xref: /linux/drivers/net/wireless/realtek/rtw88/main.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/devcoredump.h>
6 
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 
22 bool rtw_disable_lps_deep_mode;
23 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
24 bool rtw_bf_support = true;
25 unsigned int rtw_debug_mask;
26 EXPORT_SYMBOL(rtw_debug_mask);
27 /* EDCCA is enabled during normal behavior. For debugging purpose in
28  * a noisy environment, it can be disabled via edcca debugfs. Because
29  * all rtw88 devices will probably be affected if environment is noisy,
30  * rtw_edcca_enabled is just declared by driver instead of by device.
31  * So, turning it off will take effect for all rtw88 devices before
32  * there is a tough reason to maintain rtw_edcca_enabled by device.
33  */
34 bool rtw_edcca_enabled = true;
35 
36 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
37 module_param_named(support_bf, rtw_bf_support, bool, 0644);
38 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
39 
40 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
41 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
42 MODULE_PARM_DESC(debug_mask, "Debugging mask");
43 
44 static struct ieee80211_channel rtw_channeltable_2g[] = {
45 	{.center_freq = 2412, .hw_value = 1,},
46 	{.center_freq = 2417, .hw_value = 2,},
47 	{.center_freq = 2422, .hw_value = 3,},
48 	{.center_freq = 2427, .hw_value = 4,},
49 	{.center_freq = 2432, .hw_value = 5,},
50 	{.center_freq = 2437, .hw_value = 6,},
51 	{.center_freq = 2442, .hw_value = 7,},
52 	{.center_freq = 2447, .hw_value = 8,},
53 	{.center_freq = 2452, .hw_value = 9,},
54 	{.center_freq = 2457, .hw_value = 10,},
55 	{.center_freq = 2462, .hw_value = 11,},
56 	{.center_freq = 2467, .hw_value = 12,},
57 	{.center_freq = 2472, .hw_value = 13,},
58 	{.center_freq = 2484, .hw_value = 14,},
59 };
60 
61 static struct ieee80211_channel rtw_channeltable_5g[] = {
62 	{.center_freq = 5180, .hw_value = 36,},
63 	{.center_freq = 5200, .hw_value = 40,},
64 	{.center_freq = 5220, .hw_value = 44,},
65 	{.center_freq = 5240, .hw_value = 48,},
66 	{.center_freq = 5260, .hw_value = 52,},
67 	{.center_freq = 5280, .hw_value = 56,},
68 	{.center_freq = 5300, .hw_value = 60,},
69 	{.center_freq = 5320, .hw_value = 64,},
70 	{.center_freq = 5500, .hw_value = 100,},
71 	{.center_freq = 5520, .hw_value = 104,},
72 	{.center_freq = 5540, .hw_value = 108,},
73 	{.center_freq = 5560, .hw_value = 112,},
74 	{.center_freq = 5580, .hw_value = 116,},
75 	{.center_freq = 5600, .hw_value = 120,},
76 	{.center_freq = 5620, .hw_value = 124,},
77 	{.center_freq = 5640, .hw_value = 128,},
78 	{.center_freq = 5660, .hw_value = 132,},
79 	{.center_freq = 5680, .hw_value = 136,},
80 	{.center_freq = 5700, .hw_value = 140,},
81 	{.center_freq = 5720, .hw_value = 144,},
82 	{.center_freq = 5745, .hw_value = 149,},
83 	{.center_freq = 5765, .hw_value = 153,},
84 	{.center_freq = 5785, .hw_value = 157,},
85 	{.center_freq = 5805, .hw_value = 161,},
86 	{.center_freq = 5825, .hw_value = 165,
87 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
88 };
89 
90 static struct ieee80211_rate rtw_ratetable[] = {
91 	{.bitrate = 10, .hw_value = 0x00,},
92 	{.bitrate = 20, .hw_value = 0x01,},
93 	{.bitrate = 55, .hw_value = 0x02,},
94 	{.bitrate = 110, .hw_value = 0x03,},
95 	{.bitrate = 60, .hw_value = 0x04,},
96 	{.bitrate = 90, .hw_value = 0x05,},
97 	{.bitrate = 120, .hw_value = 0x06,},
98 	{.bitrate = 180, .hw_value = 0x07,},
99 	{.bitrate = 240, .hw_value = 0x08,},
100 	{.bitrate = 360, .hw_value = 0x09,},
101 	{.bitrate = 480, .hw_value = 0x0a,},
102 	{.bitrate = 540, .hw_value = 0x0b,},
103 };
104 
105 u16 rtw_desc_to_bitrate(u8 desc_rate)
106 {
107 	struct ieee80211_rate rate;
108 
109 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
110 		return 0;
111 
112 	rate = rtw_ratetable[desc_rate];
113 
114 	return rate.bitrate;
115 }
116 
117 static struct ieee80211_supported_band rtw_band_2ghz = {
118 	.band = NL80211_BAND_2GHZ,
119 
120 	.channels = rtw_channeltable_2g,
121 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
122 
123 	.bitrates = rtw_ratetable,
124 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
125 
126 	.ht_cap = {0},
127 	.vht_cap = {0},
128 };
129 
130 static struct ieee80211_supported_band rtw_band_5ghz = {
131 	.band = NL80211_BAND_5GHZ,
132 
133 	.channels = rtw_channeltable_5g,
134 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
135 
136 	/* 5G has no CCK rates */
137 	.bitrates = rtw_ratetable + 4,
138 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
139 
140 	.ht_cap = {0},
141 	.vht_cap = {0},
142 };
143 
144 struct rtw_watch_dog_iter_data {
145 	struct rtw_dev *rtwdev;
146 	struct rtw_vif *rtwvif;
147 };
148 
149 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
150 {
151 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
152 	u8 fix_rate_enable = 0;
153 	u8 new_csi_rate_idx;
154 
155 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
156 	    rtwvif->bfee.role != RTW_BFEE_MU)
157 		return;
158 
159 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
160 			      bf_info->cur_csi_rpt_rate,
161 			      fix_rate_enable, &new_csi_rate_idx);
162 
163 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
164 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
165 }
166 
167 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
168 				   struct ieee80211_vif *vif)
169 {
170 	struct rtw_watch_dog_iter_data *iter_data = data;
171 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
172 
173 	if (vif->type == NL80211_IFTYPE_STATION)
174 		if (vif->cfg.assoc)
175 			iter_data->rtwvif = rtwvif;
176 
177 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
178 
179 	rtwvif->stats.tx_unicast = 0;
180 	rtwvif->stats.rx_unicast = 0;
181 	rtwvif->stats.tx_cnt = 0;
182 	rtwvif->stats.rx_cnt = 0;
183 }
184 
185 /* process TX/RX statistics periodically for hardware,
186  * the information helps hardware to enhance performance
187  */
188 static void rtw_watch_dog_work(struct work_struct *work)
189 {
190 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
191 					      watch_dog_work.work);
192 	struct rtw_traffic_stats *stats = &rtwdev->stats;
193 	struct rtw_watch_dog_iter_data data = {};
194 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
195 	bool ps_active;
196 
197 	mutex_lock(&rtwdev->mutex);
198 
199 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
200 		goto unlock;
201 
202 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
203 				     RTW_WATCH_DOG_DELAY_TIME);
204 
205 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
206 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
207 	else
208 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
209 
210 	rtw_coex_wl_status_check(rtwdev);
211 	rtw_coex_query_bt_hid_list(rtwdev);
212 
213 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
214 		rtw_coex_wl_status_change_notify(rtwdev, 0);
215 
216 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
217 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
218 		ps_active = true;
219 	else
220 		ps_active = false;
221 
222 	ewma_tp_add(&stats->tx_ewma_tp,
223 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
224 	ewma_tp_add(&stats->rx_ewma_tp,
225 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
226 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
227 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
228 
229 	/* reset tx/rx statictics */
230 	stats->tx_unicast = 0;
231 	stats->rx_unicast = 0;
232 	stats->tx_cnt = 0;
233 	stats->rx_cnt = 0;
234 
235 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
236 		goto unlock;
237 
238 	/* make sure BB/RF is working for dynamic mech */
239 	rtw_leave_lps(rtwdev);
240 
241 	rtw_phy_dynamic_mechanism(rtwdev);
242 
243 	data.rtwdev = rtwdev;
244 	/* use atomic version to avoid taking local->iflist_mtx mutex */
245 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
246 
247 	/* fw supports only one station associated to enter lps, if there are
248 	 * more than two stations associated to the AP, then we can not enter
249 	 * lps, because fw does not handle the overlapped beacon interval
250 	 *
251 	 * mac80211 should iterate vifs and determine if driver can enter
252 	 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
253 	 * get that vif and check if device is having traffic more than the
254 	 * threshold.
255 	 */
256 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
257 	    !rtwdev->beacon_loss)
258 		rtw_enter_lps(rtwdev, data.rtwvif->port);
259 
260 	rtwdev->watch_dog_cnt++;
261 
262 unlock:
263 	mutex_unlock(&rtwdev->mutex);
264 }
265 
266 static void rtw_c2h_work(struct work_struct *work)
267 {
268 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
269 	struct sk_buff *skb, *tmp;
270 
271 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
272 		skb_unlink(skb, &rtwdev->c2h_queue);
273 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
274 		dev_kfree_skb_any(skb);
275 	}
276 }
277 
278 static void rtw_ips_work(struct work_struct *work)
279 {
280 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
281 
282 	mutex_lock(&rtwdev->mutex);
283 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
284 		rtw_enter_ips(rtwdev);
285 	mutex_unlock(&rtwdev->mutex);
286 }
287 
288 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
289 {
290 	unsigned long mac_id;
291 
292 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
293 	if (mac_id < RTW_MAX_MAC_ID_NUM)
294 		set_bit(mac_id, rtwdev->mac_id_map);
295 
296 	return mac_id;
297 }
298 
299 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
300 		struct ieee80211_vif *vif)
301 {
302 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
303 	int i;
304 
305 	si->mac_id = rtw_acquire_macid(rtwdev);
306 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
307 		return -ENOSPC;
308 
309 	si->sta = sta;
310 	si->vif = vif;
311 	si->init_ra_lv = 1;
312 	ewma_rssi_init(&si->avg_rssi);
313 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
314 		rtw_txq_init(rtwdev, sta->txq[i]);
315 
316 	rtw_update_sta_info(rtwdev, si, true);
317 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
318 
319 	rtwdev->sta_cnt++;
320 	rtwdev->beacon_loss = false;
321 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
322 		sta->addr, si->mac_id);
323 
324 	return 0;
325 }
326 
327 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
328 		    bool fw_exist)
329 {
330 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
331 	int i;
332 
333 	rtw_release_macid(rtwdev, si->mac_id);
334 	if (fw_exist)
335 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
336 
337 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
338 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
339 
340 	kfree(si->mask);
341 
342 	rtwdev->sta_cnt--;
343 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
344 		sta->addr, si->mac_id);
345 }
346 
347 struct rtw_fwcd_hdr {
348 	u32 item;
349 	u32 size;
350 	u32 padding1;
351 	u32 padding2;
352 } __packed;
353 
354 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
355 {
356 	struct rtw_chip_info *chip = rtwdev->chip;
357 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
358 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
359 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
360 	u8 i;
361 
362 	if (segs) {
363 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
364 
365 		for (i = 0; i < segs->num; i++)
366 			prep_size += segs->segs[i];
367 	}
368 
369 	desc->data = vmalloc(prep_size);
370 	if (!desc->data)
371 		return -ENOMEM;
372 
373 	desc->size = prep_size;
374 	desc->next = desc->data;
375 
376 	return 0;
377 }
378 
379 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
380 {
381 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
382 	struct rtw_fwcd_hdr *hdr;
383 	u8 *next;
384 
385 	if (!desc->data) {
386 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
387 		return NULL;
388 	}
389 
390 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
391 	if (next - desc->data + size > desc->size) {
392 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
393 		return NULL;
394 	}
395 
396 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
397 	hdr->item = item;
398 	hdr->size = size;
399 	hdr->padding1 = 0x01234567;
400 	hdr->padding2 = 0x89abcdef;
401 	desc->next = next + size;
402 
403 	return next;
404 }
405 
406 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
407 {
408 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
409 
410 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
411 
412 	/* Data will be freed after lifetime of device coredump. After calling
413 	 * dev_coredump, data is supposed to be handled by the device coredump
414 	 * framework. Note that a new dump will be discarded if a previous one
415 	 * hasn't been released yet.
416 	 */
417 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
418 }
419 
420 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
421 {
422 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
423 
424 	if (free_self) {
425 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
426 		vfree(desc->data);
427 	}
428 
429 	desc->data = NULL;
430 	desc->next = NULL;
431 }
432 
433 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
434 {
435 	u32 size = rtwdev->chip->fw_rxff_size;
436 	u32 *buf;
437 	u8 seq;
438 
439 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
440 	if (!buf)
441 		return -ENOMEM;
442 
443 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
444 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
445 		return -EINVAL;
446 	}
447 
448 	if (GET_FW_DUMP_LEN(buf) == 0) {
449 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
450 		return -EINVAL;
451 	}
452 
453 	seq = GET_FW_DUMP_SEQ(buf);
454 	if (seq > 0) {
455 		rtw_dbg(rtwdev, RTW_DBG_FW,
456 			"fw crash dump's seq is wrong: %d\n", seq);
457 		return -EINVAL;
458 	}
459 
460 	return 0;
461 }
462 
463 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
464 		u32 fwcd_item)
465 {
466 	u32 rxff = rtwdev->chip->fw_rxff_size;
467 	u32 dump_size, done_size = 0;
468 	u8 *buf;
469 	int ret;
470 
471 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
472 	if (!buf)
473 		return -ENOMEM;
474 
475 	while (size) {
476 		dump_size = size > rxff ? rxff : size;
477 
478 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
479 					  dump_size);
480 		if (ret) {
481 			rtw_err(rtwdev,
482 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
483 				ocp_src, done_size);
484 			return ret;
485 		}
486 
487 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
488 				       dump_size, (u32 *)(buf + done_size));
489 		if (ret) {
490 			rtw_err(rtwdev,
491 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
492 				ocp_src, done_size);
493 			return ret;
494 		}
495 
496 		size -= dump_size;
497 		done_size += dump_size;
498 	}
499 
500 	return 0;
501 }
502 EXPORT_SYMBOL(rtw_dump_fw);
503 
504 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
505 {
506 	u8 *buf;
507 	u32 i;
508 
509 	if (addr & 0x3) {
510 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
511 		return -EINVAL;
512 	}
513 
514 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
515 	if (!buf)
516 		return -ENOMEM;
517 
518 	for (i = 0; i < size; i += 4)
519 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
520 
521 	return 0;
522 }
523 EXPORT_SYMBOL(rtw_dump_reg);
524 
525 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
526 			   struct ieee80211_bss_conf *conf)
527 {
528 	struct ieee80211_vif *vif = NULL;
529 
530 	if (conf)
531 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
532 
533 	if (conf && vif->cfg.assoc) {
534 		rtwvif->aid = vif->cfg.aid;
535 		rtwvif->net_type = RTW_NET_MGD_LINKED;
536 	} else {
537 		rtwvif->aid = 0;
538 		rtwvif->net_type = RTW_NET_NO_LINK;
539 	}
540 }
541 
542 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
543 			       struct ieee80211_vif *vif,
544 			       struct ieee80211_sta *sta,
545 			       struct ieee80211_key_conf *key,
546 			       void *data)
547 {
548 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
549 	struct rtw_sec_desc *sec = &rtwdev->sec;
550 
551 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
552 }
553 
554 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
555 {
556 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
557 
558 	if (rtwdev->sta_cnt == 0) {
559 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
560 		return;
561 	}
562 	rtw_sta_remove(rtwdev, sta, false);
563 }
564 
565 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
566 {
567 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
568 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
569 
570 	rtw_bf_disassoc(rtwdev, vif, NULL);
571 	rtw_vif_assoc_changed(rtwvif, NULL);
572 	rtw_txq_cleanup(rtwdev, vif->txq);
573 }
574 
575 void rtw_fw_recovery(struct rtw_dev *rtwdev)
576 {
577 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
578 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
579 }
580 
581 static void __fw_recovery_work(struct rtw_dev *rtwdev)
582 {
583 	int ret = 0;
584 
585 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
586 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
587 
588 	ret = rtw_fwcd_prep(rtwdev);
589 	if (ret)
590 		goto free;
591 	ret = rtw_fw_dump_crash_log(rtwdev);
592 	if (ret)
593 		goto free;
594 	ret = rtw_chip_dump_fw_crash(rtwdev);
595 	if (ret)
596 		goto free;
597 
598 	rtw_fwcd_dump(rtwdev);
599 free:
600 	rtw_fwcd_free(rtwdev, !!ret);
601 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
602 
603 	WARN(1, "firmware crash, start reset and recover\n");
604 
605 	rcu_read_lock();
606 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
607 	rcu_read_unlock();
608 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
609 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
610 	rtw_enter_ips(rtwdev);
611 }
612 
613 static void rtw_fw_recovery_work(struct work_struct *work)
614 {
615 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
616 					      fw_recovery_work);
617 
618 	mutex_lock(&rtwdev->mutex);
619 	__fw_recovery_work(rtwdev);
620 	mutex_unlock(&rtwdev->mutex);
621 
622 	ieee80211_restart_hw(rtwdev->hw);
623 }
624 
625 struct rtw_txq_ba_iter_data {
626 };
627 
628 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
629 {
630 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
631 	int ret;
632 	u8 tid;
633 
634 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
635 	while (tid != IEEE80211_NUM_TIDS) {
636 		clear_bit(tid, si->tid_ba);
637 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
638 		if (ret == -EINVAL) {
639 			struct ieee80211_txq *txq;
640 			struct rtw_txq *rtwtxq;
641 
642 			txq = sta->txq[tid];
643 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
644 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
645 		}
646 
647 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
648 	}
649 }
650 
651 static void rtw_txq_ba_work(struct work_struct *work)
652 {
653 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
654 	struct rtw_txq_ba_iter_data data;
655 
656 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
657 }
658 
659 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
660 {
661 	if (IS_CH_2G_BAND(channel))
662 		pkt_stat->band = NL80211_BAND_2GHZ;
663 	else if (IS_CH_5G_BAND(channel))
664 		pkt_stat->band = NL80211_BAND_5GHZ;
665 	else
666 		return;
667 
668 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
669 }
670 EXPORT_SYMBOL(rtw_set_rx_freq_band);
671 
672 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
673 {
674 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
675 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
676 }
677 
678 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
679 			    struct rtw_channel_params *chan_params)
680 {
681 	struct ieee80211_channel *channel = chandef->chan;
682 	enum nl80211_chan_width width = chandef->width;
683 	u8 *cch_by_bw = chan_params->cch_by_bw;
684 	u32 primary_freq, center_freq;
685 	u8 center_chan;
686 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
687 	u8 primary_chan_idx = 0;
688 	u8 i;
689 
690 	center_chan = channel->hw_value;
691 	primary_freq = channel->center_freq;
692 	center_freq = chandef->center_freq1;
693 
694 	/* assign the center channel used while 20M bw is selected */
695 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
696 
697 	switch (width) {
698 	case NL80211_CHAN_WIDTH_20_NOHT:
699 	case NL80211_CHAN_WIDTH_20:
700 		bandwidth = RTW_CHANNEL_WIDTH_20;
701 		primary_chan_idx = RTW_SC_DONT_CARE;
702 		break;
703 	case NL80211_CHAN_WIDTH_40:
704 		bandwidth = RTW_CHANNEL_WIDTH_40;
705 		if (primary_freq > center_freq) {
706 			primary_chan_idx = RTW_SC_20_UPPER;
707 			center_chan -= 2;
708 		} else {
709 			primary_chan_idx = RTW_SC_20_LOWER;
710 			center_chan += 2;
711 		}
712 		break;
713 	case NL80211_CHAN_WIDTH_80:
714 		bandwidth = RTW_CHANNEL_WIDTH_80;
715 		if (primary_freq > center_freq) {
716 			if (primary_freq - center_freq == 10) {
717 				primary_chan_idx = RTW_SC_20_UPPER;
718 				center_chan -= 2;
719 			} else {
720 				primary_chan_idx = RTW_SC_20_UPMOST;
721 				center_chan -= 6;
722 			}
723 			/* assign the center channel used
724 			 * while 40M bw is selected
725 			 */
726 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
727 		} else {
728 			if (center_freq - primary_freq == 10) {
729 				primary_chan_idx = RTW_SC_20_LOWER;
730 				center_chan += 2;
731 			} else {
732 				primary_chan_idx = RTW_SC_20_LOWEST;
733 				center_chan += 6;
734 			}
735 			/* assign the center channel used
736 			 * while 40M bw is selected
737 			 */
738 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
739 		}
740 		break;
741 	default:
742 		center_chan = 0;
743 		break;
744 	}
745 
746 	chan_params->center_chan = center_chan;
747 	chan_params->bandwidth = bandwidth;
748 	chan_params->primary_chan_idx = primary_chan_idx;
749 
750 	/* assign the center channel used while current bw is selected */
751 	cch_by_bw[bandwidth] = center_chan;
752 
753 	for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
754 		cch_by_bw[i] = 0;
755 }
756 
757 void rtw_set_channel(struct rtw_dev *rtwdev)
758 {
759 	struct ieee80211_hw *hw = rtwdev->hw;
760 	struct rtw_hal *hal = &rtwdev->hal;
761 	struct rtw_chip_info *chip = rtwdev->chip;
762 	struct rtw_channel_params ch_param;
763 	u8 center_chan, bandwidth, primary_chan_idx;
764 	u8 i;
765 
766 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
767 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
768 		return;
769 
770 	center_chan = ch_param.center_chan;
771 	bandwidth = ch_param.bandwidth;
772 	primary_chan_idx = ch_param.primary_chan_idx;
773 
774 	hal->current_band_width = bandwidth;
775 	hal->current_channel = center_chan;
776 	hal->current_primary_channel_index = primary_chan_idx;
777 	hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
778 
779 	switch (center_chan) {
780 	case 1 ... 14:
781 		hal->sar_band = RTW_SAR_BAND_0;
782 		break;
783 	case 36 ... 64:
784 		hal->sar_band = RTW_SAR_BAND_1;
785 		break;
786 	case 100 ... 144:
787 		hal->sar_band = RTW_SAR_BAND_3;
788 		break;
789 	case 149 ... 177:
790 		hal->sar_band = RTW_SAR_BAND_4;
791 		break;
792 	default:
793 		WARN(1, "unknown ch(%u) to SAR band\n", center_chan);
794 		hal->sar_band = RTW_SAR_BAND_0;
795 		break;
796 	}
797 
798 	for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
799 		hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
800 
801 	chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
802 
803 	if (hal->current_band_type == RTW_BAND_5G) {
804 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
805 	} else {
806 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
807 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
808 		else
809 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
810 	}
811 
812 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
813 
814 	/* if the channel isn't set for scanning, we will do RF calibration
815 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
816 	 * during scanning on each channel takes too long.
817 	 */
818 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
819 		rtwdev->need_rfk = true;
820 }
821 
822 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
823 {
824 	struct rtw_chip_info *chip = rtwdev->chip;
825 
826 	if (rtwdev->need_rfk) {
827 		rtwdev->need_rfk = false;
828 		chip->ops->phy_calibration(rtwdev);
829 	}
830 }
831 
832 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
833 {
834 	int i;
835 
836 	for (i = 0; i < ETH_ALEN; i++)
837 		rtw_write8(rtwdev, start + i, addr[i]);
838 }
839 
840 void rtw_vif_port_config(struct rtw_dev *rtwdev,
841 			 struct rtw_vif *rtwvif,
842 			 u32 config)
843 {
844 	u32 addr, mask;
845 
846 	if (config & PORT_SET_MAC_ADDR) {
847 		addr = rtwvif->conf->mac_addr.addr;
848 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
849 	}
850 	if (config & PORT_SET_BSSID) {
851 		addr = rtwvif->conf->bssid.addr;
852 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
853 	}
854 	if (config & PORT_SET_NET_TYPE) {
855 		addr = rtwvif->conf->net_type.addr;
856 		mask = rtwvif->conf->net_type.mask;
857 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
858 	}
859 	if (config & PORT_SET_AID) {
860 		addr = rtwvif->conf->aid.addr;
861 		mask = rtwvif->conf->aid.mask;
862 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
863 	}
864 	if (config & PORT_SET_BCN_CTRL) {
865 		addr = rtwvif->conf->bcn_ctrl.addr;
866 		mask = rtwvif->conf->bcn_ctrl.mask;
867 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
868 	}
869 }
870 
871 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
872 {
873 	u8 bw = 0;
874 
875 	switch (bw_cap) {
876 	case EFUSE_HW_CAP_IGNORE:
877 	case EFUSE_HW_CAP_SUPP_BW80:
878 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
879 		fallthrough;
880 	case EFUSE_HW_CAP_SUPP_BW40:
881 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
882 		fallthrough;
883 	default:
884 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
885 		break;
886 	}
887 
888 	return bw;
889 }
890 
891 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
892 {
893 	struct rtw_hal *hal = &rtwdev->hal;
894 	struct rtw_chip_info *chip = rtwdev->chip;
895 
896 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
897 	    hw_ant_num >= hal->rf_path_num)
898 		return;
899 
900 	switch (hw_ant_num) {
901 	case 1:
902 		hal->rf_type = RF_1T1R;
903 		hal->rf_path_num = 1;
904 		if (!chip->fix_rf_phy_num)
905 			hal->rf_phy_num = hal->rf_path_num;
906 		hal->antenna_tx = BB_PATH_A;
907 		hal->antenna_rx = BB_PATH_A;
908 		break;
909 	default:
910 		WARN(1, "invalid hw configuration from efuse\n");
911 		break;
912 	}
913 }
914 
915 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
916 {
917 	u64 ra_mask = 0;
918 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
919 	u8 vht_mcs_cap;
920 	int i, nss;
921 
922 	/* 4SS, every two bits for MCS7/8/9 */
923 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
924 		vht_mcs_cap = mcs_map & 0x3;
925 		switch (vht_mcs_cap) {
926 		case 2: /* MCS9 */
927 			ra_mask |= 0x3ffULL << nss;
928 			break;
929 		case 1: /* MCS8 */
930 			ra_mask |= 0x1ffULL << nss;
931 			break;
932 		case 0: /* MCS7 */
933 			ra_mask |= 0x0ffULL << nss;
934 			break;
935 		default:
936 			break;
937 		}
938 	}
939 
940 	return ra_mask;
941 }
942 
943 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
944 {
945 	u8 rate_id = 0;
946 
947 	switch (wireless_set) {
948 	case WIRELESS_CCK:
949 		rate_id = RTW_RATEID_B_20M;
950 		break;
951 	case WIRELESS_OFDM:
952 		rate_id = RTW_RATEID_G;
953 		break;
954 	case WIRELESS_CCK | WIRELESS_OFDM:
955 		rate_id = RTW_RATEID_BG;
956 		break;
957 	case WIRELESS_OFDM | WIRELESS_HT:
958 		if (tx_num == 1)
959 			rate_id = RTW_RATEID_GN_N1SS;
960 		else if (tx_num == 2)
961 			rate_id = RTW_RATEID_GN_N2SS;
962 		else if (tx_num == 3)
963 			rate_id = RTW_RATEID_ARFR5_N_3SS;
964 		break;
965 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
966 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
967 			if (tx_num == 1)
968 				rate_id = RTW_RATEID_BGN_40M_1SS;
969 			else if (tx_num == 2)
970 				rate_id = RTW_RATEID_BGN_40M_2SS;
971 			else if (tx_num == 3)
972 				rate_id = RTW_RATEID_ARFR5_N_3SS;
973 			else if (tx_num == 4)
974 				rate_id = RTW_RATEID_ARFR7_N_4SS;
975 		} else {
976 			if (tx_num == 1)
977 				rate_id = RTW_RATEID_BGN_20M_1SS;
978 			else if (tx_num == 2)
979 				rate_id = RTW_RATEID_BGN_20M_2SS;
980 			else if (tx_num == 3)
981 				rate_id = RTW_RATEID_ARFR5_N_3SS;
982 			else if (tx_num == 4)
983 				rate_id = RTW_RATEID_ARFR7_N_4SS;
984 		}
985 		break;
986 	case WIRELESS_OFDM | WIRELESS_VHT:
987 		if (tx_num == 1)
988 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
989 		else if (tx_num == 2)
990 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
991 		else if (tx_num == 3)
992 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
993 		else if (tx_num == 4)
994 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
995 		break;
996 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
997 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
998 			if (tx_num == 1)
999 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1000 			else if (tx_num == 2)
1001 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1002 			else if (tx_num == 3)
1003 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1004 			else if (tx_num == 4)
1005 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1006 		} else {
1007 			if (tx_num == 1)
1008 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1009 			else if (tx_num == 2)
1010 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1011 			else if (tx_num == 3)
1012 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1013 			else if (tx_num == 4)
1014 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1015 		}
1016 		break;
1017 	default:
1018 		break;
1019 	}
1020 
1021 	return rate_id;
1022 }
1023 
1024 #define RA_MASK_CCK_RATES	0x0000f
1025 #define RA_MASK_OFDM_RATES	0x00ff0
1026 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1027 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1028 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1029 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1030 				 RA_MASK_HT_RATES_2SS | \
1031 				 RA_MASK_HT_RATES_3SS)
1032 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1033 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1034 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1035 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1036 				 RA_MASK_VHT_RATES_2SS | \
1037 				 RA_MASK_VHT_RATES_3SS)
1038 #define RA_MASK_CCK_IN_BG	0x00005
1039 #define RA_MASK_CCK_IN_HT	0x00005
1040 #define RA_MASK_CCK_IN_VHT	0x00005
1041 #define RA_MASK_OFDM_IN_VHT	0x00010
1042 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1043 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1044 
1045 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1046 {
1047 	u8 rssi_level = si->rssi_level;
1048 
1049 	if (wireless_set == WIRELESS_CCK)
1050 		return 0xffffffffffffffffULL;
1051 
1052 	if (rssi_level == 0)
1053 		return 0xffffffffffffffffULL;
1054 	else if (rssi_level == 1)
1055 		return 0xfffffffffffffff0ULL;
1056 	else if (rssi_level == 2)
1057 		return 0xffffffffffffefe0ULL;
1058 	else if (rssi_level == 3)
1059 		return 0xffffffffffffcfc0ULL;
1060 	else if (rssi_level == 4)
1061 		return 0xffffffffffff8f80ULL;
1062 	else
1063 		return 0xffffffffffff0f00ULL;
1064 }
1065 
1066 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1067 {
1068 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1069 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1070 
1071 	if (ra_mask == 0)
1072 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1073 
1074 	return ra_mask;
1075 }
1076 
1077 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1078 			     u64 ra_mask, bool is_vht_enable)
1079 {
1080 	struct rtw_hal *hal = &rtwdev->hal;
1081 	const struct cfg80211_bitrate_mask *mask = si->mask;
1082 	u64 cfg_mask = GENMASK_ULL(63, 0);
1083 	u8 band;
1084 
1085 	if (!si->use_cfg_mask)
1086 		return ra_mask;
1087 
1088 	band = hal->current_band_type;
1089 	if (band == RTW_BAND_2G) {
1090 		band = NL80211_BAND_2GHZ;
1091 		cfg_mask = mask->control[band].legacy;
1092 	} else if (band == RTW_BAND_5G) {
1093 		band = NL80211_BAND_5GHZ;
1094 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1095 					   RA_MASK_OFDM_RATES);
1096 	}
1097 
1098 	if (!is_vht_enable) {
1099 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1100 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1101 						    RA_MASK_HT_RATES_1SS);
1102 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1103 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1104 						    RA_MASK_HT_RATES_2SS);
1105 	} else {
1106 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1107 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1108 						    RA_MASK_VHT_RATES_1SS);
1109 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1110 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1111 						    RA_MASK_VHT_RATES_2SS);
1112 	}
1113 
1114 	ra_mask &= cfg_mask;
1115 
1116 	return ra_mask;
1117 }
1118 
1119 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1120 			 bool reset_ra_mask)
1121 {
1122 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1123 	struct ieee80211_sta *sta = si->sta;
1124 	struct rtw_efuse *efuse = &rtwdev->efuse;
1125 	struct rtw_hal *hal = &rtwdev->hal;
1126 	u8 wireless_set;
1127 	u8 bw_mode;
1128 	u8 rate_id;
1129 	u8 rf_type = RF_1T1R;
1130 	u8 stbc_en = 0;
1131 	u8 ldpc_en = 0;
1132 	u8 tx_num = 1;
1133 	u64 ra_mask = 0;
1134 	u64 ra_mask_bak = 0;
1135 	bool is_vht_enable = false;
1136 	bool is_support_sgi = false;
1137 
1138 	if (sta->deflink.vht_cap.vht_supported) {
1139 		is_vht_enable = true;
1140 		ra_mask |= get_vht_ra_mask(sta);
1141 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1142 			stbc_en = VHT_STBC_EN;
1143 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1144 			ldpc_en = VHT_LDPC_EN;
1145 	} else if (sta->deflink.ht_cap.ht_supported) {
1146 		ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1147 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1148 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1149 			stbc_en = HT_STBC_EN;
1150 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1151 			ldpc_en = HT_LDPC_EN;
1152 	}
1153 
1154 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1155 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1156 
1157 	if (hal->current_band_type == RTW_BAND_5G) {
1158 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1159 		ra_mask_bak = ra_mask;
1160 		if (sta->deflink.vht_cap.vht_supported) {
1161 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1162 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1163 		} else if (sta->deflink.ht_cap.ht_supported) {
1164 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1165 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1166 		} else {
1167 			wireless_set = WIRELESS_OFDM;
1168 		}
1169 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1170 	} else if (hal->current_band_type == RTW_BAND_2G) {
1171 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1172 		ra_mask_bak = ra_mask;
1173 		if (sta->deflink.vht_cap.vht_supported) {
1174 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1175 				   RA_MASK_OFDM_IN_VHT;
1176 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1177 				       WIRELESS_HT | WIRELESS_VHT;
1178 		} else if (sta->deflink.ht_cap.ht_supported) {
1179 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1180 				   RA_MASK_OFDM_IN_HT_2G;
1181 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1182 				       WIRELESS_HT;
1183 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1184 			wireless_set = WIRELESS_CCK;
1185 		} else {
1186 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1187 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1188 		}
1189 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1190 	} else {
1191 		rtw_err(rtwdev, "Unknown band type\n");
1192 		ra_mask_bak = ra_mask;
1193 		wireless_set = 0;
1194 	}
1195 
1196 	switch (sta->deflink.bandwidth) {
1197 	case IEEE80211_STA_RX_BW_80:
1198 		bw_mode = RTW_CHANNEL_WIDTH_80;
1199 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1200 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1201 		break;
1202 	case IEEE80211_STA_RX_BW_40:
1203 		bw_mode = RTW_CHANNEL_WIDTH_40;
1204 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1205 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1206 		break;
1207 	default:
1208 		bw_mode = RTW_CHANNEL_WIDTH_20;
1209 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1210 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1211 		break;
1212 	}
1213 
1214 	if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1215 		tx_num = 2;
1216 		rf_type = RF_2T2R;
1217 	} else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1218 		tx_num = 2;
1219 		rf_type = RF_2T2R;
1220 	}
1221 
1222 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1223 
1224 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1225 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1226 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1227 
1228 	si->bw_mode = bw_mode;
1229 	si->stbc_en = stbc_en;
1230 	si->ldpc_en = ldpc_en;
1231 	si->rf_type = rf_type;
1232 	si->wireless_set = wireless_set;
1233 	si->sgi_enable = is_support_sgi;
1234 	si->vht_enable = is_vht_enable;
1235 	si->ra_mask = ra_mask;
1236 	si->rate_id = rate_id;
1237 
1238 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1239 }
1240 
1241 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1242 {
1243 	struct rtw_chip_info *chip = rtwdev->chip;
1244 	struct rtw_fw_state *fw;
1245 
1246 	fw = &rtwdev->fw;
1247 	wait_for_completion(&fw->completion);
1248 	if (!fw->firmware)
1249 		return -EINVAL;
1250 
1251 	if (chip->wow_fw_name) {
1252 		fw = &rtwdev->wow_fw;
1253 		wait_for_completion(&fw->completion);
1254 		if (!fw->firmware)
1255 			return -EINVAL;
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1262 						       struct rtw_fw_state *fw)
1263 {
1264 	struct rtw_chip_info *chip = rtwdev->chip;
1265 
1266 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1267 	    !fw->feature)
1268 		return LPS_DEEP_MODE_NONE;
1269 
1270 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1271 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1272 		return LPS_DEEP_MODE_PG;
1273 
1274 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1275 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1276 		return LPS_DEEP_MODE_LCLK;
1277 
1278 	return LPS_DEEP_MODE_NONE;
1279 }
1280 
1281 static int rtw_power_on(struct rtw_dev *rtwdev)
1282 {
1283 	struct rtw_chip_info *chip = rtwdev->chip;
1284 	struct rtw_fw_state *fw = &rtwdev->fw;
1285 	bool wifi_only;
1286 	int ret;
1287 
1288 	ret = rtw_hci_setup(rtwdev);
1289 	if (ret) {
1290 		rtw_err(rtwdev, "failed to setup hci\n");
1291 		goto err;
1292 	}
1293 
1294 	/* power on MAC before firmware downloaded */
1295 	ret = rtw_mac_power_on(rtwdev);
1296 	if (ret) {
1297 		rtw_err(rtwdev, "failed to power on mac\n");
1298 		goto err;
1299 	}
1300 
1301 	ret = rtw_wait_firmware_completion(rtwdev);
1302 	if (ret) {
1303 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1304 		goto err_off;
1305 	}
1306 
1307 	ret = rtw_download_firmware(rtwdev, fw);
1308 	if (ret) {
1309 		rtw_err(rtwdev, "failed to download firmware\n");
1310 		goto err_off;
1311 	}
1312 
1313 	/* config mac after firmware downloaded */
1314 	ret = rtw_mac_init(rtwdev);
1315 	if (ret) {
1316 		rtw_err(rtwdev, "failed to configure mac\n");
1317 		goto err_off;
1318 	}
1319 
1320 	chip->ops->phy_set_param(rtwdev);
1321 
1322 	ret = rtw_hci_start(rtwdev);
1323 	if (ret) {
1324 		rtw_err(rtwdev, "failed to start hci\n");
1325 		goto err_off;
1326 	}
1327 
1328 	/* send H2C after HCI has started */
1329 	rtw_fw_send_general_info(rtwdev);
1330 	rtw_fw_send_phydm_info(rtwdev);
1331 
1332 	wifi_only = !rtwdev->efuse.btcoex;
1333 	rtw_coex_power_on_setting(rtwdev);
1334 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1335 
1336 	return 0;
1337 
1338 err_off:
1339 	rtw_mac_power_off(rtwdev);
1340 
1341 err:
1342 	return ret;
1343 }
1344 
1345 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1346 {
1347 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1348 		return;
1349 
1350 	if (start) {
1351 		rtw_fw_scan_notify(rtwdev, true);
1352 	} else {
1353 		reinit_completion(&rtwdev->fw_scan_density);
1354 		rtw_fw_scan_notify(rtwdev, false);
1355 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1356 						 SCAN_NOTIFY_TIMEOUT))
1357 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1358 	}
1359 }
1360 
1361 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1362 			 const u8 *mac_addr, bool hw_scan)
1363 {
1364 	u32 config = 0;
1365 	int ret = 0;
1366 
1367 	rtw_leave_lps(rtwdev);
1368 
1369 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1370 		ret = rtw_leave_ips(rtwdev);
1371 		if (ret) {
1372 			rtw_err(rtwdev, "failed to leave idle state\n");
1373 			return;
1374 		}
1375 	}
1376 
1377 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1378 	config |= PORT_SET_MAC_ADDR;
1379 	rtw_vif_port_config(rtwdev, rtwvif, config);
1380 
1381 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1382 	rtw_core_fw_scan_notify(rtwdev, true);
1383 
1384 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1385 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1386 }
1387 
1388 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1389 			    bool hw_scan)
1390 {
1391 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1392 	u32 config = 0;
1393 
1394 	if (!rtwvif)
1395 		return;
1396 
1397 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1398 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1399 
1400 	rtw_core_fw_scan_notify(rtwdev, false);
1401 
1402 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1403 	config |= PORT_SET_MAC_ADDR;
1404 	rtw_vif_port_config(rtwdev, rtwvif, config);
1405 
1406 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1407 
1408 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1409 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1410 }
1411 
1412 int rtw_core_start(struct rtw_dev *rtwdev)
1413 {
1414 	int ret;
1415 
1416 	ret = rtw_power_on(rtwdev);
1417 	if (ret)
1418 		return ret;
1419 
1420 	rtw_sec_enable_sec_engine(rtwdev);
1421 
1422 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1423 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1424 
1425 	/* rcr reset after powered on */
1426 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1427 
1428 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1429 				     RTW_WATCH_DOG_DELAY_TIME);
1430 
1431 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1432 
1433 	return 0;
1434 }
1435 
1436 static void rtw_power_off(struct rtw_dev *rtwdev)
1437 {
1438 	rtw_hci_stop(rtwdev);
1439 	rtw_coex_power_off_setting(rtwdev);
1440 	rtw_mac_power_off(rtwdev);
1441 }
1442 
1443 void rtw_core_stop(struct rtw_dev *rtwdev)
1444 {
1445 	struct rtw_coex *coex = &rtwdev->coex;
1446 
1447 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1448 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1449 
1450 	mutex_unlock(&rtwdev->mutex);
1451 
1452 	cancel_work_sync(&rtwdev->c2h_work);
1453 	cancel_work_sync(&rtwdev->update_beacon_work);
1454 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1455 	cancel_delayed_work_sync(&coex->bt_relink_work);
1456 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1457 	cancel_delayed_work_sync(&coex->defreeze_work);
1458 	cancel_delayed_work_sync(&coex->wl_remain_work);
1459 	cancel_delayed_work_sync(&coex->bt_remain_work);
1460 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1461 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1462 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1463 
1464 	mutex_lock(&rtwdev->mutex);
1465 
1466 	rtw_power_off(rtwdev);
1467 }
1468 
1469 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1470 			    struct ieee80211_sta_ht_cap *ht_cap)
1471 {
1472 	struct rtw_efuse *efuse = &rtwdev->efuse;
1473 	struct rtw_chip_info *chip = rtwdev->chip;
1474 
1475 	ht_cap->ht_supported = true;
1476 	ht_cap->cap = 0;
1477 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1478 			IEEE80211_HT_CAP_MAX_AMSDU |
1479 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1480 
1481 	if (rtw_chip_has_rx_ldpc(rtwdev))
1482 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1483 	if (rtw_chip_has_tx_stbc(rtwdev))
1484 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1485 
1486 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1487 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1488 				IEEE80211_HT_CAP_DSSSCCK40 |
1489 				IEEE80211_HT_CAP_SGI_40;
1490 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1491 	ht_cap->ampdu_density = chip->ampdu_density;
1492 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1493 	if (efuse->hw_cap.nss > 1) {
1494 		ht_cap->mcs.rx_mask[0] = 0xFF;
1495 		ht_cap->mcs.rx_mask[1] = 0xFF;
1496 		ht_cap->mcs.rx_mask[4] = 0x01;
1497 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1498 	} else {
1499 		ht_cap->mcs.rx_mask[0] = 0xFF;
1500 		ht_cap->mcs.rx_mask[1] = 0x00;
1501 		ht_cap->mcs.rx_mask[4] = 0x01;
1502 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1503 	}
1504 }
1505 
1506 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1507 			     struct ieee80211_sta_vht_cap *vht_cap)
1508 {
1509 	struct rtw_efuse *efuse = &rtwdev->efuse;
1510 	u16 mcs_map;
1511 	__le16 highest;
1512 
1513 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1514 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1515 		return;
1516 
1517 	vht_cap->vht_supported = true;
1518 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1519 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1520 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1521 		       IEEE80211_VHT_CAP_HTC_VHT |
1522 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1523 		       0;
1524 	if (rtwdev->hal.rf_path_num > 1)
1525 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1526 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1527 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1528 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1529 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1530 
1531 	if (rtw_chip_has_rx_ldpc(rtwdev))
1532 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1533 
1534 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1535 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1536 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1537 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1538 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1539 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1540 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1541 	if (efuse->hw_cap.nss > 1) {
1542 		highest = cpu_to_le16(780);
1543 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1544 	} else {
1545 		highest = cpu_to_le16(390);
1546 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1547 	}
1548 
1549 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1550 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1551 	vht_cap->vht_mcs.rx_highest = highest;
1552 	vht_cap->vht_mcs.tx_highest = highest;
1553 }
1554 
1555 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1556 				   struct rtw_chip_info *chip)
1557 {
1558 	struct rtw_dev *rtwdev = hw->priv;
1559 	struct ieee80211_supported_band *sband;
1560 
1561 	if (chip->band & RTW_BAND_2G) {
1562 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1563 		if (!sband)
1564 			goto err_out;
1565 		if (chip->ht_supported)
1566 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1567 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1568 	}
1569 
1570 	if (chip->band & RTW_BAND_5G) {
1571 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1572 		if (!sband)
1573 			goto err_out;
1574 		if (chip->ht_supported)
1575 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1576 		if (chip->vht_supported)
1577 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1578 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1579 	}
1580 
1581 	return;
1582 
1583 err_out:
1584 	rtw_err(rtwdev, "failed to set supported band\n");
1585 }
1586 
1587 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1588 				     struct rtw_chip_info *chip)
1589 {
1590 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1591 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1592 }
1593 
1594 static void rtw_vif_smps_iter(void *data, u8 *mac,
1595 			      struct ieee80211_vif *vif)
1596 {
1597 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1598 
1599 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1600 		return;
1601 
1602 	if (rtwdev->hal.txrx_1ss)
1603 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1604 	else
1605 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1606 }
1607 
1608 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1609 {
1610 	struct rtw_chip_info *chip = rtwdev->chip;
1611 	struct rtw_hal *hal = &rtwdev->hal;
1612 
1613 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1614 		return;
1615 
1616 	rtwdev->hal.txrx_1ss = txrx_1ss;
1617 	if (txrx_1ss)
1618 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1619 	else
1620 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1621 					    hal->antenna_rx, false);
1622 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1623 }
1624 
1625 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1626 				      struct rtw_fw_state *fw)
1627 {
1628 	u32 feature;
1629 	const struct rtw_fw_hdr *fw_hdr =
1630 				(const struct rtw_fw_hdr *)fw->firmware->data;
1631 
1632 	feature = le32_to_cpu(fw_hdr->feature);
1633 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1634 }
1635 
1636 static void __update_firmware_info(struct rtw_dev *rtwdev,
1637 				   struct rtw_fw_state *fw)
1638 {
1639 	const struct rtw_fw_hdr *fw_hdr =
1640 				(const struct rtw_fw_hdr *)fw->firmware->data;
1641 
1642 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1643 	fw->version = le16_to_cpu(fw_hdr->version);
1644 	fw->sub_version = fw_hdr->subversion;
1645 	fw->sub_index = fw_hdr->subindex;
1646 
1647 	__update_firmware_feature(rtwdev, fw);
1648 }
1649 
1650 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1651 					  struct rtw_fw_state *fw)
1652 {
1653 	struct rtw_fw_hdr_legacy *legacy =
1654 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1655 
1656 	fw->h2c_version = 0;
1657 	fw->version = le16_to_cpu(legacy->version);
1658 	fw->sub_version = legacy->subversion1;
1659 	fw->sub_index = legacy->subversion2;
1660 }
1661 
1662 static void update_firmware_info(struct rtw_dev *rtwdev,
1663 				 struct rtw_fw_state *fw)
1664 {
1665 	if (rtw_chip_wcpu_11n(rtwdev))
1666 		__update_firmware_info_legacy(rtwdev, fw);
1667 	else
1668 		__update_firmware_info(rtwdev, fw);
1669 }
1670 
1671 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1672 {
1673 	struct rtw_fw_state *fw = context;
1674 	struct rtw_dev *rtwdev = fw->rtwdev;
1675 
1676 	if (!firmware || !firmware->data) {
1677 		rtw_err(rtwdev, "failed to request firmware\n");
1678 		complete_all(&fw->completion);
1679 		return;
1680 	}
1681 
1682 	fw->firmware = firmware;
1683 	update_firmware_info(rtwdev, fw);
1684 	complete_all(&fw->completion);
1685 
1686 	rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
1687 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1688 }
1689 
1690 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1691 {
1692 	const char *fw_name;
1693 	struct rtw_fw_state *fw;
1694 	int ret;
1695 
1696 	switch (type) {
1697 	case RTW_WOWLAN_FW:
1698 		fw = &rtwdev->wow_fw;
1699 		fw_name = rtwdev->chip->wow_fw_name;
1700 		break;
1701 
1702 	case RTW_NORMAL_FW:
1703 		fw = &rtwdev->fw;
1704 		fw_name = rtwdev->chip->fw_name;
1705 		break;
1706 
1707 	default:
1708 		rtw_warn(rtwdev, "unsupported firmware type\n");
1709 		return -ENOENT;
1710 	}
1711 
1712 	fw->rtwdev = rtwdev;
1713 	init_completion(&fw->completion);
1714 
1715 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1716 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1717 	if (ret) {
1718 		rtw_err(rtwdev, "failed to async firmware request\n");
1719 		return ret;
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1726 {
1727 	struct rtw_chip_info *chip = rtwdev->chip;
1728 	struct rtw_hal *hal = &rtwdev->hal;
1729 	struct rtw_efuse *efuse = &rtwdev->efuse;
1730 
1731 	switch (rtw_hci_type(rtwdev)) {
1732 	case RTW_HCI_TYPE_PCIE:
1733 		rtwdev->hci.rpwm_addr = 0x03d9;
1734 		rtwdev->hci.cpwm_addr = 0x03da;
1735 		break;
1736 	default:
1737 		rtw_err(rtwdev, "unsupported hci type\n");
1738 		return -EINVAL;
1739 	}
1740 
1741 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1742 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1743 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1744 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1745 		hal->rf_type = RF_2T2R;
1746 		hal->rf_path_num = 2;
1747 		hal->antenna_tx = BB_PATH_AB;
1748 		hal->antenna_rx = BB_PATH_AB;
1749 	} else {
1750 		hal->rf_type = RF_1T1R;
1751 		hal->rf_path_num = 1;
1752 		hal->antenna_tx = BB_PATH_A;
1753 		hal->antenna_rx = BB_PATH_A;
1754 	}
1755 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1756 			  hal->rf_path_num;
1757 
1758 	efuse->physical_size = chip->phy_efuse_size;
1759 	efuse->logical_size = chip->log_efuse_size;
1760 	efuse->protect_size = chip->ptct_efuse_size;
1761 
1762 	/* default use ack */
1763 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1764 
1765 	hal->bfee_sts_cap = 3;
1766 
1767 	return 0;
1768 }
1769 
1770 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1771 {
1772 	struct rtw_fw_state *fw = &rtwdev->fw;
1773 	int ret;
1774 
1775 	ret = rtw_hci_setup(rtwdev);
1776 	if (ret) {
1777 		rtw_err(rtwdev, "failed to setup hci\n");
1778 		goto err;
1779 	}
1780 
1781 	ret = rtw_mac_power_on(rtwdev);
1782 	if (ret) {
1783 		rtw_err(rtwdev, "failed to power on mac\n");
1784 		goto err;
1785 	}
1786 
1787 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1788 
1789 	wait_for_completion(&fw->completion);
1790 	if (!fw->firmware) {
1791 		ret = -EINVAL;
1792 		rtw_err(rtwdev, "failed to load firmware\n");
1793 		goto err;
1794 	}
1795 
1796 	ret = rtw_download_firmware(rtwdev, fw);
1797 	if (ret) {
1798 		rtw_err(rtwdev, "failed to download firmware\n");
1799 		goto err_off;
1800 	}
1801 
1802 	return 0;
1803 
1804 err_off:
1805 	rtw_mac_power_off(rtwdev);
1806 
1807 err:
1808 	return ret;
1809 }
1810 
1811 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1812 {
1813 	struct rtw_efuse *efuse = &rtwdev->efuse;
1814 	u8 hw_feature[HW_FEATURE_LEN];
1815 	u8 id;
1816 	u8 bw;
1817 	int i;
1818 
1819 	id = rtw_read8(rtwdev, REG_C2HEVT);
1820 	if (id != C2H_HW_FEATURE_REPORT) {
1821 		rtw_err(rtwdev, "failed to read hw feature report\n");
1822 		return -EBUSY;
1823 	}
1824 
1825 	for (i = 0; i < HW_FEATURE_LEN; i++)
1826 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1827 
1828 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1829 
1830 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1831 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1832 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1833 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1834 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1835 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1836 
1837 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1838 
1839 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1840 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1841 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1842 
1843 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1844 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1845 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1846 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1847 
1848 	return 0;
1849 }
1850 
1851 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1852 {
1853 	rtw_hci_stop(rtwdev);
1854 	rtw_mac_power_off(rtwdev);
1855 }
1856 
1857 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1858 {
1859 	struct rtw_efuse *efuse = &rtwdev->efuse;
1860 	int ret;
1861 
1862 	mutex_lock(&rtwdev->mutex);
1863 
1864 	/* power on mac to read efuse */
1865 	ret = rtw_chip_efuse_enable(rtwdev);
1866 	if (ret)
1867 		goto out_unlock;
1868 
1869 	ret = rtw_parse_efuse_map(rtwdev);
1870 	if (ret)
1871 		goto out_disable;
1872 
1873 	ret = rtw_dump_hw_feature(rtwdev);
1874 	if (ret)
1875 		goto out_disable;
1876 
1877 	ret = rtw_check_supported_rfe(rtwdev);
1878 	if (ret)
1879 		goto out_disable;
1880 
1881 	if (efuse->crystal_cap == 0xff)
1882 		efuse->crystal_cap = 0;
1883 	if (efuse->pa_type_2g == 0xff)
1884 		efuse->pa_type_2g = 0;
1885 	if (efuse->pa_type_5g == 0xff)
1886 		efuse->pa_type_5g = 0;
1887 	if (efuse->lna_type_2g == 0xff)
1888 		efuse->lna_type_2g = 0;
1889 	if (efuse->lna_type_5g == 0xff)
1890 		efuse->lna_type_5g = 0;
1891 	if (efuse->channel_plan == 0xff)
1892 		efuse->channel_plan = 0x7f;
1893 	if (efuse->rf_board_option == 0xff)
1894 		efuse->rf_board_option = 0;
1895 	if (efuse->bt_setting & BIT(0))
1896 		efuse->share_ant = true;
1897 	if (efuse->regd == 0xff)
1898 		efuse->regd = 0;
1899 	if (efuse->tx_bb_swing_setting_2g == 0xff)
1900 		efuse->tx_bb_swing_setting_2g = 0;
1901 	if (efuse->tx_bb_swing_setting_5g == 0xff)
1902 		efuse->tx_bb_swing_setting_5g = 0;
1903 
1904 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1905 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1906 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1907 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1908 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1909 
1910 out_disable:
1911 	rtw_chip_efuse_disable(rtwdev);
1912 
1913 out_unlock:
1914 	mutex_unlock(&rtwdev->mutex);
1915 	return ret;
1916 }
1917 
1918 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1919 {
1920 	struct rtw_hal *hal = &rtwdev->hal;
1921 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1922 
1923 	if (!rfe_def)
1924 		return -ENODEV;
1925 
1926 	rtw_phy_setup_phy_cond(rtwdev, 0);
1927 
1928 	rtw_phy_init_tx_power(rtwdev);
1929 	if (rfe_def->agc_btg_tbl)
1930 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1931 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1932 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1933 	rtw_phy_tx_power_by_rate_config(hal);
1934 	rtw_phy_tx_power_limit_config(hal);
1935 
1936 	return 0;
1937 }
1938 
1939 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1940 {
1941 	int ret;
1942 
1943 	ret = rtw_chip_parameter_setup(rtwdev);
1944 	if (ret) {
1945 		rtw_err(rtwdev, "failed to setup chip parameters\n");
1946 		goto err_out;
1947 	}
1948 
1949 	ret = rtw_chip_efuse_info_setup(rtwdev);
1950 	if (ret) {
1951 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
1952 		goto err_out;
1953 	}
1954 
1955 	ret = rtw_chip_board_info_setup(rtwdev);
1956 	if (ret) {
1957 		rtw_err(rtwdev, "failed to setup chip board info\n");
1958 		goto err_out;
1959 	}
1960 
1961 	return 0;
1962 
1963 err_out:
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL(rtw_chip_info_setup);
1967 
1968 static void rtw_stats_init(struct rtw_dev *rtwdev)
1969 {
1970 	struct rtw_traffic_stats *stats = &rtwdev->stats;
1971 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1972 	int i;
1973 
1974 	ewma_tp_init(&stats->tx_ewma_tp);
1975 	ewma_tp_init(&stats->rx_ewma_tp);
1976 
1977 	for (i = 0; i < RTW_EVM_NUM; i++)
1978 		ewma_evm_init(&dm_info->ewma_evm[i]);
1979 	for (i = 0; i < RTW_SNR_NUM; i++)
1980 		ewma_snr_init(&dm_info->ewma_snr[i]);
1981 }
1982 
1983 int rtw_core_init(struct rtw_dev *rtwdev)
1984 {
1985 	struct rtw_chip_info *chip = rtwdev->chip;
1986 	struct rtw_coex *coex = &rtwdev->coex;
1987 	int ret;
1988 
1989 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1990 	INIT_LIST_HEAD(&rtwdev->txqs);
1991 
1992 	timer_setup(&rtwdev->tx_report.purge_timer,
1993 		    rtw_tx_report_purge_timer, 0);
1994 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
1995 	if (!rtwdev->tx_wq) {
1996 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
1997 		return -ENOMEM;
1998 	}
1999 
2000 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2001 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2002 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2003 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2004 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2005 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2006 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2007 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2008 			  rtw_coex_bt_multi_link_remain_work);
2009 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2010 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2011 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2012 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2013 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2014 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2015 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2016 	skb_queue_head_init(&rtwdev->c2h_queue);
2017 	skb_queue_head_init(&rtwdev->coex.queue);
2018 	skb_queue_head_init(&rtwdev->tx_report.queue);
2019 
2020 	spin_lock_init(&rtwdev->rf_lock);
2021 	spin_lock_init(&rtwdev->h2c.lock);
2022 	spin_lock_init(&rtwdev->txq_lock);
2023 	spin_lock_init(&rtwdev->tx_report.q_lock);
2024 
2025 	mutex_init(&rtwdev->mutex);
2026 	mutex_init(&rtwdev->coex.mutex);
2027 	mutex_init(&rtwdev->hal.tx_power_mutex);
2028 
2029 	init_waitqueue_head(&rtwdev->coex.wait);
2030 	init_completion(&rtwdev->lps_leave_check);
2031 	init_completion(&rtwdev->fw_scan_density);
2032 
2033 	rtwdev->sec.total_cam_num = 32;
2034 	rtwdev->hal.current_channel = 1;
2035 	rtwdev->dm_info.fix_rate = U8_MAX;
2036 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2037 
2038 	rtw_stats_init(rtwdev);
2039 
2040 	/* default rx filter setting */
2041 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2042 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2043 			  BIT_AB | BIT_AM | BIT_APM;
2044 
2045 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2046 	if (ret) {
2047 		rtw_warn(rtwdev, "no firmware loaded\n");
2048 		return ret;
2049 	}
2050 
2051 	if (chip->wow_fw_name) {
2052 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2053 		if (ret) {
2054 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2055 			wait_for_completion(&rtwdev->fw.completion);
2056 			if (rtwdev->fw.firmware)
2057 				release_firmware(rtwdev->fw.firmware);
2058 			return ret;
2059 		}
2060 	}
2061 
2062 	return 0;
2063 }
2064 EXPORT_SYMBOL(rtw_core_init);
2065 
2066 void rtw_core_deinit(struct rtw_dev *rtwdev)
2067 {
2068 	struct rtw_fw_state *fw = &rtwdev->fw;
2069 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2070 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2071 	unsigned long flags;
2072 
2073 	rtw_wait_firmware_completion(rtwdev);
2074 
2075 	if (fw->firmware)
2076 		release_firmware(fw->firmware);
2077 
2078 	if (wow_fw->firmware)
2079 		release_firmware(wow_fw->firmware);
2080 
2081 	destroy_workqueue(rtwdev->tx_wq);
2082 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2083 	skb_queue_purge(&rtwdev->tx_report.queue);
2084 	skb_queue_purge(&rtwdev->coex.queue);
2085 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2086 
2087 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2088 				 build_list) {
2089 		list_del(&rsvd_pkt->build_list);
2090 		kfree(rsvd_pkt);
2091 	}
2092 
2093 	mutex_destroy(&rtwdev->mutex);
2094 	mutex_destroy(&rtwdev->coex.mutex);
2095 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2096 }
2097 EXPORT_SYMBOL(rtw_core_deinit);
2098 
2099 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2100 {
2101 	struct rtw_hal *hal = &rtwdev->hal;
2102 	int max_tx_headroom = 0;
2103 	int ret;
2104 
2105 	/* TODO: USB & SDIO may need extra room? */
2106 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2107 
2108 	hw->extra_tx_headroom = max_tx_headroom;
2109 	hw->queues = IEEE80211_NUM_ACS;
2110 	hw->txq_data_size = sizeof(struct rtw_txq);
2111 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2112 	hw->vif_data_size = sizeof(struct rtw_vif);
2113 
2114 	ieee80211_hw_set(hw, SIGNAL_DBM);
2115 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2116 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2117 	ieee80211_hw_set(hw, MFP_CAPABLE);
2118 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2119 	ieee80211_hw_set(hw, SUPPORTS_PS);
2120 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2121 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2122 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2123 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2124 	ieee80211_hw_set(hw, TX_AMSDU);
2125 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2126 
2127 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2128 				     BIT(NL80211_IFTYPE_AP) |
2129 				     BIT(NL80211_IFTYPE_ADHOC) |
2130 				     BIT(NL80211_IFTYPE_MESH_POINT);
2131 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2132 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2133 
2134 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2135 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2136 
2137 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2138 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2139 	hw->wiphy->max_scan_ie_len = RTW_SCAN_MAX_IE_LEN;
2140 
2141 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2142 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2143 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2144 
2145 #ifdef CONFIG_PM
2146 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2147 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2148 #endif
2149 	rtw_set_supported_band(hw, rtwdev->chip);
2150 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2151 
2152 	hw->wiphy->sar_capa = &rtw_sar_capa;
2153 
2154 	ret = rtw_regd_init(rtwdev);
2155 	if (ret) {
2156 		rtw_err(rtwdev, "failed to init regd\n");
2157 		return ret;
2158 	}
2159 
2160 	ret = ieee80211_register_hw(hw);
2161 	if (ret) {
2162 		rtw_err(rtwdev, "failed to register hw\n");
2163 		return ret;
2164 	}
2165 
2166 	ret = rtw_regd_hint(rtwdev);
2167 	if (ret) {
2168 		rtw_err(rtwdev, "failed to hint regd\n");
2169 		return ret;
2170 	}
2171 
2172 	rtw_debugfs_init(rtwdev);
2173 
2174 	rtwdev->bf_info.bfer_mu_cnt = 0;
2175 	rtwdev->bf_info.bfer_su_cnt = 0;
2176 
2177 	return 0;
2178 }
2179 EXPORT_SYMBOL(rtw_register_hw);
2180 
2181 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2182 {
2183 	struct rtw_chip_info *chip = rtwdev->chip;
2184 
2185 	ieee80211_unregister_hw(hw);
2186 	rtw_unset_supported_band(hw, chip);
2187 }
2188 EXPORT_SYMBOL(rtw_unregister_hw);
2189 
2190 MODULE_AUTHOR("Realtek Corporation");
2191 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2192 MODULE_LICENSE("Dual BSD/GPL");
2193