xref: /linux/drivers/net/wireless/realtek/rtw88/efuse.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/iopoll.h>
6 
7 #include "main.h"
8 #include "efuse.h"
9 #include "reg.h"
10 #include "debug.h"
11 
12 #define RTW_EFUSE_BANK_WIFI		0x0
13 
14 static void switch_efuse_bank(struct rtw_dev *rtwdev)
15 {
16 	rtw_write32_mask(rtwdev, REG_LDO_EFUSE_CTRL, BIT_MASK_EFUSE_BANK_SEL,
17 			 RTW_EFUSE_BANK_WIFI);
18 }
19 
20 #define invalid_efuse_header(hdr1, hdr2) \
21 	((hdr1) == 0xff || (((hdr1) & 0x1f) == 0xf && (hdr2) == 0xff))
22 #define invalid_efuse_content(word_en, i) \
23 	(((word_en) & BIT(i)) != 0x0)
24 #define get_efuse_blk_idx_2_byte(hdr1, hdr2) \
25 	((((hdr2) & 0xf0) >> 1) | (((hdr1) >> 5) & 0x07))
26 #define get_efuse_blk_idx_1_byte(hdr1) \
27 	(((hdr1) & 0xf0) >> 4)
28 #define block_idx_to_logical_idx(blk_idx, i) \
29 	(((blk_idx) << 3) + ((i) << 1))
30 
31 /* efuse header format
32  *
33  * | 7        5   4    0 | 7        4   3          0 | 15  8  7   0 |
34  *   block[2:0]   0 1111   block[6:3]   word_en[3:0]   byte0  byte1
35  * | header 1 (optional) |          header 2         |    word N    |
36  *
37  * word_en: 4 bits each word. 0 -> write; 1 -> not write
38  * N: 1~4, depends on word_en
39  */
40 static int rtw_dump_logical_efuse_map(struct rtw_dev *rtwdev, u8 *phy_map,
41 				      u8 *log_map)
42 {
43 	u32 physical_size = rtwdev->efuse.physical_size;
44 	u32 protect_size = rtwdev->efuse.protect_size;
45 	u32 logical_size = rtwdev->efuse.logical_size;
46 	u32 phy_idx, log_idx;
47 	u8 hdr1, hdr2;
48 	u8 blk_idx;
49 	u8 word_en;
50 	int i;
51 
52 	for (phy_idx = 0; phy_idx < physical_size - protect_size;) {
53 		hdr1 = phy_map[phy_idx];
54 		hdr2 = phy_map[phy_idx + 1];
55 		if (invalid_efuse_header(hdr1, hdr2))
56 			break;
57 
58 		if ((hdr1 & 0x1f) == 0xf) {
59 			/* 2-byte header format */
60 			blk_idx = get_efuse_blk_idx_2_byte(hdr1, hdr2);
61 			word_en = hdr2 & 0xf;
62 			phy_idx += 2;
63 		} else {
64 			/* 1-byte header format */
65 			blk_idx = get_efuse_blk_idx_1_byte(hdr1);
66 			word_en = hdr1 & 0xf;
67 			phy_idx += 1;
68 		}
69 
70 		for (i = 0; i < 4; i++) {
71 			if (invalid_efuse_content(word_en, i))
72 				continue;
73 
74 			log_idx = block_idx_to_logical_idx(blk_idx, i);
75 			if (phy_idx + 1 > physical_size - protect_size ||
76 			    log_idx + 1 > logical_size)
77 				return -EINVAL;
78 
79 			log_map[log_idx] = phy_map[phy_idx];
80 			log_map[log_idx + 1] = phy_map[phy_idx + 1];
81 			phy_idx += 2;
82 		}
83 	}
84 	return 0;
85 }
86 
87 static int rtw_dump_physical_efuse_map(struct rtw_dev *rtwdev, u8 *map)
88 {
89 	const struct rtw_chip_info *chip = rtwdev->chip;
90 	u32 size = rtwdev->efuse.physical_size;
91 	u32 efuse_ctl;
92 	u32 addr;
93 	u32 cnt;
94 
95 	rtw_chip_efuse_grant_on(rtwdev);
96 
97 	switch_efuse_bank(rtwdev);
98 
99 	/* disable 2.5V LDO */
100 	chip->ops->cfg_ldo25(rtwdev, false);
101 
102 	efuse_ctl = rtw_read32(rtwdev, REG_EFUSE_CTRL);
103 
104 	for (addr = 0; addr < size; addr++) {
105 		efuse_ctl &= ~(BIT_MASK_EF_DATA | BITS_EF_ADDR);
106 		efuse_ctl |= (addr & BIT_MASK_EF_ADDR) << BIT_SHIFT_EF_ADDR;
107 		rtw_write32(rtwdev, REG_EFUSE_CTRL, efuse_ctl & (~BIT_EF_FLAG));
108 
109 		cnt = 1000000;
110 		do {
111 			udelay(1);
112 			efuse_ctl = rtw_read32(rtwdev, REG_EFUSE_CTRL);
113 			if (--cnt == 0)
114 				return -EBUSY;
115 		} while (!(efuse_ctl & BIT_EF_FLAG));
116 
117 		*(map + addr) = (u8)(efuse_ctl & BIT_MASK_EF_DATA);
118 	}
119 
120 	rtw_chip_efuse_grant_off(rtwdev);
121 
122 	return 0;
123 }
124 
125 int rtw_read8_physical_efuse(struct rtw_dev *rtwdev, u16 addr, u8 *data)
126 {
127 	u32 efuse_ctl;
128 	int ret;
129 
130 	rtw_write32_mask(rtwdev, REG_EFUSE_CTRL, 0x3ff00, addr);
131 	rtw_write32_clr(rtwdev, REG_EFUSE_CTRL, BIT_EF_FLAG);
132 
133 	ret = read_poll_timeout(rtw_read32, efuse_ctl, efuse_ctl & BIT_EF_FLAG,
134 				1000, 100000, false, rtwdev, REG_EFUSE_CTRL);
135 	if (ret) {
136 		*data = EFUSE_READ_FAIL;
137 		return ret;
138 	}
139 
140 	*data = rtw_read8(rtwdev, REG_EFUSE_CTRL);
141 
142 	return 0;
143 }
144 EXPORT_SYMBOL(rtw_read8_physical_efuse);
145 
146 int rtw_parse_efuse_map(struct rtw_dev *rtwdev)
147 {
148 	const struct rtw_chip_info *chip = rtwdev->chip;
149 	struct rtw_efuse *efuse = &rtwdev->efuse;
150 	u32 phy_size = efuse->physical_size;
151 	u32 log_size = efuse->logical_size;
152 	u8 *phy_map = NULL;
153 	u8 *log_map = NULL;
154 	int ret = 0;
155 
156 	phy_map = kmalloc(phy_size, GFP_KERNEL);
157 	log_map = kmalloc(log_size, GFP_KERNEL);
158 	if (!phy_map || !log_map) {
159 		ret = -ENOMEM;
160 		goto out_free;
161 	}
162 
163 	ret = rtw_dump_physical_efuse_map(rtwdev, phy_map);
164 	if (ret) {
165 		rtw_err(rtwdev, "failed to dump efuse physical map\n");
166 		goto out_free;
167 	}
168 
169 	memset(log_map, 0xff, log_size);
170 	ret = rtw_dump_logical_efuse_map(rtwdev, phy_map, log_map);
171 	if (ret) {
172 		rtw_err(rtwdev, "failed to dump efuse logical map\n");
173 		goto out_free;
174 	}
175 
176 	ret = chip->ops->read_efuse(rtwdev, log_map);
177 	if (ret) {
178 		rtw_err(rtwdev, "failed to read efuse map\n");
179 		goto out_free;
180 	}
181 
182 out_free:
183 	kfree(log_map);
184 	kfree(phy_map);
185 
186 	return ret;
187 }
188