xref: /linux/drivers/net/wireless/realtek/rtw88/main.c (revision 7bb377107c72a40ab7505341f8626c8eb79a0cb7)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include "main.h"
6 #include "regd.h"
7 #include "fw.h"
8 #include "ps.h"
9 #include "sec.h"
10 #include "mac.h"
11 #include "coex.h"
12 #include "phy.h"
13 #include "reg.h"
14 #include "efuse.h"
15 #include "tx.h"
16 #include "debug.h"
17 #include "bf.h"
18 
19 unsigned int rtw_fw_lps_deep_mode;
20 EXPORT_SYMBOL(rtw_fw_lps_deep_mode);
21 bool rtw_bf_support = true;
22 unsigned int rtw_debug_mask;
23 EXPORT_SYMBOL(rtw_debug_mask);
24 
25 module_param_named(lps_deep_mode, rtw_fw_lps_deep_mode, uint, 0644);
26 module_param_named(support_bf, rtw_bf_support, bool, 0644);
27 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
28 
29 MODULE_PARM_DESC(lps_deep_mode, "Deeper PS mode. If 0, deep PS is disabled");
30 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
31 MODULE_PARM_DESC(debug_mask, "Debugging mask");
32 
33 static struct ieee80211_channel rtw_channeltable_2g[] = {
34 	{.center_freq = 2412, .hw_value = 1,},
35 	{.center_freq = 2417, .hw_value = 2,},
36 	{.center_freq = 2422, .hw_value = 3,},
37 	{.center_freq = 2427, .hw_value = 4,},
38 	{.center_freq = 2432, .hw_value = 5,},
39 	{.center_freq = 2437, .hw_value = 6,},
40 	{.center_freq = 2442, .hw_value = 7,},
41 	{.center_freq = 2447, .hw_value = 8,},
42 	{.center_freq = 2452, .hw_value = 9,},
43 	{.center_freq = 2457, .hw_value = 10,},
44 	{.center_freq = 2462, .hw_value = 11,},
45 	{.center_freq = 2467, .hw_value = 12,},
46 	{.center_freq = 2472, .hw_value = 13,},
47 	{.center_freq = 2484, .hw_value = 14,},
48 };
49 
50 static struct ieee80211_channel rtw_channeltable_5g[] = {
51 	{.center_freq = 5180, .hw_value = 36,},
52 	{.center_freq = 5200, .hw_value = 40,},
53 	{.center_freq = 5220, .hw_value = 44,},
54 	{.center_freq = 5240, .hw_value = 48,},
55 	{.center_freq = 5260, .hw_value = 52,},
56 	{.center_freq = 5280, .hw_value = 56,},
57 	{.center_freq = 5300, .hw_value = 60,},
58 	{.center_freq = 5320, .hw_value = 64,},
59 	{.center_freq = 5500, .hw_value = 100,},
60 	{.center_freq = 5520, .hw_value = 104,},
61 	{.center_freq = 5540, .hw_value = 108,},
62 	{.center_freq = 5560, .hw_value = 112,},
63 	{.center_freq = 5580, .hw_value = 116,},
64 	{.center_freq = 5600, .hw_value = 120,},
65 	{.center_freq = 5620, .hw_value = 124,},
66 	{.center_freq = 5640, .hw_value = 128,},
67 	{.center_freq = 5660, .hw_value = 132,},
68 	{.center_freq = 5680, .hw_value = 136,},
69 	{.center_freq = 5700, .hw_value = 140,},
70 	{.center_freq = 5745, .hw_value = 149,},
71 	{.center_freq = 5765, .hw_value = 153,},
72 	{.center_freq = 5785, .hw_value = 157,},
73 	{.center_freq = 5805, .hw_value = 161,},
74 	{.center_freq = 5825, .hw_value = 165,
75 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
76 };
77 
78 static struct ieee80211_rate rtw_ratetable[] = {
79 	{.bitrate = 10, .hw_value = 0x00,},
80 	{.bitrate = 20, .hw_value = 0x01,},
81 	{.bitrate = 55, .hw_value = 0x02,},
82 	{.bitrate = 110, .hw_value = 0x03,},
83 	{.bitrate = 60, .hw_value = 0x04,},
84 	{.bitrate = 90, .hw_value = 0x05,},
85 	{.bitrate = 120, .hw_value = 0x06,},
86 	{.bitrate = 180, .hw_value = 0x07,},
87 	{.bitrate = 240, .hw_value = 0x08,},
88 	{.bitrate = 360, .hw_value = 0x09,},
89 	{.bitrate = 480, .hw_value = 0x0a,},
90 	{.bitrate = 540, .hw_value = 0x0b,},
91 };
92 
93 u16 rtw_desc_to_bitrate(u8 desc_rate)
94 {
95 	struct ieee80211_rate rate;
96 
97 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
98 		return 0;
99 
100 	rate = rtw_ratetable[desc_rate];
101 
102 	return rate.bitrate;
103 }
104 
105 static struct ieee80211_supported_band rtw_band_2ghz = {
106 	.band = NL80211_BAND_2GHZ,
107 
108 	.channels = rtw_channeltable_2g,
109 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
110 
111 	.bitrates = rtw_ratetable,
112 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
113 
114 	.ht_cap = {0},
115 	.vht_cap = {0},
116 };
117 
118 static struct ieee80211_supported_band rtw_band_5ghz = {
119 	.band = NL80211_BAND_5GHZ,
120 
121 	.channels = rtw_channeltable_5g,
122 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
123 
124 	/* 5G has no CCK rates */
125 	.bitrates = rtw_ratetable + 4,
126 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
127 
128 	.ht_cap = {0},
129 	.vht_cap = {0},
130 };
131 
132 struct rtw_watch_dog_iter_data {
133 	struct rtw_dev *rtwdev;
134 	struct rtw_vif *rtwvif;
135 };
136 
137 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
138 {
139 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
140 	u8 fix_rate_enable = 0;
141 	u8 new_csi_rate_idx;
142 
143 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
144 	    rtwvif->bfee.role != RTW_BFEE_MU)
145 		return;
146 
147 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
148 			      bf_info->cur_csi_rpt_rate,
149 			      fix_rate_enable, &new_csi_rate_idx);
150 
151 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
152 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
153 }
154 
155 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
156 				   struct ieee80211_vif *vif)
157 {
158 	struct rtw_watch_dog_iter_data *iter_data = data;
159 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
160 
161 	if (vif->type == NL80211_IFTYPE_STATION)
162 		if (vif->bss_conf.assoc)
163 			iter_data->rtwvif = rtwvif;
164 
165 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
166 
167 	rtwvif->stats.tx_unicast = 0;
168 	rtwvif->stats.rx_unicast = 0;
169 	rtwvif->stats.tx_cnt = 0;
170 	rtwvif->stats.rx_cnt = 0;
171 }
172 
173 /* process TX/RX statistics periodically for hardware,
174  * the information helps hardware to enhance performance
175  */
176 static void rtw_watch_dog_work(struct work_struct *work)
177 {
178 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
179 					      watch_dog_work.work);
180 	struct rtw_traffic_stats *stats = &rtwdev->stats;
181 	struct rtw_watch_dog_iter_data data = {};
182 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
183 	bool ps_active;
184 
185 	mutex_lock(&rtwdev->mutex);
186 
187 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
188 		goto unlock;
189 
190 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
191 				     RTW_WATCH_DOG_DELAY_TIME);
192 
193 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
194 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
195 	else
196 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
197 
198 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
199 		rtw_coex_wl_status_change_notify(rtwdev);
200 
201 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
202 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
203 		ps_active = true;
204 	else
205 		ps_active = false;
206 
207 	ewma_tp_add(&stats->tx_ewma_tp,
208 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
209 	ewma_tp_add(&stats->rx_ewma_tp,
210 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
211 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
212 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
213 
214 	/* reset tx/rx statictics */
215 	stats->tx_unicast = 0;
216 	stats->rx_unicast = 0;
217 	stats->tx_cnt = 0;
218 	stats->rx_cnt = 0;
219 
220 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
221 		goto unlock;
222 
223 	/* make sure BB/RF is working for dynamic mech */
224 	rtw_leave_lps(rtwdev);
225 
226 	rtw_phy_dynamic_mechanism(rtwdev);
227 
228 	data.rtwdev = rtwdev;
229 	/* use atomic version to avoid taking local->iflist_mtx mutex */
230 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
231 
232 	/* fw supports only one station associated to enter lps, if there are
233 	 * more than two stations associated to the AP, then we can not enter
234 	 * lps, because fw does not handle the overlapped beacon interval
235 	 *
236 	 * mac80211 should iterate vifs and determine if driver can enter
237 	 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
238 	 * get that vif and check if device is having traffic more than the
239 	 * threshold.
240 	 */
241 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active)
242 		rtw_enter_lps(rtwdev, data.rtwvif->port);
243 
244 	rtwdev->watch_dog_cnt++;
245 
246 unlock:
247 	mutex_unlock(&rtwdev->mutex);
248 }
249 
250 static void rtw_c2h_work(struct work_struct *work)
251 {
252 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
253 	struct sk_buff *skb, *tmp;
254 
255 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
256 		skb_unlink(skb, &rtwdev->c2h_queue);
257 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
258 		dev_kfree_skb_any(skb);
259 	}
260 }
261 
262 struct rtw_txq_ba_iter_data {
263 };
264 
265 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
266 {
267 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
268 	int ret;
269 	u8 tid;
270 
271 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
272 	while (tid != IEEE80211_NUM_TIDS) {
273 		clear_bit(tid, si->tid_ba);
274 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
275 		if (ret == -EINVAL) {
276 			struct ieee80211_txq *txq;
277 			struct rtw_txq *rtwtxq;
278 
279 			txq = sta->txq[tid];
280 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
281 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
282 		}
283 
284 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
285 	}
286 }
287 
288 static void rtw_txq_ba_work(struct work_struct *work)
289 {
290 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
291 	struct rtw_txq_ba_iter_data data;
292 
293 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
294 }
295 
296 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
297 			    struct rtw_channel_params *chan_params)
298 {
299 	struct ieee80211_channel *channel = chandef->chan;
300 	enum nl80211_chan_width width = chandef->width;
301 	u8 *cch_by_bw = chan_params->cch_by_bw;
302 	u32 primary_freq, center_freq;
303 	u8 center_chan;
304 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
305 	u8 primary_chan_idx = 0;
306 	u8 i;
307 
308 	center_chan = channel->hw_value;
309 	primary_freq = channel->center_freq;
310 	center_freq = chandef->center_freq1;
311 
312 	/* assign the center channel used while 20M bw is selected */
313 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
314 
315 	switch (width) {
316 	case NL80211_CHAN_WIDTH_20_NOHT:
317 	case NL80211_CHAN_WIDTH_20:
318 		bandwidth = RTW_CHANNEL_WIDTH_20;
319 		primary_chan_idx = RTW_SC_DONT_CARE;
320 		break;
321 	case NL80211_CHAN_WIDTH_40:
322 		bandwidth = RTW_CHANNEL_WIDTH_40;
323 		if (primary_freq > center_freq) {
324 			primary_chan_idx = RTW_SC_20_UPPER;
325 			center_chan -= 2;
326 		} else {
327 			primary_chan_idx = RTW_SC_20_LOWER;
328 			center_chan += 2;
329 		}
330 		break;
331 	case NL80211_CHAN_WIDTH_80:
332 		bandwidth = RTW_CHANNEL_WIDTH_80;
333 		if (primary_freq > center_freq) {
334 			if (primary_freq - center_freq == 10) {
335 				primary_chan_idx = RTW_SC_20_UPPER;
336 				center_chan -= 2;
337 			} else {
338 				primary_chan_idx = RTW_SC_20_UPMOST;
339 				center_chan -= 6;
340 			}
341 			/* assign the center channel used
342 			 * while 40M bw is selected
343 			 */
344 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
345 		} else {
346 			if (center_freq - primary_freq == 10) {
347 				primary_chan_idx = RTW_SC_20_LOWER;
348 				center_chan += 2;
349 			} else {
350 				primary_chan_idx = RTW_SC_20_LOWEST;
351 				center_chan += 6;
352 			}
353 			/* assign the center channel used
354 			 * while 40M bw is selected
355 			 */
356 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
357 		}
358 		break;
359 	default:
360 		center_chan = 0;
361 		break;
362 	}
363 
364 	chan_params->center_chan = center_chan;
365 	chan_params->bandwidth = bandwidth;
366 	chan_params->primary_chan_idx = primary_chan_idx;
367 
368 	/* assign the center channel used while current bw is selected */
369 	cch_by_bw[bandwidth] = center_chan;
370 
371 	for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
372 		cch_by_bw[i] = 0;
373 }
374 
375 void rtw_set_channel(struct rtw_dev *rtwdev)
376 {
377 	struct ieee80211_hw *hw = rtwdev->hw;
378 	struct rtw_hal *hal = &rtwdev->hal;
379 	struct rtw_chip_info *chip = rtwdev->chip;
380 	struct rtw_channel_params ch_param;
381 	u8 center_chan, bandwidth, primary_chan_idx;
382 	u8 i;
383 
384 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
385 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
386 		return;
387 
388 	center_chan = ch_param.center_chan;
389 	bandwidth = ch_param.bandwidth;
390 	primary_chan_idx = ch_param.primary_chan_idx;
391 
392 	hal->current_band_width = bandwidth;
393 	hal->current_channel = center_chan;
394 	hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
395 
396 	for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
397 		hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
398 
399 	chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
400 
401 	if (hal->current_band_type == RTW_BAND_5G) {
402 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
403 	} else {
404 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
405 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
406 		else
407 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
408 	}
409 
410 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
411 }
412 
413 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
414 {
415 	int i;
416 
417 	for (i = 0; i < ETH_ALEN; i++)
418 		rtw_write8(rtwdev, start + i, addr[i]);
419 }
420 
421 void rtw_vif_port_config(struct rtw_dev *rtwdev,
422 			 struct rtw_vif *rtwvif,
423 			 u32 config)
424 {
425 	u32 addr, mask;
426 
427 	if (config & PORT_SET_MAC_ADDR) {
428 		addr = rtwvif->conf->mac_addr.addr;
429 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
430 	}
431 	if (config & PORT_SET_BSSID) {
432 		addr = rtwvif->conf->bssid.addr;
433 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
434 	}
435 	if (config & PORT_SET_NET_TYPE) {
436 		addr = rtwvif->conf->net_type.addr;
437 		mask = rtwvif->conf->net_type.mask;
438 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
439 	}
440 	if (config & PORT_SET_AID) {
441 		addr = rtwvif->conf->aid.addr;
442 		mask = rtwvif->conf->aid.mask;
443 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
444 	}
445 	if (config & PORT_SET_BCN_CTRL) {
446 		addr = rtwvif->conf->bcn_ctrl.addr;
447 		mask = rtwvif->conf->bcn_ctrl.mask;
448 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
449 	}
450 }
451 
452 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
453 {
454 	u8 bw = 0;
455 
456 	switch (bw_cap) {
457 	case EFUSE_HW_CAP_IGNORE:
458 	case EFUSE_HW_CAP_SUPP_BW80:
459 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
460 		/* fall through */
461 	case EFUSE_HW_CAP_SUPP_BW40:
462 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
463 		/* fall through */
464 	default:
465 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
466 		break;
467 	}
468 
469 	return bw;
470 }
471 
472 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
473 {
474 	struct rtw_hal *hal = &rtwdev->hal;
475 	struct rtw_chip_info *chip = rtwdev->chip;
476 
477 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
478 	    hw_ant_num >= hal->rf_path_num)
479 		return;
480 
481 	switch (hw_ant_num) {
482 	case 1:
483 		hal->rf_type = RF_1T1R;
484 		hal->rf_path_num = 1;
485 		if (!chip->fix_rf_phy_num)
486 			hal->rf_phy_num = hal->rf_path_num;
487 		hal->antenna_tx = BB_PATH_A;
488 		hal->antenna_rx = BB_PATH_A;
489 		break;
490 	default:
491 		WARN(1, "invalid hw configuration from efuse\n");
492 		break;
493 	}
494 }
495 
496 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
497 {
498 	u64 ra_mask = 0;
499 	u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
500 	u8 vht_mcs_cap;
501 	int i, nss;
502 
503 	/* 4SS, every two bits for MCS7/8/9 */
504 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
505 		vht_mcs_cap = mcs_map & 0x3;
506 		switch (vht_mcs_cap) {
507 		case 2: /* MCS9 */
508 			ra_mask |= 0x3ffULL << nss;
509 			break;
510 		case 1: /* MCS8 */
511 			ra_mask |= 0x1ffULL << nss;
512 			break;
513 		case 0: /* MCS7 */
514 			ra_mask |= 0x0ffULL << nss;
515 			break;
516 		default:
517 			break;
518 		}
519 	}
520 
521 	return ra_mask;
522 }
523 
524 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
525 {
526 	u8 rate_id = 0;
527 
528 	switch (wireless_set) {
529 	case WIRELESS_CCK:
530 		rate_id = RTW_RATEID_B_20M;
531 		break;
532 	case WIRELESS_OFDM:
533 		rate_id = RTW_RATEID_G;
534 		break;
535 	case WIRELESS_CCK | WIRELESS_OFDM:
536 		rate_id = RTW_RATEID_BG;
537 		break;
538 	case WIRELESS_OFDM | WIRELESS_HT:
539 		if (tx_num == 1)
540 			rate_id = RTW_RATEID_GN_N1SS;
541 		else if (tx_num == 2)
542 			rate_id = RTW_RATEID_GN_N2SS;
543 		else if (tx_num == 3)
544 			rate_id = RTW_RATEID_ARFR5_N_3SS;
545 		break;
546 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
547 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
548 			if (tx_num == 1)
549 				rate_id = RTW_RATEID_BGN_40M_1SS;
550 			else if (tx_num == 2)
551 				rate_id = RTW_RATEID_BGN_40M_2SS;
552 			else if (tx_num == 3)
553 				rate_id = RTW_RATEID_ARFR5_N_3SS;
554 			else if (tx_num == 4)
555 				rate_id = RTW_RATEID_ARFR7_N_4SS;
556 		} else {
557 			if (tx_num == 1)
558 				rate_id = RTW_RATEID_BGN_20M_1SS;
559 			else if (tx_num == 2)
560 				rate_id = RTW_RATEID_BGN_20M_2SS;
561 			else if (tx_num == 3)
562 				rate_id = RTW_RATEID_ARFR5_N_3SS;
563 			else if (tx_num == 4)
564 				rate_id = RTW_RATEID_ARFR7_N_4SS;
565 		}
566 		break;
567 	case WIRELESS_OFDM | WIRELESS_VHT:
568 		if (tx_num == 1)
569 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
570 		else if (tx_num == 2)
571 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
572 		else if (tx_num == 3)
573 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
574 		else if (tx_num == 4)
575 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
576 		break;
577 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
578 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
579 			if (tx_num == 1)
580 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
581 			else if (tx_num == 2)
582 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
583 			else if (tx_num == 3)
584 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
585 			else if (tx_num == 4)
586 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
587 		} else {
588 			if (tx_num == 1)
589 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
590 			else if (tx_num == 2)
591 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
592 			else if (tx_num == 3)
593 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
594 			else if (tx_num == 4)
595 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
596 		}
597 		break;
598 	default:
599 		break;
600 	}
601 
602 	return rate_id;
603 }
604 
605 #define RA_MASK_CCK_RATES	0x0000f
606 #define RA_MASK_OFDM_RATES	0x00ff0
607 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
608 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
609 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
610 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
611 				 RA_MASK_HT_RATES_2SS | \
612 				 RA_MASK_HT_RATES_3SS)
613 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
614 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
615 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
616 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
617 				 RA_MASK_VHT_RATES_2SS | \
618 				 RA_MASK_VHT_RATES_3SS)
619 #define RA_MASK_CCK_IN_HT	0x00005
620 #define RA_MASK_CCK_IN_VHT	0x00005
621 #define RA_MASK_OFDM_IN_VHT	0x00010
622 #define RA_MASK_OFDM_IN_HT_2G	0x00010
623 #define RA_MASK_OFDM_IN_HT_5G	0x00030
624 
625 static u64 rtw_update_rate_mask(struct rtw_dev *rtwdev,
626 				struct rtw_sta_info *si,
627 				u64 ra_mask, bool is_vht_enable,
628 				u8 wireless_set)
629 {
630 	struct rtw_hal *hal = &rtwdev->hal;
631 	const struct cfg80211_bitrate_mask *mask = si->mask;
632 	u64 cfg_mask = GENMASK_ULL(63, 0);
633 	u8 rssi_level, band;
634 
635 	if (wireless_set != WIRELESS_CCK) {
636 		rssi_level = si->rssi_level;
637 		if (rssi_level == 0)
638 			ra_mask &= 0xffffffffffffffffULL;
639 		else if (rssi_level == 1)
640 			ra_mask &= 0xfffffffffffffff0ULL;
641 		else if (rssi_level == 2)
642 			ra_mask &= 0xffffffffffffefe0ULL;
643 		else if (rssi_level == 3)
644 			ra_mask &= 0xffffffffffffcfc0ULL;
645 		else if (rssi_level == 4)
646 			ra_mask &= 0xffffffffffff8f80ULL;
647 		else if (rssi_level >= 5)
648 			ra_mask &= 0xffffffffffff0f00ULL;
649 	}
650 
651 	if (!si->use_cfg_mask)
652 		return ra_mask;
653 
654 	band = hal->current_band_type;
655 	if (band == RTW_BAND_2G) {
656 		band = NL80211_BAND_2GHZ;
657 		cfg_mask = mask->control[band].legacy;
658 	} else if (band == RTW_BAND_5G) {
659 		band = NL80211_BAND_5GHZ;
660 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
661 					   RA_MASK_OFDM_RATES);
662 	}
663 
664 	if (!is_vht_enable) {
665 		if (ra_mask & RA_MASK_HT_RATES_1SS)
666 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
667 						    RA_MASK_HT_RATES_1SS);
668 		if (ra_mask & RA_MASK_HT_RATES_2SS)
669 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
670 						    RA_MASK_HT_RATES_2SS);
671 	} else {
672 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
673 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
674 						    RA_MASK_VHT_RATES_1SS);
675 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
676 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
677 						    RA_MASK_VHT_RATES_2SS);
678 	}
679 
680 	ra_mask &= cfg_mask;
681 
682 	return ra_mask;
683 }
684 
685 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
686 {
687 	struct ieee80211_sta *sta = si->sta;
688 	struct rtw_efuse *efuse = &rtwdev->efuse;
689 	struct rtw_hal *hal = &rtwdev->hal;
690 	u8 wireless_set;
691 	u8 bw_mode;
692 	u8 rate_id;
693 	u8 rf_type = RF_1T1R;
694 	u8 stbc_en = 0;
695 	u8 ldpc_en = 0;
696 	u8 tx_num = 1;
697 	u64 ra_mask = 0;
698 	bool is_vht_enable = false;
699 	bool is_support_sgi = false;
700 
701 	if (sta->vht_cap.vht_supported) {
702 		is_vht_enable = true;
703 		ra_mask |= get_vht_ra_mask(sta);
704 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
705 			stbc_en = VHT_STBC_EN;
706 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
707 			ldpc_en = VHT_LDPC_EN;
708 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80)
709 			is_support_sgi = true;
710 	} else if (sta->ht_cap.ht_supported) {
711 		ra_mask |= (sta->ht_cap.mcs.rx_mask[1] << 20) |
712 			   (sta->ht_cap.mcs.rx_mask[0] << 12);
713 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
714 			stbc_en = HT_STBC_EN;
715 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
716 			ldpc_en = HT_LDPC_EN;
717 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20 ||
718 		    sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
719 			is_support_sgi = true;
720 	}
721 
722 	if (efuse->hw_cap.nss == 1)
723 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
724 
725 	if (hal->current_band_type == RTW_BAND_5G) {
726 		ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
727 		if (sta->vht_cap.vht_supported) {
728 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
729 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
730 		} else if (sta->ht_cap.ht_supported) {
731 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
732 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
733 		} else {
734 			wireless_set = WIRELESS_OFDM;
735 		}
736 	} else if (hal->current_band_type == RTW_BAND_2G) {
737 		ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
738 		if (sta->vht_cap.vht_supported) {
739 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
740 				   RA_MASK_OFDM_IN_VHT;
741 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
742 				       WIRELESS_HT | WIRELESS_VHT;
743 		} else if (sta->ht_cap.ht_supported) {
744 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
745 				   RA_MASK_OFDM_IN_HT_2G;
746 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
747 				       WIRELESS_HT;
748 		} else if (sta->supp_rates[0] <= 0xf) {
749 			wireless_set = WIRELESS_CCK;
750 		} else {
751 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
752 		}
753 	} else {
754 		rtw_err(rtwdev, "Unknown band type\n");
755 		wireless_set = 0;
756 	}
757 
758 	switch (sta->bandwidth) {
759 	case IEEE80211_STA_RX_BW_80:
760 		bw_mode = RTW_CHANNEL_WIDTH_80;
761 		break;
762 	case IEEE80211_STA_RX_BW_40:
763 		bw_mode = RTW_CHANNEL_WIDTH_40;
764 		break;
765 	default:
766 		bw_mode = RTW_CHANNEL_WIDTH_20;
767 		break;
768 	}
769 
770 	if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
771 		tx_num = 2;
772 		rf_type = RF_2T2R;
773 	} else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
774 		tx_num = 2;
775 		rf_type = RF_2T2R;
776 	}
777 
778 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
779 
780 	ra_mask = rtw_update_rate_mask(rtwdev, si, ra_mask, is_vht_enable,
781 				       wireless_set);
782 
783 	si->bw_mode = bw_mode;
784 	si->stbc_en = stbc_en;
785 	si->ldpc_en = ldpc_en;
786 	si->rf_type = rf_type;
787 	si->wireless_set = wireless_set;
788 	si->sgi_enable = is_support_sgi;
789 	si->vht_enable = is_vht_enable;
790 	si->ra_mask = ra_mask;
791 	si->rate_id = rate_id;
792 
793 	rtw_fw_send_ra_info(rtwdev, si);
794 }
795 
796 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
797 {
798 	struct rtw_chip_info *chip = rtwdev->chip;
799 	struct rtw_fw_state *fw;
800 
801 	fw = &rtwdev->fw;
802 	wait_for_completion(&fw->completion);
803 	if (!fw->firmware)
804 		return -EINVAL;
805 
806 	if (chip->wow_fw_name) {
807 		fw = &rtwdev->wow_fw;
808 		wait_for_completion(&fw->completion);
809 		if (!fw->firmware)
810 			return -EINVAL;
811 	}
812 
813 	return 0;
814 }
815 
816 static int rtw_power_on(struct rtw_dev *rtwdev)
817 {
818 	struct rtw_chip_info *chip = rtwdev->chip;
819 	struct rtw_fw_state *fw = &rtwdev->fw;
820 	bool wifi_only;
821 	int ret;
822 
823 	ret = rtw_hci_setup(rtwdev);
824 	if (ret) {
825 		rtw_err(rtwdev, "failed to setup hci\n");
826 		goto err;
827 	}
828 
829 	/* power on MAC before firmware downloaded */
830 	ret = rtw_mac_power_on(rtwdev);
831 	if (ret) {
832 		rtw_err(rtwdev, "failed to power on mac\n");
833 		goto err;
834 	}
835 
836 	ret = rtw_wait_firmware_completion(rtwdev);
837 	if (ret) {
838 		rtw_err(rtwdev, "failed to wait firmware completion\n");
839 		goto err_off;
840 	}
841 
842 	ret = rtw_download_firmware(rtwdev, fw);
843 	if (ret) {
844 		rtw_err(rtwdev, "failed to download firmware\n");
845 		goto err_off;
846 	}
847 
848 	/* config mac after firmware downloaded */
849 	ret = rtw_mac_init(rtwdev);
850 	if (ret) {
851 		rtw_err(rtwdev, "failed to configure mac\n");
852 		goto err_off;
853 	}
854 
855 	chip->ops->phy_set_param(rtwdev);
856 
857 	ret = rtw_hci_start(rtwdev);
858 	if (ret) {
859 		rtw_err(rtwdev, "failed to start hci\n");
860 		goto err_off;
861 	}
862 
863 	/* send H2C after HCI has started */
864 	rtw_fw_send_general_info(rtwdev);
865 	rtw_fw_send_phydm_info(rtwdev);
866 
867 	wifi_only = !rtwdev->efuse.btcoex;
868 	rtw_coex_power_on_setting(rtwdev);
869 	rtw_coex_init_hw_config(rtwdev, wifi_only);
870 
871 	return 0;
872 
873 err_off:
874 	rtw_mac_power_off(rtwdev);
875 
876 err:
877 	return ret;
878 }
879 
880 int rtw_core_start(struct rtw_dev *rtwdev)
881 {
882 	int ret;
883 
884 	ret = rtw_power_on(rtwdev);
885 	if (ret)
886 		return ret;
887 
888 	rtw_sec_enable_sec_engine(rtwdev);
889 
890 	/* rcr reset after powered on */
891 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
892 
893 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
894 				     RTW_WATCH_DOG_DELAY_TIME);
895 
896 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
897 
898 	return 0;
899 }
900 
901 static void rtw_power_off(struct rtw_dev *rtwdev)
902 {
903 	rtw_hci_stop(rtwdev);
904 	rtw_mac_power_off(rtwdev);
905 }
906 
907 void rtw_core_stop(struct rtw_dev *rtwdev)
908 {
909 	struct rtw_coex *coex = &rtwdev->coex;
910 
911 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
912 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
913 
914 	mutex_unlock(&rtwdev->mutex);
915 
916 	cancel_work_sync(&rtwdev->c2h_work);
917 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
918 	cancel_delayed_work_sync(&coex->bt_relink_work);
919 	cancel_delayed_work_sync(&coex->bt_reenable_work);
920 	cancel_delayed_work_sync(&coex->defreeze_work);
921 
922 	mutex_lock(&rtwdev->mutex);
923 
924 	rtw_power_off(rtwdev);
925 }
926 
927 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
928 			    struct ieee80211_sta_ht_cap *ht_cap)
929 {
930 	struct rtw_efuse *efuse = &rtwdev->efuse;
931 
932 	ht_cap->ht_supported = true;
933 	ht_cap->cap = 0;
934 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
935 			IEEE80211_HT_CAP_MAX_AMSDU |
936 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
937 
938 	if (rtw_chip_has_rx_ldpc(rtwdev))
939 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
940 
941 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
942 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
943 				IEEE80211_HT_CAP_DSSSCCK40 |
944 				IEEE80211_HT_CAP_SGI_40;
945 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
946 	ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
947 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
948 	if (efuse->hw_cap.nss > 1) {
949 		ht_cap->mcs.rx_mask[0] = 0xFF;
950 		ht_cap->mcs.rx_mask[1] = 0xFF;
951 		ht_cap->mcs.rx_mask[4] = 0x01;
952 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
953 	} else {
954 		ht_cap->mcs.rx_mask[0] = 0xFF;
955 		ht_cap->mcs.rx_mask[1] = 0x00;
956 		ht_cap->mcs.rx_mask[4] = 0x01;
957 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
958 	}
959 }
960 
961 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
962 			     struct ieee80211_sta_vht_cap *vht_cap)
963 {
964 	struct rtw_efuse *efuse = &rtwdev->efuse;
965 	u16 mcs_map;
966 	__le16 highest;
967 
968 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
969 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
970 		return;
971 
972 	vht_cap->vht_supported = true;
973 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
974 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
975 		       IEEE80211_VHT_CAP_TXSTBC |
976 		       IEEE80211_VHT_CAP_RXSTBC_1 |
977 		       IEEE80211_VHT_CAP_HTC_VHT |
978 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
979 		       0;
980 
981 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
982 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
983 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
984 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
985 
986 	if (rtw_chip_has_rx_ldpc(rtwdev))
987 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
988 
989 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
990 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
991 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
992 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
993 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
994 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
995 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
996 	if (efuse->hw_cap.nss > 1) {
997 		highest = cpu_to_le16(780);
998 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
999 	} else {
1000 		highest = cpu_to_le16(390);
1001 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1002 	}
1003 
1004 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1005 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1006 	vht_cap->vht_mcs.rx_highest = highest;
1007 	vht_cap->vht_mcs.tx_highest = highest;
1008 }
1009 
1010 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1011 				   struct rtw_chip_info *chip)
1012 {
1013 	struct rtw_dev *rtwdev = hw->priv;
1014 	struct ieee80211_supported_band *sband;
1015 
1016 	if (chip->band & RTW_BAND_2G) {
1017 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1018 		if (!sband)
1019 			goto err_out;
1020 		if (chip->ht_supported)
1021 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1022 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1023 	}
1024 
1025 	if (chip->band & RTW_BAND_5G) {
1026 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1027 		if (!sband)
1028 			goto err_out;
1029 		if (chip->ht_supported)
1030 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1031 		if (chip->vht_supported)
1032 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1033 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1034 	}
1035 
1036 	return;
1037 
1038 err_out:
1039 	rtw_err(rtwdev, "failed to set supported band\n");
1040 	kfree(sband);
1041 }
1042 
1043 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1044 				     struct rtw_chip_info *chip)
1045 {
1046 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1047 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1048 }
1049 
1050 static void __update_firmware_info(struct rtw_dev *rtwdev,
1051 				   struct rtw_fw_state *fw)
1052 {
1053 	const struct rtw_fw_hdr *fw_hdr =
1054 				(const struct rtw_fw_hdr *)fw->firmware->data;
1055 
1056 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1057 	fw->version = le16_to_cpu(fw_hdr->version);
1058 	fw->sub_version = fw_hdr->subversion;
1059 	fw->sub_index = fw_hdr->subindex;
1060 }
1061 
1062 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1063 					  struct rtw_fw_state *fw)
1064 {
1065 	struct rtw_fw_hdr_legacy *legacy =
1066 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1067 
1068 	fw->h2c_version = 0;
1069 	fw->version = le16_to_cpu(legacy->version);
1070 	fw->sub_version = legacy->subversion1;
1071 	fw->sub_index = legacy->subversion2;
1072 }
1073 
1074 static void update_firmware_info(struct rtw_dev *rtwdev,
1075 				 struct rtw_fw_state *fw)
1076 {
1077 	if (rtw_chip_wcpu_11n(rtwdev))
1078 		__update_firmware_info_legacy(rtwdev, fw);
1079 	else
1080 		__update_firmware_info(rtwdev, fw);
1081 }
1082 
1083 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1084 {
1085 	struct rtw_fw_state *fw = context;
1086 	struct rtw_dev *rtwdev = fw->rtwdev;
1087 
1088 	if (!firmware || !firmware->data) {
1089 		rtw_err(rtwdev, "failed to request firmware\n");
1090 		complete_all(&fw->completion);
1091 		return;
1092 	}
1093 
1094 	fw->firmware = firmware;
1095 	update_firmware_info(rtwdev, fw);
1096 	complete_all(&fw->completion);
1097 
1098 	rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
1099 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1100 }
1101 
1102 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1103 {
1104 	const char *fw_name;
1105 	struct rtw_fw_state *fw;
1106 	int ret;
1107 
1108 	switch (type) {
1109 	case RTW_WOWLAN_FW:
1110 		fw = &rtwdev->wow_fw;
1111 		fw_name = rtwdev->chip->wow_fw_name;
1112 		break;
1113 
1114 	case RTW_NORMAL_FW:
1115 		fw = &rtwdev->fw;
1116 		fw_name = rtwdev->chip->fw_name;
1117 		break;
1118 
1119 	default:
1120 		rtw_warn(rtwdev, "unsupported firmware type\n");
1121 		return -ENOENT;
1122 	}
1123 
1124 	fw->rtwdev = rtwdev;
1125 	init_completion(&fw->completion);
1126 
1127 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1128 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1129 	if (ret) {
1130 		rtw_err(rtwdev, "failed to async firmware request\n");
1131 		return ret;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1138 {
1139 	struct rtw_chip_info *chip = rtwdev->chip;
1140 	struct rtw_hal *hal = &rtwdev->hal;
1141 	struct rtw_efuse *efuse = &rtwdev->efuse;
1142 	int ret = 0;
1143 
1144 	switch (rtw_hci_type(rtwdev)) {
1145 	case RTW_HCI_TYPE_PCIE:
1146 		rtwdev->hci.rpwm_addr = 0x03d9;
1147 		rtwdev->hci.cpwm_addr = 0x03da;
1148 		break;
1149 	default:
1150 		rtw_err(rtwdev, "unsupported hci type\n");
1151 		return -EINVAL;
1152 	}
1153 
1154 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1155 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1156 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1157 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1158 		hal->rf_type = RF_2T2R;
1159 		hal->rf_path_num = 2;
1160 		hal->antenna_tx = BB_PATH_AB;
1161 		hal->antenna_rx = BB_PATH_AB;
1162 	} else {
1163 		hal->rf_type = RF_1T1R;
1164 		hal->rf_path_num = 1;
1165 		hal->antenna_tx = BB_PATH_A;
1166 		hal->antenna_rx = BB_PATH_A;
1167 	}
1168 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1169 			  hal->rf_path_num;
1170 
1171 	efuse->physical_size = chip->phy_efuse_size;
1172 	efuse->logical_size = chip->log_efuse_size;
1173 	efuse->protect_size = chip->ptct_efuse_size;
1174 
1175 	/* default use ack */
1176 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1177 
1178 	hal->bfee_sts_cap = 3;
1179 
1180 	return ret;
1181 }
1182 
1183 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1184 {
1185 	struct rtw_fw_state *fw = &rtwdev->fw;
1186 	int ret;
1187 
1188 	ret = rtw_hci_setup(rtwdev);
1189 	if (ret) {
1190 		rtw_err(rtwdev, "failed to setup hci\n");
1191 		goto err;
1192 	}
1193 
1194 	ret = rtw_mac_power_on(rtwdev);
1195 	if (ret) {
1196 		rtw_err(rtwdev, "failed to power on mac\n");
1197 		goto err;
1198 	}
1199 
1200 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1201 
1202 	wait_for_completion(&fw->completion);
1203 	if (!fw->firmware) {
1204 		ret = -EINVAL;
1205 		rtw_err(rtwdev, "failed to load firmware\n");
1206 		goto err;
1207 	}
1208 
1209 	ret = rtw_download_firmware(rtwdev, fw);
1210 	if (ret) {
1211 		rtw_err(rtwdev, "failed to download firmware\n");
1212 		goto err_off;
1213 	}
1214 
1215 	return 0;
1216 
1217 err_off:
1218 	rtw_mac_power_off(rtwdev);
1219 
1220 err:
1221 	return ret;
1222 }
1223 
1224 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1225 {
1226 	struct rtw_efuse *efuse = &rtwdev->efuse;
1227 	u8 hw_feature[HW_FEATURE_LEN];
1228 	u8 id;
1229 	u8 bw;
1230 	int i;
1231 
1232 	id = rtw_read8(rtwdev, REG_C2HEVT);
1233 	if (id != C2H_HW_FEATURE_REPORT) {
1234 		rtw_err(rtwdev, "failed to read hw feature report\n");
1235 		return -EBUSY;
1236 	}
1237 
1238 	for (i = 0; i < HW_FEATURE_LEN; i++)
1239 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1240 
1241 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1242 
1243 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1244 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1245 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1246 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1247 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1248 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1249 
1250 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1251 
1252 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1253 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1254 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1255 
1256 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1257 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1258 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1259 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1260 
1261 	return 0;
1262 }
1263 
1264 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1265 {
1266 	rtw_hci_stop(rtwdev);
1267 	rtw_mac_power_off(rtwdev);
1268 }
1269 
1270 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1271 {
1272 	struct rtw_efuse *efuse = &rtwdev->efuse;
1273 	int ret;
1274 
1275 	mutex_lock(&rtwdev->mutex);
1276 
1277 	/* power on mac to read efuse */
1278 	ret = rtw_chip_efuse_enable(rtwdev);
1279 	if (ret)
1280 		goto out_unlock;
1281 
1282 	ret = rtw_parse_efuse_map(rtwdev);
1283 	if (ret)
1284 		goto out_disable;
1285 
1286 	ret = rtw_dump_hw_feature(rtwdev);
1287 	if (ret)
1288 		goto out_disable;
1289 
1290 	ret = rtw_check_supported_rfe(rtwdev);
1291 	if (ret)
1292 		goto out_disable;
1293 
1294 	if (efuse->crystal_cap == 0xff)
1295 		efuse->crystal_cap = 0;
1296 	if (efuse->pa_type_2g == 0xff)
1297 		efuse->pa_type_2g = 0;
1298 	if (efuse->pa_type_5g == 0xff)
1299 		efuse->pa_type_5g = 0;
1300 	if (efuse->lna_type_2g == 0xff)
1301 		efuse->lna_type_2g = 0;
1302 	if (efuse->lna_type_5g == 0xff)
1303 		efuse->lna_type_5g = 0;
1304 	if (efuse->channel_plan == 0xff)
1305 		efuse->channel_plan = 0x7f;
1306 	if (efuse->rf_board_option == 0xff)
1307 		efuse->rf_board_option = 0;
1308 	if (efuse->bt_setting & BIT(0))
1309 		efuse->share_ant = true;
1310 	if (efuse->regd == 0xff)
1311 		efuse->regd = 0;
1312 
1313 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1314 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1315 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1316 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1317 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1318 
1319 out_disable:
1320 	rtw_chip_efuse_disable(rtwdev);
1321 
1322 out_unlock:
1323 	mutex_unlock(&rtwdev->mutex);
1324 	return ret;
1325 }
1326 
1327 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1328 {
1329 	struct rtw_hal *hal = &rtwdev->hal;
1330 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1331 
1332 	if (!rfe_def)
1333 		return -ENODEV;
1334 
1335 	rtw_phy_setup_phy_cond(rtwdev, 0);
1336 
1337 	rtw_phy_init_tx_power(rtwdev);
1338 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1339 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1340 	rtw_phy_tx_power_by_rate_config(hal);
1341 	rtw_phy_tx_power_limit_config(hal);
1342 
1343 	return 0;
1344 }
1345 
1346 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1347 {
1348 	int ret;
1349 
1350 	ret = rtw_chip_parameter_setup(rtwdev);
1351 	if (ret) {
1352 		rtw_err(rtwdev, "failed to setup chip parameters\n");
1353 		goto err_out;
1354 	}
1355 
1356 	ret = rtw_chip_efuse_info_setup(rtwdev);
1357 	if (ret) {
1358 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
1359 		goto err_out;
1360 	}
1361 
1362 	ret = rtw_chip_board_info_setup(rtwdev);
1363 	if (ret) {
1364 		rtw_err(rtwdev, "failed to setup chip board info\n");
1365 		goto err_out;
1366 	}
1367 
1368 	return 0;
1369 
1370 err_out:
1371 	return ret;
1372 }
1373 EXPORT_SYMBOL(rtw_chip_info_setup);
1374 
1375 static void rtw_stats_init(struct rtw_dev *rtwdev)
1376 {
1377 	struct rtw_traffic_stats *stats = &rtwdev->stats;
1378 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1379 	int i;
1380 
1381 	ewma_tp_init(&stats->tx_ewma_tp);
1382 	ewma_tp_init(&stats->rx_ewma_tp);
1383 
1384 	for (i = 0; i < RTW_EVM_NUM; i++)
1385 		ewma_evm_init(&dm_info->ewma_evm[i]);
1386 	for (i = 0; i < RTW_SNR_NUM; i++)
1387 		ewma_snr_init(&dm_info->ewma_snr[i]);
1388 }
1389 
1390 int rtw_core_init(struct rtw_dev *rtwdev)
1391 {
1392 	struct rtw_chip_info *chip = rtwdev->chip;
1393 	struct rtw_coex *coex = &rtwdev->coex;
1394 	int ret;
1395 
1396 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1397 	INIT_LIST_HEAD(&rtwdev->txqs);
1398 
1399 	timer_setup(&rtwdev->tx_report.purge_timer,
1400 		    rtw_tx_report_purge_timer, 0);
1401 	tasklet_init(&rtwdev->tx_tasklet, rtw_tx_tasklet,
1402 		     (unsigned long)rtwdev);
1403 
1404 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1405 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
1406 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
1407 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
1408 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1409 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
1410 	skb_queue_head_init(&rtwdev->c2h_queue);
1411 	skb_queue_head_init(&rtwdev->coex.queue);
1412 	skb_queue_head_init(&rtwdev->tx_report.queue);
1413 
1414 	spin_lock_init(&rtwdev->rf_lock);
1415 	spin_lock_init(&rtwdev->h2c.lock);
1416 	spin_lock_init(&rtwdev->txq_lock);
1417 	spin_lock_init(&rtwdev->tx_report.q_lock);
1418 
1419 	mutex_init(&rtwdev->mutex);
1420 	mutex_init(&rtwdev->coex.mutex);
1421 	mutex_init(&rtwdev->hal.tx_power_mutex);
1422 
1423 	init_waitqueue_head(&rtwdev->coex.wait);
1424 
1425 	rtwdev->sec.total_cam_num = 32;
1426 	rtwdev->hal.current_channel = 1;
1427 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
1428 	if (!(BIT(rtw_fw_lps_deep_mode) & chip->lps_deep_mode_supported))
1429 		rtwdev->lps_conf.deep_mode = LPS_DEEP_MODE_NONE;
1430 	else
1431 		rtwdev->lps_conf.deep_mode = rtw_fw_lps_deep_mode;
1432 
1433 	rtw_stats_init(rtwdev);
1434 
1435 	/* default rx filter setting */
1436 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
1437 			  BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
1438 			  BIT_AB | BIT_AM | BIT_APM;
1439 
1440 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
1441 	if (ret) {
1442 		rtw_warn(rtwdev, "no firmware loaded\n");
1443 		return ret;
1444 	}
1445 
1446 	if (chip->wow_fw_name) {
1447 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
1448 		if (ret) {
1449 			rtw_warn(rtwdev, "no wow firmware loaded\n");
1450 			return ret;
1451 		}
1452 	}
1453 	return 0;
1454 }
1455 EXPORT_SYMBOL(rtw_core_init);
1456 
1457 void rtw_core_deinit(struct rtw_dev *rtwdev)
1458 {
1459 	struct rtw_fw_state *fw = &rtwdev->fw;
1460 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
1461 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
1462 	unsigned long flags;
1463 
1464 	if (fw->firmware)
1465 		release_firmware(fw->firmware);
1466 
1467 	if (wow_fw->firmware)
1468 		release_firmware(wow_fw->firmware);
1469 
1470 	tasklet_kill(&rtwdev->tx_tasklet);
1471 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
1472 	skb_queue_purge(&rtwdev->tx_report.queue);
1473 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
1474 
1475 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
1476 				 build_list) {
1477 		list_del(&rsvd_pkt->build_list);
1478 		kfree(rsvd_pkt);
1479 	}
1480 
1481 	mutex_destroy(&rtwdev->mutex);
1482 	mutex_destroy(&rtwdev->coex.mutex);
1483 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
1484 }
1485 EXPORT_SYMBOL(rtw_core_deinit);
1486 
1487 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1488 {
1489 	struct rtw_hal *hal = &rtwdev->hal;
1490 	int max_tx_headroom = 0;
1491 	int ret;
1492 
1493 	/* TODO: USB & SDIO may need extra room? */
1494 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
1495 
1496 	hw->extra_tx_headroom = max_tx_headroom;
1497 	hw->queues = IEEE80211_NUM_ACS;
1498 	hw->txq_data_size = sizeof(struct rtw_txq);
1499 	hw->sta_data_size = sizeof(struct rtw_sta_info);
1500 	hw->vif_data_size = sizeof(struct rtw_vif);
1501 
1502 	ieee80211_hw_set(hw, SIGNAL_DBM);
1503 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1504 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1505 	ieee80211_hw_set(hw, MFP_CAPABLE);
1506 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1507 	ieee80211_hw_set(hw, SUPPORTS_PS);
1508 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
1509 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
1510 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
1511 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
1512 	ieee80211_hw_set(hw, TX_AMSDU);
1513 
1514 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
1515 				     BIT(NL80211_IFTYPE_AP) |
1516 				     BIT(NL80211_IFTYPE_ADHOC) |
1517 				     BIT(NL80211_IFTYPE_MESH_POINT);
1518 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
1519 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
1520 
1521 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
1522 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
1523 
1524 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
1525 
1526 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
1527 
1528 #ifdef CONFIG_PM
1529 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
1530 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
1531 #endif
1532 	rtw_set_supported_band(hw, rtwdev->chip);
1533 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
1534 
1535 	rtw_regd_init(rtwdev, rtw_regd_notifier);
1536 
1537 	ret = ieee80211_register_hw(hw);
1538 	if (ret) {
1539 		rtw_err(rtwdev, "failed to register hw\n");
1540 		return ret;
1541 	}
1542 
1543 	if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2))
1544 		rtw_err(rtwdev, "regulatory_hint fail\n");
1545 
1546 	rtw_debugfs_init(rtwdev);
1547 
1548 	rtwdev->bf_info.bfer_mu_cnt = 0;
1549 	rtwdev->bf_info.bfer_su_cnt = 0;
1550 
1551 	return 0;
1552 }
1553 EXPORT_SYMBOL(rtw_register_hw);
1554 
1555 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1556 {
1557 	struct rtw_chip_info *chip = rtwdev->chip;
1558 
1559 	ieee80211_unregister_hw(hw);
1560 	rtw_unset_supported_band(hw, chip);
1561 }
1562 EXPORT_SYMBOL(rtw_unregister_hw);
1563 
1564 MODULE_AUTHOR("Realtek Corporation");
1565 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
1566 MODULE_LICENSE("Dual BSD/GPL");
1567