.band = NL80211_BAND_2GHZ,
119 
120 	.channels = rtw_channeltable_2g,
121 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
122 
123 	.bitrates = rtw_ratetable,
124 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
125 
126 	.ht_cap = {0},
127 	.vht_cap = {0},
128 };
129 
130 static struct ieee80211_supported_band rtw_band_5ghz = {
131 	.band = NL80211_BAND_5GHZ,
132 
133 	.channels = rtw_channeltable_5g,
134 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
135 
136 	/* 5G has no CCK rates */
137 	.bitrates = rtw_ratetable + 4,
138 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
139 
140 	.ht_cap = {0},
141 	.vht_cap = {0},
142 };
143 
144 struct rtw_watch_dog_iter_data {
145 	struct rtw_dev *rtwdev;
146 	struct rtw_vif *rtwvif;
147 };
148 
149 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
150 {
151 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
152 	u8 fix_rate_enable = 0;
153 	u8 new_csi_rate_idx;
154 
155 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
156 	    rtwvif->bfee.role != RTW_BFEE_MU)
157 		return;
158 
159 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
160 			      bf_info->cur_csi_rpt_rate,
161 			      fix_rate_enable, &new_csi_rate_idx);
162 
163 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
164 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
165 }
166 
167 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
168 				   struct ieee80211_vif *vif)
169 {
170 	struct rtw_watch_dog_iter_data *iter_data = data;
171 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
172 
173 	if (vif->type == NL80211_IFTYPE_STATION)
174 		if (vif->bss_conf.assoc)
175 			iter_data->rtwvif = rtwvif;
176 
177 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
178 
179 	rtwvif->stats.tx_unicast = 0;
180 	rtwvif->stats.rx_unicast = 0;
181 	rtwvif->stats.tx_cnt = 0;
182 	rtwvif->stats.rx_cnt = 0;
183 }
184 
185 /* process TX/RX statistics periodically for hardware,
186  * the information helps hardware to enhance performance
187  */
188 static void rtw_watch_dog_work(struct work_struct *work)
189 {
190 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
191 					      watch_dog_work.work);
192 	struct rtw_traffic_stats *stats = &rtwdev->stats;
193 	struct rtw_watch_dog_iter_data data = {};
194 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
195 	bool ps_active;
196 
197 	mutex_lock(&rtwdev->mutex);
198 
199 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
200 		goto unlock;
201 
202 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
203 				     RTW_WATCH_DOG_DELAY_TIME);
204 
205 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
206 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
207 	else
208 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
209 
210 	rtw_coex_wl_status_check(rtwdev);
211 	rtw_coex_query_bt_hid_list(rtwdev);
212 
213 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
214 		rtw_coex_wl_status_change_notify(rtwdev, 0);
215 
216 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
217 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
218 		ps_active = true;
219 	else
220 		ps_active = false;
221 
222 	ewma_tp_add(&stats->tx_ewma_tp,
223 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
224 	ewma_tp_add(&stats->rx_ewma_tp,
225 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
226 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
227 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
228 
229 	/* reset tx/rx statictics */
230 	stats->tx_unicast = 0;
231 	stats->rx_unicast = 0;
232 	stats->tx_cnt = 0;
233 	stats->rx_cnt = 0;
234 
235 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
236 		goto unlock;
237 
238 	/* make sure BB/RF is working for dynamic mech */
239 	rtw_leave_lps(rtwdev);
240 
241 	rtw_phy_dynamic_mechanism(rtwdev);
242 
243 	data.rtwdev = rtwdev;
244 	/* use atomic version to avoid taking local->iflist_mtx mutex */
245 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
246 
247 	/* fw supports only one station associated to enter lps, if there are
248 	 * more than two stations associated to the AP, then we can not enter
249 	 * lps, because fw does not handle the overlapped beacon interval
250 	 *
251 	 * mac80211 should iterate vifs and determine if driver can enter
252 	 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
253 	 * get that vif and check if device is having traffic more than the
254 	 * threshold.
255 	 */
256 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
257 	    !rtwdev->beacon_loss)
258 		rtw_enter_lps(rtwdev, data.rtwvif->port);
259 
260 	rtwdev->watch_dog_cnt++;
261 
262 unlock:
263 	mutex_unlock(&rtwdev->mutex);
264 }
265 
266 static void rtw_c2h_work(struct work_struct *work)
267 {
268 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
269 	struct sk_buff *skb, *tmp;
270 
271 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
272 		skb_unlink(skb, &rtwdev->c2h_queue);
273 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
274 		dev_kfree_skb_any(skb);
275 	}
276 }
277 
278 static void rtw_ips_work(struct work_struct *work)
279 {
280 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
281 
282 	mutex_lock(&rtwdev->mutex);
283 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
284 		rtw_enter_ips(rtwdev);
285 	mutex_unlock(&rtwdev->mutex);
286 }
287 
288 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
289 {
290 	unsigned long mac_id;
291 
292 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
293 	if (mac_id < RTW_MAX_MAC_ID_NUM)
294 		set_bit(mac_id, rtwdev->mac_id_map);
295 
296 	return mac_id;
297 }
298 
299 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
300 		struct ieee80211_vif *vif)
301 {
302 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
303 	int i;
304 
305 	si->mac_id = rtw_acquire_macid(rtwdev);
306 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
307 		return -ENOSPC;
308 
309 	si->sta = sta;
310 	si->vif = vif;
311 	si->init_ra_lv = 1;
312 	ewma_rssi_init(&si->avg_rssi);
313 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
314 		rtw_txq_init(rtwdev, sta->txq[i]);
315 
316 	rtw_update_sta_info(rtwdev, si, true);
317 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
318 
319 	rtwdev->sta_cnt++;
320 	rtwdev->beacon_loss = false;
321 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
322 		sta->addr, si->mac_id);
323 
324 	return 0;
325 }
326 
327 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
328 		    bool fw_exist)
329 {
330 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
331 	int i;
332 
333 	rtw_release_macid(rtwdev, si->mac_id);
334 	if (fw_exist)
335 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
336 
337 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
338 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
339 
340 	kfree(si->mask);
341 
342 	rtwdev->sta_cnt--;
343 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
344 		sta->addr, si->mac_id);
345 }
346 
347 struct rtw_fwcd_hdr {
348 	u32 item;
349 	u32 size;
350 	u32 padding1;
351 	u32 padding2;
352 } __packed;
353 
354 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
355 {
356 	struct rtw_chip_info *chip = rtwdev->chip;
357 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
358 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
359 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
360 	u8 i;
361 
362 	if (segs) {
363 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
364 
365 		for (i = 0; i < segs->num; i++)
366 			prep_size += segs->segs[i];
367 	}
368 
369 	desc->data = vmalloc(prep_size);
370 	if (!desc->data)
371 		return -ENOMEM;
372 
373 	desc->size = prep_size;
374 	desc->next = desc->data;
375 
376 	return 0;
377 }
378 
379 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
380 {
381 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
382 	struct rtw_fwcd_hdr *hdr;
383 	u8 *next;
384 
385 	if (!desc->data) {
386 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
387 		return NULL;
388 	}
389 
390 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
391 	if (next - desc->data + size > desc->size) {
392 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
393 		return NULL;
394 	}
395 
396 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
397 	hdr->item = item;
398 	hdr->size = size;
399 	hdr->padding1 = 0x01234567;
400 	hdr->padding2 = 0x89abcdef;
401 	desc->next = next + size;
402 
403 	return next;
404 }
405 
406 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
407 {
408 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
409 
410 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
411 
412 	/* Data will be freed after lifetime of device coredump. After calling
413 	 * dev_coredump, data is supposed to be handled by the device coredump
414 	 * framework. Note that a new dump will be discarded if a previous one
415 	 * hasn't been released yet.
416 	 */
417 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
418 }
419 
420 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
421 {
422 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
423 
424 	if (free_self) {
425 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
426 		vfree(desc->data);
427 	}
428 
429 	desc->data = NULL;
430 	desc->next = NULL;
431 }
432 
433 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
434 {
435 	u32 size = rtwdev->chip->fw_rxff_size;
436 	u32 *buf;
437 	u8 seq;
438 
439 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
440 	if (!buf)
441 		return -ENOMEM;
442 
443 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
444 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
445 		return -EINVAL;
446 	}
447 
448 	if (GET_FW_DUMP_LEN(buf) == 0) {
449 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
450 		return -EINVAL;
451 	}
452 
453 	seq = GET_FW_DUMP_SEQ(buf);
454 	if (seq > 0) {
455 		rtw_dbg(rtwdev, RTW_DBG_FW,
456 			"fw crash dump's seq is wrong: %d\n", seq);
457 		return -EINVAL;
458 	}
459 
460 	return 0;
461 }
462 
463 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
464 		u32 fwcd_item)
465 {
466 	u32 rxff = rtwdev->chip->fw_rxff_size;
467 	u32 dump_size, done_size = 0;
468 	u8 *buf;
469 	int ret;
470 
471 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
472 	if (!buf)
473 		return -ENOMEM;
474 
475 	while (size) {
476 		dump_size = size > rxff ? rxff : size;
477 
478 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
479 					  dump_size);
480 		if (ret) {
481 			rtw_err(rtwdev,
482 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
483 				ocp_src, done_size);
484 			return ret;
485 		}
486 
487 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
488 				       dump_size, (u32 *)(buf + done_size));
489 		if (ret) {
490 			rtw_err(rtwdev,
491 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
492 				ocp_src, done_size);
493 			return ret;
494 		}
495 
496 		size -= dump_size;
497 		done_size += dump_size;
498 	}
499 
500 	return 0;
501 }
502 EXPORT_SYMBOL(rtw_dump_fw);
503 
504 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
505 {
506 	u8 *buf;
507 	u32 i;
508 
509 	if (addr & 0x3) {
510 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
511 		return -EINVAL;
512 	}
513 
514 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
515 	if (!buf)
516 		return -ENOMEM;
517 
518 	for (i = 0; i < size; i += 4)
519 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
520 
521 	return 0;
522 }
523 EXPORT_SYMBOL(rtw_dump_reg);
524 
525 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
526 			   struct ieee80211_bss_conf *conf)
527 {
528 	if (conf && conf->assoc) {
529 		rtwvif->aid = conf->aid;
530 		rtwvif->net_type = RTW_NET_MGD_LINKED;
531 	} else {
532 		rtwvif->aid = 0;
533 		rtwvif->net_type = RTW_NET_NO_LINK;
534 	}
535 }
536 
537 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
538 			       struct ieee80211_vif *vif,
539 			       struct ieee80211_sta *sta,
540 			       struct ieee80211_key_conf *key,
541 			       void *data)
542 {
543 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
544 	struct rtw_sec_desc *sec = &rtwdev->sec;
545 
546 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
547 }
548 
549 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
550 {
551 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
552 
553 	if (rtwdev->sta_cnt == 0) {
554 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
555 		return;
556 	}
557 	rtw_sta_remove(rtwdev, sta, false);
558 }
559 
560 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
561 {
562 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
563 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
564 
565 	rtw_bf_disassoc(rtwdev, vif, NULL);
566 	rtw_vif_assoc_changed(rtwvif, NULL);
567 	rtw_txq_cleanup(rtwdev, vif->txq);
568 }
569 
570 void rtw_fw_recovery(struct rtw_dev *rtwdev)
571 {
572 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
573 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
574 }
575 
576 static void __fw_recovery_work(struct rtw_dev *rtwdev)
577 {
578 	int ret = 0;
579 
580 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
581 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
582 
583 	ret = rtw_fwcd_prep(rtwdev);
584 	if (ret)
585 		goto free;
586 	ret = rtw_fw_dump_crash_log(rtwdev);
587 	if (ret)
588 		goto free;
589 	ret = rtw_chip_dump_fw_crash(rtwdev);
590 	if (ret)
591 		goto free;
592 
593 	rtw_fwcd_dump(rtwdev);
594 free:
595 	rtw_fwcd_free(rtwdev, !!ret);
596 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
597 
598 	WARN(1, "firmware crash, start reset and recover\n");
599 
600 	rcu_read_lock();
601 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
602 	rcu_read_unlock();
603 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
604 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
605 	rtw_enter_ips(rtwdev);
606 }
607 
608 static void rtw_fw_recovery_work(struct work_struct *work)
609 {
610 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
611 					      fw_recovery_work);
612 
613 	mutex_lock(&rtwdev->mutex);
614 	__fw_recovery_work(rtwdev);
615 	mutex_unlock(&rtwdev->mutex);
616 
617 	ieee80211_restart_hw(rtwdev->hw);
618 }
619 
620 struct rtw_txq_ba_iter_data {
621 };
622 
623 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
624 {
625 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
626 	int ret;
627 	u8 tid;
628 
629 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
630 	while (tid != IEEE80211_NUM_TIDS) {
631 		clear_bit(tid, si->tid_ba);
632 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
633 		if (ret == -EINVAL) {
634 			struct ieee80211_txq *txq;
635 			struct rtw_txq *rtwtxq;
636 
637 			txq = sta->txq[tid];
638 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
639 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
640 		}
641 
642 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
643 	}
644 }
645 
646 static void rtw_txq_ba_work(struct work_struct *work)
647 {
648 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
649 	struct rtw_txq_ba_iter_data data;
650 
651 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
652 }
653 
654 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
655 {
656 	if (IS_CH_2G_BAND(channel))
657 		pkt_stat->band = NL80211_BAND_2GHZ;
658 	else if (IS_CH_5G_BAND(channel))
659 		pkt_stat->band = NL80211_BAND_5GHZ;
660 	else
661 		return;
662 
663 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
664 }
665 EXPORT_SYMBOL(rtw_set_rx_freq_band);
666 
667 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
668 {
669 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
670 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
671 }
672 
673 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
674 			    struct rtw_channel_params *chan_params)
675 {
676 	struct ieee80211_channel *channel = chandef->chan;
677 	enum nl80211_chan_width width = chandef->width;
678 	u8 *cch_by_bw = chan_params->cch_by_bw;
679 	u32 primary_freq, center_freq;
680 	u8 center_chan;
681 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
682 	u8 primary_chan_idx = 0;
683 	u8 i;
684 
685 	center_chan = channel->hw_value;
686 	primary_freq = channel->center_freq;
687 	center_freq = chandef->center_freq1;
688 
689 	/* assign the center channel used while 20M bw is selected */
690 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
691 
692 	switch (width) {
693 	case NL80211_CHAN_WIDTH_20_NOHT:
694 	case NL80211_CHAN_WIDTH_20:
695 		bandwidth = RTW_CHANNEL_WIDTH_20;
696 		primary_chan_idx = RTW_SC_DONT_CARE;
697 		break;
698 	case NL80211_CHAN_WIDTH_40:
699 		bandwidth = RTW_CHANNEL_WIDTH_40;
700 		if (primary_freq > center_freq) {
701 			primary_chan_idx = RTW_SC_20_UPPER;
702 			center_chan -= 2;
703 		} else {
704 			primary_chan_idx = RTW_SC_20_LOWER;
705 			center_chan += 2;
706 		}
707 		break;
708 	case NL80211_CHAN_WIDTH_80:
709 		bandwidth = RTW_CHANNEL_WIDTH_80;
710 		if (primary_freq > center_freq) {
711 			if (primary_freq - center_freq == 10) {
712 				primary_chan_idx = RTW_SC_20_UPPER;
713 				center_chan -= 2;
714 			} else {
715 				primary_chan_idx = RTW_SC_20_UPMOST;
716 				center_chan -= 6;
717 			}
718 			/* assign the center channel used
719 			 * while 40M bw is selected
720 			 */
721 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
722 		} else {
723 			if (center_freq - primary_freq == 10) {
724 				primary_chan_idx = RTW_SC_20_LOWER;
725 				center_chan += 2;
726 			} else {
727 				primary_chan_idx = RTW_SC_20_LOWEST;
728 				center_chan += 6;
729 			}
730 			/* assign the center channel used
731 			 * while 40M bw is selected
732 			 */
733 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
734 		}
735 		break;
736 	default:
737 		center_chan = 0;
738 		break;
739 	}
740 
741 	chan_params->center_chan = center_chan;
742 	chan_params->bandwidth = bandwidth;
743 	chan_params->primary_chan_idx = primary_chan_idx;
744 
745 	/* assign the center channel used while current bw is selected */
746 	cch_by_bw[bandwidth] = center_chan;
747 
748 	for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
749 		cch_by_bw[i] = 0;
750 }
751 
752 void rtw_set_channel(struct rtw_dev *rtwdev)
753 {
754 	struct ieee80211_hw *hw = rtwdev->hw;
755 	struct rtw_hal *hal = &rtwdev->hal;
756 	struct rtw_chip_info *chip = rtwdev->chip;
757 	struct rtw_channel_params ch_param;
758 	u8 center_chan, bandwidth, primary_chan_idx;
759 	u8 i;
760 
761 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
762 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
763 		return;
764 
765 	center_chan = ch_param.center_chan;
766 	bandwidth = ch_param.bandwidth;
767 	primary_chan_idx = ch_param.primary_chan_idx;
768 
769 	hal->current_band_width = bandwidth;
770 	hal->current_channel = center_chan;
771 	hal->current_primary_channel_index = primary_chan_idx;
772 	hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
773 
774 	switch (center_chan) {
775 	case 1 ... 14:
776 		hal->sar_band = RTW_SAR_BAND_0;
777 		break;
778 	case 36 ... 64:
779 		hal->sar_band = RTW_SAR_BAND_1;
780 		break;
781 	case 100 ... 144:
782 		hal->sar_band = RTW_SAR_BAND_3;
783 		break;
784 	case 149 ... 177:
785 		hal->sar_band = RTW_SAR_BAND_4;
786 		break;
787 	default:
788 		WARN(1, "unknown ch(%u) to SAR band\n", center_chan);
789 		hal->sar_band = RTW_SAR_BAND_0;
790 		break;
791 	}
792 
793 	for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
794 		hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
795 
796 	chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
797 
798 	if (hal->current_band_type == RTW_BAND_5G) {
799 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
800 	} else {
801 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
802 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
803 		else
804 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
805 	}
806 
807 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
808 
809 	/* if the channel isn't set for scanning, we will do RF calibration
810 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
811 	 * during scanning on each channel takes too long.
812 	 */
813 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
814 		rtwdev->need_rfk = true;
815 }
816 
817 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
818 {
819 	struct rtw_chip_info *chip = rtwdev->chip;
820 
821 	if (rtwdev->need_rfk) {
822 		rtwdev->need_rfk = false;
823 		chip->ops->phy_calibration(rtwdev);
824 	}
825 }
826 
827 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
828 {
829 	int i;
830 
831 	for (i = 0; i < ETH_ALEN; i++)
832 		rtw_write8(rtwdev, start + i, addr[i]);
833 }
834 
835 void rtw_vif_port_config(struct rtw_dev *rtwdev,
836 			 struct rtw_vif *rtwvif,
837 			 u32 config)
838 {
839 	u32 addr, mask;
840 
841 	if (config & PORT_SET_MAC_ADDR) {
842 		addr = rtwvif->conf->mac_addr.addr;
843 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
844 	}
845 	if (config & PORT_SET_BSSID) {
846 		addr = rtwvif->conf->bssid.addr;
847 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
848 	}
849 	if (config & PORT_SET_NET_TYPE) {
850 		addr = rtwvif->conf->net_type.addr;
851 		mask = rtwvif->conf->net_type.mask;
852 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
853 	}
854 	if (config & PORT_SET_AID) {
855 		addr = rtwvif->conf->aid.addr;
856 		mask = rtwvif->conf->aid.mask;
857 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
858 	}
859 	if (config & PORT_SET_BCN_CTRL) {
860 		addr = rtwvif->conf->bcn_ctrl.addr;
861 		mask = rtwvif->conf->bcn_ctrl.mask;
862 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
863 	}
864 }
865 
866 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
867 {
868 	u8 bw = 0;
869 
870 	switch (bw_cap) {
871 	case EFUSE_HW_CAP_IGNORE:
872 	case EFUSE_HW_CAP_SUPP_BW80:
873 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
874 		fallthrough;
875 	case EFUSE_HW_CAP_SUPP_BW40:
876 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
877 		fallthrough;
878 	default:
879 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
880 		break;
881 	}
882 
883 	return bw;
884 }
885 
886 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
887 {
888 	struct rtw_hal *hal = &rtwdev->hal;
889 	struct rtw_chip_info *chip = rtwdev->chip;
890 
891 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
892 	    hw_ant_num >= hal->rf_path_num)
893 		return;
894 
895 	switch (hw_ant_num) {
896 	case 1:
897 		hal->rf_type = RF_1T1R;
898 		hal->rf_path_num = 1;
899 		if (!chip->fix_rf_phy_num)
900 			hal->rf_phy_num = hal->rf_path_num;
901 		hal->antenna_tx = BB_PATH_A;
902 		hal->antenna_rx = BB_PATH_A;
903 		break;
904 	default:
905 		WARN(1, "invalid hw configuration from efuse\n");
906 		break;
907 	}
908 }
909 
910 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
911 {
912 	u64 ra_mask = 0;
913 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
914 	u8 vht_mcs_cap;
915 	int i, nss;
916 
917 	/* 4SS, every two bits for MCS7/8/9 */
918 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
919 		vht_mcs_cap = mcs_map & 0x3;
920 		switch (vht_mcs_cap) {
921 		case 2: /* MCS9 */
922 			ra_mask |= 0x3ffULL << nss;
923 			break;
924 		case 1: /* MCS8 */
925 			ra_mask |= 0x1ffULL << nss;
926 			break;
927 		case 0: /* MCS7 */
928 			ra_mask |= 0x0ffULL << nss;
929 			break;
930 		default:
931 			break;
932 		}
933 	}
934 
935 	return ra_mask;
936 }
937 
938 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
939 {
940 	u8 rate_id = 0;
941 
942 	switch (wireless_set) {
943 	case WIRELESS_CCK:
944 		rate_id = RTW_RATEID_B_20M;
945 		break;
946 	case WIRELESS_OFDM:
947 		rate_id = RTW_RATEID_G;
948 		break;
949 	case WIRELESS_CCK | WIRELESS_OFDM:
950 		rate_id = RTW_RATEID_BG;
951 		break;
952 	case WIRELESS_OFDM | WIRELESS_HT:
953 		if (tx_num == 1)
954 			rate_id = RTW_RATEID_GN_N1SS;
955 		else if (tx_num == 2)
956 			rate_id = RTW_RATEID_GN_N2SS;
957 		else if (tx_num == 3)
958 			rate_id = RTW_RATEID_ARFR5_N_3SS;
959 		break;
960 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
961 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
962 			if (tx_num == 1)
963 				rate_id = RTW_RATEID_BGN_40M_1SS;
964 			else if (tx_num == 2)
965 				rate_id = RTW_RATEID_BGN_40M_2SS;
966 			else if (tx_num == 3)
967 				rate_id = RTW_RATEID_ARFR5_N_3SS;
968 			else if (tx_num == 4)
969 				rate_id = RTW_RATEID_ARFR7_N_4SS;
970 		} else {
971 			if (tx_num == 1)
972 				rate_id = RTW_RATEID_BGN_20M_1SS;
973 			else if (tx_num == 2)
974 				rate_id = RTW_RATEID_BGN_20M_2SS;
975 			else if (tx_num == 3)
976 				rate_id = RTW_RATEID_ARFR5_N_3SS;
977 			else if (tx_num == 4)
978 				rate_id = RTW_RATEID_ARFR7_N_4SS;
979 		}
980 		break;
981 	case WIRELESS_OFDM | WIRELESS_VHT:
982 		if (tx_num == 1)
983 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
984 		else if (tx_num == 2)
985 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
986 		else if (tx_num == 3)
987 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
988 		else if (tx_num == 4)
989 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
990 		break;
991 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
992 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
993 			if (tx_num == 1)
994 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
995 			else if (tx_num == 2)
996 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
997 			else if (tx_num == 3)
998 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
999 			else if (tx_num == 4)
1000 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1001 		} else {
1002 			if (tx_num == 1)
1003 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1004 			else if (tx_num == 2)
1005 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1006 			else if (tx_num == 3)
1007 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1008 			else if (tx_num == 4)
1009 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1010 		}
1011 		break;
1012 	default:
1013 		break;
1014 	}
1015 
1016 	return rate_id;
1017 }
1018 
1019 #define RA_MASK_CCK_RATES	0x0000f
1020 #define RA_MASK_OFDM_RATES	0x00ff0
1021 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1022 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1023 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1024 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1025 				 RA_MASK_HT_RATES_2SS | \
1026 				 RA_MASK_HT_RATES_3SS)
1027 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1028 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1029 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1030 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1031 				 RA_MASK_VHT_RATES_2SS | \
1032 				 RA_MASK_VHT_RATES_3SS)
1033 #define RA_MASK_CCK_IN_BG	0x00005
1034 #define RA_MASK_CCK_IN_HT	0x00005
1035 #define RA_MASK_CCK_IN_VHT	0x00005
1036 #define RA_MASK_OFDM_IN_VHT	0x00010
1037 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1038 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1039 
1040 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1041 {
1042 	u8 rssi_level = si->rssi_level;
1043 
1044 	if (wireless_set == WIRELESS_CCK)
1045 		return 0xffffffffffffffffULL;
1046 
1047 	if (rssi_level == 0)
1048 		return 0xffffffffffffffffULL;
1049 	else if (rssi_level == 1)
1050 		return 0xfffffffffffffff0ULL;
1051 	else if (rssi_level == 2)
1052 		return 0xffffffffffffefe0ULL;
1053 	else if (rssi_level == 3)
1054 		return 0xffffffffffffcfc0ULL;
1055 	else if (rssi_level == 4)
1056 		return 0xffffffffffff8f80ULL;
1057 	else
1058 		return 0xffffffffffff0f00ULL;
1059 }
1060 
1061 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1062 {
1063 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1064 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1065 
1066 	if (ra_mask == 0)
1067 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1068 
1069 	return ra_mask;
1070 }
1071 
1072 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1073 			     u64 ra_mask, bool is_vht_enable)
1074 {
1075 	struct rtw_hal *hal = &rtwdev->hal;
1076 	const struct cfg80211_bitrate_mask *mask = si->mask;
1077 	u64 cfg_mask = GENMASK_ULL(63, 0);
1078 	u8 band;
1079 
1080 	if (!si->use_cfg_mask)
1081 		return ra_mask;
1082 
1083 	band = hal->current_band_type;
1084 	if (band == RTW_BAND_2G) {
1085 		band = NL80211_BAND_2GHZ;
1086 		cfg_mask = mask->control[band].legacy;
1087 	} else if (band == RTW_BAND_5G) {
1088 		band = NL80211_BAND_5GHZ;
1089 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1090 					   RA_MASK_OFDM_RATES);
1091 	}
1092 
1093 	if (!is_vht_enable) {
1094 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1095 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1096 						    RA_MASK_HT_RATES_1SS);
1097 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1098 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1099 						    RA_MASK_HT_RATES_2SS);
1100 	} else {
1101 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1102 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1103 						    RA_MASK_VHT_RATES_1SS);
1104 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1105 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1106 						    RA_MASK_VHT_RATES_2SS);
1107 	}
1108 
1109 	ra_mask &= cfg_mask;
1110 
1111 	return ra_mask;
1112 }
1113 
1114 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1115 			 bool reset_ra_mask)
1116 {
1117 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1118 	struct ieee80211_sta *sta = si->sta;
1119 	struct rtw_efuse *efuse = &rtwdev->efuse;
1120 	struct rtw_hal *hal = &rtwdev->hal;
1121 	u8 wireless_set;
1122 	u8 bw_mode;
1123 	u8 rate_id;
1124 	u8 rf_type = RF_1T1R;
1125 	u8 stbc_en = 0;
1126 	u8 ldpc_en = 0;
1127 	u8 tx_num = 1;
1128 	u64 ra_mask = 0;
1129 	u64 ra_mask_bak = 0;
1130 	bool is_vht_enable = false;
1131 	bool is_support_sgi = false;
1132 
1133 	if (sta->deflink.vht_cap.vht_supported) {
1134 		is_vht_enable = true;
1135 		ra_mask |= get_vht_ra_mask(sta);
1136 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1137 			stbc_en = VHT_STBC_EN;
1138 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1139 			ldpc_en = VHT_LDPC_EN;
1140 	} else if (sta->deflink.ht_cap.ht_supported) {
1141 		ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1142 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1143 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1144 			stbc_en = HT_STBC_EN;
1145 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1146 			ldpc_en = HT_LDPC_EN;
1147 	}
1148 
1149 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1150 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1151 
1152 	if (hal->current_band_type == RTW_BAND_5G) {
1153 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1154 		ra_mask_bak = ra_mask;
1155 		if (sta->deflink.vht_cap.vht_supported) {
1156 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1157 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1158 		} else if (sta->deflink.ht_cap.ht_supported) {
1159 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1160 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1161 		} else {
1162 			wireless_set = WIRELESS_OFDM;
1163 		}
1164 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1165 	} else if (hal->current_band_type == RTW_BAND_2G) {
1166 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1167 		ra_mask_bak = ra_mask;
1168 		if (sta->deflink.vht_cap.vht_supported) {
1169 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1170 				   RA_MASK_OFDM_IN_VHT;
1171 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1172 				       WIRELESS_HT | WIRELESS_VHT;
1173 		} else if (sta->deflink.ht_cap.ht_supported) {
1174 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1175 				   RA_MASK_OFDM_IN_HT_2G;
1176 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1177 				       WIRELESS_HT;
1178 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1179 			wireless_set = WIRELESS_CCK;
1180 		} else {
1181 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1182 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1183 		}
1184 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1185 	} else {
1186 		rtw_err(rtwdev, "Unknown band type\n");
1187 		ra_mask_bak = ra_mask;
1188 		wireless_set = 0;
1189 	}
1190 
1191 	switch (sta->deflink.bandwidth) {
1192 	case IEEE80211_STA_RX_BW_80:
1193 		bw_mode = RTW_CHANNEL_WIDTH_80;
1194 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1195 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1196 		break;
1197 	case IEEE80211_STA_RX_BW_40:
1198 		bw_mode = RTW_CHANNEL_WIDTH_40;
1199 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1200 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1201 		break;
1202 	default:
1203 		bw_mode = RTW_CHANNEL_WIDTH_20;
1204 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1205 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1206 		break;
1207 	}
1208 
1209 	if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1210 		tx_num = 2;
1211 		rf_type = RF_2T2R;
1212 	} else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1213 		tx_num = 2;
1214 		rf_type = RF_2T2R;
1215 	}
1216 
1217 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1218 
1219 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1220 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1221 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1222 
1223 	si->bw_mode = bw_mode;
1224 	si->stbc_en = stbc_en;
1225 	si->ldpc_en = ldpc_en;
1226 	si->rf_type = rf_type;
1227 	si->wireless_set = wireless_set;
1228 	si->sgi_enable = is_support_sgi;
1229 	si->vht_enable = is_vht_enable;
1230 	si->ra_mask = ra_mask;
1231 	si->rate_id = rate_id;
1232 
1233 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1234 }
1235 
1236 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1237 {
1238 	struct rtw_chip_info *chip = rtwdev->chip;
1239 	struct rtw_fw_state *fw;
1240 
1241 	fw = &rtwdev->fw;
1242 	wait_for_completion(&fw->completion);
1243 	if (!fw->firmware)
1244 		return -EINVAL;
1245 
1246 	if (chip->wow_fw_name) {
1247 		fw = &rtwdev->wow_fw;
1248 		wait_for_completion(&fw->completion);
1249 		if (!fw->firmware)
1250 			return -EINVAL;
1251 	}
1252 
1253 	return 0;
1254 }
1255 
1256 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1257 						       struct rtw_fw_state *fw)
1258 {
1259 	struct rtw_chip_info *chip = rtwdev->chip;
1260 
1261 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1262 	    !fw->feature)
1263 		return LPS_DEEP_MODE_NONE;
1264 
1265 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1266 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1267 		return LPS_DEEP_MODE_PG;
1268 
1269 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1270 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1271 		return LPS_DEEP_MODE_LCLK;
1272 
1273 	return LPS_DEEP_MODE_NONE;
1274 }
1275 
1276 static int rtw_power_on(struct rtw_dev *rtwdev)
1277 {
1278 	struct rtw_chip_info *chip = rtwdev->chip;
1279 	struct rtw_fw_state *fw = &rtwdev->fw;
1280 	bool wifi_only;
1281 	int ret;
1282 
1283 	ret = rtw_hci_setup(rtwdev);
1284 	if (ret) {
1285 		rtw_err(rtwdev, "failed to setup hci\n");
1286 		goto err;
1287 	}
1288 
1289 	/* power on MAC before firmware downloaded */
1290 	ret = rtw_mac_power_on(rtwdev);
1291 	if (ret) {
1292 		rtw_err(rtwdev, "failed to power on mac\n");
1293 		goto err;
1294 	}
1295 
1296 	ret = rtw_wait_firmware_completion(rtwdev);
1297 	if (ret) {
1298 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1299 		goto err_off;
1300 	}
1301 
1302 	ret = rtw_download_firmware(rtwdev, fw);
1303 	if (ret) {
1304 		rtw_err(rtwdev, "failed to download firmware\n");
1305 		goto err_off;
1306 	}
1307 
1308 	/* config mac after firmware downloaded */
1309 	ret = rtw_mac_init(rtwdev);
1310 	if (ret) {
1311 		rtw_err(rtwdev, "failed to configure mac\n");
1312 		goto err_off;
1313 	}
1314 
1315 	chip->ops->phy_set_param(rtwdev);
1316 
1317 	ret = rtw_hci_start(rtwdev);
1318 	if (ret) {
1319 		rtw_err(rtwdev, "failed to start hci\n");
1320 		goto err_off;
1321 	}
1322 
1323 	/* send H2C after HCI has started */
1324 	rtw_fw_send_general_info(rtwdev);
1325 	rtw_fw_send_phydm_info(rtwdev);
1326 
1327 	wifi_only = !rtwdev->efuse.btcoex;
1328 	rtw_coex_power_on_setting(rtwdev);
1329 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1330 
1331 	return 0;
1332 
1333 err_off:
1334 	rtw_mac_power_off(rtwdev);
1335 
1336 err:
1337 	return ret;
1338 }
1339 
1340 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1341 {
1342 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1343 		return;
1344 
1345 	if (start) {
1346 		rtw_fw_scan_notify(rtwdev, true);
1347 	} else {
1348 		reinit_completion(&rtwdev->fw_scan_density);
1349 		rtw_fw_scan_notify(rtwdev, false);
1350 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1351 						 SCAN_NOTIFY_TIMEOUT))
1352 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1353 	}
1354 }
1355 
1356 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1357 			 const u8 *mac_addr, bool hw_scan)
1358 {
1359 	u32 config = 0;
1360 	int ret = 0;
1361 
1362 	rtw_leave_lps(rtwdev);
1363 
1364 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1365 		ret = rtw_leave_ips(rtwdev);
1366 		if (ret) {
1367 			rtw_err(rtwdev, "failed to leave idle state\n");
1368 			return;
1369 		}
1370 	}
1371 
1372 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1373 	config |= PORT_SET_MAC_ADDR;
1374 	rtw_vif_port_config(rtwdev, rtwvif, config);
1375 
1376 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1377 	rtw_core_fw_scan_notify(rtwdev, true);
1378 
1379 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1380 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1381 }
1382 
1383 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1384 			    bool hw_scan)
1385 {
1386 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
1387 	u32 config = 0;
1388 
1389 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1390 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1391 
1392 	rtw_core_fw_scan_notify(rtwdev, false);
1393 
1394 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1395 	config |= PORT_SET_MAC_ADDR;
1396 	rtw_vif_port_config(rtwdev, rtwvif, config);
1397 
1398 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1399 
1400 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1401 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1402 }
1403 
1404 int rtw_core_start(struct rtw_dev *rtwdev)
1405 {
1406 	int ret;
1407 
1408 	ret = rtw_power_on(rtwdev);
1409 	if (ret)
1410 		return ret;
1411 
1412 	rtw_sec_enable_sec_engine(rtwdev);
1413 
1414 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1415 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1416 
1417 	/* rcr reset after powered on */
1418 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1419 
1420 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1421 				     RTW_WATCH_DOG_DELAY_TIME);
1422 
1423 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1424 
1425 	return 0;
1426 }
1427 
1428 static void rtw_power_off(struct rtw_dev *rtwdev)
1429 {
1430 	rtw_hci_stop(rtwdev);
1431 	rtw_coex_power_off_setting(rtwdev);
1432 	rtw_mac_power_off(rtwdev);
1433 }
1434 
1435 void rtw_core_stop(struct rtw_dev *rtwdev)
1436 {
1437 	struct rtw_coex *coex = &rtwdev->coex;
1438 
1439 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1440 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1441 
1442 	mutex_unlock(&rtwdev->mutex);
1443 
1444 	cancel_work_sync(&rtwdev->c2h_work);
1445 	cancel_work_sync(&rtwdev->update_beacon_work);
1446 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1447 	cancel_delayed_work_sync(&coex->bt_relink_work);
1448 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1449 	cancel_delayed_work_sync(&coex->defreeze_work);
1450 	cancel_delayed_work_sync(&coex->wl_remain_work);
1451 	cancel_delayed_work_sync(&coex->bt_remain_work);
1452 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1453 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1454 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1455 
1456 	mutex_lock(&rtwdev->mutex);
1457 
1458 	rtw_power_off(rtwdev);
1459 }
1460 
1461 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1462 			    struct ieee80211_sta_ht_cap *ht_cap)
1463 {
1464 	struct rtw_efuse *efuse = &rtwdev->efuse;
1465 	struct rtw_chip_info *chip = rtwdev->chip;
1466 
1467 	ht_cap->ht_supported = true;
1468 	ht_cap->cap = 0;
1469 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1470 			IEEE80211_HT_CAP_MAX_AMSDU |
1471 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1472 
1473 	if (rtw_chip_has_rx_ldpc(rtwdev))
1474 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1475 	if (rtw_chip_has_tx_stbc(rtwdev))
1476 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1477 
1478 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1479 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1480 				IEEE80211_HT_CAP_DSSSCCK40 |
1481 				IEEE80211_HT_CAP_SGI_40;
1482 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1483 	ht_cap->ampdu_density = chip->ampdu_density;
1484 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1485 	if (efuse->hw_cap.nss > 1) {
1486 		ht_cap->mcs.rx_mask[0] = 0xFF;
1487 		ht_cap->mcs.rx_mask[1] = 0xFF;
1488 		ht_cap->mcs.rx_mask[4] = 0x01;
1489 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1490 	} else {
1491 		ht_cap->mcs.rx_mask[0] = 0xFF;
1492 		ht_cap->mcs.rx_mask[1] = 0x00;
1493 		ht_cap->mcs.rx_mask[4] = 0x01;
1494 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1495 	}
1496 }
1497 
1498 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1499 			     struct ieee80211_sta_vht_cap *vht_cap)
1500 {
1501 	struct rtw_efuse *efuse = &rtwdev->efuse;
1502 	u16 mcs_map;
1503 	__le16 highest;
1504 
1505 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1506 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1507 		return;
1508 
1509 	vht_cap->vht_supported = true;
1510 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1511 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1512 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1513 		       IEEE80211_VHT_CAP_HTC_VHT |
1514 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1515 		       0;
1516 	if (rtwdev->hal.rf_path_num > 1)
1517 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1518 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1519 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1520 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1521 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1522 
1523 	if (rtw_chip_has_rx_ldpc(rtwdev))
1524 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1525 
1526 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1527 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1528 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1529 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1530 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1531 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1532 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1533 	if (efuse->hw_cap.nss > 1) {
1534 		highest = cpu_to_le16(780);
1535 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1536 	} else {
1537 		highest = cpu_to_le16(390);
1538 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1539 	}
1540 
1541 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1542 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1543 	vht_cap->vht_mcs.rx_highest = highest;
1544 	vht_cap->vht_mcs.tx_highest = highest;
1545 }
1546 
1547 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1548 				   struct rtw_chip_info *chip)
1549 {
1550 	struct rtw_dev *rtwdev = hw->priv;
1551 	struct ieee80211_supported_band *sband;
1552 
1553 	if (chip->band & RTW_BAND_2G) {
1554 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1555 		if (!sband)
1556 			goto err_out;
1557 		if (chip->ht_supported)
1558 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1559 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1560 	}
1561 
1562 	if (chip->band & RTW_BAND_5G) {
1563 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1564 		if (!sband)
1565 			goto err_out;
1566 		if (chip->ht_supported)
1567 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1568 		if (chip->vht_supported)
1569 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1570 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1571 	}
1572 
1573 	return;
1574 
1575 err_out:
1576 	rtw_err(rtwdev, "failed to set supported band\n");
1577 }
1578 
1579 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1580 				     struct rtw_chip_info *chip)
1581 {
1582 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1583 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1584 }
1585 
1586 static void rtw_vif_smps_iter(void *data, u8 *mac,
1587 			      struct ieee80211_vif *vif)
1588 {
1589 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1590 
1591 	if (vif->type != NL80211_IFTYPE_STATION || !vif->bss_conf.assoc)
1592 		return;
1593 
1594 	if (rtwdev->hal.txrx_1ss)
1595 		ieee80211_request_smps(vif, IEEE80211_SMPS_STATIC);
1596 	else
1597 		ieee80211_request_smps(vif, IEEE80211_SMPS_OFF);
1598 }
1599 
1600 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1601 {
1602 	struct rtw_chip_info *chip = rtwdev->chip;
1603 	struct rtw_hal *hal = &rtwdev->hal;
1604 
1605 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1606 		return;
1607 
1608 	rtwdev->hal.txrx_1ss = txrx_1ss;
1609 	if (txrx_1ss)
1610 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1611 	else
1612 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1613 					    hal->antenna_rx, false);
1614 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1615 }
1616 
1617 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1618 				      struct rtw_fw_state *fw)
1619 {
1620 	u32 feature;
1621 	const struct rtw_fw_hdr *fw_hdr =
1622 				(const struct rtw_fw_hdr *)fw->firmware->data;
1623 
1624 	feature = le32_to_cpu(fw_hdr->feature);
1625 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1626 }
1627 
1628 static void __update_firmware_info(struct rtw_dev *rtwdev,
1629 				   struct rtw_fw_state *fw)
1630 {
1631 	const struct rtw_fw_hdr *fw_hdr =
1632 				(const struct rtw_fw_hdr *)fw->firmware->data;
1633 
1634 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1635 	fw->version = le16_to_cpu(fw_hdr->version);
1636 	fw->sub_version = fw_hdr->subversion;
1637 	fw->sub_index = fw_hdr->subindex;
1638 
1639 	__update_firmware_feature(rtwdev, fw);
1640 }
1641 
1642 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1643 					  struct rtw_fw_state *fw)
1644 {
1645 	struct rtw_fw_hdr_legacy *legacy =
1646 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1647 
1648 	fw->h2c_version = 0;
1649 	fw->version = le16_to_cpu(legacy->version);
1650 	fw->sub_version = legacy->subversion1;
1651 	fw->sub_index = legacy->subversion2;
1652 }
1653 
1654 static void update_firmware_info(struct rtw_dev *rtwdev,
1655 				 struct rtw_fw_state *fw)
1656 {
1657 	if (rtw_chip_wcpu_11n(rtwdev))
1658 		__update_firmware_info_legacy(rtwdev, fw);
1659 	else
1660 		__update_firmware_info(rtwdev, fw);
1661 }
1662 
1663 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1664 {
1665 	struct rtw_fw_state *fw = context;
1666 	struct rtw_dev *rtwdev = fw->rtwdev;
1667 
1668 	if (!firmware || !firmware->data) {
1669 		rtw_err(rtwdev, "failed to request firmware\n");
1670 		complete_all(&fw->completion);
1671 		return;
1672 	}
1673 
1674 	fw->firmware = firmware;
1675 	update_firmware_info(rtwdev, fw);
1676 	complete_all(&fw->completion);
1677 
1678 	rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
1679 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1680 }
1681 
1682 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1683 {
1684 	const char *fw_name;
1685 	struct rtw_fw_state *fw;
1686 	int ret;
1687 
1688 	switch (type) {
1689 	case RTW_WOWLAN_FW:
1690 		fw = &rtwdev->wow_fw;
1691 		fw_name = rtwdev->chip->wow_fw_name;
1692 		break;
1693 
1694 	case RTW_NORMAL_FW:
1695 		fw = &rtwdev->fw;
1696 		fw_name = rtwdev->chip->fw_name;
1697 		break;
1698 
1699 	default:
1700 		rtw_warn(rtwdev, "unsupported firmware type\n");
1701 		return -ENOENT;
1702 	}
1703 
1704 	fw->rtwdev = rtwdev;
1705 	init_completion(&fw->completion);
1706 
1707 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1708 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1709 	if (ret) {
1710 		rtw_err(rtwdev, "failed to async firmware request\n");
1711 		return ret;
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1718 {
1719 	struct rtw_chip_info *chip = rtwdev->chip;
1720 	struct rtw_hal *hal = &rtwdev->hal;
1721 	struct rtw_efuse *efuse = &rtwdev->efuse;
1722 
1723 	switch (rtw_hci_type(rtwdev)) {
1724 	case RTW_HCI_TYPE_PCIE:
1725 		rtwdev->hci.rpwm_addr = 0x03d9;
1726 		rtwdev->hci.cpwm_addr = 0x03da;
1727 		break;
1728 	default:
1729 		rtw_err(rtwdev, "unsupported hci type\n");
1730 		return -EINVAL;
1731 	}
1732 
1733 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1734 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1735 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1736 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1737 		hal->rf_type = RF_2T2R;
1738 		hal->rf_path_num = 2;
1739 		hal->antenna_tx = BB_PATH_AB;
1740 		hal->antenna_rx = BB_PATH_AB;
1741 	} else {
1742 		hal->rf_type = RF_1T1R;
1743 		hal->rf_path_num = 1;
1744 		hal->antenna_tx = BB_PATH_A;
1745 		hal->antenna_rx = BB_PATH_A;
1746 	}
1747 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1748 			  hal->rf_path_num;
1749 
1750 	efuse->physical_size = chip->phy_efuse_size;
1751 	efuse->logical_size = chip->log_efuse_size;
1752 	efuse->protect_size = chip->ptct_efuse_size;
1753 
1754 	/* default use ack */
1755 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1756 
1757 	hal->bfee_sts_cap = 3;
1758 
1759 	return 0;
1760 }
1761 
1762 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1763 {
1764 	struct rtw_fw_state *fw = &rtwdev->fw;
1765 	int ret;
1766 
1767 	ret = rtw_hci_setup(rtwdev);
1768 	if (ret) {
1769 		rtw_err(rtwdev, "failed to setup hci\n");
1770 		goto err;
1771 	}
1772 
1773 	ret = rtw_mac_power_on(rtwdev);
1774 	if (ret) {
1775 		rtw_err(rtwdev, "failed to power on mac\n");
1776 		goto err;
1777 	}
1778 
1779 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1780 
1781 	wait_for_completion(&fw->completion);
1782 	if (!fw->firmware) {
1783 		ret = -EINVAL;
1784 		rtw_err(rtwdev, "failed to load firmware\n");
1785 		goto err;
1786 	}
1787 
1788 	ret = rtw_download_firmware(rtwdev, fw);
1789 	if (ret) {
1790 		rtw_err(rtwdev, "failed to download firmware\n");
1791 		goto err_off;
1792 	}
1793 
1794 	return 0;
1795 
1796 err_off:
1797 	rtw_mac_power_off(rtwdev);
1798 
1799 err:
1800 	return ret;
1801 }
1802 
1803 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1804 {
1805 	struct rtw_efuse *efuse = &rtwdev->efuse;
1806 	u8 hw_feature[HW_FEATURE_LEN];
1807 	u8 id;
1808 	u8 bw;
1809 	int i;
1810 
1811 	id = rtw_read8(rtwdev, REG_C2HEVT);
1812 	if (id != C2H_HW_FEATURE_REPORT) {
1813 		rtw_err(rtwdev, "failed to read hw feature report\n");
1814 		return -EBUSY;
1815 	}
1816 
1817 	for (i = 0; i < HW_FEATURE_LEN; i++)
1818 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1819 
1820 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1821 
1822 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1823 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1824 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1825 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1826 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1827 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1828 
1829 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1830 
1831 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1832 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1833 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1834 
1835 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1836 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1837 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1838 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1839 
1840 	return 0;
1841 }
1842 
1843 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1844 {
1845 	rtw_hci_stop(rtwdev);
1846 	rtw_mac_power_off(rtwdev);
1847 }
1848 
1849 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1850 {
1851 	struct rtw_efuse *efuse = &rtwdev->efuse;
1852 	int ret;
1853 
1854 	mutex_lock(&rtwdev->mutex);
1855 
1856 	/* power on mac to read efuse */
1857 	ret = rtw_chip_efuse_enable(rtwdev);
1858 	if (ret)
1859 		goto out_unlock;
1860 
1861 	ret = rtw_parse_efuse_map(rtwdev);
1862 	if (ret)
1863 		goto out_disable;
1864 
1865 	ret = rtw_dump_hw_feature(rtwdev);
1866 	if (ret)
1867 		goto out_disable;
1868 
1869 	ret = rtw_check_supported_rfe(rtwdev);
1870 	if (ret)
1871 		goto out_disable;
1872 
1873 	if (efuse->crystal_cap == 0xff)
1874 		efuse->crystal_cap = 0;
1875 	if (efuse->pa_type_2g == 0xff)
1876 		efuse->pa_type_2g = 0;
1877 	if (efuse->pa_type_5g == 0xff)
1878 		efuse->pa_type_5g = 0;
1879 	if (efuse->lna_type_2g == 0xff)
1880 		efuse->lna_type_2g = 0;
1881 	if (efuse->lna_type_5g == 0xff)
1882 		efuse->lna_type_5g = 0;
1883 	if (efuse->channel_plan == 0xff)
1884 		efuse->channel_plan = 0x7f;
1885 	if (efuse->rf_board_option == 0xff)
1886 		efuse->rf_board_option = 0;
1887 	if (efuse->bt_setting & BIT(0))
1888 		efuse->share_ant = true;
1889 	if (efuse->regd == 0xff)
1890 		efuse->regd = 0;
1891 	if (efuse->tx_bb_swing_setting_2g == 0xff)
1892 		efuse->tx_bb_swing_setting_2g = 0;
1893 	if (efuse->tx_bb_swing_setting_5g == 0xff)
1894 		efuse->tx_bb_swing_setting_5g = 0;
1895 
1896 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1897 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1898 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1899 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1900 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1901 
1902 out_disable:
1903 	rtw_chip_efuse_disable(rtwdev);
1904 
1905 out_unlock:
1906 	mutex_unlock(&rtwdev->mutex);
1907 	return ret;
1908 }
1909 
1910 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1911 {
1912 	struct rtw_hal *hal = &rtwdev->hal;
1913 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1914 
1915 	if (!rfe_def)
1916 		return -ENODEV;
1917 
1918 	rtw_phy_setup_phy_cond(rtwdev, 0);
1919 
1920 	rtw_phy_init_tx_power(rtwdev);
1921 	if (rfe_def->agc_btg_tbl)
1922 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1923 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1924 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1925 	rtw_phy_tx_power_by_rate_config(hal);
1926 	rtw_phy_tx_power_limit_config(hal);
1927 
1928 	return 0;
1929 }
1930 
1931 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1932 {
1933 	int ret;
1934 
1935 	ret = rtw_chip_parameter_setup(rtwdev);
1936 	if (ret) {
1937 		rtw_err(rtwdev, "failed to setup chip parameters\n");
1938 		goto err_out;
1939 	}
1940 
1941 	ret = rtw_chip_efuse_info_setup(rtwdev);
1942 	if (ret) {
1943 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
1944 		goto err_out;
1945 	}
1946 
1947 	ret = rtw_chip_board_info_setup(rtwdev);
1948 	if (ret) {
1949 		rtw_err(rtwdev, "failed to setup chip board info\n");
1950 		goto err_out;
1951 	}
1952 
1953 	return 0;
1954 
1955 err_out:
1956 	return ret;
1957 }
1958 EXPORT_SYMBOL(rtw_chip_info_setup);
1959 
1960 static void rtw_stats_init(struct rtw_dev *rtwdev)
1961 {
1962 	struct rtw_traffic_stats *stats = &rtwdev->stats;
1963 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1964 	int i;
1965 
1966 	ewma_tp_init(&stats->tx_ewma_tp);
1967 	ewma_tp_init(&stats->rx_ewma_tp);
1968 
1969 	for (i = 0; i < RTW_EVM_NUM; i++)
1970 		ewma_evm_init(&dm_info->ewma_evm[i]);
1971 	for (i = 0; i < RTW_SNR_NUM; i++)
1972 		ewma_snr_init(&dm_info->ewma_snr[i]);
1973 }
1974 
1975 int rtw_core_init(struct rtw_dev *rtwdev)
1976 {
1977 	struct rtw_chip_info *chip = rtwdev->chip;
1978 	struct rtw_coex *coex = &rtwdev->coex;
1979 	int ret;
1980 
1981 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1982 	INIT_LIST_HEAD(&rtwdev->txqs);
1983 
1984 	timer_setup(&rtwdev->tx_report.purge_timer,
1985 		    rtw_tx_report_purge_timer, 0);
1986 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
1987 
1988 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1989 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
1990 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
1991 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
1992 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
1993 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
1994 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
1995 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
1996 			  rtw_coex_bt_multi_link_remain_work);
1997 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
1998 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
1999 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2000 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2001 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2002 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2003 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2004 	skb_queue_head_init(&rtwdev->c2h_queue);
2005 	skb_queue_head_init(&rtwdev->coex.queue);
2006 	skb_queue_head_init(&rtwdev->tx_report.queue);
2007 
2008 	spin_lock_init(&rtwdev->rf_lock);
2009 	spin_lock_init(&rtwdev->h2c.lock);
2010 	spin_lock_init(&rtwdev->txq_lock);
2011 	spin_lock_init(&rtwdev->tx_report.q_lock);
2012 
2013 	mutex_init(&rtwdev->mutex);
2014 	mutex_init(&rtwdev->coex.mutex);
2015 	mutex_init(&rtwdev->hal.tx_power_mutex);
2016 
2017 	init_waitqueue_head(&rtwdev->coex.wait);
2018 	init_completion(&rtwdev->lps_leave_check);
2019 	init_completion(&rtwdev->fw_scan_density);
2020 
2021 	rtwdev->sec.total_cam_num = 32;
2022 	rtwdev->hal.current_channel = 1;
2023 	rtwdev->dm_info.fix_rate = U8_MAX;
2024 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2025 
2026 	rtw_stats_init(rtwdev);
2027 
2028 	/* default rx filter setting */
2029 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2030 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2031 			  BIT_AB | BIT_AM | BIT_APM;
2032 
2033 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2034 	if (ret) {
2035 		rtw_warn(rtwdev, "no firmware loaded\n");
2036 		return ret;
2037 	}
2038 
2039 	if (chip->wow_fw_name) {
2040 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2041 		if (ret) {
2042 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2043 			wait_for_completion(&rtwdev->fw.completion);
2044 			if (rtwdev->fw.firmware)
2045 				release_firmware(rtwdev->fw.firmware);
2046 			return ret;
2047 		}
2048 	}
2049 
2050 	return 0;
2051 }
2052 EXPORT_SYMBOL(rtw_core_init);
2053 
2054 void rtw_core_deinit(struct rtw_dev *rtwdev)
2055 {
2056 	struct rtw_fw_state *fw = &rtwdev->fw;
2057 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2058 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2059 	unsigned long flags;
2060 
2061 	rtw_wait_firmware_completion(rtwdev);
2062 
2063 	if (fw->firmware)
2064 		release_firmware(fw->firmware);
2065 
2066 	if (wow_fw->firmware)
2067 		release_firmware(wow_fw->firmware);
2068 
2069 	destroy_workqueue(rtwdev->tx_wq);
2070 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2071 	skb_queue_purge(&rtwdev->tx_report.queue);
2072 	skb_queue_purge(&rtwdev->coex.queue);
2073 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2074 
2075 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2076 				 build_list) {
2077 		list_del(&rsvd_pkt->build_list);
2078 		kfree(rsvd_pkt);
2079 	}
2080 
2081 	mutex_destroy(&rtwdev->mutex);
2082 	mutex_destroy(&rtwdev->coex.mutex);
2083 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2084 }
2085 EXPORT_SYMBOL(rtw_core_deinit);
2086 
2087 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2088 {
2089 	struct rtw_hal *hal = &rtwdev->hal;
2090 	int max_tx_headroom = 0;
2091 	int ret;
2092 
2093 	/* TODO: USB & SDIO may need extra room? */
2094 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2095 
2096 	hw->extra_tx_headroom = max_tx_headroom;
2097 	hw->queues = IEEE80211_NUM_ACS;
2098 	hw->txq_data_size = sizeof(struct rtw_txq);
2099 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2100 	hw->vif_data_size = sizeof(struct rtw_vif);
2101 
2102 	ieee80211_hw_set(hw, SIGNAL_DBM);
2103 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2104 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2105 	ieee80211_hw_set(hw, MFP_CAPABLE);
2106 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2107 	ieee80211_hw_set(hw, SUPPORTS_PS);
2108 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2109 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2110 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2111 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2112 	ieee80211_hw_set(hw, TX_AMSDU);
2113 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2114 
2115 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2116 				     BIT(NL80211_IFTYPE_AP) |
2117 				     BIT(NL80211_IFTYPE_ADHOC) |
2118 				     BIT(NL80211_IFTYPE_MESH_POINT);
2119 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2120 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2121 
2122 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2123 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2124 
2125 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2126 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2127 	hw->wiphy->max_scan_ie_len = RTW_SCAN_MAX_IE_LEN;
2128 
2129 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2130 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2131 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2132 
2133 #ifdef CONFIG_PM
2134 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2135 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2136 #endif
2137 	rtw_set_supported_band(hw, rtwdev->chip);
2138 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2139 
2140 	hw->wiphy->sar_capa = &rtw_sar_capa;
2141 
2142 	ret = rtw_regd_init(rtwdev);
2143 	if (ret) {
2144 		rtw_err(rtwdev, "failed to init regd\n");
2145 		return ret;
2146 	}
2147 
2148 	ret = ieee80211_register_hw(hw);
2149 	if (ret) {
2150 		rtw_err(rtwdev, "failed to register hw\n");
2151 		return ret;
2152 	}
2153 
2154 	ret = rtw_regd_hint(rtwdev);
2155 	if (ret) {
2156 		rtw_err(rtwdev, "failed to hint regd\n");
2157 		return ret;
2158 	}
2159 
2160 	rtw_debugfs_init(rtwdev);
2161 
2162 	rtwdev->bf_info.bfer_mu_cnt = 0;
2163 	rtwdev->bf_info.bfer_su_cnt = 0;
2164 
2165 	return 0;
2166 }
2167 EXPORT_SYMBOL(rtw_register_hw);
2168 
2169 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2170 {
2171 	struct rtw_chip_info *chip = rtwdev->chip;
2172 
2173 	ieee80211_unregister_hw(hw);
2174 	rtw_unset_supported_band(hw, chip);
2175 }
2176 EXPORT_SYMBOL(rtw_unregister_hw);
2177 
2178 MODULE_AUTHOR("Realtek Corporation");
2179 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2180 MODULE_LICENSE("Dual BSD/GPL");
2181