xref: /linux/drivers/net/wireless/realtek/rtw88/main.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/devcoredump.h>
6 
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 
22 bool rtw_disable_lps_deep_mode;
23 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
24 bool rtw_bf_support = true;
25 unsigned int rtw_debug_mask;
26 EXPORT_SYMBOL(rtw_debug_mask);
27 /* EDCCA is enabled during normal behavior. For debugging purpose in
28  * a noisy environment, it can be disabled via edcca debugfs. Because
29  * all rtw88 devices will probably be affected if environment is noisy,
30  * rtw_edcca_enabled is just declared by driver instead of by device.
31  * So, turning it off will take effect for all rtw88 devices before
32  * there is a tough reason to maintain rtw_edcca_enabled by device.
33  */
34 bool rtw_edcca_enabled = true;
35 
36 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
37 module_param_named(support_bf, rtw_bf_support, bool, 0644);
38 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
39 
40 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
41 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
42 MODULE_PARM_DESC(debug_mask, "Debugging mask");
43 
44 static struct ieee80211_channel rtw_channeltable_2g[] = {
45 	{.center_freq = 2412, .hw_value = 1,},
46 	{.center_freq = 2417, .hw_value = 2,},
47 	{.center_freq = 2422, .hw_value = 3,},
48 	{.center_freq = 2427, .hw_value = 4,},
49 	{.center_freq = 2432, .hw_value = 5,},
50 	{.center_freq = 2437, .hw_value = 6,},
51 	{.center_freq = 2442, .hw_value = 7,},
52 	{.center_freq = 2447, .hw_value = 8,},
53 	{.center_freq = 2452, .hw_value = 9,},
54 	{.center_freq = 2457, .hw_value = 10,},
55 	{.center_freq = 2462, .hw_value = 11,},
56 	{.center_freq = 2467, .hw_value = 12,},
57 	{.center_freq = 2472, .hw_value = 13,},
58 	{.center_freq = 2484, .hw_value = 14,},
59 };
60 
61 static struct ieee80211_channel rtw_channeltable_5g[] = {
62 	{.center_freq = 5180, .hw_value = 36,},
63 	{.center_freq = 5200, .hw_value = 40,},
64 	{.center_freq = 5220, .hw_value = 44,},
65 	{.center_freq = 5240, .hw_value = 48,},
66 	{.center_freq = 5260, .hw_value = 52,},
67 	{.center_freq = 5280, .hw_value = 56,},
68 	{.center_freq = 5300, .hw_value = 60,},
69 	{.center_freq = 5320, .hw_value = 64,},
70 	{.center_freq = 5500, .hw_value = 100,},
71 	{.center_freq = 5520, .hw_value = 104,},
72 	{.center_freq = 5540, .hw_value = 108,},
73 	{.center_freq = 5560, .hw_value = 112,},
74 	{.center_freq = 5580, .hw_value = 116,},
75 	{.center_freq = 5600, .hw_value = 120,},
76 	{.center_freq = 5620, .hw_value = 124,},
77 	{.center_freq = 5640, .hw_value = 128,},
78 	{.center_freq = 5660, .hw_value = 132,},
79 	{.center_freq = 5680, .hw_value = 136,},
80 	{.center_freq = 5700, .hw_value = 140,},
81 	{.center_freq = 5720, .hw_value = 144,},
82 	{.center_freq = 5745, .hw_value = 149,},
83 	{.center_freq = 5765, .hw_value = 153,},
84 	{.center_freq = 5785, .hw_value = 157,},
85 	{.center_freq = 5805, .hw_value = 161,},
86 	{.center_freq = 5825, .hw_value = 165,
87 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
88 };
89 
90 static struct ieee80211_rate rtw_ratetable[] = {
91 	{.bitrate = 10, .hw_value = 0x00,},
92 	{.bitrate = 20, .hw_value = 0x01,},
93 	{.bitrate = 55, .hw_value = 0x02,},
94 	{.bitrate = 110, .hw_value = 0x03,},
95 	{.bitrate = 60, .hw_value = 0x04,},
96 	{.bitrate = 90, .hw_value = 0x05,},
97 	{.bitrate = 120, .hw_value = 0x06,},
98 	{.bitrate = 180, .hw_value = 0x07,},
99 	{.bitrate = 240, .hw_value = 0x08,},
100 	{.bitrate = 360, .hw_value = 0x09,},
101 	{.bitrate = 480, .hw_value = 0x0a,},
102 	{.bitrate = 540, .hw_value = 0x0b,},
103 };
104 
105 u16 rtw_desc_to_bitrate(u8 desc_rate)
106 {
107 	struct ieee80211_rate rate;
108 
109 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
110 		return 0;
111 
112 	rate = rtw_ratetable[desc_rate];
113 
114 	return rate.bitrate;
115 }
116 
117 static struct ieee80211_supported_band rtw_band_2ghz = {
118 	.band = NL80211_BAND_2GHZ,
119 
120 	.channels = rtw_channeltable_2g,
121 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
122 
123 	.bitrates = rtw_ratetable,
124 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
125 
126 	.ht_cap = {0},
127 	.vht_cap = {0},
128 };
129 
130 static struct ieee80211_supported_band rtw_band_5ghz = {
131 	.band = NL80211_BAND_5GHZ,
132 
133 	.channels = rtw_channeltable_5g,
134 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
135 
136 	/* 5G has no CCK rates */
137 	.bitrates = rtw_ratetable + 4,
138 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
139 
140 	.ht_cap = {0},
141 	.vht_cap = {0},
142 };
143 
144 struct rtw_watch_dog_iter_data {
145 	struct rtw_dev *rtwdev;
146 	struct rtw_vif *rtwvif;
147 };
148 
149 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
150 {
151 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
152 	u8 fix_rate_enable = 0;
153 	u8 new_csi_rate_idx;
154 
155 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
156 	    rtwvif->bfee.role != RTW_BFEE_MU)
157 		return;
158 
159 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
160 			      bf_info->cur_csi_rpt_rate,
161 			      fix_rate_enable, &new_csi_rate_idx);
162 
163 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
164 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
165 }
166 
167 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
168 				   struct ieee80211_vif *vif)
169 {
170 	struct rtw_watch_dog_iter_data *iter_data = data;
171 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
172 
173 	if (vif->type == NL80211_IFTYPE_STATION)
174 		if (vif->bss_conf.assoc)
175 			iter_data->rtwvif = rtwvif;
176 
177 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
178 
179 	rtwvif->stats.tx_unicast = 0;
180 	rtwvif->stats.rx_unicast = 0;
181 	rtwvif->stats.tx_cnt = 0;
182 	rtwvif->stats.rx_cnt = 0;
183 }
184 
185 /* process TX/RX statistics periodically for hardware,
186  * the information helps hardware to enhance performance
187  */
188 static void rtw_watch_dog_work(struct work_struct *work)
189 {
190 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
191 					      watch_dog_work.work);
192 	struct rtw_traffic_stats *stats = &rtwdev->stats;
193 	struct rtw_watch_dog_iter_data data = {};
194 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
195 	bool ps_active;
196 
197 	mutex_lock(&rtwdev->mutex);
198 
199 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
200 		goto unlock;
201 
202 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
203 				     RTW_WATCH_DOG_DELAY_TIME);
204 
205 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
206 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
207 	else
208 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
209 
210 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
211 		rtw_coex_wl_status_change_notify(rtwdev, 0);
212 
213 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
214 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
215 		ps_active = true;
216 	else
217 		ps_active = false;
218 
219 	ewma_tp_add(&stats->tx_ewma_tp,
220 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
221 	ewma_tp_add(&stats->rx_ewma_tp,
222 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
223 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
224 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
225 
226 	/* reset tx/rx statictics */
227 	stats->tx_unicast = 0;
228 	stats->rx_unicast = 0;
229 	stats->tx_cnt = 0;
230 	stats->rx_cnt = 0;
231 
232 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
233 		goto unlock;
234 
235 	/* make sure BB/RF is working for dynamic mech */
236 	rtw_leave_lps(rtwdev);
237 
238 	rtw_phy_dynamic_mechanism(rtwdev);
239 
240 	data.rtwdev = rtwdev;
241 	/* use atomic version to avoid taking local->iflist_mtx mutex */
242 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
243 
244 	/* fw supports only one station associated to enter lps, if there are
245 	 * more than two stations associated to the AP, then we can not enter
246 	 * lps, because fw does not handle the overlapped beacon interval
247 	 *
248 	 * mac80211 should iterate vifs and determine if driver can enter
249 	 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
250 	 * get that vif and check if device is having traffic more than the
251 	 * threshold.
252 	 */
253 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
254 	    !rtwdev->beacon_loss)
255 		rtw_enter_lps(rtwdev, data.rtwvif->port);
256 
257 	rtwdev->watch_dog_cnt++;
258 
259 unlock:
260 	mutex_unlock(&rtwdev->mutex);
261 }
262 
263 static void rtw_c2h_work(struct work_struct *work)
264 {
265 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
266 	struct sk_buff *skb, *tmp;
267 
268 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
269 		skb_unlink(skb, &rtwdev->c2h_queue);
270 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
271 		dev_kfree_skb_any(skb);
272 	}
273 }
274 
275 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
276 {
277 	unsigned long mac_id;
278 
279 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
280 	if (mac_id < RTW_MAX_MAC_ID_NUM)
281 		set_bit(mac_id, rtwdev->mac_id_map);
282 
283 	return mac_id;
284 }
285 
286 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
287 		struct ieee80211_vif *vif)
288 {
289 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
290 	int i;
291 
292 	si->mac_id = rtw_acquire_macid(rtwdev);
293 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
294 		return -ENOSPC;
295 
296 	si->sta = sta;
297 	si->vif = vif;
298 	si->init_ra_lv = 1;
299 	ewma_rssi_init(&si->avg_rssi);
300 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
301 		rtw_txq_init(rtwdev, sta->txq[i]);
302 
303 	rtw_update_sta_info(rtwdev, si);
304 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
305 
306 	rtwdev->sta_cnt++;
307 	rtwdev->beacon_loss = false;
308 	rtw_info(rtwdev, "sta %pM joined with macid %d\n",
309 		 sta->addr, si->mac_id);
310 
311 	return 0;
312 }
313 
314 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
315 		    bool fw_exist)
316 {
317 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
318 	int i;
319 
320 	rtw_release_macid(rtwdev, si->mac_id);
321 	if (fw_exist)
322 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
323 
324 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
325 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
326 
327 	kfree(si->mask);
328 
329 	rtwdev->sta_cnt--;
330 	rtw_info(rtwdev, "sta %pM with macid %d left\n",
331 		 sta->addr, si->mac_id);
332 }
333 
334 struct rtw_fwcd_hdr {
335 	u32 item;
336 	u32 size;
337 	u32 padding1;
338 	u32 padding2;
339 } __packed;
340 
341 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
342 {
343 	struct rtw_chip_info *chip = rtwdev->chip;
344 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
345 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
346 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
347 	u8 i;
348 
349 	if (segs) {
350 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
351 
352 		for (i = 0; i < segs->num; i++)
353 			prep_size += segs->segs[i];
354 	}
355 
356 	desc->data = vmalloc(prep_size);
357 	if (!desc->data)
358 		return -ENOMEM;
359 
360 	desc->size = prep_size;
361 	desc->next = desc->data;
362 
363 	return 0;
364 }
365 
366 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
367 {
368 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
369 	struct rtw_fwcd_hdr *hdr;
370 	u8 *next;
371 
372 	if (!desc->data) {
373 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
374 		return NULL;
375 	}
376 
377 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
378 	if (next - desc->data + size > desc->size) {
379 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
380 		return NULL;
381 	}
382 
383 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
384 	hdr->item = item;
385 	hdr->size = size;
386 	hdr->padding1 = 0x01234567;
387 	hdr->padding2 = 0x89abcdef;
388 	desc->next = next + size;
389 
390 	return next;
391 }
392 
393 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
394 {
395 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
396 
397 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
398 
399 	/* Data will be freed after lifetime of device coredump. After calling
400 	 * dev_coredump, data is supposed to be handled by the device coredump
401 	 * framework. Note that a new dump will be discarded if a previous one
402 	 * hasn't been released yet.
403 	 */
404 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
405 }
406 
407 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
408 {
409 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
410 
411 	if (free_self) {
412 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
413 		vfree(desc->data);
414 	}
415 
416 	desc->data = NULL;
417 	desc->next = NULL;
418 }
419 
420 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
421 {
422 	u32 size = rtwdev->chip->fw_rxff_size;
423 	u32 *buf;
424 	u8 seq;
425 
426 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
427 	if (!buf)
428 		return -ENOMEM;
429 
430 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
431 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
432 		return -EINVAL;
433 	}
434 
435 	if (GET_FW_DUMP_LEN(buf) == 0) {
436 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
437 		return -EINVAL;
438 	}
439 
440 	seq = GET_FW_DUMP_SEQ(buf);
441 	if (seq > 0) {
442 		rtw_dbg(rtwdev, RTW_DBG_FW,
443 			"fw crash dump's seq is wrong: %d\n", seq);
444 		return -EINVAL;
445 	}
446 
447 	return 0;
448 }
449 
450 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
451 		u32 fwcd_item)
452 {
453 	u32 rxff = rtwdev->chip->fw_rxff_size;
454 	u32 dump_size, done_size = 0;
455 	u8 *buf;
456 	int ret;
457 
458 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
459 	if (!buf)
460 		return -ENOMEM;
461 
462 	while (size) {
463 		dump_size = size > rxff ? rxff : size;
464 
465 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
466 					  dump_size);
467 		if (ret) {
468 			rtw_err(rtwdev,
469 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
470 				ocp_src, done_size);
471 			return ret;
472 		}
473 
474 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
475 				       dump_size, (u32 *)(buf + done_size));
476 		if (ret) {
477 			rtw_err(rtwdev,
478 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
479 				ocp_src, done_size);
480 			return ret;
481 		}
482 
483 		size -= dump_size;
484 		done_size += dump_size;
485 	}
486 
487 	return 0;
488 }
489 EXPORT_SYMBOL(rtw_dump_fw);
490 
491 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
492 {
493 	u8 *buf;
494 	u32 i;
495 
496 	if (addr & 0x3) {
497 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
498 		return -EINVAL;
499 	}
500 
501 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
502 	if (!buf)
503 		return -ENOMEM;
504 
505 	for (i = 0; i < size; i += 4)
506 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
507 
508 	return 0;
509 }
510 EXPORT_SYMBOL(rtw_dump_reg);
511 
512 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
513 			   struct ieee80211_bss_conf *conf)
514 {
515 	if (conf && conf->assoc) {
516 		rtwvif->aid = conf->aid;
517 		rtwvif->net_type = RTW_NET_MGD_LINKED;
518 	} else {
519 		rtwvif->aid = 0;
520 		rtwvif->net_type = RTW_NET_NO_LINK;
521 	}
522 }
523 
524 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
525 			       struct ieee80211_vif *vif,
526 			       struct ieee80211_sta *sta,
527 			       struct ieee80211_key_conf *key,
528 			       void *data)
529 {
530 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
531 	struct rtw_sec_desc *sec = &rtwdev->sec;
532 
533 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
534 }
535 
536 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
537 {
538 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
539 
540 	if (rtwdev->sta_cnt == 0) {
541 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
542 		return;
543 	}
544 	rtw_sta_remove(rtwdev, sta, false);
545 }
546 
547 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
548 {
549 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
550 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
551 
552 	rtw_bf_disassoc(rtwdev, vif, NULL);
553 	rtw_vif_assoc_changed(rtwvif, NULL);
554 	rtw_txq_cleanup(rtwdev, vif->txq);
555 }
556 
557 void rtw_fw_recovery(struct rtw_dev *rtwdev)
558 {
559 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
560 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
561 }
562 
563 static void __fw_recovery_work(struct rtw_dev *rtwdev)
564 {
565 	int ret = 0;
566 
567 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
568 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
569 
570 	ret = rtw_fwcd_prep(rtwdev);
571 	if (ret)
572 		goto free;
573 	ret = rtw_fw_dump_crash_log(rtwdev);
574 	if (ret)
575 		goto free;
576 	ret = rtw_chip_dump_fw_crash(rtwdev);
577 	if (ret)
578 		goto free;
579 
580 	rtw_fwcd_dump(rtwdev);
581 free:
582 	rtw_fwcd_free(rtwdev, !!ret);
583 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
584 
585 	WARN(1, "firmware crash, start reset and recover\n");
586 
587 	rcu_read_lock();
588 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
589 	rcu_read_unlock();
590 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
591 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
592 	rtw_enter_ips(rtwdev);
593 }
594 
595 static void rtw_fw_recovery_work(struct work_struct *work)
596 {
597 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
598 					      fw_recovery_work);
599 
600 	mutex_lock(&rtwdev->mutex);
601 	__fw_recovery_work(rtwdev);
602 	mutex_unlock(&rtwdev->mutex);
603 
604 	ieee80211_restart_hw(rtwdev->hw);
605 }
606 
607 struct rtw_txq_ba_iter_data {
608 };
609 
610 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
611 {
612 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
613 	int ret;
614 	u8 tid;
615 
616 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
617 	while (tid != IEEE80211_NUM_TIDS) {
618 		clear_bit(tid, si->tid_ba);
619 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
620 		if (ret == -EINVAL) {
621 			struct ieee80211_txq *txq;
622 			struct rtw_txq *rtwtxq;
623 
624 			txq = sta->txq[tid];
625 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
626 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
627 		}
628 
629 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
630 	}
631 }
632 
633 static void rtw_txq_ba_work(struct work_struct *work)
634 {
635 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
636 	struct rtw_txq_ba_iter_data data;
637 
638 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
639 }
640 
641 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
642 {
643 	if (IS_CH_2G_BAND(channel))
644 		pkt_stat->band = NL80211_BAND_2GHZ;
645 	else if (IS_CH_5G_BAND(channel))
646 		pkt_stat->band = NL80211_BAND_5GHZ;
647 	else
648 		return;
649 
650 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
651 }
652 EXPORT_SYMBOL(rtw_set_rx_freq_band);
653 
654 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
655 			    struct rtw_channel_params *chan_params)
656 {
657 	struct ieee80211_channel *channel = chandef->chan;
658 	enum nl80211_chan_width width = chandef->width;
659 	u8 *cch_by_bw = chan_params->cch_by_bw;
660 	u32 primary_freq, center_freq;
661 	u8 center_chan;
662 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
663 	u8 primary_chan_idx = 0;
664 	u8 i;
665 
666 	center_chan = channel->hw_value;
667 	primary_freq = channel->center_freq;
668 	center_freq = chandef->center_freq1;
669 
670 	/* assign the center channel used while 20M bw is selected */
671 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
672 
673 	switch (width) {
674 	case NL80211_CHAN_WIDTH_20_NOHT:
675 	case NL80211_CHAN_WIDTH_20:
676 		bandwidth = RTW_CHANNEL_WIDTH_20;
677 		primary_chan_idx = RTW_SC_DONT_CARE;
678 		break;
679 	case NL80211_CHAN_WIDTH_40:
680 		bandwidth = RTW_CHANNEL_WIDTH_40;
681 		if (primary_freq > center_freq) {
682 			primary_chan_idx = RTW_SC_20_UPPER;
683 			center_chan -= 2;
684 		} else {
685 			primary_chan_idx = RTW_SC_20_LOWER;
686 			center_chan += 2;
687 		}
688 		break;
689 	case NL80211_CHAN_WIDTH_80:
690 		bandwidth = RTW_CHANNEL_WIDTH_80;
691 		if (primary_freq > center_freq) {
692 			if (primary_freq - center_freq == 10) {
693 				primary_chan_idx = RTW_SC_20_UPPER;
694 				center_chan -= 2;
695 			} else {
696 				primary_chan_idx = RTW_SC_20_UPMOST;
697 				center_chan -= 6;
698 			}
699 			/* assign the center channel used
700 			 * while 40M bw is selected
701 			 */
702 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
703 		} else {
704 			if (center_freq - primary_freq == 10) {
705 				primary_chan_idx = RTW_SC_20_LOWER;
706 				center_chan += 2;
707 			} else {
708 				primary_chan_idx = RTW_SC_20_LOWEST;
709 				center_chan += 6;
710 			}
711 			/* assign the center channel used
712 			 * while 40M bw is selected
713 			 */
714 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
715 		}
716 		break;
717 	default:
718 		center_chan = 0;
719 		break;
720 	}
721 
722 	chan_params->center_chan = center_chan;
723 	chan_params->bandwidth = bandwidth;
724 	chan_params->primary_chan_idx = primary_chan_idx;
725 
726 	/* assign the center channel used while current bw is selected */
727 	cch_by_bw[bandwidth] = center_chan;
728 
729 	for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
730 		cch_by_bw[i] = 0;
731 }
732 
733 void rtw_set_channel(struct rtw_dev *rtwdev)
734 {
735 	struct ieee80211_hw *hw = rtwdev->hw;
736 	struct rtw_hal *hal = &rtwdev->hal;
737 	struct rtw_chip_info *chip = rtwdev->chip;
738 	struct rtw_channel_params ch_param;
739 	u8 center_chan, bandwidth, primary_chan_idx;
740 	u8 i;
741 
742 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
743 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
744 		return;
745 
746 	center_chan = ch_param.center_chan;
747 	bandwidth = ch_param.bandwidth;
748 	primary_chan_idx = ch_param.primary_chan_idx;
749 
750 	hal->current_band_width = bandwidth;
751 	hal->current_channel = center_chan;
752 	hal->current_primary_channel_index = primary_chan_idx;
753 	hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
754 
755 	switch (center_chan) {
756 	case 1 ... 14:
757 		hal->sar_band = RTW_SAR_BAND_0;
758 		break;
759 	case 36 ... 64:
760 		hal->sar_band = RTW_SAR_BAND_1;
761 		break;
762 	case 100 ... 144:
763 		hal->sar_band = RTW_SAR_BAND_3;
764 		break;
765 	case 149 ... 177:
766 		hal->sar_band = RTW_SAR_BAND_4;
767 		break;
768 	default:
769 		WARN(1, "unknown ch(%u) to SAR band\n", center_chan);
770 		hal->sar_band = RTW_SAR_BAND_0;
771 		break;
772 	}
773 
774 	for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
775 		hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
776 
777 	chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
778 
779 	if (hal->current_band_type == RTW_BAND_5G) {
780 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
781 	} else {
782 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
783 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
784 		else
785 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
786 	}
787 
788 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
789 
790 	/* if the channel isn't set for scanning, we will do RF calibration
791 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
792 	 * during scanning on each channel takes too long.
793 	 */
794 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
795 		rtwdev->need_rfk = true;
796 }
797 
798 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
799 {
800 	struct rtw_chip_info *chip = rtwdev->chip;
801 
802 	if (rtwdev->need_rfk) {
803 		rtwdev->need_rfk = false;
804 		chip->ops->phy_calibration(rtwdev);
805 	}
806 }
807 
808 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
809 {
810 	int i;
811 
812 	for (i = 0; i < ETH_ALEN; i++)
813 		rtw_write8(rtwdev, start + i, addr[i]);
814 }
815 
816 void rtw_vif_port_config(struct rtw_dev *rtwdev,
817 			 struct rtw_vif *rtwvif,
818 			 u32 config)
819 {
820 	u32 addr, mask;
821 
822 	if (config & PORT_SET_MAC_ADDR) {
823 		addr = rtwvif->conf->mac_addr.addr;
824 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
825 	}
826 	if (config & PORT_SET_BSSID) {
827 		addr = rtwvif->conf->bssid.addr;
828 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
829 	}
830 	if (config & PORT_SET_NET_TYPE) {
831 		addr = rtwvif->conf->net_type.addr;
832 		mask = rtwvif->conf->net_type.mask;
833 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
834 	}
835 	if (config & PORT_SET_AID) {
836 		addr = rtwvif->conf->aid.addr;
837 		mask = rtwvif->conf->aid.mask;
838 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
839 	}
840 	if (config & PORT_SET_BCN_CTRL) {
841 		addr = rtwvif->conf->bcn_ctrl.addr;
842 		mask = rtwvif->conf->bcn_ctrl.mask;
843 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
844 	}
845 }
846 
847 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
848 {
849 	u8 bw = 0;
850 
851 	switch (bw_cap) {
852 	case EFUSE_HW_CAP_IGNORE:
853 	case EFUSE_HW_CAP_SUPP_BW80:
854 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
855 		fallthrough;
856 	case EFUSE_HW_CAP_SUPP_BW40:
857 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
858 		fallthrough;
859 	default:
860 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
861 		break;
862 	}
863 
864 	return bw;
865 }
866 
867 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
868 {
869 	struct rtw_hal *hal = &rtwdev->hal;
870 	struct rtw_chip_info *chip = rtwdev->chip;
871 
872 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
873 	    hw_ant_num >= hal->rf_path_num)
874 		return;
875 
876 	switch (hw_ant_num) {
877 	case 1:
878 		hal->rf_type = RF_1T1R;
879 		hal->rf_path_num = 1;
880 		if (!chip->fix_rf_phy_num)
881 			hal->rf_phy_num = hal->rf_path_num;
882 		hal->antenna_tx = BB_PATH_A;
883 		hal->antenna_rx = BB_PATH_A;
884 		break;
885 	default:
886 		WARN(1, "invalid hw configuration from efuse\n");
887 		break;
888 	}
889 }
890 
891 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
892 {
893 	u64 ra_mask = 0;
894 	u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
895 	u8 vht_mcs_cap;
896 	int i, nss;
897 
898 	/* 4SS, every two bits for MCS7/8/9 */
899 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
900 		vht_mcs_cap = mcs_map & 0x3;
901 		switch (vht_mcs_cap) {
902 		case 2: /* MCS9 */
903 			ra_mask |= 0x3ffULL << nss;
904 			break;
905 		case 1: /* MCS8 */
906 			ra_mask |= 0x1ffULL << nss;
907 			break;
908 		case 0: /* MCS7 */
909 			ra_mask |= 0x0ffULL << nss;
910 			break;
911 		default:
912 			break;
913 		}
914 	}
915 
916 	return ra_mask;
917 }
918 
919 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
920 {
921 	u8 rate_id = 0;
922 
923 	switch (wireless_set) {
924 	case WIRELESS_CCK:
925 		rate_id = RTW_RATEID_B_20M;
926 		break;
927 	case WIRELESS_OFDM:
928 		rate_id = RTW_RATEID_G;
929 		break;
930 	case WIRELESS_CCK | WIRELESS_OFDM:
931 		rate_id = RTW_RATEID_BG;
932 		break;
933 	case WIRELESS_OFDM | WIRELESS_HT:
934 		if (tx_num == 1)
935 			rate_id = RTW_RATEID_GN_N1SS;
936 		else if (tx_num == 2)
937 			rate_id = RTW_RATEID_GN_N2SS;
938 		else if (tx_num == 3)
939 			rate_id = RTW_RATEID_ARFR5_N_3SS;
940 		break;
941 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
942 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
943 			if (tx_num == 1)
944 				rate_id = RTW_RATEID_BGN_40M_1SS;
945 			else if (tx_num == 2)
946 				rate_id = RTW_RATEID_BGN_40M_2SS;
947 			else if (tx_num == 3)
948 				rate_id = RTW_RATEID_ARFR5_N_3SS;
949 			else if (tx_num == 4)
950 				rate_id = RTW_RATEID_ARFR7_N_4SS;
951 		} else {
952 			if (tx_num == 1)
953 				rate_id = RTW_RATEID_BGN_20M_1SS;
954 			else if (tx_num == 2)
955 				rate_id = RTW_RATEID_BGN_20M_2SS;
956 			else if (tx_num == 3)
957 				rate_id = RTW_RATEID_ARFR5_N_3SS;
958 			else if (tx_num == 4)
959 				rate_id = RTW_RATEID_ARFR7_N_4SS;
960 		}
961 		break;
962 	case WIRELESS_OFDM | WIRELESS_VHT:
963 		if (tx_num == 1)
964 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
965 		else if (tx_num == 2)
966 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
967 		else if (tx_num == 3)
968 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
969 		else if (tx_num == 4)
970 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
971 		break;
972 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
973 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
974 			if (tx_num == 1)
975 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
976 			else if (tx_num == 2)
977 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
978 			else if (tx_num == 3)
979 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
980 			else if (tx_num == 4)
981 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
982 		} else {
983 			if (tx_num == 1)
984 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
985 			else if (tx_num == 2)
986 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
987 			else if (tx_num == 3)
988 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
989 			else if (tx_num == 4)
990 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
991 		}
992 		break;
993 	default:
994 		break;
995 	}
996 
997 	return rate_id;
998 }
999 
1000 #define RA_MASK_CCK_RATES	0x0000f
1001 #define RA_MASK_OFDM_RATES	0x00ff0
1002 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1003 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1004 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1005 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1006 				 RA_MASK_HT_RATES_2SS | \
1007 				 RA_MASK_HT_RATES_3SS)
1008 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1009 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1010 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1011 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1012 				 RA_MASK_VHT_RATES_2SS | \
1013 				 RA_MASK_VHT_RATES_3SS)
1014 #define RA_MASK_CCK_IN_HT	0x00005
1015 #define RA_MASK_CCK_IN_VHT	0x00005
1016 #define RA_MASK_OFDM_IN_VHT	0x00010
1017 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1018 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1019 
1020 static u64 rtw_update_rate_mask(struct rtw_dev *rtwdev,
1021 				struct rtw_sta_info *si,
1022 				u64 ra_mask, bool is_vht_enable,
1023 				u8 wireless_set)
1024 {
1025 	struct rtw_hal *hal = &rtwdev->hal;
1026 	const struct cfg80211_bitrate_mask *mask = si->mask;
1027 	u64 cfg_mask = GENMASK_ULL(63, 0);
1028 	u8 rssi_level, band;
1029 
1030 	if (wireless_set != WIRELESS_CCK) {
1031 		rssi_level = si->rssi_level;
1032 		if (rssi_level == 0)
1033 			ra_mask &= 0xffffffffffffffffULL;
1034 		else if (rssi_level == 1)
1035 			ra_mask &= 0xfffffffffffffff0ULL;
1036 		else if (rssi_level == 2)
1037 			ra_mask &= 0xffffffffffffefe0ULL;
1038 		else if (rssi_level == 3)
1039 			ra_mask &= 0xffffffffffffcfc0ULL;
1040 		else if (rssi_level == 4)
1041 			ra_mask &= 0xffffffffffff8f80ULL;
1042 		else if (rssi_level >= 5)
1043 			ra_mask &= 0xffffffffffff0f00ULL;
1044 	}
1045 
1046 	if (!si->use_cfg_mask)
1047 		return ra_mask;
1048 
1049 	band = hal->current_band_type;
1050 	if (band == RTW_BAND_2G) {
1051 		band = NL80211_BAND_2GHZ;
1052 		cfg_mask = mask->control[band].legacy;
1053 	} else if (band == RTW_BAND_5G) {
1054 		band = NL80211_BAND_5GHZ;
1055 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1056 					   RA_MASK_OFDM_RATES);
1057 	}
1058 
1059 	if (!is_vht_enable) {
1060 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1061 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1062 						    RA_MASK_HT_RATES_1SS);
1063 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1064 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1065 						    RA_MASK_HT_RATES_2SS);
1066 	} else {
1067 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1068 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1069 						    RA_MASK_VHT_RATES_1SS);
1070 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1071 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1072 						    RA_MASK_VHT_RATES_2SS);
1073 	}
1074 
1075 	ra_mask &= cfg_mask;
1076 
1077 	return ra_mask;
1078 }
1079 
1080 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
1081 {
1082 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1083 	struct ieee80211_sta *sta = si->sta;
1084 	struct rtw_efuse *efuse = &rtwdev->efuse;
1085 	struct rtw_hal *hal = &rtwdev->hal;
1086 	u8 wireless_set;
1087 	u8 bw_mode;
1088 	u8 rate_id;
1089 	u8 rf_type = RF_1T1R;
1090 	u8 stbc_en = 0;
1091 	u8 ldpc_en = 0;
1092 	u8 tx_num = 1;
1093 	u64 ra_mask = 0;
1094 	bool is_vht_enable = false;
1095 	bool is_support_sgi = false;
1096 
1097 	if (sta->vht_cap.vht_supported) {
1098 		is_vht_enable = true;
1099 		ra_mask |= get_vht_ra_mask(sta);
1100 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1101 			stbc_en = VHT_STBC_EN;
1102 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1103 			ldpc_en = VHT_LDPC_EN;
1104 	} else if (sta->ht_cap.ht_supported) {
1105 		ra_mask |= (sta->ht_cap.mcs.rx_mask[1] << 20) |
1106 			   (sta->ht_cap.mcs.rx_mask[0] << 12);
1107 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1108 			stbc_en = HT_STBC_EN;
1109 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1110 			ldpc_en = HT_LDPC_EN;
1111 	}
1112 
1113 	if (efuse->hw_cap.nss == 1)
1114 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1115 
1116 	if (hal->current_band_type == RTW_BAND_5G) {
1117 		ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
1118 		if (sta->vht_cap.vht_supported) {
1119 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1120 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1121 		} else if (sta->ht_cap.ht_supported) {
1122 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1123 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1124 		} else {
1125 			wireless_set = WIRELESS_OFDM;
1126 		}
1127 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1128 	} else if (hal->current_band_type == RTW_BAND_2G) {
1129 		ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
1130 		if (sta->vht_cap.vht_supported) {
1131 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1132 				   RA_MASK_OFDM_IN_VHT;
1133 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1134 				       WIRELESS_HT | WIRELESS_VHT;
1135 		} else if (sta->ht_cap.ht_supported) {
1136 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1137 				   RA_MASK_OFDM_IN_HT_2G;
1138 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1139 				       WIRELESS_HT;
1140 		} else if (sta->supp_rates[0] <= 0xf) {
1141 			wireless_set = WIRELESS_CCK;
1142 		} else {
1143 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1144 		}
1145 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1146 	} else {
1147 		rtw_err(rtwdev, "Unknown band type\n");
1148 		wireless_set = 0;
1149 	}
1150 
1151 	switch (sta->bandwidth) {
1152 	case IEEE80211_STA_RX_BW_80:
1153 		bw_mode = RTW_CHANNEL_WIDTH_80;
1154 		is_support_sgi = sta->vht_cap.vht_supported &&
1155 				 (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1156 		break;
1157 	case IEEE80211_STA_RX_BW_40:
1158 		bw_mode = RTW_CHANNEL_WIDTH_40;
1159 		is_support_sgi = sta->ht_cap.ht_supported &&
1160 				 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1161 		break;
1162 	default:
1163 		bw_mode = RTW_CHANNEL_WIDTH_20;
1164 		is_support_sgi = sta->ht_cap.ht_supported &&
1165 				 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1166 		break;
1167 	}
1168 
1169 	if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
1170 		tx_num = 2;
1171 		rf_type = RF_2T2R;
1172 	} else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
1173 		tx_num = 2;
1174 		rf_type = RF_2T2R;
1175 	}
1176 
1177 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1178 
1179 	ra_mask = rtw_update_rate_mask(rtwdev, si, ra_mask, is_vht_enable,
1180 				       wireless_set);
1181 
1182 	si->bw_mode = bw_mode;
1183 	si->stbc_en = stbc_en;
1184 	si->ldpc_en = ldpc_en;
1185 	si->rf_type = rf_type;
1186 	si->wireless_set = wireless_set;
1187 	si->sgi_enable = is_support_sgi;
1188 	si->vht_enable = is_vht_enable;
1189 	si->ra_mask = ra_mask;
1190 	si->rate_id = rate_id;
1191 
1192 	rtw_fw_send_ra_info(rtwdev, si);
1193 }
1194 
1195 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1196 {
1197 	struct rtw_chip_info *chip = rtwdev->chip;
1198 	struct rtw_fw_state *fw;
1199 
1200 	fw = &rtwdev->fw;
1201 	wait_for_completion(&fw->completion);
1202 	if (!fw->firmware)
1203 		return -EINVAL;
1204 
1205 	if (chip->wow_fw_name) {
1206 		fw = &rtwdev->wow_fw;
1207 		wait_for_completion(&fw->completion);
1208 		if (!fw->firmware)
1209 			return -EINVAL;
1210 	}
1211 
1212 	return 0;
1213 }
1214 
1215 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1216 						       struct rtw_fw_state *fw)
1217 {
1218 	struct rtw_chip_info *chip = rtwdev->chip;
1219 
1220 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1221 	    !fw->feature)
1222 		return LPS_DEEP_MODE_NONE;
1223 
1224 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1225 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1226 		return LPS_DEEP_MODE_PG;
1227 
1228 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1229 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1230 		return LPS_DEEP_MODE_LCLK;
1231 
1232 	return LPS_DEEP_MODE_NONE;
1233 }
1234 
1235 static int rtw_power_on(struct rtw_dev *rtwdev)
1236 {
1237 	struct rtw_chip_info *chip = rtwdev->chip;
1238 	struct rtw_fw_state *fw = &rtwdev->fw;
1239 	bool wifi_only;
1240 	int ret;
1241 
1242 	ret = rtw_hci_setup(rtwdev);
1243 	if (ret) {
1244 		rtw_err(rtwdev, "failed to setup hci\n");
1245 		goto err;
1246 	}
1247 
1248 	/* power on MAC before firmware downloaded */
1249 	ret = rtw_mac_power_on(rtwdev);
1250 	if (ret) {
1251 		rtw_err(rtwdev, "failed to power on mac\n");
1252 		goto err;
1253 	}
1254 
1255 	ret = rtw_wait_firmware_completion(rtwdev);
1256 	if (ret) {
1257 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1258 		goto err_off;
1259 	}
1260 
1261 	ret = rtw_download_firmware(rtwdev, fw);
1262 	if (ret) {
1263 		rtw_err(rtwdev, "failed to download firmware\n");
1264 		goto err_off;
1265 	}
1266 
1267 	/* config mac after firmware downloaded */
1268 	ret = rtw_mac_init(rtwdev);
1269 	if (ret) {
1270 		rtw_err(rtwdev, "failed to configure mac\n");
1271 		goto err_off;
1272 	}
1273 
1274 	chip->ops->phy_set_param(rtwdev);
1275 
1276 	ret = rtw_hci_start(rtwdev);
1277 	if (ret) {
1278 		rtw_err(rtwdev, "failed to start hci\n");
1279 		goto err_off;
1280 	}
1281 
1282 	/* send H2C after HCI has started */
1283 	rtw_fw_send_general_info(rtwdev);
1284 	rtw_fw_send_phydm_info(rtwdev);
1285 
1286 	wifi_only = !rtwdev->efuse.btcoex;
1287 	rtw_coex_power_on_setting(rtwdev);
1288 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1289 
1290 	return 0;
1291 
1292 err_off:
1293 	rtw_mac_power_off(rtwdev);
1294 
1295 err:
1296 	return ret;
1297 }
1298 
1299 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1300 {
1301 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1302 		return;
1303 
1304 	if (start) {
1305 		rtw_fw_scan_notify(rtwdev, true);
1306 	} else {
1307 		reinit_completion(&rtwdev->fw_scan_density);
1308 		rtw_fw_scan_notify(rtwdev, false);
1309 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1310 						 SCAN_NOTIFY_TIMEOUT))
1311 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1312 	}
1313 }
1314 
1315 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1316 			 const u8 *mac_addr, bool hw_scan)
1317 {
1318 	u32 config = 0;
1319 	int ret = 0;
1320 
1321 	rtw_leave_lps(rtwdev);
1322 
1323 	if (hw_scan && rtwvif->net_type == RTW_NET_NO_LINK) {
1324 		ret = rtw_leave_ips(rtwdev);
1325 		if (ret) {
1326 			rtw_err(rtwdev, "failed to leave idle state\n");
1327 			return;
1328 		}
1329 	}
1330 
1331 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1332 	config |= PORT_SET_MAC_ADDR;
1333 	rtw_vif_port_config(rtwdev, rtwvif, config);
1334 
1335 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1336 	rtw_core_fw_scan_notify(rtwdev, true);
1337 
1338 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1339 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1340 }
1341 
1342 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
1343 {
1344 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
1345 	u32 config = 0;
1346 
1347 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1348 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1349 
1350 	rtw_core_fw_scan_notify(rtwdev, false);
1351 
1352 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1353 	config |= PORT_SET_MAC_ADDR;
1354 	rtw_vif_port_config(rtwdev, rtwvif, config);
1355 
1356 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1357 }
1358 
1359 int rtw_core_start(struct rtw_dev *rtwdev)
1360 {
1361 	int ret;
1362 
1363 	ret = rtw_power_on(rtwdev);
1364 	if (ret)
1365 		return ret;
1366 
1367 	rtw_sec_enable_sec_engine(rtwdev);
1368 
1369 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1370 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1371 
1372 	/* rcr reset after powered on */
1373 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1374 
1375 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1376 				     RTW_WATCH_DOG_DELAY_TIME);
1377 
1378 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1379 
1380 	return 0;
1381 }
1382 
1383 static void rtw_power_off(struct rtw_dev *rtwdev)
1384 {
1385 	rtw_hci_stop(rtwdev);
1386 	rtw_coex_power_off_setting(rtwdev);
1387 	rtw_mac_power_off(rtwdev);
1388 }
1389 
1390 void rtw_core_stop(struct rtw_dev *rtwdev)
1391 {
1392 	struct rtw_coex *coex = &rtwdev->coex;
1393 
1394 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1395 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1396 
1397 	mutex_unlock(&rtwdev->mutex);
1398 
1399 	cancel_work_sync(&rtwdev->c2h_work);
1400 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1401 	cancel_delayed_work_sync(&coex->bt_relink_work);
1402 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1403 	cancel_delayed_work_sync(&coex->defreeze_work);
1404 	cancel_delayed_work_sync(&coex->wl_remain_work);
1405 	cancel_delayed_work_sync(&coex->bt_remain_work);
1406 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1407 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1408 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1409 
1410 	mutex_lock(&rtwdev->mutex);
1411 
1412 	rtw_power_off(rtwdev);
1413 }
1414 
1415 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1416 			    struct ieee80211_sta_ht_cap *ht_cap)
1417 {
1418 	struct rtw_efuse *efuse = &rtwdev->efuse;
1419 
1420 	ht_cap->ht_supported = true;
1421 	ht_cap->cap = 0;
1422 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1423 			IEEE80211_HT_CAP_MAX_AMSDU |
1424 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1425 
1426 	if (rtw_chip_has_rx_ldpc(rtwdev))
1427 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1428 	if (rtw_chip_has_tx_stbc(rtwdev))
1429 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1430 
1431 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1432 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1433 				IEEE80211_HT_CAP_DSSSCCK40 |
1434 				IEEE80211_HT_CAP_SGI_40;
1435 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1436 	ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
1437 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1438 	if (efuse->hw_cap.nss > 1) {
1439 		ht_cap->mcs.rx_mask[0] = 0xFF;
1440 		ht_cap->mcs.rx_mask[1] = 0xFF;
1441 		ht_cap->mcs.rx_mask[4] = 0x01;
1442 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1443 	} else {
1444 		ht_cap->mcs.rx_mask[0] = 0xFF;
1445 		ht_cap->mcs.rx_mask[1] = 0x00;
1446 		ht_cap->mcs.rx_mask[4] = 0x01;
1447 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1448 	}
1449 }
1450 
1451 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1452 			     struct ieee80211_sta_vht_cap *vht_cap)
1453 {
1454 	struct rtw_efuse *efuse = &rtwdev->efuse;
1455 	u16 mcs_map;
1456 	__le16 highest;
1457 
1458 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1459 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1460 		return;
1461 
1462 	vht_cap->vht_supported = true;
1463 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1464 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1465 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1466 		       IEEE80211_VHT_CAP_HTC_VHT |
1467 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1468 		       0;
1469 	if (rtwdev->hal.rf_path_num > 1)
1470 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1471 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1472 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1473 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1474 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1475 
1476 	if (rtw_chip_has_rx_ldpc(rtwdev))
1477 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1478 
1479 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1480 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1481 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1482 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1483 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1484 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1485 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1486 	if (efuse->hw_cap.nss > 1) {
1487 		highest = cpu_to_le16(780);
1488 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1489 	} else {
1490 		highest = cpu_to_le16(390);
1491 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1492 	}
1493 
1494 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1495 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1496 	vht_cap->vht_mcs.rx_highest = highest;
1497 	vht_cap->vht_mcs.tx_highest = highest;
1498 }
1499 
1500 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1501 				   struct rtw_chip_info *chip)
1502 {
1503 	struct rtw_dev *rtwdev = hw->priv;
1504 	struct ieee80211_supported_band *sband;
1505 
1506 	if (chip->band & RTW_BAND_2G) {
1507 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1508 		if (!sband)
1509 			goto err_out;
1510 		if (chip->ht_supported)
1511 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1512 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1513 	}
1514 
1515 	if (chip->band & RTW_BAND_5G) {
1516 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1517 		if (!sband)
1518 			goto err_out;
1519 		if (chip->ht_supported)
1520 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1521 		if (chip->vht_supported)
1522 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1523 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1524 	}
1525 
1526 	return;
1527 
1528 err_out:
1529 	rtw_err(rtwdev, "failed to set supported band\n");
1530 }
1531 
1532 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1533 				     struct rtw_chip_info *chip)
1534 {
1535 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1536 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1537 }
1538 
1539 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1540 				      struct rtw_fw_state *fw)
1541 {
1542 	u32 feature;
1543 	const struct rtw_fw_hdr *fw_hdr =
1544 				(const struct rtw_fw_hdr *)fw->firmware->data;
1545 
1546 	feature = le32_to_cpu(fw_hdr->feature);
1547 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1548 }
1549 
1550 static void __update_firmware_info(struct rtw_dev *rtwdev,
1551 				   struct rtw_fw_state *fw)
1552 {
1553 	const struct rtw_fw_hdr *fw_hdr =
1554 				(const struct rtw_fw_hdr *)fw->firmware->data;
1555 
1556 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1557 	fw->version = le16_to_cpu(fw_hdr->version);
1558 	fw->sub_version = fw_hdr->subversion;
1559 	fw->sub_index = fw_hdr->subindex;
1560 
1561 	__update_firmware_feature(rtwdev, fw);
1562 }
1563 
1564 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1565 					  struct rtw_fw_state *fw)
1566 {
1567 	struct rtw_fw_hdr_legacy *legacy =
1568 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1569 
1570 	fw->h2c_version = 0;
1571 	fw->version = le16_to_cpu(legacy->version);
1572 	fw->sub_version = legacy->subversion1;
1573 	fw->sub_index = legacy->subversion2;
1574 }
1575 
1576 static void update_firmware_info(struct rtw_dev *rtwdev,
1577 				 struct rtw_fw_state *fw)
1578 {
1579 	if (rtw_chip_wcpu_11n(rtwdev))
1580 		__update_firmware_info_legacy(rtwdev, fw);
1581 	else
1582 		__update_firmware_info(rtwdev, fw);
1583 }
1584 
1585 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1586 {
1587 	struct rtw_fw_state *fw = context;
1588 	struct rtw_dev *rtwdev = fw->rtwdev;
1589 
1590 	if (!firmware || !firmware->data) {
1591 		rtw_err(rtwdev, "failed to request firmware\n");
1592 		complete_all(&fw->completion);
1593 		return;
1594 	}
1595 
1596 	fw->firmware = firmware;
1597 	update_firmware_info(rtwdev, fw);
1598 	complete_all(&fw->completion);
1599 
1600 	rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
1601 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1602 }
1603 
1604 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1605 {
1606 	const char *fw_name;
1607 	struct rtw_fw_state *fw;
1608 	int ret;
1609 
1610 	switch (type) {
1611 	case RTW_WOWLAN_FW:
1612 		fw = &rtwdev->wow_fw;
1613 		fw_name = rtwdev->chip->wow_fw_name;
1614 		break;
1615 
1616 	case RTW_NORMAL_FW:
1617 		fw = &rtwdev->fw;
1618 		fw_name = rtwdev->chip->fw_name;
1619 		break;
1620 
1621 	default:
1622 		rtw_warn(rtwdev, "unsupported firmware type\n");
1623 		return -ENOENT;
1624 	}
1625 
1626 	fw->rtwdev = rtwdev;
1627 	init_completion(&fw->completion);
1628 
1629 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1630 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1631 	if (ret) {
1632 		rtw_err(rtwdev, "failed to async firmware request\n");
1633 		return ret;
1634 	}
1635 
1636 	return 0;
1637 }
1638 
1639 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1640 {
1641 	struct rtw_chip_info *chip = rtwdev->chip;
1642 	struct rtw_hal *hal = &rtwdev->hal;
1643 	struct rtw_efuse *efuse = &rtwdev->efuse;
1644 
1645 	switch (rtw_hci_type(rtwdev)) {
1646 	case RTW_HCI_TYPE_PCIE:
1647 		rtwdev->hci.rpwm_addr = 0x03d9;
1648 		rtwdev->hci.cpwm_addr = 0x03da;
1649 		break;
1650 	default:
1651 		rtw_err(rtwdev, "unsupported hci type\n");
1652 		return -EINVAL;
1653 	}
1654 
1655 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1656 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1657 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1658 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1659 		hal->rf_type = RF_2T2R;
1660 		hal->rf_path_num = 2;
1661 		hal->antenna_tx = BB_PATH_AB;
1662 		hal->antenna_rx = BB_PATH_AB;
1663 	} else {
1664 		hal->rf_type = RF_1T1R;
1665 		hal->rf_path_num = 1;
1666 		hal->antenna_tx = BB_PATH_A;
1667 		hal->antenna_rx = BB_PATH_A;
1668 	}
1669 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1670 			  hal->rf_path_num;
1671 
1672 	efuse->physical_size = chip->phy_efuse_size;
1673 	efuse->logical_size = chip->log_efuse_size;
1674 	efuse->protect_size = chip->ptct_efuse_size;
1675 
1676 	/* default use ack */
1677 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1678 
1679 	hal->bfee_sts_cap = 3;
1680 
1681 	return 0;
1682 }
1683 
1684 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1685 {
1686 	struct rtw_fw_state *fw = &rtwdev->fw;
1687 	int ret;
1688 
1689 	ret = rtw_hci_setup(rtwdev);
1690 	if (ret) {
1691 		rtw_err(rtwdev, "failed to setup hci\n");
1692 		goto err;
1693 	}
1694 
1695 	ret = rtw_mac_power_on(rtwdev);
1696 	if (ret) {
1697 		rtw_err(rtwdev, "failed to power on mac\n");
1698 		goto err;
1699 	}
1700 
1701 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1702 
1703 	wait_for_completion(&fw->completion);
1704 	if (!fw->firmware) {
1705 		ret = -EINVAL;
1706 		rtw_err(rtwdev, "failed to load firmware\n");
1707 		goto err;
1708 	}
1709 
1710 	ret = rtw_download_firmware(rtwdev, fw);
1711 	if (ret) {
1712 		rtw_err(rtwdev, "failed to download firmware\n");
1713 		goto err_off;
1714 	}
1715 
1716 	return 0;
1717 
1718 err_off:
1719 	rtw_mac_power_off(rtwdev);
1720 
1721 err:
1722 	return ret;
1723 }
1724 
1725 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1726 {
1727 	struct rtw_efuse *efuse = &rtwdev->efuse;
1728 	u8 hw_feature[HW_FEATURE_LEN];
1729 	u8 id;
1730 	u8 bw;
1731 	int i;
1732 
1733 	id = rtw_read8(rtwdev, REG_C2HEVT);
1734 	if (id != C2H_HW_FEATURE_REPORT) {
1735 		rtw_err(rtwdev, "failed to read hw feature report\n");
1736 		return -EBUSY;
1737 	}
1738 
1739 	for (i = 0; i < HW_FEATURE_LEN; i++)
1740 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1741 
1742 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1743 
1744 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1745 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1746 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1747 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1748 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1749 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1750 
1751 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1752 
1753 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1754 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1755 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1756 
1757 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1758 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1759 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1760 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1761 
1762 	return 0;
1763 }
1764 
1765 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1766 {
1767 	rtw_hci_stop(rtwdev);
1768 	rtw_mac_power_off(rtwdev);
1769 }
1770 
1771 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1772 {
1773 	struct rtw_efuse *efuse = &rtwdev->efuse;
1774 	int ret;
1775 
1776 	mutex_lock(&rtwdev->mutex);
1777 
1778 	/* power on mac to read efuse */
1779 	ret = rtw_chip_efuse_enable(rtwdev);
1780 	if (ret)
1781 		goto out_unlock;
1782 
1783 	ret = rtw_parse_efuse_map(rtwdev);
1784 	if (ret)
1785 		goto out_disable;
1786 
1787 	ret = rtw_dump_hw_feature(rtwdev);
1788 	if (ret)
1789 		goto out_disable;
1790 
1791 	ret = rtw_check_supported_rfe(rtwdev);
1792 	if (ret)
1793 		goto out_disable;
1794 
1795 	if (efuse->crystal_cap == 0xff)
1796 		efuse->crystal_cap = 0;
1797 	if (efuse->pa_type_2g == 0xff)
1798 		efuse->pa_type_2g = 0;
1799 	if (efuse->pa_type_5g == 0xff)
1800 		efuse->pa_type_5g = 0;
1801 	if (efuse->lna_type_2g == 0xff)
1802 		efuse->lna_type_2g = 0;
1803 	if (efuse->lna_type_5g == 0xff)
1804 		efuse->lna_type_5g = 0;
1805 	if (efuse->channel_plan == 0xff)
1806 		efuse->channel_plan = 0x7f;
1807 	if (efuse->rf_board_option == 0xff)
1808 		efuse->rf_board_option = 0;
1809 	if (efuse->bt_setting & BIT(0))
1810 		efuse->share_ant = true;
1811 	if (efuse->regd == 0xff)
1812 		efuse->regd = 0;
1813 	if (efuse->tx_bb_swing_setting_2g == 0xff)
1814 		efuse->tx_bb_swing_setting_2g = 0;
1815 	if (efuse->tx_bb_swing_setting_5g == 0xff)
1816 		efuse->tx_bb_swing_setting_5g = 0;
1817 
1818 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1819 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1820 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1821 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1822 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1823 
1824 out_disable:
1825 	rtw_chip_efuse_disable(rtwdev);
1826 
1827 out_unlock:
1828 	mutex_unlock(&rtwdev->mutex);
1829 	return ret;
1830 }
1831 
1832 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1833 {
1834 	struct rtw_hal *hal = &rtwdev->hal;
1835 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1836 
1837 	if (!rfe_def)
1838 		return -ENODEV;
1839 
1840 	rtw_phy_setup_phy_cond(rtwdev, 0);
1841 
1842 	rtw_phy_init_tx_power(rtwdev);
1843 	if (rfe_def->agc_btg_tbl)
1844 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1845 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1846 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1847 	rtw_phy_tx_power_by_rate_config(hal);
1848 	rtw_phy_tx_power_limit_config(hal);
1849 
1850 	return 0;
1851 }
1852 
1853 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1854 {
1855 	int ret;
1856 
1857 	ret = rtw_chip_parameter_setup(rtwdev);
1858 	if (ret) {
1859 		rtw_err(rtwdev, "failed to setup chip parameters\n");
1860 		goto err_out;
1861 	}
1862 
1863 	ret = rtw_chip_efuse_info_setup(rtwdev);
1864 	if (ret) {
1865 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
1866 		goto err_out;
1867 	}
1868 
1869 	ret = rtw_chip_board_info_setup(rtwdev);
1870 	if (ret) {
1871 		rtw_err(rtwdev, "failed to setup chip board info\n");
1872 		goto err_out;
1873 	}
1874 
1875 	return 0;
1876 
1877 err_out:
1878 	return ret;
1879 }
1880 EXPORT_SYMBOL(rtw_chip_info_setup);
1881 
1882 static void rtw_stats_init(struct rtw_dev *rtwdev)
1883 {
1884 	struct rtw_traffic_stats *stats = &rtwdev->stats;
1885 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1886 	int i;
1887 
1888 	ewma_tp_init(&stats->tx_ewma_tp);
1889 	ewma_tp_init(&stats->rx_ewma_tp);
1890 
1891 	for (i = 0; i < RTW_EVM_NUM; i++)
1892 		ewma_evm_init(&dm_info->ewma_evm[i]);
1893 	for (i = 0; i < RTW_SNR_NUM; i++)
1894 		ewma_snr_init(&dm_info->ewma_snr[i]);
1895 }
1896 
1897 int rtw_core_init(struct rtw_dev *rtwdev)
1898 {
1899 	struct rtw_chip_info *chip = rtwdev->chip;
1900 	struct rtw_coex *coex = &rtwdev->coex;
1901 	int ret;
1902 
1903 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1904 	INIT_LIST_HEAD(&rtwdev->txqs);
1905 
1906 	timer_setup(&rtwdev->tx_report.purge_timer,
1907 		    rtw_tx_report_purge_timer, 0);
1908 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
1909 
1910 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1911 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
1912 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
1913 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
1914 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
1915 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
1916 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
1917 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
1918 			  rtw_coex_bt_multi_link_remain_work);
1919 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
1920 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
1921 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1922 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
1923 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
1924 	skb_queue_head_init(&rtwdev->c2h_queue);
1925 	skb_queue_head_init(&rtwdev->coex.queue);
1926 	skb_queue_head_init(&rtwdev->tx_report.queue);
1927 
1928 	spin_lock_init(&rtwdev->rf_lock);
1929 	spin_lock_init(&rtwdev->h2c.lock);
1930 	spin_lock_init(&rtwdev->txq_lock);
1931 	spin_lock_init(&rtwdev->tx_report.q_lock);
1932 
1933 	mutex_init(&rtwdev->mutex);
1934 	mutex_init(&rtwdev->coex.mutex);
1935 	mutex_init(&rtwdev->hal.tx_power_mutex);
1936 
1937 	init_waitqueue_head(&rtwdev->coex.wait);
1938 	init_completion(&rtwdev->lps_leave_check);
1939 	init_completion(&rtwdev->fw_scan_density);
1940 
1941 	rtwdev->sec.total_cam_num = 32;
1942 	rtwdev->hal.current_channel = 1;
1943 	rtwdev->dm_info.fix_rate = U8_MAX;
1944 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
1945 
1946 	rtw_stats_init(rtwdev);
1947 
1948 	/* default rx filter setting */
1949 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
1950 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
1951 			  BIT_AB | BIT_AM | BIT_APM;
1952 
1953 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
1954 	if (ret) {
1955 		rtw_warn(rtwdev, "no firmware loaded\n");
1956 		return ret;
1957 	}
1958 
1959 	if (chip->wow_fw_name) {
1960 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
1961 		if (ret) {
1962 			rtw_warn(rtwdev, "no wow firmware loaded\n");
1963 			wait_for_completion(&rtwdev->fw.completion);
1964 			if (rtwdev->fw.firmware)
1965 				release_firmware(rtwdev->fw.firmware);
1966 			return ret;
1967 		}
1968 	}
1969 
1970 	return 0;
1971 }
1972 EXPORT_SYMBOL(rtw_core_init);
1973 
1974 void rtw_core_deinit(struct rtw_dev *rtwdev)
1975 {
1976 	struct rtw_fw_state *fw = &rtwdev->fw;
1977 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
1978 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
1979 	unsigned long flags;
1980 
1981 	rtw_wait_firmware_completion(rtwdev);
1982 
1983 	if (fw->firmware)
1984 		release_firmware(fw->firmware);
1985 
1986 	if (wow_fw->firmware)
1987 		release_firmware(wow_fw->firmware);
1988 
1989 	destroy_workqueue(rtwdev->tx_wq);
1990 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
1991 	skb_queue_purge(&rtwdev->tx_report.queue);
1992 	skb_queue_purge(&rtwdev->coex.queue);
1993 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
1994 
1995 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
1996 				 build_list) {
1997 		list_del(&rsvd_pkt->build_list);
1998 		kfree(rsvd_pkt);
1999 	}
2000 
2001 	mutex_destroy(&rtwdev->mutex);
2002 	mutex_destroy(&rtwdev->coex.mutex);
2003 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2004 }
2005 EXPORT_SYMBOL(rtw_core_deinit);
2006 
2007 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2008 {
2009 	struct rtw_hal *hal = &rtwdev->hal;
2010 	int max_tx_headroom = 0;
2011 	int ret;
2012 
2013 	/* TODO: USB & SDIO may need extra room? */
2014 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2015 
2016 	hw->extra_tx_headroom = max_tx_headroom;
2017 	hw->queues = IEEE80211_NUM_ACS;
2018 	hw->txq_data_size = sizeof(struct rtw_txq);
2019 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2020 	hw->vif_data_size = sizeof(struct rtw_vif);
2021 
2022 	ieee80211_hw_set(hw, SIGNAL_DBM);
2023 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2024 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2025 	ieee80211_hw_set(hw, MFP_CAPABLE);
2026 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2027 	ieee80211_hw_set(hw, SUPPORTS_PS);
2028 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2029 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2030 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2031 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2032 	ieee80211_hw_set(hw, TX_AMSDU);
2033 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2034 
2035 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2036 				     BIT(NL80211_IFTYPE_AP) |
2037 				     BIT(NL80211_IFTYPE_ADHOC) |
2038 				     BIT(NL80211_IFTYPE_MESH_POINT);
2039 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2040 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2041 
2042 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2043 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2044 
2045 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2046 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2047 	hw->wiphy->max_scan_ie_len = RTW_SCAN_MAX_IE_LEN;
2048 
2049 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2050 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2051 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2052 
2053 #ifdef CONFIG_PM
2054 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2055 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2056 #endif
2057 	rtw_set_supported_band(hw, rtwdev->chip);
2058 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2059 
2060 	hw->wiphy->sar_capa = &rtw_sar_capa;
2061 
2062 	ret = rtw_regd_init(rtwdev);
2063 	if (ret) {
2064 		rtw_err(rtwdev, "failed to init regd\n");
2065 		return ret;
2066 	}
2067 
2068 	ret = ieee80211_register_hw(hw);
2069 	if (ret) {
2070 		rtw_err(rtwdev, "failed to register hw\n");
2071 		return ret;
2072 	}
2073 
2074 	ret = rtw_regd_hint(rtwdev);
2075 	if (ret) {
2076 		rtw_err(rtwdev, "failed to hint regd\n");
2077 		return ret;
2078 	}
2079 
2080 	rtw_debugfs_init(rtwdev);
2081 
2082 	rtwdev->bf_info.bfer_mu_cnt = 0;
2083 	rtwdev->bf_info.bfer_su_cnt = 0;
2084 
2085 	return 0;
2086 }
2087 EXPORT_SYMBOL(rtw_register_hw);
2088 
2089 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2090 {
2091 	struct rtw_chip_info *chip = rtwdev->chip;
2092 
2093 	ieee80211_unregister_hw(hw);
2094 	rtw_unset_supported_band(hw, chip);
2095 }
2096 EXPORT_SYMBOL(rtw_unregister_hw);
2097 
2098 MODULE_AUTHOR("Realtek Corporation");
2099 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2100 MODULE_LICENSE("Dual BSD/GPL");
2101