xref: /linux/drivers/net/wireless/realtek/rtw88/main.c (revision 71dfa617ea9f18e4585fe78364217cd32b1fc382)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/devcoredump.h>
6 
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 #include "sdio.h"
22 
23 bool rtw_disable_lps_deep_mode;
24 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
25 bool rtw_bf_support = true;
26 unsigned int rtw_debug_mask;
27 EXPORT_SYMBOL(rtw_debug_mask);
28 /* EDCCA is enabled during normal behavior. For debugging purpose in
29  * a noisy environment, it can be disabled via edcca debugfs. Because
30  * all rtw88 devices will probably be affected if environment is noisy,
31  * rtw_edcca_enabled is just declared by driver instead of by device.
32  * So, turning it off will take effect for all rtw88 devices before
33  * there is a tough reason to maintain rtw_edcca_enabled by device.
34  */
35 bool rtw_edcca_enabled = true;
36 
37 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
38 module_param_named(support_bf, rtw_bf_support, bool, 0644);
39 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
40 
41 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
42 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
43 MODULE_PARM_DESC(debug_mask, "Debugging mask");
44 
45 static struct ieee80211_channel rtw_channeltable_2g[] = {
46 	{.center_freq = 2412, .hw_value = 1,},
47 	{.center_freq = 2417, .hw_value = 2,},
48 	{.center_freq = 2422, .hw_value = 3,},
49 	{.center_freq = 2427, .hw_value = 4,},
50 	{.center_freq = 2432, .hw_value = 5,},
51 	{.center_freq = 2437, .hw_value = 6,},
52 	{.center_freq = 2442, .hw_value = 7,},
53 	{.center_freq = 2447, .hw_value = 8,},
54 	{.center_freq = 2452, .hw_value = 9,},
55 	{.center_freq = 2457, .hw_value = 10,},
56 	{.center_freq = 2462, .hw_value = 11,},
57 	{.center_freq = 2467, .hw_value = 12,},
58 	{.center_freq = 2472, .hw_value = 13,},
59 	{.center_freq = 2484, .hw_value = 14,},
60 };
61 
62 static struct ieee80211_channel rtw_channeltable_5g[] = {
63 	{.center_freq = 5180, .hw_value = 36,},
64 	{.center_freq = 5200, .hw_value = 40,},
65 	{.center_freq = 5220, .hw_value = 44,},
66 	{.center_freq = 5240, .hw_value = 48,},
67 	{.center_freq = 5260, .hw_value = 52,},
68 	{.center_freq = 5280, .hw_value = 56,},
69 	{.center_freq = 5300, .hw_value = 60,},
70 	{.center_freq = 5320, .hw_value = 64,},
71 	{.center_freq = 5500, .hw_value = 100,},
72 	{.center_freq = 5520, .hw_value = 104,},
73 	{.center_freq = 5540, .hw_value = 108,},
74 	{.center_freq = 5560, .hw_value = 112,},
75 	{.center_freq = 5580, .hw_value = 116,},
76 	{.center_freq = 5600, .hw_value = 120,},
77 	{.center_freq = 5620, .hw_value = 124,},
78 	{.center_freq = 5640, .hw_value = 128,},
79 	{.center_freq = 5660, .hw_value = 132,},
80 	{.center_freq = 5680, .hw_value = 136,},
81 	{.center_freq = 5700, .hw_value = 140,},
82 	{.center_freq = 5720, .hw_value = 144,},
83 	{.center_freq = 5745, .hw_value = 149,},
84 	{.center_freq = 5765, .hw_value = 153,},
85 	{.center_freq = 5785, .hw_value = 157,},
86 	{.center_freq = 5805, .hw_value = 161,},
87 	{.center_freq = 5825, .hw_value = 165,
88 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
89 };
90 
91 static struct ieee80211_rate rtw_ratetable[] = {
92 	{.bitrate = 10, .hw_value = 0x00,},
93 	{.bitrate = 20, .hw_value = 0x01,},
94 	{.bitrate = 55, .hw_value = 0x02,},
95 	{.bitrate = 110, .hw_value = 0x03,},
96 	{.bitrate = 60, .hw_value = 0x04,},
97 	{.bitrate = 90, .hw_value = 0x05,},
98 	{.bitrate = 120, .hw_value = 0x06,},
99 	{.bitrate = 180, .hw_value = 0x07,},
100 	{.bitrate = 240, .hw_value = 0x08,},
101 	{.bitrate = 360, .hw_value = 0x09,},
102 	{.bitrate = 480, .hw_value = 0x0a,},
103 	{.bitrate = 540, .hw_value = 0x0b,},
104 };
105 
106 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
107 	{
108 		.max = 1,
109 		.types = BIT(NL80211_IFTYPE_STATION),
110 	},
111 	{
112 		.max = 1,
113 		.types = BIT(NL80211_IFTYPE_AP),
114 	}
115 };
116 
117 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
118 	{
119 		.limits = rtw_iface_limits,
120 		.n_limits = ARRAY_SIZE(rtw_iface_limits),
121 		.max_interfaces = 2,
122 		.num_different_channels = 1,
123 	}
124 };
125 
126 u16 rtw_desc_to_bitrate(u8 desc_rate)
127 {
128 	struct ieee80211_rate rate;
129 
130 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
131 		return 0;
132 
133 	rate = rtw_ratetable[desc_rate];
134 
135 	return rate.bitrate;
136 }
137 
138 static struct ieee80211_supported_band rtw_band_2ghz = {
139 	.band = NL80211_BAND_2GHZ,
140 
141 	.channels = rtw_channeltable_2g,
142 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
143 
144 	.bitrates = rtw_ratetable,
145 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
146 
147 	.ht_cap = {0},
148 	.vht_cap = {0},
149 };
150 
151 static struct ieee80211_supported_band rtw_band_5ghz = {
152 	.band = NL80211_BAND_5GHZ,
153 
154 	.channels = rtw_channeltable_5g,
155 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
156 
157 	/* 5G has no CCK rates */
158 	.bitrates = rtw_ratetable + 4,
159 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
160 
161 	.ht_cap = {0},
162 	.vht_cap = {0},
163 };
164 
165 struct rtw_watch_dog_iter_data {
166 	struct rtw_dev *rtwdev;
167 	struct rtw_vif *rtwvif;
168 };
169 
170 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
171 {
172 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
173 	u8 fix_rate_enable = 0;
174 	u8 new_csi_rate_idx;
175 
176 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
177 	    rtwvif->bfee.role != RTW_BFEE_MU)
178 		return;
179 
180 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
181 			      bf_info->cur_csi_rpt_rate,
182 			      fix_rate_enable, &new_csi_rate_idx);
183 
184 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
185 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
186 }
187 
188 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
189 {
190 	struct rtw_watch_dog_iter_data *iter_data = data;
191 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
192 
193 	if (vif->type == NL80211_IFTYPE_STATION)
194 		if (vif->cfg.assoc)
195 			iter_data->rtwvif = rtwvif;
196 
197 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
198 
199 	rtwvif->stats.tx_unicast = 0;
200 	rtwvif->stats.rx_unicast = 0;
201 	rtwvif->stats.tx_cnt = 0;
202 	rtwvif->stats.rx_cnt = 0;
203 }
204 
205 /* process TX/RX statistics periodically for hardware,
206  * the information helps hardware to enhance performance
207  */
208 static void rtw_watch_dog_work(struct work_struct *work)
209 {
210 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
211 					      watch_dog_work.work);
212 	struct rtw_traffic_stats *stats = &rtwdev->stats;
213 	struct rtw_watch_dog_iter_data data = {};
214 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
215 	bool ps_active;
216 
217 	mutex_lock(&rtwdev->mutex);
218 
219 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
220 		goto unlock;
221 
222 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
223 				     RTW_WATCH_DOG_DELAY_TIME);
224 
225 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
226 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
227 	else
228 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
229 
230 	rtw_coex_wl_status_check(rtwdev);
231 	rtw_coex_query_bt_hid_list(rtwdev);
232 
233 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
234 		rtw_coex_wl_status_change_notify(rtwdev, 0);
235 
236 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
237 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
238 		ps_active = true;
239 	else
240 		ps_active = false;
241 
242 	ewma_tp_add(&stats->tx_ewma_tp,
243 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
244 	ewma_tp_add(&stats->rx_ewma_tp,
245 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
246 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
247 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
248 
249 	/* reset tx/rx statictics */
250 	stats->tx_unicast = 0;
251 	stats->rx_unicast = 0;
252 	stats->tx_cnt = 0;
253 	stats->rx_cnt = 0;
254 
255 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
256 		goto unlock;
257 
258 	/* make sure BB/RF is working for dynamic mech */
259 	rtw_leave_lps(rtwdev);
260 
261 	rtw_phy_dynamic_mechanism(rtwdev);
262 
263 	data.rtwdev = rtwdev;
264 	/* rtw_iterate_vifs internally uses an atomic iterator which is needed
265 	 * to avoid taking local->iflist_mtx mutex
266 	 */
267 	rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
268 
269 	/* fw supports only one station associated to enter lps, if there are
270 	 * more than two stations associated to the AP, then we can not enter
271 	 * lps, because fw does not handle the overlapped beacon interval
272 	 *
273 	 * rtw_recalc_lps() iterate vifs and determine if driver can enter
274 	 * ps by vif->type and vif->cfg.ps, all we need to do here is to
275 	 * get that vif and check if device is having traffic more than the
276 	 * threshold.
277 	 */
278 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
279 	    !rtwdev->beacon_loss && !rtwdev->ap_active)
280 		rtw_enter_lps(rtwdev, data.rtwvif->port);
281 
282 	rtwdev->watch_dog_cnt++;
283 
284 unlock:
285 	mutex_unlock(&rtwdev->mutex);
286 }
287 
288 static void rtw_c2h_work(struct work_struct *work)
289 {
290 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
291 	struct sk_buff *skb, *tmp;
292 
293 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
294 		skb_unlink(skb, &rtwdev->c2h_queue);
295 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
296 		dev_kfree_skb_any(skb);
297 	}
298 }
299 
300 static void rtw_ips_work(struct work_struct *work)
301 {
302 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
303 
304 	mutex_lock(&rtwdev->mutex);
305 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
306 		rtw_enter_ips(rtwdev);
307 	mutex_unlock(&rtwdev->mutex);
308 }
309 
310 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
311 {
312 	unsigned long mac_id;
313 
314 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
315 	if (mac_id < RTW_MAX_MAC_ID_NUM)
316 		set_bit(mac_id, rtwdev->mac_id_map);
317 
318 	return mac_id;
319 }
320 
321 static void rtw_sta_rc_work(struct work_struct *work)
322 {
323 	struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
324 					       rc_work);
325 	struct rtw_dev *rtwdev = si->rtwdev;
326 
327 	mutex_lock(&rtwdev->mutex);
328 	rtw_update_sta_info(rtwdev, si, true);
329 	mutex_unlock(&rtwdev->mutex);
330 }
331 
332 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
333 		struct ieee80211_vif *vif)
334 {
335 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
336 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
337 	int i;
338 
339 	si->mac_id = rtw_acquire_macid(rtwdev);
340 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
341 		return -ENOSPC;
342 
343 	if (vif->type == NL80211_IFTYPE_STATION && vif->cfg.assoc == 0)
344 		rtwvif->mac_id = si->mac_id;
345 	si->rtwdev = rtwdev;
346 	si->sta = sta;
347 	si->vif = vif;
348 	si->init_ra_lv = 1;
349 	ewma_rssi_init(&si->avg_rssi);
350 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
351 		rtw_txq_init(rtwdev, sta->txq[i]);
352 	INIT_WORK(&si->rc_work, rtw_sta_rc_work);
353 
354 	rtw_update_sta_info(rtwdev, si, true);
355 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
356 
357 	rtwdev->sta_cnt++;
358 	rtwdev->beacon_loss = false;
359 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
360 		sta->addr, si->mac_id);
361 
362 	return 0;
363 }
364 
365 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
366 		    bool fw_exist)
367 {
368 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
369 	int i;
370 
371 	cancel_work_sync(&si->rc_work);
372 
373 	rtw_release_macid(rtwdev, si->mac_id);
374 	if (fw_exist)
375 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
376 
377 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
378 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
379 
380 	kfree(si->mask);
381 
382 	rtwdev->sta_cnt--;
383 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
384 		sta->addr, si->mac_id);
385 }
386 
387 struct rtw_fwcd_hdr {
388 	u32 item;
389 	u32 size;
390 	u32 padding1;
391 	u32 padding2;
392 } __packed;
393 
394 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
395 {
396 	const struct rtw_chip_info *chip = rtwdev->chip;
397 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
398 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
399 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
400 	u8 i;
401 
402 	if (segs) {
403 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
404 
405 		for (i = 0; i < segs->num; i++)
406 			prep_size += segs->segs[i];
407 	}
408 
409 	desc->data = vmalloc(prep_size);
410 	if (!desc->data)
411 		return -ENOMEM;
412 
413 	desc->size = prep_size;
414 	desc->next = desc->data;
415 
416 	return 0;
417 }
418 
419 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
420 {
421 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
422 	struct rtw_fwcd_hdr *hdr;
423 	u8 *next;
424 
425 	if (!desc->data) {
426 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
427 		return NULL;
428 	}
429 
430 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
431 	if (next - desc->data + size > desc->size) {
432 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
433 		return NULL;
434 	}
435 
436 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
437 	hdr->item = item;
438 	hdr->size = size;
439 	hdr->padding1 = 0x01234567;
440 	hdr->padding2 = 0x89abcdef;
441 	desc->next = next + size;
442 
443 	return next;
444 }
445 
446 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
447 {
448 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
449 
450 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
451 
452 	/* Data will be freed after lifetime of device coredump. After calling
453 	 * dev_coredump, data is supposed to be handled by the device coredump
454 	 * framework. Note that a new dump will be discarded if a previous one
455 	 * hasn't been released yet.
456 	 */
457 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
458 }
459 
460 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
461 {
462 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
463 
464 	if (free_self) {
465 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
466 		vfree(desc->data);
467 	}
468 
469 	desc->data = NULL;
470 	desc->next = NULL;
471 }
472 
473 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
474 {
475 	u32 size = rtwdev->chip->fw_rxff_size;
476 	u32 *buf;
477 	u8 seq;
478 
479 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
480 	if (!buf)
481 		return -ENOMEM;
482 
483 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
484 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
485 		return -EINVAL;
486 	}
487 
488 	if (GET_FW_DUMP_LEN(buf) == 0) {
489 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
490 		return -EINVAL;
491 	}
492 
493 	seq = GET_FW_DUMP_SEQ(buf);
494 	if (seq > 0) {
495 		rtw_dbg(rtwdev, RTW_DBG_FW,
496 			"fw crash dump's seq is wrong: %d\n", seq);
497 		return -EINVAL;
498 	}
499 
500 	return 0;
501 }
502 
503 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
504 		u32 fwcd_item)
505 {
506 	u32 rxff = rtwdev->chip->fw_rxff_size;
507 	u32 dump_size, done_size = 0;
508 	u8 *buf;
509 	int ret;
510 
511 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
512 	if (!buf)
513 		return -ENOMEM;
514 
515 	while (size) {
516 		dump_size = size > rxff ? rxff : size;
517 
518 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
519 					  dump_size);
520 		if (ret) {
521 			rtw_err(rtwdev,
522 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
523 				ocp_src, done_size);
524 			return ret;
525 		}
526 
527 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
528 				       dump_size, (u32 *)(buf + done_size));
529 		if (ret) {
530 			rtw_err(rtwdev,
531 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
532 				ocp_src, done_size);
533 			return ret;
534 		}
535 
536 		size -= dump_size;
537 		done_size += dump_size;
538 	}
539 
540 	return 0;
541 }
542 EXPORT_SYMBOL(rtw_dump_fw);
543 
544 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
545 {
546 	u8 *buf;
547 	u32 i;
548 
549 	if (addr & 0x3) {
550 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
551 		return -EINVAL;
552 	}
553 
554 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
555 	if (!buf)
556 		return -ENOMEM;
557 
558 	for (i = 0; i < size; i += 4)
559 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
560 
561 	return 0;
562 }
563 EXPORT_SYMBOL(rtw_dump_reg);
564 
565 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
566 			   struct ieee80211_bss_conf *conf)
567 {
568 	struct ieee80211_vif *vif = NULL;
569 
570 	if (conf)
571 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
572 
573 	if (conf && vif->cfg.assoc) {
574 		rtwvif->aid = vif->cfg.aid;
575 		rtwvif->net_type = RTW_NET_MGD_LINKED;
576 	} else {
577 		rtwvif->aid = 0;
578 		rtwvif->net_type = RTW_NET_NO_LINK;
579 	}
580 }
581 
582 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
583 			       struct ieee80211_vif *vif,
584 			       struct ieee80211_sta *sta,
585 			       struct ieee80211_key_conf *key,
586 			       void *data)
587 {
588 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
589 	struct rtw_sec_desc *sec = &rtwdev->sec;
590 
591 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
592 }
593 
594 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
595 {
596 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
597 
598 	if (rtwdev->sta_cnt == 0) {
599 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
600 		return;
601 	}
602 	rtw_sta_remove(rtwdev, sta, false);
603 }
604 
605 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
606 {
607 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
608 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
609 
610 	rtw_bf_disassoc(rtwdev, vif, NULL);
611 	rtw_vif_assoc_changed(rtwvif, NULL);
612 	rtw_txq_cleanup(rtwdev, vif->txq);
613 }
614 
615 void rtw_fw_recovery(struct rtw_dev *rtwdev)
616 {
617 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
618 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
619 }
620 
621 static void __fw_recovery_work(struct rtw_dev *rtwdev)
622 {
623 	int ret = 0;
624 
625 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
626 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
627 
628 	ret = rtw_fwcd_prep(rtwdev);
629 	if (ret)
630 		goto free;
631 	ret = rtw_fw_dump_crash_log(rtwdev);
632 	if (ret)
633 		goto free;
634 	ret = rtw_chip_dump_fw_crash(rtwdev);
635 	if (ret)
636 		goto free;
637 
638 	rtw_fwcd_dump(rtwdev);
639 free:
640 	rtw_fwcd_free(rtwdev, !!ret);
641 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
642 
643 	WARN(1, "firmware crash, start reset and recover\n");
644 
645 	rcu_read_lock();
646 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
647 	rcu_read_unlock();
648 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
649 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
650 	bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
651 	rtw_enter_ips(rtwdev);
652 }
653 
654 static void rtw_fw_recovery_work(struct work_struct *work)
655 {
656 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
657 					      fw_recovery_work);
658 
659 	mutex_lock(&rtwdev->mutex);
660 	__fw_recovery_work(rtwdev);
661 	mutex_unlock(&rtwdev->mutex);
662 
663 	ieee80211_restart_hw(rtwdev->hw);
664 }
665 
666 struct rtw_txq_ba_iter_data {
667 };
668 
669 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
670 {
671 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
672 	int ret;
673 	u8 tid;
674 
675 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
676 	while (tid != IEEE80211_NUM_TIDS) {
677 		clear_bit(tid, si->tid_ba);
678 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
679 		if (ret == -EINVAL) {
680 			struct ieee80211_txq *txq;
681 			struct rtw_txq *rtwtxq;
682 
683 			txq = sta->txq[tid];
684 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
685 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
686 		}
687 
688 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
689 	}
690 }
691 
692 static void rtw_txq_ba_work(struct work_struct *work)
693 {
694 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
695 	struct rtw_txq_ba_iter_data data;
696 
697 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
698 }
699 
700 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
701 {
702 	if (IS_CH_2G_BAND(channel))
703 		pkt_stat->band = NL80211_BAND_2GHZ;
704 	else if (IS_CH_5G_BAND(channel))
705 		pkt_stat->band = NL80211_BAND_5GHZ;
706 	else
707 		return;
708 
709 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
710 }
711 EXPORT_SYMBOL(rtw_set_rx_freq_band);
712 
713 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
714 {
715 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
716 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
717 }
718 
719 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
720 			u8 primary_channel, enum rtw_supported_band band,
721 			enum rtw_bandwidth bandwidth)
722 {
723 	enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
724 	struct rtw_hal *hal = &rtwdev->hal;
725 	u8 *cch_by_bw = hal->cch_by_bw;
726 	u32 center_freq, primary_freq;
727 	enum rtw_sar_bands sar_band;
728 	u8 primary_channel_idx;
729 
730 	center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
731 	primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
732 
733 	/* assign the center channel used while 20M bw is selected */
734 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
735 
736 	/* assign the center channel used while current bw is selected */
737 	cch_by_bw[bandwidth] = center_channel;
738 
739 	switch (bandwidth) {
740 	case RTW_CHANNEL_WIDTH_20:
741 	default:
742 		primary_channel_idx = RTW_SC_DONT_CARE;
743 		break;
744 	case RTW_CHANNEL_WIDTH_40:
745 		if (primary_freq > center_freq)
746 			primary_channel_idx = RTW_SC_20_UPPER;
747 		else
748 			primary_channel_idx = RTW_SC_20_LOWER;
749 		break;
750 	case RTW_CHANNEL_WIDTH_80:
751 		if (primary_freq > center_freq) {
752 			if (primary_freq - center_freq == 10)
753 				primary_channel_idx = RTW_SC_20_UPPER;
754 			else
755 				primary_channel_idx = RTW_SC_20_UPMOST;
756 
757 			/* assign the center channel used
758 			 * while 40M bw is selected
759 			 */
760 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
761 		} else {
762 			if (center_freq - primary_freq == 10)
763 				primary_channel_idx = RTW_SC_20_LOWER;
764 			else
765 				primary_channel_idx = RTW_SC_20_LOWEST;
766 
767 			/* assign the center channel used
768 			 * while 40M bw is selected
769 			 */
770 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
771 		}
772 		break;
773 	}
774 
775 	switch (center_channel) {
776 	case 1 ... 14:
777 		sar_band = RTW_SAR_BAND_0;
778 		break;
779 	case 36 ... 64:
780 		sar_band = RTW_SAR_BAND_1;
781 		break;
782 	case 100 ... 144:
783 		sar_band = RTW_SAR_BAND_3;
784 		break;
785 	case 149 ... 177:
786 		sar_band = RTW_SAR_BAND_4;
787 		break;
788 	default:
789 		WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
790 		sar_band = RTW_SAR_BAND_0;
791 		break;
792 	}
793 
794 	hal->current_primary_channel_index = primary_channel_idx;
795 	hal->current_band_width = bandwidth;
796 	hal->primary_channel = primary_channel;
797 	hal->current_channel = center_channel;
798 	hal->current_band_type = band;
799 	hal->sar_band = sar_band;
800 }
801 
802 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
803 			    struct rtw_channel_params *chan_params)
804 {
805 	struct ieee80211_channel *channel = chandef->chan;
806 	enum nl80211_chan_width width = chandef->width;
807 	u32 primary_freq, center_freq;
808 	u8 center_chan;
809 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
810 
811 	center_chan = channel->hw_value;
812 	primary_freq = channel->center_freq;
813 	center_freq = chandef->center_freq1;
814 
815 	switch (width) {
816 	case NL80211_CHAN_WIDTH_20_NOHT:
817 	case NL80211_CHAN_WIDTH_20:
818 		bandwidth = RTW_CHANNEL_WIDTH_20;
819 		break;
820 	case NL80211_CHAN_WIDTH_40:
821 		bandwidth = RTW_CHANNEL_WIDTH_40;
822 		if (primary_freq > center_freq)
823 			center_chan -= 2;
824 		else
825 			center_chan += 2;
826 		break;
827 	case NL80211_CHAN_WIDTH_80:
828 		bandwidth = RTW_CHANNEL_WIDTH_80;
829 		if (primary_freq > center_freq) {
830 			if (primary_freq - center_freq == 10)
831 				center_chan -= 2;
832 			else
833 				center_chan -= 6;
834 		} else {
835 			if (center_freq - primary_freq == 10)
836 				center_chan += 2;
837 			else
838 				center_chan += 6;
839 		}
840 		break;
841 	default:
842 		center_chan = 0;
843 		break;
844 	}
845 
846 	chan_params->center_chan = center_chan;
847 	chan_params->bandwidth = bandwidth;
848 	chan_params->primary_chan = channel->hw_value;
849 }
850 
851 void rtw_set_channel(struct rtw_dev *rtwdev)
852 {
853 	const struct rtw_chip_info *chip = rtwdev->chip;
854 	struct ieee80211_hw *hw = rtwdev->hw;
855 	struct rtw_hal *hal = &rtwdev->hal;
856 	struct rtw_channel_params ch_param;
857 	u8 center_chan, primary_chan, bandwidth, band;
858 
859 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
860 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
861 		return;
862 
863 	center_chan = ch_param.center_chan;
864 	primary_chan = ch_param.primary_chan;
865 	bandwidth = ch_param.bandwidth;
866 	band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
867 
868 	rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
869 
870 	if (rtwdev->scan_info.op_chan)
871 		rtw_store_op_chan(rtwdev, true);
872 
873 	chip->ops->set_channel(rtwdev, center_chan, bandwidth,
874 			       hal->current_primary_channel_index);
875 
876 	if (hal->current_band_type == RTW_BAND_5G) {
877 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
878 	} else {
879 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
880 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
881 		else
882 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
883 	}
884 
885 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
886 
887 	/* if the channel isn't set for scanning, we will do RF calibration
888 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
889 	 * during scanning on each channel takes too long.
890 	 */
891 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
892 		rtwdev->need_rfk = true;
893 }
894 
895 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
896 {
897 	const struct rtw_chip_info *chip = rtwdev->chip;
898 
899 	if (rtwdev->need_rfk) {
900 		rtwdev->need_rfk = false;
901 		chip->ops->phy_calibration(rtwdev);
902 	}
903 }
904 
905 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
906 {
907 	int i;
908 
909 	for (i = 0; i < ETH_ALEN; i++)
910 		rtw_write8(rtwdev, start + i, addr[i]);
911 }
912 
913 void rtw_vif_port_config(struct rtw_dev *rtwdev,
914 			 struct rtw_vif *rtwvif,
915 			 u32 config)
916 {
917 	u32 addr, mask;
918 
919 	if (config & PORT_SET_MAC_ADDR) {
920 		addr = rtwvif->conf->mac_addr.addr;
921 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
922 	}
923 	if (config & PORT_SET_BSSID) {
924 		addr = rtwvif->conf->bssid.addr;
925 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
926 	}
927 	if (config & PORT_SET_NET_TYPE) {
928 		addr = rtwvif->conf->net_type.addr;
929 		mask = rtwvif->conf->net_type.mask;
930 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
931 	}
932 	if (config & PORT_SET_AID) {
933 		addr = rtwvif->conf->aid.addr;
934 		mask = rtwvif->conf->aid.mask;
935 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
936 	}
937 	if (config & PORT_SET_BCN_CTRL) {
938 		addr = rtwvif->conf->bcn_ctrl.addr;
939 		mask = rtwvif->conf->bcn_ctrl.mask;
940 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
941 	}
942 }
943 
944 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
945 {
946 	u8 bw = 0;
947 
948 	switch (bw_cap) {
949 	case EFUSE_HW_CAP_IGNORE:
950 	case EFUSE_HW_CAP_SUPP_BW80:
951 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
952 		fallthrough;
953 	case EFUSE_HW_CAP_SUPP_BW40:
954 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
955 		fallthrough;
956 	default:
957 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
958 		break;
959 	}
960 
961 	return bw;
962 }
963 
964 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
965 {
966 	const struct rtw_chip_info *chip = rtwdev->chip;
967 	struct rtw_hal *hal = &rtwdev->hal;
968 
969 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
970 	    hw_ant_num >= hal->rf_path_num)
971 		return;
972 
973 	switch (hw_ant_num) {
974 	case 1:
975 		hal->rf_type = RF_1T1R;
976 		hal->rf_path_num = 1;
977 		if (!chip->fix_rf_phy_num)
978 			hal->rf_phy_num = hal->rf_path_num;
979 		hal->antenna_tx = BB_PATH_A;
980 		hal->antenna_rx = BB_PATH_A;
981 		break;
982 	default:
983 		WARN(1, "invalid hw configuration from efuse\n");
984 		break;
985 	}
986 }
987 
988 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
989 {
990 	u64 ra_mask = 0;
991 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
992 	u8 vht_mcs_cap;
993 	int i, nss;
994 
995 	/* 4SS, every two bits for MCS7/8/9 */
996 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
997 		vht_mcs_cap = mcs_map & 0x3;
998 		switch (vht_mcs_cap) {
999 		case 2: /* MCS9 */
1000 			ra_mask |= 0x3ffULL << nss;
1001 			break;
1002 		case 1: /* MCS8 */
1003 			ra_mask |= 0x1ffULL << nss;
1004 			break;
1005 		case 0: /* MCS7 */
1006 			ra_mask |= 0x0ffULL << nss;
1007 			break;
1008 		default:
1009 			break;
1010 		}
1011 	}
1012 
1013 	return ra_mask;
1014 }
1015 
1016 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1017 {
1018 	u8 rate_id = 0;
1019 
1020 	switch (wireless_set) {
1021 	case WIRELESS_CCK:
1022 		rate_id = RTW_RATEID_B_20M;
1023 		break;
1024 	case WIRELESS_OFDM:
1025 		rate_id = RTW_RATEID_G;
1026 		break;
1027 	case WIRELESS_CCK | WIRELESS_OFDM:
1028 		rate_id = RTW_RATEID_BG;
1029 		break;
1030 	case WIRELESS_OFDM | WIRELESS_HT:
1031 		if (tx_num == 1)
1032 			rate_id = RTW_RATEID_GN_N1SS;
1033 		else if (tx_num == 2)
1034 			rate_id = RTW_RATEID_GN_N2SS;
1035 		else if (tx_num == 3)
1036 			rate_id = RTW_RATEID_ARFR5_N_3SS;
1037 		break;
1038 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1039 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1040 			if (tx_num == 1)
1041 				rate_id = RTW_RATEID_BGN_40M_1SS;
1042 			else if (tx_num == 2)
1043 				rate_id = RTW_RATEID_BGN_40M_2SS;
1044 			else if (tx_num == 3)
1045 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1046 			else if (tx_num == 4)
1047 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1048 		} else {
1049 			if (tx_num == 1)
1050 				rate_id = RTW_RATEID_BGN_20M_1SS;
1051 			else if (tx_num == 2)
1052 				rate_id = RTW_RATEID_BGN_20M_2SS;
1053 			else if (tx_num == 3)
1054 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1055 			else if (tx_num == 4)
1056 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1057 		}
1058 		break;
1059 	case WIRELESS_OFDM | WIRELESS_VHT:
1060 		if (tx_num == 1)
1061 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
1062 		else if (tx_num == 2)
1063 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
1064 		else if (tx_num == 3)
1065 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
1066 		else if (tx_num == 4)
1067 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
1068 		break;
1069 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1070 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1071 			if (tx_num == 1)
1072 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1073 			else if (tx_num == 2)
1074 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1075 			else if (tx_num == 3)
1076 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1077 			else if (tx_num == 4)
1078 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1079 		} else {
1080 			if (tx_num == 1)
1081 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1082 			else if (tx_num == 2)
1083 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1084 			else if (tx_num == 3)
1085 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1086 			else if (tx_num == 4)
1087 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1088 		}
1089 		break;
1090 	default:
1091 		break;
1092 	}
1093 
1094 	return rate_id;
1095 }
1096 
1097 #define RA_MASK_CCK_RATES	0x0000f
1098 #define RA_MASK_OFDM_RATES	0x00ff0
1099 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1100 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1101 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1102 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1103 				 RA_MASK_HT_RATES_2SS | \
1104 				 RA_MASK_HT_RATES_3SS)
1105 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1106 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1107 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1108 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1109 				 RA_MASK_VHT_RATES_2SS | \
1110 				 RA_MASK_VHT_RATES_3SS)
1111 #define RA_MASK_CCK_IN_BG	0x00005
1112 #define RA_MASK_CCK_IN_HT	0x00005
1113 #define RA_MASK_CCK_IN_VHT	0x00005
1114 #define RA_MASK_OFDM_IN_VHT	0x00010
1115 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1116 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1117 
1118 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1119 {
1120 	u8 rssi_level = si->rssi_level;
1121 
1122 	if (wireless_set == WIRELESS_CCK)
1123 		return 0xffffffffffffffffULL;
1124 
1125 	if (rssi_level == 0)
1126 		return 0xffffffffffffffffULL;
1127 	else if (rssi_level == 1)
1128 		return 0xfffffffffffffff0ULL;
1129 	else if (rssi_level == 2)
1130 		return 0xffffffffffffefe0ULL;
1131 	else if (rssi_level == 3)
1132 		return 0xffffffffffffcfc0ULL;
1133 	else if (rssi_level == 4)
1134 		return 0xffffffffffff8f80ULL;
1135 	else
1136 		return 0xffffffffffff0f00ULL;
1137 }
1138 
1139 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1140 {
1141 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1142 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1143 
1144 	if (ra_mask == 0)
1145 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1146 
1147 	return ra_mask;
1148 }
1149 
1150 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1151 			     u64 ra_mask, bool is_vht_enable)
1152 {
1153 	struct rtw_hal *hal = &rtwdev->hal;
1154 	const struct cfg80211_bitrate_mask *mask = si->mask;
1155 	u64 cfg_mask = GENMASK_ULL(63, 0);
1156 	u8 band;
1157 
1158 	if (!si->use_cfg_mask)
1159 		return ra_mask;
1160 
1161 	band = hal->current_band_type;
1162 	if (band == RTW_BAND_2G) {
1163 		band = NL80211_BAND_2GHZ;
1164 		cfg_mask = mask->control[band].legacy;
1165 	} else if (band == RTW_BAND_5G) {
1166 		band = NL80211_BAND_5GHZ;
1167 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1168 					   RA_MASK_OFDM_RATES);
1169 	}
1170 
1171 	if (!is_vht_enable) {
1172 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1173 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1174 						    RA_MASK_HT_RATES_1SS);
1175 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1176 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1177 						    RA_MASK_HT_RATES_2SS);
1178 	} else {
1179 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1180 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1181 						    RA_MASK_VHT_RATES_1SS);
1182 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1183 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1184 						    RA_MASK_VHT_RATES_2SS);
1185 	}
1186 
1187 	ra_mask &= cfg_mask;
1188 
1189 	return ra_mask;
1190 }
1191 
1192 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1193 			 bool reset_ra_mask)
1194 {
1195 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1196 	struct ieee80211_sta *sta = si->sta;
1197 	struct rtw_efuse *efuse = &rtwdev->efuse;
1198 	struct rtw_hal *hal = &rtwdev->hal;
1199 	u8 wireless_set;
1200 	u8 bw_mode;
1201 	u8 rate_id;
1202 	u8 rf_type = RF_1T1R;
1203 	u8 stbc_en = 0;
1204 	u8 ldpc_en = 0;
1205 	u8 tx_num = 1;
1206 	u64 ra_mask = 0;
1207 	u64 ra_mask_bak = 0;
1208 	bool is_vht_enable = false;
1209 	bool is_support_sgi = false;
1210 
1211 	if (sta->deflink.vht_cap.vht_supported) {
1212 		is_vht_enable = true;
1213 		ra_mask |= get_vht_ra_mask(sta);
1214 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1215 			stbc_en = VHT_STBC_EN;
1216 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1217 			ldpc_en = VHT_LDPC_EN;
1218 	} else if (sta->deflink.ht_cap.ht_supported) {
1219 		ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1220 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1221 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1222 			stbc_en = HT_STBC_EN;
1223 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1224 			ldpc_en = HT_LDPC_EN;
1225 	}
1226 
1227 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1228 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1229 
1230 	if (hal->current_band_type == RTW_BAND_5G) {
1231 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1232 		ra_mask_bak = ra_mask;
1233 		if (sta->deflink.vht_cap.vht_supported) {
1234 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1235 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1236 		} else if (sta->deflink.ht_cap.ht_supported) {
1237 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1238 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1239 		} else {
1240 			wireless_set = WIRELESS_OFDM;
1241 		}
1242 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1243 	} else if (hal->current_band_type == RTW_BAND_2G) {
1244 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1245 		ra_mask_bak = ra_mask;
1246 		if (sta->deflink.vht_cap.vht_supported) {
1247 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1248 				   RA_MASK_OFDM_IN_VHT;
1249 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1250 				       WIRELESS_HT | WIRELESS_VHT;
1251 		} else if (sta->deflink.ht_cap.ht_supported) {
1252 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1253 				   RA_MASK_OFDM_IN_HT_2G;
1254 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1255 				       WIRELESS_HT;
1256 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1257 			wireless_set = WIRELESS_CCK;
1258 		} else {
1259 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1260 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1261 		}
1262 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1263 	} else {
1264 		rtw_err(rtwdev, "Unknown band type\n");
1265 		ra_mask_bak = ra_mask;
1266 		wireless_set = 0;
1267 	}
1268 
1269 	switch (sta->deflink.bandwidth) {
1270 	case IEEE80211_STA_RX_BW_80:
1271 		bw_mode = RTW_CHANNEL_WIDTH_80;
1272 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1273 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1274 		break;
1275 	case IEEE80211_STA_RX_BW_40:
1276 		bw_mode = RTW_CHANNEL_WIDTH_40;
1277 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1278 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1279 		break;
1280 	default:
1281 		bw_mode = RTW_CHANNEL_WIDTH_20;
1282 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1283 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1284 		break;
1285 	}
1286 
1287 	if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1288 		tx_num = 2;
1289 		rf_type = RF_2T2R;
1290 	} else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1291 		tx_num = 2;
1292 		rf_type = RF_2T2R;
1293 	}
1294 
1295 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1296 
1297 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1298 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1299 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1300 
1301 	si->bw_mode = bw_mode;
1302 	si->stbc_en = stbc_en;
1303 	si->ldpc_en = ldpc_en;
1304 	si->rf_type = rf_type;
1305 	si->sgi_enable = is_support_sgi;
1306 	si->vht_enable = is_vht_enable;
1307 	si->ra_mask = ra_mask;
1308 	si->rate_id = rate_id;
1309 
1310 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1311 }
1312 
1313 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1314 {
1315 	const struct rtw_chip_info *chip = rtwdev->chip;
1316 	struct rtw_fw_state *fw;
1317 
1318 	fw = &rtwdev->fw;
1319 	wait_for_completion(&fw->completion);
1320 	if (!fw->firmware)
1321 		return -EINVAL;
1322 
1323 	if (chip->wow_fw_name) {
1324 		fw = &rtwdev->wow_fw;
1325 		wait_for_completion(&fw->completion);
1326 		if (!fw->firmware)
1327 			return -EINVAL;
1328 	}
1329 
1330 	return 0;
1331 }
1332 
1333 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1334 						       struct rtw_fw_state *fw)
1335 {
1336 	const struct rtw_chip_info *chip = rtwdev->chip;
1337 
1338 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1339 	    !fw->feature)
1340 		return LPS_DEEP_MODE_NONE;
1341 
1342 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1343 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1344 		return LPS_DEEP_MODE_PG;
1345 
1346 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1347 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1348 		return LPS_DEEP_MODE_LCLK;
1349 
1350 	return LPS_DEEP_MODE_NONE;
1351 }
1352 
1353 static int rtw_power_on(struct rtw_dev *rtwdev)
1354 {
1355 	const struct rtw_chip_info *chip = rtwdev->chip;
1356 	struct rtw_fw_state *fw = &rtwdev->fw;
1357 	bool wifi_only;
1358 	int ret;
1359 
1360 	ret = rtw_hci_setup(rtwdev);
1361 	if (ret) {
1362 		rtw_err(rtwdev, "failed to setup hci\n");
1363 		goto err;
1364 	}
1365 
1366 	/* power on MAC before firmware downloaded */
1367 	ret = rtw_mac_power_on(rtwdev);
1368 	if (ret) {
1369 		rtw_err(rtwdev, "failed to power on mac\n");
1370 		goto err;
1371 	}
1372 
1373 	ret = rtw_wait_firmware_completion(rtwdev);
1374 	if (ret) {
1375 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1376 		goto err_off;
1377 	}
1378 
1379 	ret = rtw_download_firmware(rtwdev, fw);
1380 	if (ret) {
1381 		rtw_err(rtwdev, "failed to download firmware\n");
1382 		goto err_off;
1383 	}
1384 
1385 	/* config mac after firmware downloaded */
1386 	ret = rtw_mac_init(rtwdev);
1387 	if (ret) {
1388 		rtw_err(rtwdev, "failed to configure mac\n");
1389 		goto err_off;
1390 	}
1391 
1392 	chip->ops->phy_set_param(rtwdev);
1393 
1394 	ret = rtw_hci_start(rtwdev);
1395 	if (ret) {
1396 		rtw_err(rtwdev, "failed to start hci\n");
1397 		goto err_off;
1398 	}
1399 
1400 	/* send H2C after HCI has started */
1401 	rtw_fw_send_general_info(rtwdev);
1402 	rtw_fw_send_phydm_info(rtwdev);
1403 
1404 	wifi_only = !rtwdev->efuse.btcoex;
1405 	rtw_coex_power_on_setting(rtwdev);
1406 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1407 
1408 	return 0;
1409 
1410 err_off:
1411 	rtw_mac_power_off(rtwdev);
1412 
1413 err:
1414 	return ret;
1415 }
1416 
1417 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1418 {
1419 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1420 		return;
1421 
1422 	if (start) {
1423 		rtw_fw_scan_notify(rtwdev, true);
1424 	} else {
1425 		reinit_completion(&rtwdev->fw_scan_density);
1426 		rtw_fw_scan_notify(rtwdev, false);
1427 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1428 						 SCAN_NOTIFY_TIMEOUT))
1429 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1430 	}
1431 }
1432 
1433 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1434 			 const u8 *mac_addr, bool hw_scan)
1435 {
1436 	u32 config = 0;
1437 	int ret = 0;
1438 
1439 	rtw_leave_lps(rtwdev);
1440 
1441 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1442 		ret = rtw_leave_ips(rtwdev);
1443 		if (ret) {
1444 			rtw_err(rtwdev, "failed to leave idle state\n");
1445 			return;
1446 		}
1447 	}
1448 
1449 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1450 	config |= PORT_SET_MAC_ADDR;
1451 	rtw_vif_port_config(rtwdev, rtwvif, config);
1452 
1453 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1454 	rtw_core_fw_scan_notify(rtwdev, true);
1455 
1456 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1457 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1458 }
1459 
1460 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1461 			    bool hw_scan)
1462 {
1463 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1464 	u32 config = 0;
1465 
1466 	if (!rtwvif)
1467 		return;
1468 
1469 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1470 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1471 
1472 	rtw_core_fw_scan_notify(rtwdev, false);
1473 
1474 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1475 	config |= PORT_SET_MAC_ADDR;
1476 	rtw_vif_port_config(rtwdev, rtwvif, config);
1477 
1478 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1479 
1480 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1481 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1482 }
1483 
1484 int rtw_core_start(struct rtw_dev *rtwdev)
1485 {
1486 	int ret;
1487 
1488 	ret = rtw_power_on(rtwdev);
1489 	if (ret)
1490 		return ret;
1491 
1492 	rtw_sec_enable_sec_engine(rtwdev);
1493 
1494 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1495 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1496 
1497 	/* rcr reset after powered on */
1498 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1499 
1500 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1501 				     RTW_WATCH_DOG_DELAY_TIME);
1502 
1503 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1504 
1505 	return 0;
1506 }
1507 
1508 static void rtw_power_off(struct rtw_dev *rtwdev)
1509 {
1510 	rtw_hci_stop(rtwdev);
1511 	rtw_coex_power_off_setting(rtwdev);
1512 	rtw_mac_power_off(rtwdev);
1513 }
1514 
1515 void rtw_core_stop(struct rtw_dev *rtwdev)
1516 {
1517 	struct rtw_coex *coex = &rtwdev->coex;
1518 
1519 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1520 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1521 
1522 	mutex_unlock(&rtwdev->mutex);
1523 
1524 	cancel_work_sync(&rtwdev->c2h_work);
1525 	cancel_work_sync(&rtwdev->update_beacon_work);
1526 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1527 	cancel_delayed_work_sync(&coex->bt_relink_work);
1528 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1529 	cancel_delayed_work_sync(&coex->defreeze_work);
1530 	cancel_delayed_work_sync(&coex->wl_remain_work);
1531 	cancel_delayed_work_sync(&coex->bt_remain_work);
1532 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1533 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1534 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1535 
1536 	mutex_lock(&rtwdev->mutex);
1537 
1538 	rtw_power_off(rtwdev);
1539 }
1540 
1541 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1542 			    struct ieee80211_sta_ht_cap *ht_cap)
1543 {
1544 	const struct rtw_chip_info *chip = rtwdev->chip;
1545 	struct rtw_efuse *efuse = &rtwdev->efuse;
1546 
1547 	ht_cap->ht_supported = true;
1548 	ht_cap->cap = 0;
1549 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1550 			IEEE80211_HT_CAP_MAX_AMSDU |
1551 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1552 
1553 	if (rtw_chip_has_rx_ldpc(rtwdev))
1554 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1555 	if (rtw_chip_has_tx_stbc(rtwdev))
1556 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1557 
1558 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1559 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1560 				IEEE80211_HT_CAP_DSSSCCK40 |
1561 				IEEE80211_HT_CAP_SGI_40;
1562 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1563 	ht_cap->ampdu_density = chip->ampdu_density;
1564 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1565 	if (efuse->hw_cap.nss > 1) {
1566 		ht_cap->mcs.rx_mask[0] = 0xFF;
1567 		ht_cap->mcs.rx_mask[1] = 0xFF;
1568 		ht_cap->mcs.rx_mask[4] = 0x01;
1569 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1570 	} else {
1571 		ht_cap->mcs.rx_mask[0] = 0xFF;
1572 		ht_cap->mcs.rx_mask[1] = 0x00;
1573 		ht_cap->mcs.rx_mask[4] = 0x01;
1574 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1575 	}
1576 }
1577 
1578 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1579 			     struct ieee80211_sta_vht_cap *vht_cap)
1580 {
1581 	struct rtw_efuse *efuse = &rtwdev->efuse;
1582 	u16 mcs_map;
1583 	__le16 highest;
1584 
1585 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1586 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1587 		return;
1588 
1589 	vht_cap->vht_supported = true;
1590 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1591 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1592 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1593 		       IEEE80211_VHT_CAP_HTC_VHT |
1594 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1595 		       0;
1596 	if (rtwdev->hal.rf_path_num > 1)
1597 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1598 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1599 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1600 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1601 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1602 
1603 	if (rtw_chip_has_rx_ldpc(rtwdev))
1604 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1605 
1606 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1607 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1608 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1609 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1610 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1611 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1612 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1613 	if (efuse->hw_cap.nss > 1) {
1614 		highest = cpu_to_le16(780);
1615 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1616 	} else {
1617 		highest = cpu_to_le16(390);
1618 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1619 	}
1620 
1621 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1622 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1623 	vht_cap->vht_mcs.rx_highest = highest;
1624 	vht_cap->vht_mcs.tx_highest = highest;
1625 }
1626 
1627 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1628 {
1629 	u16 len;
1630 
1631 	len = rtwdev->chip->max_scan_ie_len;
1632 
1633 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1634 	    rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1635 		len = IEEE80211_MAX_DATA_LEN;
1636 	else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1637 		len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1638 
1639 	return len;
1640 }
1641 
1642 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1643 				   const struct rtw_chip_info *chip)
1644 {
1645 	struct rtw_dev *rtwdev = hw->priv;
1646 	struct ieee80211_supported_band *sband;
1647 
1648 	if (chip->band & RTW_BAND_2G) {
1649 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1650 		if (!sband)
1651 			goto err_out;
1652 		if (chip->ht_supported)
1653 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1654 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1655 	}
1656 
1657 	if (chip->band & RTW_BAND_5G) {
1658 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1659 		if (!sband)
1660 			goto err_out;
1661 		if (chip->ht_supported)
1662 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1663 		if (chip->vht_supported)
1664 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1665 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1666 	}
1667 
1668 	return;
1669 
1670 err_out:
1671 	rtw_err(rtwdev, "failed to set supported band\n");
1672 }
1673 
1674 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1675 				     const struct rtw_chip_info *chip)
1676 {
1677 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1678 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1679 }
1680 
1681 static void rtw_vif_smps_iter(void *data, u8 *mac,
1682 			      struct ieee80211_vif *vif)
1683 {
1684 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1685 
1686 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1687 		return;
1688 
1689 	if (rtwdev->hal.txrx_1ss)
1690 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1691 	else
1692 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1693 }
1694 
1695 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1696 {
1697 	const struct rtw_chip_info *chip = rtwdev->chip;
1698 	struct rtw_hal *hal = &rtwdev->hal;
1699 
1700 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1701 		return;
1702 
1703 	rtwdev->hal.txrx_1ss = txrx_1ss;
1704 	if (txrx_1ss)
1705 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1706 	else
1707 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1708 					    hal->antenna_rx, false);
1709 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1710 }
1711 
1712 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1713 				      struct rtw_fw_state *fw)
1714 {
1715 	u32 feature;
1716 	const struct rtw_fw_hdr *fw_hdr =
1717 				(const struct rtw_fw_hdr *)fw->firmware->data;
1718 
1719 	feature = le32_to_cpu(fw_hdr->feature);
1720 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1721 
1722 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1723 	    RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1724 		fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1725 }
1726 
1727 static void __update_firmware_info(struct rtw_dev *rtwdev,
1728 				   struct rtw_fw_state *fw)
1729 {
1730 	const struct rtw_fw_hdr *fw_hdr =
1731 				(const struct rtw_fw_hdr *)fw->firmware->data;
1732 
1733 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1734 	fw->version = le16_to_cpu(fw_hdr->version);
1735 	fw->sub_version = fw_hdr->subversion;
1736 	fw->sub_index = fw_hdr->subindex;
1737 
1738 	__update_firmware_feature(rtwdev, fw);
1739 }
1740 
1741 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1742 					  struct rtw_fw_state *fw)
1743 {
1744 	struct rtw_fw_hdr_legacy *legacy =
1745 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1746 
1747 	fw->h2c_version = 0;
1748 	fw->version = le16_to_cpu(legacy->version);
1749 	fw->sub_version = legacy->subversion1;
1750 	fw->sub_index = legacy->subversion2;
1751 }
1752 
1753 static void update_firmware_info(struct rtw_dev *rtwdev,
1754 				 struct rtw_fw_state *fw)
1755 {
1756 	if (rtw_chip_wcpu_11n(rtwdev))
1757 		__update_firmware_info_legacy(rtwdev, fw);
1758 	else
1759 		__update_firmware_info(rtwdev, fw);
1760 }
1761 
1762 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1763 {
1764 	struct rtw_fw_state *fw = context;
1765 	struct rtw_dev *rtwdev = fw->rtwdev;
1766 
1767 	if (!firmware || !firmware->data) {
1768 		rtw_err(rtwdev, "failed to request firmware\n");
1769 		complete_all(&fw->completion);
1770 		return;
1771 	}
1772 
1773 	fw->firmware = firmware;
1774 	update_firmware_info(rtwdev, fw);
1775 	complete_all(&fw->completion);
1776 
1777 	rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1778 		 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1779 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1780 }
1781 
1782 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1783 {
1784 	const char *fw_name;
1785 	struct rtw_fw_state *fw;
1786 	int ret;
1787 
1788 	switch (type) {
1789 	case RTW_WOWLAN_FW:
1790 		fw = &rtwdev->wow_fw;
1791 		fw_name = rtwdev->chip->wow_fw_name;
1792 		break;
1793 
1794 	case RTW_NORMAL_FW:
1795 		fw = &rtwdev->fw;
1796 		fw_name = rtwdev->chip->fw_name;
1797 		break;
1798 
1799 	default:
1800 		rtw_warn(rtwdev, "unsupported firmware type\n");
1801 		return -ENOENT;
1802 	}
1803 
1804 	fw->type = type;
1805 	fw->rtwdev = rtwdev;
1806 	init_completion(&fw->completion);
1807 
1808 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1809 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1810 	if (ret) {
1811 		rtw_err(rtwdev, "failed to async firmware request\n");
1812 		return ret;
1813 	}
1814 
1815 	return 0;
1816 }
1817 
1818 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1819 {
1820 	const struct rtw_chip_info *chip = rtwdev->chip;
1821 	struct rtw_hal *hal = &rtwdev->hal;
1822 	struct rtw_efuse *efuse = &rtwdev->efuse;
1823 
1824 	switch (rtw_hci_type(rtwdev)) {
1825 	case RTW_HCI_TYPE_PCIE:
1826 		rtwdev->hci.rpwm_addr = 0x03d9;
1827 		rtwdev->hci.cpwm_addr = 0x03da;
1828 		break;
1829 	case RTW_HCI_TYPE_SDIO:
1830 		rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1831 		rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1832 		break;
1833 	case RTW_HCI_TYPE_USB:
1834 		rtwdev->hci.rpwm_addr = 0xfe58;
1835 		rtwdev->hci.cpwm_addr = 0xfe57;
1836 		break;
1837 	default:
1838 		rtw_err(rtwdev, "unsupported hci type\n");
1839 		return -EINVAL;
1840 	}
1841 
1842 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1843 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1844 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1845 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1846 		hal->rf_type = RF_2T2R;
1847 		hal->rf_path_num = 2;
1848 		hal->antenna_tx = BB_PATH_AB;
1849 		hal->antenna_rx = BB_PATH_AB;
1850 	} else {
1851 		hal->rf_type = RF_1T1R;
1852 		hal->rf_path_num = 1;
1853 		hal->antenna_tx = BB_PATH_A;
1854 		hal->antenna_rx = BB_PATH_A;
1855 	}
1856 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1857 			  hal->rf_path_num;
1858 
1859 	efuse->physical_size = chip->phy_efuse_size;
1860 	efuse->logical_size = chip->log_efuse_size;
1861 	efuse->protect_size = chip->ptct_efuse_size;
1862 
1863 	/* default use ack */
1864 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1865 
1866 	hal->bfee_sts_cap = 3;
1867 
1868 	return 0;
1869 }
1870 
1871 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1872 {
1873 	struct rtw_fw_state *fw = &rtwdev->fw;
1874 	int ret;
1875 
1876 	ret = rtw_hci_setup(rtwdev);
1877 	if (ret) {
1878 		rtw_err(rtwdev, "failed to setup hci\n");
1879 		goto err;
1880 	}
1881 
1882 	ret = rtw_mac_power_on(rtwdev);
1883 	if (ret) {
1884 		rtw_err(rtwdev, "failed to power on mac\n");
1885 		goto err;
1886 	}
1887 
1888 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1889 
1890 	wait_for_completion(&fw->completion);
1891 	if (!fw->firmware) {
1892 		ret = -EINVAL;
1893 		rtw_err(rtwdev, "failed to load firmware\n");
1894 		goto err;
1895 	}
1896 
1897 	ret = rtw_download_firmware(rtwdev, fw);
1898 	if (ret) {
1899 		rtw_err(rtwdev, "failed to download firmware\n");
1900 		goto err_off;
1901 	}
1902 
1903 	return 0;
1904 
1905 err_off:
1906 	rtw_mac_power_off(rtwdev);
1907 
1908 err:
1909 	return ret;
1910 }
1911 
1912 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1913 {
1914 	struct rtw_efuse *efuse = &rtwdev->efuse;
1915 	u8 hw_feature[HW_FEATURE_LEN];
1916 	u8 id;
1917 	u8 bw;
1918 	int i;
1919 
1920 	id = rtw_read8(rtwdev, REG_C2HEVT);
1921 	if (id != C2H_HW_FEATURE_REPORT) {
1922 		rtw_err(rtwdev, "failed to read hw feature report\n");
1923 		return -EBUSY;
1924 	}
1925 
1926 	for (i = 0; i < HW_FEATURE_LEN; i++)
1927 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1928 
1929 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1930 
1931 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1932 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1933 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1934 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1935 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1936 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1937 
1938 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1939 
1940 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1941 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1942 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1943 
1944 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1945 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1946 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1947 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1948 
1949 	return 0;
1950 }
1951 
1952 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1953 {
1954 	rtw_hci_stop(rtwdev);
1955 	rtw_mac_power_off(rtwdev);
1956 }
1957 
1958 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1959 {
1960 	struct rtw_efuse *efuse = &rtwdev->efuse;
1961 	int ret;
1962 
1963 	mutex_lock(&rtwdev->mutex);
1964 
1965 	/* power on mac to read efuse */
1966 	ret = rtw_chip_efuse_enable(rtwdev);
1967 	if (ret)
1968 		goto out_unlock;
1969 
1970 	ret = rtw_parse_efuse_map(rtwdev);
1971 	if (ret)
1972 		goto out_disable;
1973 
1974 	ret = rtw_dump_hw_feature(rtwdev);
1975 	if (ret)
1976 		goto out_disable;
1977 
1978 	ret = rtw_check_supported_rfe(rtwdev);
1979 	if (ret)
1980 		goto out_disable;
1981 
1982 	if (efuse->crystal_cap == 0xff)
1983 		efuse->crystal_cap = 0;
1984 	if (efuse->pa_type_2g == 0xff)
1985 		efuse->pa_type_2g = 0;
1986 	if (efuse->pa_type_5g == 0xff)
1987 		efuse->pa_type_5g = 0;
1988 	if (efuse->lna_type_2g == 0xff)
1989 		efuse->lna_type_2g = 0;
1990 	if (efuse->lna_type_5g == 0xff)
1991 		efuse->lna_type_5g = 0;
1992 	if (efuse->channel_plan == 0xff)
1993 		efuse->channel_plan = 0x7f;
1994 	if (efuse->rf_board_option == 0xff)
1995 		efuse->rf_board_option = 0;
1996 	if (efuse->bt_setting & BIT(0))
1997 		efuse->share_ant = true;
1998 	if (efuse->regd == 0xff)
1999 		efuse->regd = 0;
2000 	if (efuse->tx_bb_swing_setting_2g == 0xff)
2001 		efuse->tx_bb_swing_setting_2g = 0;
2002 	if (efuse->tx_bb_swing_setting_5g == 0xff)
2003 		efuse->tx_bb_swing_setting_5g = 0;
2004 
2005 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2006 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2007 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2008 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2009 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2010 
2011 	if (!is_valid_ether_addr(efuse->addr)) {
2012 		eth_random_addr(efuse->addr);
2013 		dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n");
2014 	}
2015 
2016 out_disable:
2017 	rtw_chip_efuse_disable(rtwdev);
2018 
2019 out_unlock:
2020 	mutex_unlock(&rtwdev->mutex);
2021 	return ret;
2022 }
2023 
2024 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2025 {
2026 	struct rtw_hal *hal = &rtwdev->hal;
2027 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2028 
2029 	if (!rfe_def)
2030 		return -ENODEV;
2031 
2032 	rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2033 
2034 	rtw_phy_init_tx_power(rtwdev);
2035 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2036 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2037 	rtw_phy_tx_power_by_rate_config(hal);
2038 	rtw_phy_tx_power_limit_config(hal);
2039 
2040 	return 0;
2041 }
2042 
2043 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2044 {
2045 	int ret;
2046 
2047 	ret = rtw_chip_parameter_setup(rtwdev);
2048 	if (ret) {
2049 		rtw_err(rtwdev, "failed to setup chip parameters\n");
2050 		goto err_out;
2051 	}
2052 
2053 	ret = rtw_chip_efuse_info_setup(rtwdev);
2054 	if (ret) {
2055 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
2056 		goto err_out;
2057 	}
2058 
2059 	ret = rtw_chip_board_info_setup(rtwdev);
2060 	if (ret) {
2061 		rtw_err(rtwdev, "failed to setup chip board info\n");
2062 		goto err_out;
2063 	}
2064 
2065 	return 0;
2066 
2067 err_out:
2068 	return ret;
2069 }
2070 EXPORT_SYMBOL(rtw_chip_info_setup);
2071 
2072 static void rtw_stats_init(struct rtw_dev *rtwdev)
2073 {
2074 	struct rtw_traffic_stats *stats = &rtwdev->stats;
2075 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2076 	int i;
2077 
2078 	ewma_tp_init(&stats->tx_ewma_tp);
2079 	ewma_tp_init(&stats->rx_ewma_tp);
2080 
2081 	for (i = 0; i < RTW_EVM_NUM; i++)
2082 		ewma_evm_init(&dm_info->ewma_evm[i]);
2083 	for (i = 0; i < RTW_SNR_NUM; i++)
2084 		ewma_snr_init(&dm_info->ewma_snr[i]);
2085 }
2086 
2087 int rtw_core_init(struct rtw_dev *rtwdev)
2088 {
2089 	const struct rtw_chip_info *chip = rtwdev->chip;
2090 	struct rtw_coex *coex = &rtwdev->coex;
2091 	int ret;
2092 
2093 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2094 	INIT_LIST_HEAD(&rtwdev->txqs);
2095 
2096 	timer_setup(&rtwdev->tx_report.purge_timer,
2097 		    rtw_tx_report_purge_timer, 0);
2098 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2099 	if (!rtwdev->tx_wq) {
2100 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2101 		return -ENOMEM;
2102 	}
2103 
2104 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2105 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2106 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2107 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2108 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2109 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2110 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2111 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2112 			  rtw_coex_bt_multi_link_remain_work);
2113 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2114 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2115 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2116 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2117 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2118 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2119 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2120 	skb_queue_head_init(&rtwdev->c2h_queue);
2121 	skb_queue_head_init(&rtwdev->coex.queue);
2122 	skb_queue_head_init(&rtwdev->tx_report.queue);
2123 
2124 	spin_lock_init(&rtwdev->txq_lock);
2125 	spin_lock_init(&rtwdev->tx_report.q_lock);
2126 
2127 	mutex_init(&rtwdev->mutex);
2128 	mutex_init(&rtwdev->hal.tx_power_mutex);
2129 
2130 	init_waitqueue_head(&rtwdev->coex.wait);
2131 	init_completion(&rtwdev->lps_leave_check);
2132 	init_completion(&rtwdev->fw_scan_density);
2133 
2134 	rtwdev->sec.total_cam_num = 32;
2135 	rtwdev->hal.current_channel = 1;
2136 	rtwdev->dm_info.fix_rate = U8_MAX;
2137 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2138 
2139 	rtw_stats_init(rtwdev);
2140 
2141 	/* default rx filter setting */
2142 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2143 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2144 			  BIT_AB | BIT_AM | BIT_APM;
2145 
2146 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2147 	if (ret) {
2148 		rtw_warn(rtwdev, "no firmware loaded\n");
2149 		goto out;
2150 	}
2151 
2152 	if (chip->wow_fw_name) {
2153 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2154 		if (ret) {
2155 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2156 			wait_for_completion(&rtwdev->fw.completion);
2157 			if (rtwdev->fw.firmware)
2158 				release_firmware(rtwdev->fw.firmware);
2159 			goto out;
2160 		}
2161 	}
2162 
2163 	return 0;
2164 
2165 out:
2166 	destroy_workqueue(rtwdev->tx_wq);
2167 	return ret;
2168 }
2169 EXPORT_SYMBOL(rtw_core_init);
2170 
2171 void rtw_core_deinit(struct rtw_dev *rtwdev)
2172 {
2173 	struct rtw_fw_state *fw = &rtwdev->fw;
2174 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2175 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2176 	unsigned long flags;
2177 
2178 	rtw_wait_firmware_completion(rtwdev);
2179 
2180 	if (fw->firmware)
2181 		release_firmware(fw->firmware);
2182 
2183 	if (wow_fw->firmware)
2184 		release_firmware(wow_fw->firmware);
2185 
2186 	destroy_workqueue(rtwdev->tx_wq);
2187 	timer_delete_sync(&rtwdev->tx_report.purge_timer);
2188 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2189 	skb_queue_purge(&rtwdev->tx_report.queue);
2190 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2191 	skb_queue_purge(&rtwdev->coex.queue);
2192 	skb_queue_purge(&rtwdev->c2h_queue);
2193 
2194 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2195 				 build_list) {
2196 		list_del(&rsvd_pkt->build_list);
2197 		kfree(rsvd_pkt);
2198 	}
2199 
2200 	mutex_destroy(&rtwdev->mutex);
2201 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2202 }
2203 EXPORT_SYMBOL(rtw_core_deinit);
2204 
2205 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2206 {
2207 	struct rtw_hal *hal = &rtwdev->hal;
2208 	int max_tx_headroom = 0;
2209 	int ret;
2210 
2211 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2212 
2213 	if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2214 		max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2215 
2216 	hw->extra_tx_headroom = max_tx_headroom;
2217 	hw->queues = IEEE80211_NUM_ACS;
2218 	hw->txq_data_size = sizeof(struct rtw_txq);
2219 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2220 	hw->vif_data_size = sizeof(struct rtw_vif);
2221 
2222 	ieee80211_hw_set(hw, SIGNAL_DBM);
2223 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2224 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2225 	ieee80211_hw_set(hw, MFP_CAPABLE);
2226 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2227 	ieee80211_hw_set(hw, SUPPORTS_PS);
2228 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2229 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2230 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2231 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2232 	ieee80211_hw_set(hw, TX_AMSDU);
2233 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2234 
2235 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2236 				     BIT(NL80211_IFTYPE_AP) |
2237 				     BIT(NL80211_IFTYPE_ADHOC) |
2238 				     BIT(NL80211_IFTYPE_MESH_POINT);
2239 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2240 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2241 
2242 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2243 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2244 
2245 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2246 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2247 	hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2248 
2249 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2250 		hw->wiphy->iface_combinations = rtw_iface_combs;
2251 		hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2252 	}
2253 
2254 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2255 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2256 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2257 
2258 #ifdef CONFIG_PM
2259 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2260 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2261 #endif
2262 	rtw_set_supported_band(hw, rtwdev->chip);
2263 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2264 
2265 	hw->wiphy->sar_capa = &rtw_sar_capa;
2266 
2267 	ret = rtw_regd_init(rtwdev);
2268 	if (ret) {
2269 		rtw_err(rtwdev, "failed to init regd\n");
2270 		return ret;
2271 	}
2272 
2273 	ret = ieee80211_register_hw(hw);
2274 	if (ret) {
2275 		rtw_err(rtwdev, "failed to register hw\n");
2276 		return ret;
2277 	}
2278 
2279 	ret = rtw_regd_hint(rtwdev);
2280 	if (ret) {
2281 		rtw_err(rtwdev, "failed to hint regd\n");
2282 		return ret;
2283 	}
2284 
2285 	rtw_debugfs_init(rtwdev);
2286 
2287 	rtwdev->bf_info.bfer_mu_cnt = 0;
2288 	rtwdev->bf_info.bfer_su_cnt = 0;
2289 
2290 	return 0;
2291 }
2292 EXPORT_SYMBOL(rtw_register_hw);
2293 
2294 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2295 {
2296 	const struct rtw_chip_info *chip = rtwdev->chip;
2297 
2298 	ieee80211_unregister_hw(hw);
2299 	rtw_unset_supported_band(hw, chip);
2300 }
2301 EXPORT_SYMBOL(rtw_unregister_hw);
2302 
2303 static
2304 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2305 			 const struct rtw_hw_reg *reg2, u8 nbytes)
2306 {
2307 	u8 i;
2308 
2309 	for (i = 0; i < nbytes; i++) {
2310 		u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2311 		u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2312 
2313 		rtw_write8(rtwdev, reg1->addr + i, v2);
2314 		rtw_write8(rtwdev, reg2->addr + i, v1);
2315 	}
2316 }
2317 
2318 static
2319 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2320 		       const struct rtw_hw_reg *reg2)
2321 {
2322 	u32 v1, v2;
2323 
2324 	v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2325 	v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2326 	rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2327 	rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2328 }
2329 
2330 struct rtw_iter_port_switch_data {
2331 	struct rtw_dev *rtwdev;
2332 	struct rtw_vif *rtwvif_ap;
2333 };
2334 
2335 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2336 {
2337 	struct rtw_iter_port_switch_data *iter_data = data;
2338 	struct rtw_dev *rtwdev = iter_data->rtwdev;
2339 	struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2340 	struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2341 	const struct rtw_hw_reg *reg1, *reg2;
2342 
2343 	if (rtwvif_target->port != RTW_PORT_0)
2344 		return;
2345 
2346 	rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2347 		rtwvif_ap->port, rtwvif_target->port);
2348 
2349 	/* Leave LPS so the value swapped are not in PS mode */
2350 	rtw_leave_lps(rtwdev);
2351 
2352 	reg1 = &rtwvif_ap->conf->net_type;
2353 	reg2 = &rtwvif_target->conf->net_type;
2354 	rtw_swap_reg_mask(rtwdev, reg1, reg2);
2355 
2356 	reg1 = &rtwvif_ap->conf->mac_addr;
2357 	reg2 = &rtwvif_target->conf->mac_addr;
2358 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2359 
2360 	reg1 = &rtwvif_ap->conf->bssid;
2361 	reg2 = &rtwvif_target->conf->bssid;
2362 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2363 
2364 	reg1 = &rtwvif_ap->conf->bcn_ctrl;
2365 	reg2 = &rtwvif_target->conf->bcn_ctrl;
2366 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2367 
2368 	swap(rtwvif_target->port, rtwvif_ap->port);
2369 	swap(rtwvif_target->conf, rtwvif_ap->conf);
2370 
2371 	rtw_fw_default_port(rtwdev, rtwvif_target);
2372 }
2373 
2374 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2375 {
2376 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2377 	struct rtw_iter_port_switch_data iter_data;
2378 
2379 	if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2380 		return;
2381 
2382 	iter_data.rtwdev = rtwdev;
2383 	iter_data.rtwvif_ap = rtwvif;
2384 	rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2385 }
2386 
2387 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2388 {
2389 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2390 	bool *active = data;
2391 
2392 	if (*active)
2393 		return;
2394 
2395 	if (vif->type != NL80211_IFTYPE_STATION)
2396 		return;
2397 
2398 	if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2399 		*active = true;
2400 }
2401 
2402 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2403 {
2404 	bool sta_active = false;
2405 
2406 	rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2407 
2408 	return rtwdev->ap_active || sta_active;
2409 }
2410 
2411 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2412 {
2413 	if (!rtwdev->ap_active)
2414 		return;
2415 
2416 	if (enable) {
2417 		rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2418 		rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2419 	} else {
2420 		rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2421 		rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2422 	}
2423 }
2424 
2425 MODULE_AUTHOR("Realtek Corporation");
2426 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2427 MODULE_LICENSE("Dual BSD/GPL");
2428