xref: /linux/drivers/net/wireless/realtek/rtw88/main.c (revision ba95c7452439756d4f6dceb5a188b7c31dbbe5b6)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include "main.h"
6 #include "regd.h"
7 #include "fw.h"
8 #include "ps.h"
9 #include "sec.h"
10 #include "mac.h"
11 #include "phy.h"
12 #include "reg.h"
13 #include "efuse.h"
14 #include "debug.h"
15 
16 static bool rtw_fw_support_lps;
17 unsigned int rtw_debug_mask;
18 EXPORT_SYMBOL(rtw_debug_mask);
19 
20 module_param_named(support_lps, rtw_fw_support_lps, bool, 0644);
21 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
22 
23 MODULE_PARM_DESC(support_lps, "Set Y to enable Leisure Power Save support, to turn radio off between beacons");
24 MODULE_PARM_DESC(debug_mask, "Debugging mask");
25 
26 static struct ieee80211_channel rtw_channeltable_2g[] = {
27 	{.center_freq = 2412, .hw_value = 1,},
28 	{.center_freq = 2417, .hw_value = 2,},
29 	{.center_freq = 2422, .hw_value = 3,},
30 	{.center_freq = 2427, .hw_value = 4,},
31 	{.center_freq = 2432, .hw_value = 5,},
32 	{.center_freq = 2437, .hw_value = 6,},
33 	{.center_freq = 2442, .hw_value = 7,},
34 	{.center_freq = 2447, .hw_value = 8,},
35 	{.center_freq = 2452, .hw_value = 9,},
36 	{.center_freq = 2457, .hw_value = 10,},
37 	{.center_freq = 2462, .hw_value = 11,},
38 	{.center_freq = 2467, .hw_value = 12,},
39 	{.center_freq = 2472, .hw_value = 13,},
40 	{.center_freq = 2484, .hw_value = 14,},
41 };
42 
43 static struct ieee80211_channel rtw_channeltable_5g[] = {
44 	{.center_freq = 5180, .hw_value = 36,},
45 	{.center_freq = 5200, .hw_value = 40,},
46 	{.center_freq = 5220, .hw_value = 44,},
47 	{.center_freq = 5240, .hw_value = 48,},
48 	{.center_freq = 5260, .hw_value = 52,},
49 	{.center_freq = 5280, .hw_value = 56,},
50 	{.center_freq = 5300, .hw_value = 60,},
51 	{.center_freq = 5320, .hw_value = 64,},
52 	{.center_freq = 5500, .hw_value = 100,},
53 	{.center_freq = 5520, .hw_value = 104,},
54 	{.center_freq = 5540, .hw_value = 108,},
55 	{.center_freq = 5560, .hw_value = 112,},
56 	{.center_freq = 5580, .hw_value = 116,},
57 	{.center_freq = 5600, .hw_value = 120,},
58 	{.center_freq = 5620, .hw_value = 124,},
59 	{.center_freq = 5640, .hw_value = 128,},
60 	{.center_freq = 5660, .hw_value = 132,},
61 	{.center_freq = 5680, .hw_value = 136,},
62 	{.center_freq = 5700, .hw_value = 140,},
63 	{.center_freq = 5745, .hw_value = 149,},
64 	{.center_freq = 5765, .hw_value = 153,},
65 	{.center_freq = 5785, .hw_value = 157,},
66 	{.center_freq = 5805, .hw_value = 161,},
67 	{.center_freq = 5825, .hw_value = 165,
68 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
69 };
70 
71 static struct ieee80211_rate rtw_ratetable[] = {
72 	{.bitrate = 10, .hw_value = 0x00,},
73 	{.bitrate = 20, .hw_value = 0x01,},
74 	{.bitrate = 55, .hw_value = 0x02,},
75 	{.bitrate = 110, .hw_value = 0x03,},
76 	{.bitrate = 60, .hw_value = 0x04,},
77 	{.bitrate = 90, .hw_value = 0x05,},
78 	{.bitrate = 120, .hw_value = 0x06,},
79 	{.bitrate = 180, .hw_value = 0x07,},
80 	{.bitrate = 240, .hw_value = 0x08,},
81 	{.bitrate = 360, .hw_value = 0x09,},
82 	{.bitrate = 480, .hw_value = 0x0a,},
83 	{.bitrate = 540, .hw_value = 0x0b,},
84 };
85 
86 static struct ieee80211_supported_band rtw_band_2ghz = {
87 	.band = NL80211_BAND_2GHZ,
88 
89 	.channels = rtw_channeltable_2g,
90 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
91 
92 	.bitrates = rtw_ratetable,
93 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
94 
95 	.ht_cap = {0},
96 	.vht_cap = {0},
97 };
98 
99 static struct ieee80211_supported_band rtw_band_5ghz = {
100 	.band = NL80211_BAND_5GHZ,
101 
102 	.channels = rtw_channeltable_5g,
103 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
104 
105 	/* 5G has no CCK rates */
106 	.bitrates = rtw_ratetable + 4,
107 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
108 
109 	.ht_cap = {0},
110 	.vht_cap = {0},
111 };
112 
113 struct rtw_watch_dog_iter_data {
114 	struct rtw_vif *rtwvif;
115 	bool active;
116 	u8 assoc_cnt;
117 };
118 
119 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
120 				   struct ieee80211_vif *vif)
121 {
122 	struct rtw_watch_dog_iter_data *iter_data = data;
123 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
124 
125 	if (vif->type == NL80211_IFTYPE_STATION) {
126 		if (vif->bss_conf.assoc) {
127 			iter_data->assoc_cnt++;
128 			iter_data->rtwvif = rtwvif;
129 		}
130 		if (rtwvif->stats.tx_cnt > RTW_LPS_THRESHOLD ||
131 		    rtwvif->stats.rx_cnt > RTW_LPS_THRESHOLD)
132 			iter_data->active = true;
133 	} else {
134 		/* only STATION mode can enter lps */
135 		iter_data->active = true;
136 	}
137 
138 	rtwvif->stats.tx_unicast = 0;
139 	rtwvif->stats.rx_unicast = 0;
140 	rtwvif->stats.tx_cnt = 0;
141 	rtwvif->stats.rx_cnt = 0;
142 }
143 
144 /* process TX/RX statistics periodically for hardware,
145  * the information helps hardware to enhance performance
146  */
147 static void rtw_watch_dog_work(struct work_struct *work)
148 {
149 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
150 					      watch_dog_work.work);
151 	struct rtw_watch_dog_iter_data data = {};
152 
153 	if (!rtw_flag_check(rtwdev, RTW_FLAG_RUNNING))
154 		return;
155 
156 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
157 				     RTW_WATCH_DOG_DELAY_TIME);
158 
159 	/* reset tx/rx statictics */
160 	rtwdev->stats.tx_unicast = 0;
161 	rtwdev->stats.rx_unicast = 0;
162 	rtwdev->stats.tx_cnt = 0;
163 	rtwdev->stats.rx_cnt = 0;
164 
165 	/* use atomic version to avoid taking local->iflist_mtx mutex */
166 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
167 
168 	/* fw supports only one station associated to enter lps, if there are
169 	 * more than two stations associated to the AP, then we can not enter
170 	 * lps, because fw does not handle the overlapped beacon interval
171 	 */
172 	if (rtw_fw_support_lps &&
173 	    data.rtwvif && !data.active && data.assoc_cnt == 1)
174 		rtw_enter_lps(rtwdev, data.rtwvif);
175 
176 	if (rtw_flag_check(rtwdev, RTW_FLAG_SCANNING))
177 		return;
178 
179 	rtw_phy_dynamic_mechanism(rtwdev);
180 
181 	rtwdev->watch_dog_cnt++;
182 }
183 
184 static void rtw_c2h_work(struct work_struct *work)
185 {
186 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
187 	struct sk_buff *skb, *tmp;
188 
189 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
190 		skb_unlink(skb, &rtwdev->c2h_queue);
191 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
192 		dev_kfree_skb_any(skb);
193 	}
194 }
195 
196 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
197 			    struct rtw_channel_params *chan_params)
198 {
199 	struct ieee80211_channel *channel = chandef->chan;
200 	enum nl80211_chan_width width = chandef->width;
201 	u32 primary_freq, center_freq;
202 	u8 center_chan;
203 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
204 	u8 primary_chan_idx = 0;
205 
206 	center_chan = channel->hw_value;
207 	primary_freq = channel->center_freq;
208 	center_freq = chandef->center_freq1;
209 
210 	switch (width) {
211 	case NL80211_CHAN_WIDTH_20_NOHT:
212 	case NL80211_CHAN_WIDTH_20:
213 		bandwidth = RTW_CHANNEL_WIDTH_20;
214 		primary_chan_idx = 0;
215 		break;
216 	case NL80211_CHAN_WIDTH_40:
217 		bandwidth = RTW_CHANNEL_WIDTH_40;
218 		if (primary_freq > center_freq) {
219 			primary_chan_idx = 1;
220 			center_chan -= 2;
221 		} else {
222 			primary_chan_idx = 2;
223 			center_chan += 2;
224 		}
225 		break;
226 	case NL80211_CHAN_WIDTH_80:
227 		bandwidth = RTW_CHANNEL_WIDTH_80;
228 		if (primary_freq > center_freq) {
229 			if (primary_freq - center_freq == 10) {
230 				primary_chan_idx = 1;
231 				center_chan -= 2;
232 			} else {
233 				primary_chan_idx = 3;
234 				center_chan -= 6;
235 			}
236 		} else {
237 			if (center_freq - primary_freq == 10) {
238 				primary_chan_idx = 2;
239 				center_chan += 2;
240 			} else {
241 				primary_chan_idx = 4;
242 				center_chan += 6;
243 			}
244 		}
245 		break;
246 	default:
247 		center_chan = 0;
248 		break;
249 	}
250 
251 	chan_params->center_chan = center_chan;
252 	chan_params->bandwidth = bandwidth;
253 	chan_params->primary_chan_idx = primary_chan_idx;
254 }
255 
256 void rtw_set_channel(struct rtw_dev *rtwdev)
257 {
258 	struct ieee80211_hw *hw = rtwdev->hw;
259 	struct rtw_hal *hal = &rtwdev->hal;
260 	struct rtw_chip_info *chip = rtwdev->chip;
261 	struct rtw_channel_params ch_param;
262 	u8 center_chan, bandwidth, primary_chan_idx;
263 
264 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
265 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
266 		return;
267 
268 	center_chan = ch_param.center_chan;
269 	bandwidth = ch_param.bandwidth;
270 	primary_chan_idx = ch_param.primary_chan_idx;
271 
272 	hal->current_band_width = bandwidth;
273 	hal->current_channel = center_chan;
274 	hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
275 	chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
276 
277 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
278 }
279 
280 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
281 {
282 	int i;
283 
284 	for (i = 0; i < ETH_ALEN; i++)
285 		rtw_write8(rtwdev, start + i, addr[i]);
286 }
287 
288 void rtw_vif_port_config(struct rtw_dev *rtwdev,
289 			 struct rtw_vif *rtwvif,
290 			 u32 config)
291 {
292 	u32 addr, mask;
293 
294 	if (config & PORT_SET_MAC_ADDR) {
295 		addr = rtwvif->conf->mac_addr.addr;
296 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
297 	}
298 	if (config & PORT_SET_BSSID) {
299 		addr = rtwvif->conf->bssid.addr;
300 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
301 	}
302 	if (config & PORT_SET_NET_TYPE) {
303 		addr = rtwvif->conf->net_type.addr;
304 		mask = rtwvif->conf->net_type.mask;
305 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
306 	}
307 	if (config & PORT_SET_AID) {
308 		addr = rtwvif->conf->aid.addr;
309 		mask = rtwvif->conf->aid.mask;
310 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
311 	}
312 	if (config & PORT_SET_BCN_CTRL) {
313 		addr = rtwvif->conf->bcn_ctrl.addr;
314 		mask = rtwvif->conf->bcn_ctrl.mask;
315 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
316 	}
317 }
318 
319 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
320 {
321 	u8 bw = 0;
322 
323 	switch (bw_cap) {
324 	case EFUSE_HW_CAP_IGNORE:
325 	case EFUSE_HW_CAP_SUPP_BW80:
326 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
327 		/* fall through */
328 	case EFUSE_HW_CAP_SUPP_BW40:
329 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
330 		/* fall through */
331 	default:
332 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
333 		break;
334 	}
335 
336 	return bw;
337 }
338 
339 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
340 {
341 	struct rtw_hal *hal = &rtwdev->hal;
342 
343 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
344 	    hw_ant_num >= hal->rf_path_num)
345 		return;
346 
347 	switch (hw_ant_num) {
348 	case 1:
349 		hal->rf_type = RF_1T1R;
350 		hal->rf_path_num = 1;
351 		hal->antenna_tx = BB_PATH_A;
352 		hal->antenna_rx = BB_PATH_A;
353 		break;
354 	default:
355 		WARN(1, "invalid hw configuration from efuse\n");
356 		break;
357 	}
358 }
359 
360 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
361 {
362 	u64 ra_mask = 0;
363 	u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
364 	u8 vht_mcs_cap;
365 	int i, nss;
366 
367 	/* 4SS, every two bits for MCS7/8/9 */
368 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
369 		vht_mcs_cap = mcs_map & 0x3;
370 		switch (vht_mcs_cap) {
371 		case 2: /* MCS9 */
372 			ra_mask |= 0x3ffULL << nss;
373 			break;
374 		case 1: /* MCS8 */
375 			ra_mask |= 0x1ffULL << nss;
376 			break;
377 		case 0: /* MCS7 */
378 			ra_mask |= 0x0ffULL << nss;
379 			break;
380 		default:
381 			break;
382 		}
383 	}
384 
385 	return ra_mask;
386 }
387 
388 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
389 {
390 	u8 rate_id = 0;
391 
392 	switch (wireless_set) {
393 	case WIRELESS_CCK:
394 		rate_id = RTW_RATEID_B_20M;
395 		break;
396 	case WIRELESS_OFDM:
397 		rate_id = RTW_RATEID_G;
398 		break;
399 	case WIRELESS_CCK | WIRELESS_OFDM:
400 		rate_id = RTW_RATEID_BG;
401 		break;
402 	case WIRELESS_OFDM | WIRELESS_HT:
403 		if (tx_num == 1)
404 			rate_id = RTW_RATEID_GN_N1SS;
405 		else if (tx_num == 2)
406 			rate_id = RTW_RATEID_GN_N2SS;
407 		else if (tx_num == 3)
408 			rate_id = RTW_RATEID_ARFR5_N_3SS;
409 		break;
410 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
411 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
412 			if (tx_num == 1)
413 				rate_id = RTW_RATEID_BGN_40M_1SS;
414 			else if (tx_num == 2)
415 				rate_id = RTW_RATEID_BGN_40M_2SS;
416 			else if (tx_num == 3)
417 				rate_id = RTW_RATEID_ARFR5_N_3SS;
418 			else if (tx_num == 4)
419 				rate_id = RTW_RATEID_ARFR7_N_4SS;
420 		} else {
421 			if (tx_num == 1)
422 				rate_id = RTW_RATEID_BGN_20M_1SS;
423 			else if (tx_num == 2)
424 				rate_id = RTW_RATEID_BGN_20M_2SS;
425 			else if (tx_num == 3)
426 				rate_id = RTW_RATEID_ARFR5_N_3SS;
427 			else if (tx_num == 4)
428 				rate_id = RTW_RATEID_ARFR7_N_4SS;
429 		}
430 		break;
431 	case WIRELESS_OFDM | WIRELESS_VHT:
432 		if (tx_num == 1)
433 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
434 		else if (tx_num == 2)
435 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
436 		else if (tx_num == 3)
437 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
438 		else if (tx_num == 4)
439 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
440 		break;
441 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
442 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
443 			if (tx_num == 1)
444 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
445 			else if (tx_num == 2)
446 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
447 			else if (tx_num == 3)
448 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
449 			else if (tx_num == 4)
450 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
451 		} else {
452 			if (tx_num == 1)
453 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
454 			else if (tx_num == 2)
455 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
456 			else if (tx_num == 3)
457 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
458 			else if (tx_num == 4)
459 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
460 		}
461 		break;
462 	default:
463 		break;
464 	}
465 
466 	return rate_id;
467 }
468 
469 #define RA_MASK_CCK_RATES	0x0000f
470 #define RA_MASK_OFDM_RATES	0x00ff0
471 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
472 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
473 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
474 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
475 				 RA_MASK_HT_RATES_2SS | \
476 				 RA_MASK_HT_RATES_3SS)
477 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
478 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
479 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
480 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
481 				 RA_MASK_VHT_RATES_2SS | \
482 				 RA_MASK_VHT_RATES_3SS)
483 #define RA_MASK_CCK_IN_HT	0x00005
484 #define RA_MASK_CCK_IN_VHT	0x00005
485 #define RA_MASK_OFDM_IN_VHT	0x00010
486 #define RA_MASK_OFDM_IN_HT_2G	0x00010
487 #define RA_MASK_OFDM_IN_HT_5G	0x00030
488 
489 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
490 {
491 	struct ieee80211_sta *sta = si->sta;
492 	struct rtw_efuse *efuse = &rtwdev->efuse;
493 	struct rtw_hal *hal = &rtwdev->hal;
494 	u8 rssi_level;
495 	u8 wireless_set;
496 	u8 bw_mode;
497 	u8 rate_id;
498 	u8 rf_type = RF_1T1R;
499 	u8 stbc_en = 0;
500 	u8 ldpc_en = 0;
501 	u8 tx_num = 1;
502 	u64 ra_mask = 0;
503 	bool is_vht_enable = false;
504 	bool is_support_sgi = false;
505 
506 	if (sta->vht_cap.vht_supported) {
507 		is_vht_enable = true;
508 		ra_mask |= get_vht_ra_mask(sta);
509 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
510 			stbc_en = VHT_STBC_EN;
511 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
512 			ldpc_en = VHT_LDPC_EN;
513 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80)
514 			is_support_sgi = true;
515 	} else if (sta->ht_cap.ht_supported) {
516 		ra_mask |= (sta->ht_cap.mcs.rx_mask[NL80211_BAND_5GHZ] << 20) |
517 			   (sta->ht_cap.mcs.rx_mask[NL80211_BAND_2GHZ] << 12);
518 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
519 			stbc_en = HT_STBC_EN;
520 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
521 			ldpc_en = HT_LDPC_EN;
522 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20 ||
523 		    sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
524 			is_support_sgi = true;
525 	}
526 
527 	if (hal->current_band_type == RTW_BAND_5G) {
528 		ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
529 		if (sta->vht_cap.vht_supported) {
530 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
531 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
532 		} else if (sta->ht_cap.ht_supported) {
533 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
534 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
535 		} else {
536 			wireless_set = WIRELESS_OFDM;
537 		}
538 	} else if (hal->current_band_type == RTW_BAND_2G) {
539 		ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
540 		if (sta->vht_cap.vht_supported) {
541 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
542 				   RA_MASK_OFDM_IN_VHT;
543 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
544 				       WIRELESS_HT | WIRELESS_VHT;
545 		} else if (sta->ht_cap.ht_supported) {
546 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
547 				   RA_MASK_OFDM_IN_HT_2G;
548 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
549 				       WIRELESS_HT;
550 		} else if (sta->supp_rates[0] <= 0xf) {
551 			wireless_set = WIRELESS_CCK;
552 		} else {
553 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
554 		}
555 	} else {
556 		rtw_err(rtwdev, "Unknown band type\n");
557 		wireless_set = 0;
558 	}
559 
560 	if (efuse->hw_cap.nss == 1) {
561 		ra_mask &= RA_MASK_VHT_RATES_1SS;
562 		ra_mask &= RA_MASK_HT_RATES_1SS;
563 	}
564 
565 	switch (sta->bandwidth) {
566 	case IEEE80211_STA_RX_BW_80:
567 		bw_mode = RTW_CHANNEL_WIDTH_80;
568 		break;
569 	case IEEE80211_STA_RX_BW_40:
570 		bw_mode = RTW_CHANNEL_WIDTH_40;
571 		break;
572 	default:
573 		bw_mode = RTW_CHANNEL_WIDTH_20;
574 		break;
575 	}
576 
577 	if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
578 		tx_num = 2;
579 		rf_type = RF_2T2R;
580 	} else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
581 		tx_num = 2;
582 		rf_type = RF_2T2R;
583 	}
584 
585 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
586 
587 	if (wireless_set != WIRELESS_CCK) {
588 		rssi_level = si->rssi_level;
589 		if (rssi_level == 0)
590 			ra_mask &= 0xffffffffffffffffULL;
591 		else if (rssi_level == 1)
592 			ra_mask &= 0xfffffffffffffff0ULL;
593 		else if (rssi_level == 2)
594 			ra_mask &= 0xffffffffffffefe0ULL;
595 		else if (rssi_level == 3)
596 			ra_mask &= 0xffffffffffffcfc0ULL;
597 		else if (rssi_level == 4)
598 			ra_mask &= 0xffffffffffff8f80ULL;
599 		else if (rssi_level >= 5)
600 			ra_mask &= 0xffffffffffff0f00ULL;
601 	}
602 
603 	si->bw_mode = bw_mode;
604 	si->stbc_en = stbc_en;
605 	si->ldpc_en = ldpc_en;
606 	si->rf_type = rf_type;
607 	si->wireless_set = wireless_set;
608 	si->sgi_enable = is_support_sgi;
609 	si->vht_enable = is_vht_enable;
610 	si->ra_mask = ra_mask;
611 	si->rate_id = rate_id;
612 
613 	rtw_fw_send_ra_info(rtwdev, si);
614 }
615 
616 static int rtw_power_on(struct rtw_dev *rtwdev)
617 {
618 	struct rtw_chip_info *chip = rtwdev->chip;
619 	struct rtw_fw_state *fw = &rtwdev->fw;
620 	int ret;
621 
622 	ret = rtw_hci_setup(rtwdev);
623 	if (ret) {
624 		rtw_err(rtwdev, "failed to setup hci\n");
625 		goto err;
626 	}
627 
628 	/* power on MAC before firmware downloaded */
629 	ret = rtw_mac_power_on(rtwdev);
630 	if (ret) {
631 		rtw_err(rtwdev, "failed to power on mac\n");
632 		goto err;
633 	}
634 
635 	wait_for_completion(&fw->completion);
636 	if (!fw->firmware) {
637 		ret = -EINVAL;
638 		rtw_err(rtwdev, "failed to load firmware\n");
639 		goto err;
640 	}
641 
642 	ret = rtw_download_firmware(rtwdev, fw);
643 	if (ret) {
644 		rtw_err(rtwdev, "failed to download firmware\n");
645 		goto err_off;
646 	}
647 
648 	/* config mac after firmware downloaded */
649 	ret = rtw_mac_init(rtwdev);
650 	if (ret) {
651 		rtw_err(rtwdev, "failed to configure mac\n");
652 		goto err_off;
653 	}
654 
655 	chip->ops->phy_set_param(rtwdev);
656 
657 	ret = rtw_hci_start(rtwdev);
658 	if (ret) {
659 		rtw_err(rtwdev, "failed to start hci\n");
660 		goto err_off;
661 	}
662 
663 	return 0;
664 
665 err_off:
666 	rtw_mac_power_off(rtwdev);
667 
668 err:
669 	return ret;
670 }
671 
672 int rtw_core_start(struct rtw_dev *rtwdev)
673 {
674 	int ret;
675 
676 	ret = rtw_power_on(rtwdev);
677 	if (ret)
678 		return ret;
679 
680 	rtw_sec_enable_sec_engine(rtwdev);
681 
682 	/* rcr reset after powered on */
683 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
684 
685 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
686 				     RTW_WATCH_DOG_DELAY_TIME);
687 
688 	rtw_flag_set(rtwdev, RTW_FLAG_RUNNING);
689 
690 	return 0;
691 }
692 
693 static void rtw_power_off(struct rtw_dev *rtwdev)
694 {
695 	rtwdev->hci.ops->stop(rtwdev);
696 	rtw_mac_power_off(rtwdev);
697 }
698 
699 void rtw_core_stop(struct rtw_dev *rtwdev)
700 {
701 	rtw_flag_clear(rtwdev, RTW_FLAG_RUNNING);
702 	rtw_flag_clear(rtwdev, RTW_FLAG_FW_RUNNING);
703 
704 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
705 
706 	rtw_power_off(rtwdev);
707 }
708 
709 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
710 			    struct ieee80211_sta_ht_cap *ht_cap)
711 {
712 	struct rtw_efuse *efuse = &rtwdev->efuse;
713 
714 	ht_cap->ht_supported = true;
715 	ht_cap->cap = 0;
716 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
717 			IEEE80211_HT_CAP_MAX_AMSDU |
718 			IEEE80211_HT_CAP_LDPC_CODING |
719 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
720 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
721 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
722 				IEEE80211_HT_CAP_DSSSCCK40 |
723 				IEEE80211_HT_CAP_SGI_40;
724 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
725 	ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
726 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
727 	if (efuse->hw_cap.nss > 1) {
728 		ht_cap->mcs.rx_mask[0] = 0xFF;
729 		ht_cap->mcs.rx_mask[1] = 0xFF;
730 		ht_cap->mcs.rx_mask[4] = 0x01;
731 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
732 	} else {
733 		ht_cap->mcs.rx_mask[0] = 0xFF;
734 		ht_cap->mcs.rx_mask[1] = 0x00;
735 		ht_cap->mcs.rx_mask[4] = 0x01;
736 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
737 	}
738 }
739 
740 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
741 			     struct ieee80211_sta_vht_cap *vht_cap)
742 {
743 	struct rtw_efuse *efuse = &rtwdev->efuse;
744 	u16 mcs_map;
745 	__le16 highest;
746 
747 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
748 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
749 		return;
750 
751 	vht_cap->vht_supported = true;
752 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
753 		       IEEE80211_VHT_CAP_RXLDPC |
754 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
755 		       IEEE80211_VHT_CAP_TXSTBC |
756 		       IEEE80211_VHT_CAP_RXSTBC_1 |
757 		       IEEE80211_VHT_CAP_HTC_VHT |
758 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
759 		       0;
760 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
761 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
762 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
763 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
764 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
765 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
766 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
767 	if (efuse->hw_cap.nss > 1) {
768 		highest = cpu_to_le16(780);
769 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
770 	} else {
771 		highest = cpu_to_le16(390);
772 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
773 	}
774 
775 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
776 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
777 	vht_cap->vht_mcs.rx_highest = highest;
778 	vht_cap->vht_mcs.tx_highest = highest;
779 }
780 
781 static void rtw_set_supported_band(struct ieee80211_hw *hw,
782 				   struct rtw_chip_info *chip)
783 {
784 	struct rtw_dev *rtwdev = hw->priv;
785 	struct ieee80211_supported_band *sband;
786 
787 	if (chip->band & RTW_BAND_2G) {
788 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
789 		if (!sband)
790 			goto err_out;
791 		if (chip->ht_supported)
792 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
793 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
794 	}
795 
796 	if (chip->band & RTW_BAND_5G) {
797 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
798 		if (!sband)
799 			goto err_out;
800 		if (chip->ht_supported)
801 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
802 		if (chip->vht_supported)
803 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
804 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
805 	}
806 
807 	return;
808 
809 err_out:
810 	rtw_err(rtwdev, "failed to set supported band\n");
811 	kfree(sband);
812 }
813 
814 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
815 				     struct rtw_chip_info *chip)
816 {
817 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
818 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
819 }
820 
821 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
822 {
823 	struct rtw_dev *rtwdev = context;
824 	struct rtw_fw_state *fw = &rtwdev->fw;
825 
826 	if (!firmware)
827 		rtw_err(rtwdev, "failed to request firmware\n");
828 
829 	fw->firmware = firmware;
830 	complete_all(&fw->completion);
831 }
832 
833 static int rtw_load_firmware(struct rtw_dev *rtwdev, const char *fw_name)
834 {
835 	struct rtw_fw_state *fw = &rtwdev->fw;
836 	int ret;
837 
838 	init_completion(&fw->completion);
839 
840 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
841 				      GFP_KERNEL, rtwdev, rtw_load_firmware_cb);
842 	if (ret) {
843 		rtw_err(rtwdev, "async firmware request failed\n");
844 		return ret;
845 	}
846 
847 	return 0;
848 }
849 
850 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
851 {
852 	struct rtw_chip_info *chip = rtwdev->chip;
853 	struct rtw_hal *hal = &rtwdev->hal;
854 	struct rtw_efuse *efuse = &rtwdev->efuse;
855 	u32 wl_bt_pwr_ctrl;
856 	int ret = 0;
857 
858 	switch (rtw_hci_type(rtwdev)) {
859 	case RTW_HCI_TYPE_PCIE:
860 		rtwdev->hci.rpwm_addr = 0x03d9;
861 		break;
862 	default:
863 		rtw_err(rtwdev, "unsupported hci type\n");
864 		return -EINVAL;
865 	}
866 
867 	wl_bt_pwr_ctrl = rtw_read32(rtwdev, REG_WL_BT_PWR_CTRL);
868 	if (wl_bt_pwr_ctrl & BIT_BT_FUNC_EN)
869 		rtwdev->efuse.btcoex = true;
870 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
871 	hal->fab_version = BIT_GET_VENDOR_ID(hal->chip_version) >> 2;
872 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
873 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
874 	if (hal->chip_version & BIT_RF_TYPE_ID) {
875 		hal->rf_type = RF_2T2R;
876 		hal->rf_path_num = 2;
877 		hal->antenna_tx = BB_PATH_AB;
878 		hal->antenna_rx = BB_PATH_AB;
879 	} else {
880 		hal->rf_type = RF_1T1R;
881 		hal->rf_path_num = 1;
882 		hal->antenna_tx = BB_PATH_A;
883 		hal->antenna_rx = BB_PATH_A;
884 	}
885 
886 	if (hal->fab_version == 2)
887 		hal->fab_version = 1;
888 	else if (hal->fab_version == 1)
889 		hal->fab_version = 2;
890 
891 	efuse->physical_size = chip->phy_efuse_size;
892 	efuse->logical_size = chip->log_efuse_size;
893 	efuse->protect_size = chip->ptct_efuse_size;
894 
895 	/* default use ack */
896 	rtwdev->hal.rcr |= BIT_VHT_DACK;
897 
898 	return ret;
899 }
900 
901 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
902 {
903 	struct rtw_fw_state *fw = &rtwdev->fw;
904 	int ret;
905 
906 	ret = rtw_hci_setup(rtwdev);
907 	if (ret) {
908 		rtw_err(rtwdev, "failed to setup hci\n");
909 		goto err;
910 	}
911 
912 	ret = rtw_mac_power_on(rtwdev);
913 	if (ret) {
914 		rtw_err(rtwdev, "failed to power on mac\n");
915 		goto err;
916 	}
917 
918 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
919 
920 	wait_for_completion(&fw->completion);
921 	if (!fw->firmware) {
922 		ret = -EINVAL;
923 		rtw_err(rtwdev, "failed to load firmware\n");
924 		goto err;
925 	}
926 
927 	ret = rtw_download_firmware(rtwdev, fw);
928 	if (ret) {
929 		rtw_err(rtwdev, "failed to download firmware\n");
930 		goto err_off;
931 	}
932 
933 	return 0;
934 
935 err_off:
936 	rtw_mac_power_off(rtwdev);
937 
938 err:
939 	return ret;
940 }
941 
942 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
943 {
944 	struct rtw_efuse *efuse = &rtwdev->efuse;
945 	u8 hw_feature[HW_FEATURE_LEN];
946 	u8 id;
947 	u8 bw;
948 	int i;
949 
950 	id = rtw_read8(rtwdev, REG_C2HEVT);
951 	if (id != C2H_HW_FEATURE_REPORT) {
952 		rtw_err(rtwdev, "failed to read hw feature report\n");
953 		return -EBUSY;
954 	}
955 
956 	for (i = 0; i < HW_FEATURE_LEN; i++)
957 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
958 
959 	rtw_write8(rtwdev, REG_C2HEVT, 0);
960 
961 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
962 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
963 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
964 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
965 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
966 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
967 
968 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
969 
970 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE)
971 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
972 
973 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
974 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
975 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
976 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
977 
978 	return 0;
979 }
980 
981 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
982 {
983 	rtw_hci_stop(rtwdev);
984 	rtw_mac_power_off(rtwdev);
985 }
986 
987 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
988 {
989 	struct rtw_efuse *efuse = &rtwdev->efuse;
990 	int ret;
991 
992 	mutex_lock(&rtwdev->mutex);
993 
994 	/* power on mac to read efuse */
995 	ret = rtw_chip_efuse_enable(rtwdev);
996 	if (ret)
997 		goto out;
998 
999 	ret = rtw_parse_efuse_map(rtwdev);
1000 	if (ret)
1001 		goto out;
1002 
1003 	ret = rtw_dump_hw_feature(rtwdev);
1004 	if (ret)
1005 		goto out;
1006 
1007 	ret = rtw_check_supported_rfe(rtwdev);
1008 	if (ret)
1009 		goto out;
1010 
1011 	if (efuse->crystal_cap == 0xff)
1012 		efuse->crystal_cap = 0;
1013 	if (efuse->pa_type_2g == 0xff)
1014 		efuse->pa_type_2g = 0;
1015 	if (efuse->pa_type_5g == 0xff)
1016 		efuse->pa_type_5g = 0;
1017 	if (efuse->lna_type_2g == 0xff)
1018 		efuse->lna_type_2g = 0;
1019 	if (efuse->lna_type_5g == 0xff)
1020 		efuse->lna_type_5g = 0;
1021 	if (efuse->channel_plan == 0xff)
1022 		efuse->channel_plan = 0x7f;
1023 	if (efuse->bt_setting & BIT(0))
1024 		efuse->share_ant = true;
1025 	if (efuse->regd == 0xff)
1026 		efuse->regd = 0;
1027 
1028 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1029 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1030 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1031 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1032 
1033 	rtw_chip_efuse_disable(rtwdev);
1034 
1035 out:
1036 	mutex_unlock(&rtwdev->mutex);
1037 	return ret;
1038 }
1039 
1040 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1041 {
1042 	struct rtw_hal *hal = &rtwdev->hal;
1043 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1044 
1045 	if (!rfe_def)
1046 		return -ENODEV;
1047 
1048 	rtw_phy_setup_phy_cond(rtwdev, 0);
1049 
1050 	rtw_hw_init_tx_power(hal);
1051 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1052 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1053 	rtw_phy_tx_power_by_rate_config(hal);
1054 	rtw_phy_tx_power_limit_config(hal);
1055 
1056 	return 0;
1057 }
1058 
1059 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1060 {
1061 	int ret;
1062 
1063 	ret = rtw_chip_parameter_setup(rtwdev);
1064 	if (ret) {
1065 		rtw_err(rtwdev, "failed to setup chip parameters\n");
1066 		goto err_out;
1067 	}
1068 
1069 	ret = rtw_chip_efuse_info_setup(rtwdev);
1070 	if (ret) {
1071 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
1072 		goto err_out;
1073 	}
1074 
1075 	ret = rtw_chip_board_info_setup(rtwdev);
1076 	if (ret) {
1077 		rtw_err(rtwdev, "failed to setup chip board info\n");
1078 		goto err_out;
1079 	}
1080 
1081 	return 0;
1082 
1083 err_out:
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL(rtw_chip_info_setup);
1087 
1088 int rtw_core_init(struct rtw_dev *rtwdev)
1089 {
1090 	int ret;
1091 
1092 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1093 
1094 	timer_setup(&rtwdev->tx_report.purge_timer,
1095 		    rtw_tx_report_purge_timer, 0);
1096 
1097 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1098 	INIT_DELAYED_WORK(&rtwdev->lps_work, rtw_lps_work);
1099 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1100 	skb_queue_head_init(&rtwdev->c2h_queue);
1101 	skb_queue_head_init(&rtwdev->tx_report.queue);
1102 
1103 	spin_lock_init(&rtwdev->dm_lock);
1104 	spin_lock_init(&rtwdev->rf_lock);
1105 	spin_lock_init(&rtwdev->h2c.lock);
1106 	spin_lock_init(&rtwdev->tx_report.q_lock);
1107 
1108 	mutex_init(&rtwdev->mutex);
1109 	mutex_init(&rtwdev->hal.tx_power_mutex);
1110 
1111 	rtwdev->sec.total_cam_num = 32;
1112 	rtwdev->hal.current_channel = 1;
1113 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
1114 
1115 	mutex_lock(&rtwdev->mutex);
1116 	rtw_add_rsvd_page(rtwdev, RSVD_BEACON, false);
1117 	mutex_unlock(&rtwdev->mutex);
1118 
1119 	/* default rx filter setting */
1120 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
1121 			  BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
1122 			  BIT_AB | BIT_AM | BIT_APM;
1123 
1124 	ret = rtw_load_firmware(rtwdev, rtwdev->chip->fw_name);
1125 	if (ret) {
1126 		rtw_warn(rtwdev, "no firmware loaded\n");
1127 		return ret;
1128 	}
1129 
1130 	return 0;
1131 }
1132 EXPORT_SYMBOL(rtw_core_init);
1133 
1134 void rtw_core_deinit(struct rtw_dev *rtwdev)
1135 {
1136 	struct rtw_fw_state *fw = &rtwdev->fw;
1137 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
1138 	unsigned long flags;
1139 
1140 	if (fw->firmware)
1141 		release_firmware(fw->firmware);
1142 
1143 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
1144 	skb_queue_purge(&rtwdev->tx_report.queue);
1145 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
1146 
1147 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, list) {
1148 		list_del(&rsvd_pkt->list);
1149 		kfree(rsvd_pkt);
1150 	}
1151 
1152 	mutex_destroy(&rtwdev->mutex);
1153 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
1154 }
1155 EXPORT_SYMBOL(rtw_core_deinit);
1156 
1157 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1158 {
1159 	int max_tx_headroom = 0;
1160 	int ret;
1161 
1162 	/* TODO: USB & SDIO may need extra room? */
1163 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
1164 
1165 	hw->extra_tx_headroom = max_tx_headroom;
1166 	hw->queues = IEEE80211_NUM_ACS;
1167 	hw->sta_data_size = sizeof(struct rtw_sta_info);
1168 	hw->vif_data_size = sizeof(struct rtw_vif);
1169 
1170 	ieee80211_hw_set(hw, SIGNAL_DBM);
1171 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1172 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1173 	ieee80211_hw_set(hw, MFP_CAPABLE);
1174 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1175 	ieee80211_hw_set(hw, SUPPORTS_PS);
1176 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
1177 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
1178 
1179 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
1180 				     BIT(NL80211_IFTYPE_AP) |
1181 				     BIT(NL80211_IFTYPE_ADHOC) |
1182 				     BIT(NL80211_IFTYPE_MESH_POINT);
1183 
1184 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
1185 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
1186 
1187 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
1188 
1189 	rtw_set_supported_band(hw, rtwdev->chip);
1190 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
1191 
1192 	rtw_regd_init(rtwdev, rtw_regd_notifier);
1193 
1194 	ret = ieee80211_register_hw(hw);
1195 	if (ret) {
1196 		rtw_err(rtwdev, "failed to register hw\n");
1197 		return ret;
1198 	}
1199 
1200 	if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2))
1201 		rtw_err(rtwdev, "regulatory_hint fail\n");
1202 
1203 	rtw_debugfs_init(rtwdev);
1204 
1205 	return 0;
1206 }
1207 EXPORT_SYMBOL(rtw_register_hw);
1208 
1209 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1210 {
1211 	struct rtw_chip_info *chip = rtwdev->chip;
1212 
1213 	ieee80211_unregister_hw(hw);
1214 	rtw_unset_supported_band(hw, chip);
1215 }
1216 EXPORT_SYMBOL(rtw_unregister_hw);
1217 
1218 MODULE_AUTHOR("Realtek Corporation");
1219 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
1220 MODULE_LICENSE("Dual BSD/GPL");
1221