1 /****************************************************************************** 2 * 3 * Copyright(c) 2009-2012 Realtek Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of version 2 of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called LICENSE. 20 * 21 * Contact Information: 22 * wlanfae <wlanfae@realtek.com> 23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, 24 * Hsinchu 300, Taiwan. 25 * 26 * Larry Finger <Larry.Finger@lwfinger.net> 27 * 28 *****************************************************************************/ 29 30 #include "../wifi.h" 31 #include "../efuse.h" 32 #include "../base.h" 33 #include "../regd.h" 34 #include "../cam.h" 35 #include "../ps.h" 36 #include "../pci.h" 37 #include "reg.h" 38 #include "def.h" 39 #include "phy.h" 40 #include "dm.h" 41 #include "fw.h" 42 #include "led.h" 43 #include "hw.h" 44 45 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) 46 { 47 struct rtl_priv *rtlpriv = rtl_priv(hw); 48 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 49 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 50 51 switch (variable) { 52 case HW_VAR_RCR: { 53 *((u32 *) (val)) = rtlpci->receive_config; 54 break; 55 } 56 case HW_VAR_RF_STATE: { 57 *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; 58 break; 59 } 60 case HW_VAR_FW_PSMODE_STATUS: { 61 *((bool *) (val)) = ppsc->fw_current_inpsmode; 62 break; 63 } 64 case HW_VAR_CORRECT_TSF: { 65 u64 tsf; 66 u32 *ptsf_low = (u32 *)&tsf; 67 u32 *ptsf_high = ((u32 *)&tsf) + 1; 68 69 *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4)); 70 *ptsf_low = rtl_read_dword(rtlpriv, TSFR); 71 72 *((u64 *) (val)) = tsf; 73 74 break; 75 } 76 case HW_VAR_MRC: { 77 *((bool *)(val)) = rtlpriv->dm.current_mrc_switch; 78 break; 79 } 80 default: { 81 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 82 "switch case not processed\n"); 83 break; 84 } 85 } 86 } 87 88 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) 89 { 90 struct rtl_priv *rtlpriv = rtl_priv(hw); 91 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 92 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 93 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 94 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 95 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 96 97 switch (variable) { 98 case HW_VAR_ETHER_ADDR:{ 99 rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]); 100 rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]); 101 break; 102 } 103 case HW_VAR_BASIC_RATE:{ 104 u16 rate_cfg = ((u16 *) val)[0]; 105 u8 rate_index = 0; 106 107 if (rtlhal->version == VERSION_8192S_ACUT) 108 rate_cfg = rate_cfg & 0x150; 109 else 110 rate_cfg = rate_cfg & 0x15f; 111 112 rate_cfg |= 0x01; 113 114 rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff); 115 rtl_write_byte(rtlpriv, RRSR + 1, 116 (rate_cfg >> 8) & 0xff); 117 118 while (rate_cfg > 0x1) { 119 rate_cfg = (rate_cfg >> 1); 120 rate_index++; 121 } 122 rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index); 123 124 break; 125 } 126 case HW_VAR_BSSID:{ 127 rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]); 128 rtl_write_word(rtlpriv, BSSIDR + 4, 129 ((u16 *)(val + 4))[0]); 130 break; 131 } 132 case HW_VAR_SIFS:{ 133 rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]); 134 rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]); 135 break; 136 } 137 case HW_VAR_SLOT_TIME:{ 138 u8 e_aci; 139 140 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, 141 "HW_VAR_SLOT_TIME %x\n", val[0]); 142 143 rtl_write_byte(rtlpriv, SLOT_TIME, val[0]); 144 145 for (e_aci = 0; e_aci < AC_MAX; e_aci++) { 146 rtlpriv->cfg->ops->set_hw_reg(hw, 147 HW_VAR_AC_PARAM, 148 (&e_aci)); 149 } 150 break; 151 } 152 case HW_VAR_ACK_PREAMBLE:{ 153 u8 reg_tmp; 154 u8 short_preamble = (bool) (*val); 155 reg_tmp = (mac->cur_40_prime_sc) << 5; 156 if (short_preamble) 157 reg_tmp |= 0x80; 158 159 rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp); 160 break; 161 } 162 case HW_VAR_AMPDU_MIN_SPACE:{ 163 u8 min_spacing_to_set; 164 u8 sec_min_space; 165 166 min_spacing_to_set = *val; 167 if (min_spacing_to_set <= 7) { 168 if (rtlpriv->sec.pairwise_enc_algorithm == 169 NO_ENCRYPTION) 170 sec_min_space = 0; 171 else 172 sec_min_space = 1; 173 174 if (min_spacing_to_set < sec_min_space) 175 min_spacing_to_set = sec_min_space; 176 if (min_spacing_to_set > 5) 177 min_spacing_to_set = 5; 178 179 mac->min_space_cfg = 180 ((mac->min_space_cfg & 0xf8) | 181 min_spacing_to_set); 182 183 *val = min_spacing_to_set; 184 185 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, 186 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", 187 mac->min_space_cfg); 188 189 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 190 mac->min_space_cfg); 191 } 192 break; 193 } 194 case HW_VAR_SHORTGI_DENSITY:{ 195 u8 density_to_set; 196 197 density_to_set = *val; 198 mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg; 199 mac->min_space_cfg |= (density_to_set << 3); 200 201 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, 202 "Set HW_VAR_SHORTGI_DENSITY: %#x\n", 203 mac->min_space_cfg); 204 205 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 206 mac->min_space_cfg); 207 208 break; 209 } 210 case HW_VAR_AMPDU_FACTOR:{ 211 u8 factor_toset; 212 u8 regtoset; 213 u8 factorlevel[18] = { 214 2, 4, 4, 7, 7, 13, 13, 215 13, 2, 7, 7, 13, 13, 216 15, 15, 15, 15, 0}; 217 u8 index = 0; 218 219 factor_toset = *val; 220 if (factor_toset <= 3) { 221 factor_toset = (1 << (factor_toset + 2)); 222 if (factor_toset > 0xf) 223 factor_toset = 0xf; 224 225 for (index = 0; index < 17; index++) { 226 if (factorlevel[index] > factor_toset) 227 factorlevel[index] = 228 factor_toset; 229 } 230 231 for (index = 0; index < 8; index++) { 232 regtoset = ((factorlevel[index * 2]) | 233 (factorlevel[index * 234 2 + 1] << 4)); 235 rtl_write_byte(rtlpriv, 236 AGGLEN_LMT_L + index, 237 regtoset); 238 } 239 240 regtoset = ((factorlevel[16]) | 241 (factorlevel[17] << 4)); 242 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset); 243 244 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, 245 "Set HW_VAR_AMPDU_FACTOR: %#x\n", 246 factor_toset); 247 } 248 break; 249 } 250 case HW_VAR_AC_PARAM:{ 251 u8 e_aci = *val; 252 rtl92s_dm_init_edca_turbo(hw); 253 254 if (rtlpci->acm_method != EACMWAY2_SW) 255 rtlpriv->cfg->ops->set_hw_reg(hw, 256 HW_VAR_ACM_CTRL, 257 &e_aci); 258 break; 259 } 260 case HW_VAR_ACM_CTRL:{ 261 u8 e_aci = *val; 262 union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&( 263 mac->ac[0].aifs)); 264 u8 acm = p_aci_aifsn->f.acm; 265 u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl); 266 267 acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 268 0x0 : 0x1); 269 270 if (acm) { 271 switch (e_aci) { 272 case AC0_BE: 273 acm_ctrl |= AcmHw_BeqEn; 274 break; 275 case AC2_VI: 276 acm_ctrl |= AcmHw_ViqEn; 277 break; 278 case AC3_VO: 279 acm_ctrl |= AcmHw_VoqEn; 280 break; 281 default: 282 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, 283 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", 284 acm); 285 break; 286 } 287 } else { 288 switch (e_aci) { 289 case AC0_BE: 290 acm_ctrl &= (~AcmHw_BeqEn); 291 break; 292 case AC2_VI: 293 acm_ctrl &= (~AcmHw_ViqEn); 294 break; 295 case AC3_VO: 296 acm_ctrl &= (~AcmHw_VoqEn); 297 break; 298 default: 299 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 300 "switch case not processed\n"); 301 break; 302 } 303 } 304 305 RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE, 306 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl); 307 rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl); 308 break; 309 } 310 case HW_VAR_RCR:{ 311 rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]); 312 rtlpci->receive_config = ((u32 *) (val))[0]; 313 break; 314 } 315 case HW_VAR_RETRY_LIMIT:{ 316 u8 retry_limit = val[0]; 317 318 rtl_write_word(rtlpriv, RETRY_LIMIT, 319 retry_limit << RETRY_LIMIT_SHORT_SHIFT | 320 retry_limit << RETRY_LIMIT_LONG_SHIFT); 321 break; 322 } 323 case HW_VAR_DUAL_TSF_RST: { 324 break; 325 } 326 case HW_VAR_EFUSE_BYTES: { 327 rtlefuse->efuse_usedbytes = *((u16 *) val); 328 break; 329 } 330 case HW_VAR_EFUSE_USAGE: { 331 rtlefuse->efuse_usedpercentage = *val; 332 break; 333 } 334 case HW_VAR_IO_CMD: { 335 break; 336 } 337 case HW_VAR_WPA_CONFIG: { 338 rtl_write_byte(rtlpriv, REG_SECR, *val); 339 break; 340 } 341 case HW_VAR_SET_RPWM:{ 342 break; 343 } 344 case HW_VAR_H2C_FW_PWRMODE:{ 345 break; 346 } 347 case HW_VAR_FW_PSMODE_STATUS: { 348 ppsc->fw_current_inpsmode = *((bool *) val); 349 break; 350 } 351 case HW_VAR_H2C_FW_JOINBSSRPT:{ 352 break; 353 } 354 case HW_VAR_AID:{ 355 break; 356 } 357 case HW_VAR_CORRECT_TSF:{ 358 break; 359 } 360 case HW_VAR_MRC: { 361 bool bmrc_toset = *((bool *)val); 362 u8 u1bdata = 0; 363 364 if (bmrc_toset) { 365 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, 366 MASKBYTE0, 0x33); 367 u1bdata = (u8)rtl_get_bbreg(hw, 368 ROFDM1_TRXPATHENABLE, 369 MASKBYTE0); 370 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, 371 MASKBYTE0, 372 ((u1bdata & 0xf0) | 0x03)); 373 u1bdata = (u8)rtl_get_bbreg(hw, 374 ROFDM0_TRXPATHENABLE, 375 MASKBYTE1); 376 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, 377 MASKBYTE1, 378 (u1bdata | 0x04)); 379 380 /* Update current settings. */ 381 rtlpriv->dm.current_mrc_switch = bmrc_toset; 382 } else { 383 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, 384 MASKBYTE0, 0x13); 385 u1bdata = (u8)rtl_get_bbreg(hw, 386 ROFDM1_TRXPATHENABLE, 387 MASKBYTE0); 388 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, 389 MASKBYTE0, 390 ((u1bdata & 0xf0) | 0x01)); 391 u1bdata = (u8)rtl_get_bbreg(hw, 392 ROFDM0_TRXPATHENABLE, 393 MASKBYTE1); 394 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, 395 MASKBYTE1, (u1bdata & 0xfb)); 396 397 /* Update current settings. */ 398 rtlpriv->dm.current_mrc_switch = bmrc_toset; 399 } 400 401 break; 402 } 403 case HW_VAR_FW_LPS_ACTION: { 404 bool enter_fwlps = *((bool *)val); 405 u8 rpwm_val, fw_pwrmode; 406 bool fw_current_inps; 407 408 if (enter_fwlps) { 409 rpwm_val = 0x02; /* RF off */ 410 fw_current_inps = true; 411 rtlpriv->cfg->ops->set_hw_reg(hw, 412 HW_VAR_FW_PSMODE_STATUS, 413 (u8 *)(&fw_current_inps)); 414 rtlpriv->cfg->ops->set_hw_reg(hw, 415 HW_VAR_H2C_FW_PWRMODE, 416 &ppsc->fwctrl_psmode); 417 418 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, 419 &rpwm_val); 420 } else { 421 rpwm_val = 0x0C; /* RF on */ 422 fw_pwrmode = FW_PS_ACTIVE_MODE; 423 fw_current_inps = false; 424 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, 425 &rpwm_val); 426 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, 427 &fw_pwrmode); 428 429 rtlpriv->cfg->ops->set_hw_reg(hw, 430 HW_VAR_FW_PSMODE_STATUS, 431 (u8 *)(&fw_current_inps)); 432 } 433 break; } 434 default: 435 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 436 "switch case not processed\n"); 437 break; 438 } 439 440 } 441 442 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw) 443 { 444 struct rtl_priv *rtlpriv = rtl_priv(hw); 445 u8 sec_reg_value = 0x0; 446 447 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 448 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", 449 rtlpriv->sec.pairwise_enc_algorithm, 450 rtlpriv->sec.group_enc_algorithm); 451 452 if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { 453 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 454 "not open hw encryption\n"); 455 return; 456 } 457 458 sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE; 459 460 if (rtlpriv->sec.use_defaultkey) { 461 sec_reg_value |= SCR_TXUSEDK; 462 sec_reg_value |= SCR_RXUSEDK; 463 } 464 465 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n", 466 sec_reg_value); 467 468 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); 469 470 } 471 472 static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data) 473 { 474 struct rtl_priv *rtlpriv = rtl_priv(hw); 475 u8 waitcount = 100; 476 bool bresult = false; 477 u8 tmpvalue; 478 479 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data); 480 481 /* Wait the MAC synchronized. */ 482 udelay(400); 483 484 /* Check if it is set ready. */ 485 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1); 486 bresult = ((tmpvalue & BIT(7)) == (data & BIT(7))); 487 488 if ((data & (BIT(6) | BIT(7))) == false) { 489 waitcount = 100; 490 tmpvalue = 0; 491 492 while (1) { 493 waitcount--; 494 495 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1); 496 if ((tmpvalue & BIT(6))) 497 break; 498 499 pr_err("wait for BIT(6) return value %x\n", tmpvalue); 500 if (waitcount == 0) 501 break; 502 503 udelay(10); 504 } 505 506 if (waitcount == 0) 507 bresult = false; 508 else 509 bresult = true; 510 } 511 512 return bresult; 513 } 514 515 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw) 516 { 517 struct rtl_priv *rtlpriv = rtl_priv(hw); 518 u8 u1tmp; 519 520 /* The following config GPIO function */ 521 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO)); 522 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL); 523 524 /* config GPIO3 to input */ 525 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK; 526 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp); 527 528 } 529 530 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw) 531 { 532 struct rtl_priv *rtlpriv = rtl_priv(hw); 533 u8 u1tmp; 534 u8 retval = ERFON; 535 536 /* The following config GPIO function */ 537 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO)); 538 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL); 539 540 /* config GPIO3 to input */ 541 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK; 542 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp); 543 544 /* On some of the platform, driver cannot read correct 545 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */ 546 mdelay(10); 547 548 /* check GPIO3 */ 549 u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE); 550 retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF; 551 552 return retval; 553 } 554 555 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw) 556 { 557 struct rtl_priv *rtlpriv = rtl_priv(hw); 558 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 559 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 560 561 u8 i; 562 u8 tmpu1b; 563 u16 tmpu2b; 564 u8 pollingcnt = 20; 565 566 if (rtlpci->first_init) { 567 /* Reset PCIE Digital */ 568 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); 569 tmpu1b &= 0xFE; 570 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b); 571 udelay(1); 572 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0)); 573 } 574 575 /* Switch to SW IO control */ 576 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); 577 if (tmpu1b & BIT(7)) { 578 tmpu1b &= ~(BIT(6) | BIT(7)); 579 580 /* Set failed, return to prevent hang. */ 581 if (!_rtl92se_halset_sysclk(hw, tmpu1b)) 582 return; 583 } 584 585 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0); 586 udelay(50); 587 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34); 588 udelay(50); 589 590 /* Clear FW RPWM for FW control LPS.*/ 591 rtl_write_byte(rtlpriv, RPWM, 0x0); 592 593 /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */ 594 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); 595 tmpu1b &= 0x73; 596 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b); 597 /* wait for BIT 10/11/15 to pull high automatically!! */ 598 mdelay(1); 599 600 rtl_write_byte(rtlpriv, CMDR, 0); 601 rtl_write_byte(rtlpriv, TCR, 0); 602 603 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */ 604 tmpu1b = rtl_read_byte(rtlpriv, 0x562); 605 tmpu1b |= 0x08; 606 rtl_write_byte(rtlpriv, 0x562, tmpu1b); 607 tmpu1b &= ~(BIT(3)); 608 rtl_write_byte(rtlpriv, 0x562, tmpu1b); 609 610 /* Enable AFE clock source */ 611 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL); 612 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01)); 613 /* Delay 1.5ms */ 614 mdelay(2); 615 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1); 616 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb)); 617 618 /* Enable AFE Macro Block's Bandgap */ 619 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); 620 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0))); 621 mdelay(1); 622 623 /* Enable AFE Mbias */ 624 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); 625 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02)); 626 mdelay(1); 627 628 /* Enable LDOA15 block */ 629 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL); 630 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0))); 631 632 /* Set Digital Vdd to Retention isolation Path. */ 633 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL); 634 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11))); 635 636 /* For warm reboot NIC disappera bug. */ 637 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); 638 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13))); 639 640 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68); 641 642 /* Enable AFE PLL Macro Block */ 643 /* We need to delay 100u before enabling PLL. */ 644 udelay(200); 645 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL); 646 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4))); 647 648 /* for divider reset */ 649 udelay(100); 650 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | 651 BIT(4) | BIT(6))); 652 udelay(10); 653 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4))); 654 udelay(10); 655 656 /* Enable MAC 80MHZ clock */ 657 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1); 658 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0))); 659 mdelay(1); 660 661 /* Release isolation AFE PLL & MD */ 662 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6); 663 664 /* Enable MAC clock */ 665 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); 666 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11))); 667 668 /* Enable Core digital and enable IOREG R/W */ 669 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); 670 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11))); 671 672 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); 673 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7))); 674 675 /* enable REG_EN */ 676 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15))); 677 678 /* Switch the control path. */ 679 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); 680 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2)))); 681 682 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); 683 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6))); 684 if (!_rtl92se_halset_sysclk(hw, tmpu1b)) 685 return; /* Set failed, return to prevent hang. */ 686 687 rtl_write_word(rtlpriv, CMDR, 0x07FC); 688 689 /* MH We must enable the section of code to prevent load IMEM fail. */ 690 /* Load MAC register from WMAc temporarily We simulate macreg. */ 691 /* txt HW will provide MAC txt later */ 692 rtl_write_byte(rtlpriv, 0x6, 0x30); 693 rtl_write_byte(rtlpriv, 0x49, 0xf0); 694 695 rtl_write_byte(rtlpriv, 0x4b, 0x81); 696 697 rtl_write_byte(rtlpriv, 0xb5, 0x21); 698 699 rtl_write_byte(rtlpriv, 0xdc, 0xff); 700 rtl_write_byte(rtlpriv, 0xdd, 0xff); 701 rtl_write_byte(rtlpriv, 0xde, 0xff); 702 rtl_write_byte(rtlpriv, 0xdf, 0xff); 703 704 rtl_write_byte(rtlpriv, 0x11a, 0x00); 705 rtl_write_byte(rtlpriv, 0x11b, 0x00); 706 707 for (i = 0; i < 32; i++) 708 rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b); 709 710 rtl_write_byte(rtlpriv, 0x236, 0xff); 711 712 rtl_write_byte(rtlpriv, 0x503, 0x22); 713 714 if (ppsc->support_aspm && !ppsc->support_backdoor) 715 rtl_write_byte(rtlpriv, 0x560, 0x40); 716 else 717 rtl_write_byte(rtlpriv, 0x560, 0x00); 718 719 rtl_write_byte(rtlpriv, DBG_PORT, 0x91); 720 721 /* Set RX Desc Address */ 722 rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma); 723 rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma); 724 725 /* Set TX Desc Address */ 726 rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma); 727 rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma); 728 rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma); 729 rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma); 730 rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma); 731 rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma); 732 rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma); 733 rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma); 734 rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma); 735 736 rtl_write_word(rtlpriv, CMDR, 0x37FC); 737 738 /* To make sure that TxDMA can ready to download FW. */ 739 /* We should reset TxDMA if IMEM RPT was not ready. */ 740 do { 741 tmpu1b = rtl_read_byte(rtlpriv, TCR); 742 if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE) 743 break; 744 745 udelay(5); 746 } while (pollingcnt--); 747 748 if (pollingcnt <= 0) { 749 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 750 "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n", 751 tmpu1b); 752 tmpu1b = rtl_read_byte(rtlpriv, CMDR); 753 rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN)); 754 udelay(2); 755 /* Reset TxDMA */ 756 rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN); 757 } 758 759 /* After MACIO reset,we must refresh LED state. */ 760 if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) || 761 (ppsc->rfoff_reason == 0)) { 762 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); 763 struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0); 764 enum rf_pwrstate rfpwr_state_toset; 765 rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw); 766 767 if (rfpwr_state_toset == ERFON) 768 rtl92se_sw_led_on(hw, pLed0); 769 } 770 } 771 772 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw) 773 { 774 struct rtl_priv *rtlpriv = rtl_priv(hw); 775 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 776 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 777 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 778 u8 i; 779 u16 tmpu2b; 780 781 /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */ 782 783 /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */ 784 /* Turn on 0x40 Command register */ 785 rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN | 786 SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN | 787 RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN)); 788 789 /* Set TCR TX DMA pre 2 FULL enable bit */ 790 rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) | 791 TXDMAPRE2FULL); 792 793 /* Set RCR */ 794 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config); 795 796 /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */ 797 798 /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */ 799 /* Set CCK/OFDM SIFS */ 800 /* CCK SIFS shall always be 10us. */ 801 rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a); 802 rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010); 803 804 /* Set AckTimeout */ 805 rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40); 806 807 /* Beacon related */ 808 rtl_write_word(rtlpriv, BCN_INTERVAL, 100); 809 rtl_write_word(rtlpriv, ATIMWND, 2); 810 811 /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */ 812 /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */ 813 /* Firmware allocate now, associate with FW internal setting.!!! */ 814 815 /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */ 816 /* 5.3 Set driver info, we only accept PHY status now. */ 817 /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */ 818 rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6)); 819 820 /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */ 821 /* Set RRSR to all legacy rate and HT rate 822 * CCK rate is supported by default. 823 * CCK rate will be filtered out only when associated 824 * AP does not support it. 825 * Only enable ACK rate to OFDM 24M 826 * Disable RRSR for CCK rate in A-Cut */ 827 828 if (rtlhal->version == VERSION_8192S_ACUT) 829 rtl_write_byte(rtlpriv, RRSR, 0xf0); 830 else if (rtlhal->version == VERSION_8192S_BCUT) 831 rtl_write_byte(rtlpriv, RRSR, 0xff); 832 rtl_write_byte(rtlpriv, RRSR + 1, 0x01); 833 rtl_write_byte(rtlpriv, RRSR + 2, 0x00); 834 835 /* A-Cut IC do not support CCK rate. We forbid ARFR to */ 836 /* fallback to CCK rate */ 837 for (i = 0; i < 8; i++) { 838 /*Disable RRSR for CCK rate in A-Cut */ 839 if (rtlhal->version == VERSION_8192S_ACUT) 840 rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0); 841 } 842 843 /* Different rate use different AMPDU size */ 844 /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */ 845 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f); 846 /* MCS0/1/2/3 use max AMPDU size 4*2=8K */ 847 rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442); 848 /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */ 849 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7); 850 /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */ 851 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772); 852 /* MCS12/13/14/15 use max AMPDU size 15*2=30K */ 853 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd); 854 855 /* Set Data / Response auto rate fallack retry count */ 856 rtl_write_dword(rtlpriv, DARFRC, 0x04010000); 857 rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605); 858 rtl_write_dword(rtlpriv, RARFRC, 0x04010000); 859 rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605); 860 861 /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */ 862 /* Set all rate to support SG */ 863 rtl_write_word(rtlpriv, SG_RATE, 0xFFFF); 864 865 /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */ 866 /* Set NAV protection length */ 867 rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080); 868 /* CF-END Threshold */ 869 rtl_write_byte(rtlpriv, CFEND_TH, 0xFF); 870 /* Set AMPDU minimum space */ 871 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07); 872 /* Set TXOP stall control for several queue/HI/BCN/MGT/ */ 873 rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00); 874 875 /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */ 876 /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */ 877 /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */ 878 /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */ 879 /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */ 880 881 /* 14. Set driver info, we only accept PHY status now. */ 882 rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4); 883 884 /* 15. For EEPROM R/W Workaround */ 885 /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */ 886 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN); 887 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13)); 888 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL); 889 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8))); 890 891 /* 17. For EFUSE */ 892 /* We may R/W EFUSE in EEPROM mode */ 893 if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) { 894 u8 tempval; 895 896 tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1); 897 tempval &= 0xFE; 898 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval); 899 900 /* Change Program timing */ 901 rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72); 902 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n"); 903 } 904 905 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n"); 906 907 } 908 909 static void _rtl92se_hw_configure(struct ieee80211_hw *hw) 910 { 911 struct rtl_priv *rtlpriv = rtl_priv(hw); 912 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 913 struct rtl_phy *rtlphy = &(rtlpriv->phy); 914 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 915 916 u8 reg_bw_opmode = 0; 917 u32 reg_rrsr = 0; 918 u8 regtmp = 0; 919 920 reg_bw_opmode = BW_OPMODE_20MHZ; 921 reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; 922 923 regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL); 924 reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp; 925 rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr); 926 rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode); 927 928 /* Set Retry Limit here */ 929 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT, 930 (u8 *)(&rtlpci->shortretry_limit)); 931 932 rtl_write_byte(rtlpriv, MLT, 0x8f); 933 934 /* For Min Spacing configuration. */ 935 switch (rtlphy->rf_type) { 936 case RF_1T2R: 937 case RF_1T1R: 938 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3); 939 break; 940 case RF_2T2R: 941 case RF_2T2R_GREEN: 942 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3); 943 break; 944 } 945 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg); 946 } 947 948 int rtl92se_hw_init(struct ieee80211_hw *hw) 949 { 950 struct rtl_priv *rtlpriv = rtl_priv(hw); 951 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 952 struct rtl_phy *rtlphy = &(rtlpriv->phy); 953 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 954 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 955 u8 tmp_byte = 0; 956 unsigned long flags; 957 bool rtstatus = true; 958 u8 tmp_u1b; 959 int err = false; 960 u8 i; 961 int wdcapra_add[] = { 962 EDCAPARA_BE, EDCAPARA_BK, 963 EDCAPARA_VI, EDCAPARA_VO}; 964 u8 secr_value = 0x0; 965 966 rtlpci->being_init_adapter = true; 967 968 /* As this function can take a very long time (up to 350 ms) 969 * and can be called with irqs disabled, reenable the irqs 970 * to let the other devices continue being serviced. 971 * 972 * It is safe doing so since our own interrupts will only be enabled 973 * in a subsequent step. 974 */ 975 local_save_flags(flags); 976 local_irq_enable(); 977 978 rtlpriv->intf_ops->disable_aspm(hw); 979 980 /* 1. MAC Initialize */ 981 /* Before FW download, we have to set some MAC register */ 982 _rtl92se_macconfig_before_fwdownload(hw); 983 984 rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv, 985 PMC_FSM) >> 16) & 0xF); 986 987 rtl8192se_gpiobit3_cfg_inputmode(hw); 988 989 /* 2. download firmware */ 990 rtstatus = rtl92s_download_fw(hw); 991 if (!rtstatus) { 992 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, 993 "Failed to download FW. Init HW without FW now... " 994 "Please copy FW into /lib/firmware/rtlwifi\n"); 995 err = 1; 996 goto exit; 997 } 998 999 /* After FW download, we have to reset MAC register */ 1000 _rtl92se_macconfig_after_fwdownload(hw); 1001 1002 /*Retrieve default FW Cmd IO map. */ 1003 rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR); 1004 rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK); 1005 1006 /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */ 1007 if (!rtl92s_phy_mac_config(hw)) { 1008 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n"); 1009 err = rtstatus; 1010 goto exit; 1011 } 1012 1013 /* because last function modify RCR, so we update 1014 * rcr var here, or TP will unstable for receive_config 1015 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx 1016 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252 1017 */ 1018 rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR); 1019 rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); 1020 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config); 1021 1022 /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */ 1023 /* We must set flag avoid BB/RF config period later!! */ 1024 rtl_write_dword(rtlpriv, CMDR, 0x37FC); 1025 1026 /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */ 1027 if (!rtl92s_phy_bb_config(hw)) { 1028 RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n"); 1029 err = rtstatus; 1030 goto exit; 1031 } 1032 1033 /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */ 1034 /* Before initalizing RF. We can not use FW to do RF-R/W. */ 1035 1036 rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; 1037 1038 /* Before RF-R/W we must execute the IO from Scott's suggestion. */ 1039 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB); 1040 if (rtlhal->version == VERSION_8192S_ACUT) 1041 rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07); 1042 else 1043 rtl_write_byte(rtlpriv, RF_CTRL, 0x07); 1044 1045 if (!rtl92s_phy_rf_config(hw)) { 1046 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n"); 1047 err = rtstatus; 1048 goto exit; 1049 } 1050 1051 /* After read predefined TXT, we must set BB/MAC/RF 1052 * register as our requirement */ 1053 1054 rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw, 1055 (enum radio_path)0, 1056 RF_CHNLBW, 1057 RFREG_OFFSET_MASK); 1058 rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw, 1059 (enum radio_path)1, 1060 RF_CHNLBW, 1061 RFREG_OFFSET_MASK); 1062 1063 /*---- Set CCK and OFDM Block "ON"----*/ 1064 rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); 1065 rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); 1066 1067 /*3 Set Hardware(Do nothing now) */ 1068 _rtl92se_hw_configure(hw); 1069 1070 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */ 1071 /* TX power index for different rate set. */ 1072 /* Get original hw reg values */ 1073 rtl92s_phy_get_hw_reg_originalvalue(hw); 1074 /* Write correct tx power index */ 1075 rtl92s_phy_set_txpower(hw, rtlphy->current_channel); 1076 1077 /* We must set MAC address after firmware download. */ 1078 for (i = 0; i < 6; i++) 1079 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]); 1080 1081 /* EEPROM R/W workaround */ 1082 tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG); 1083 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3))); 1084 1085 rtl_write_byte(rtlpriv, 0x4d, 0x0); 1086 1087 if (hal_get_firmwareversion(rtlpriv) >= 0x49) { 1088 tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4)); 1089 tmp_byte = tmp_byte | BIT(5); 1090 rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte); 1091 rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF); 1092 } 1093 1094 /* We enable high power and RA related mechanism after NIC 1095 * initialized. */ 1096 if (hal_get_firmwareversion(rtlpriv) >= 0x35) { 1097 /* Fw v.53 and later. */ 1098 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT); 1099 } else if (hal_get_firmwareversion(rtlpriv) == 0x34) { 1100 /* Fw v.52. */ 1101 rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT); 1102 rtl92s_phy_chk_fwcmd_iodone(hw); 1103 } else { 1104 /* Compatible earlier FW version. */ 1105 rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET); 1106 rtl92s_phy_chk_fwcmd_iodone(hw); 1107 rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE); 1108 rtl92s_phy_chk_fwcmd_iodone(hw); 1109 rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH); 1110 rtl92s_phy_chk_fwcmd_iodone(hw); 1111 } 1112 1113 /* Add to prevent ASPM bug. */ 1114 /* Always enable hst and NIC clock request. */ 1115 rtl92s_phy_switch_ephy_parameter(hw); 1116 1117 /* Security related 1118 * 1. Clear all H/W keys. 1119 * 2. Enable H/W encryption/decryption. */ 1120 rtl_cam_reset_all_entry(hw); 1121 secr_value |= SCR_TXENCENABLE; 1122 secr_value |= SCR_RXENCENABLE; 1123 secr_value |= SCR_NOSKMC; 1124 rtl_write_byte(rtlpriv, REG_SECR, secr_value); 1125 1126 for (i = 0; i < 4; i++) 1127 rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322); 1128 1129 if (rtlphy->rf_type == RF_1T2R) { 1130 bool mrc2set = true; 1131 /* Turn on B-Path */ 1132 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set); 1133 } 1134 1135 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON); 1136 rtl92s_dm_init(hw); 1137 exit: 1138 local_irq_restore(flags); 1139 rtlpci->being_init_adapter = false; 1140 return err; 1141 } 1142 1143 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr) 1144 { 1145 /* This is a stub. */ 1146 } 1147 1148 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) 1149 { 1150 struct rtl_priv *rtlpriv = rtl_priv(hw); 1151 u32 reg_rcr; 1152 1153 if (rtlpriv->psc.rfpwr_state != ERFON) 1154 return; 1155 1156 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); 1157 1158 if (check_bssid) { 1159 reg_rcr |= (RCR_CBSSID); 1160 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); 1161 } else if (!check_bssid) { 1162 reg_rcr &= (~RCR_CBSSID); 1163 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); 1164 } 1165 1166 } 1167 1168 static int _rtl92se_set_media_status(struct ieee80211_hw *hw, 1169 enum nl80211_iftype type) 1170 { 1171 struct rtl_priv *rtlpriv = rtl_priv(hw); 1172 u8 bt_msr = rtl_read_byte(rtlpriv, MSR); 1173 u32 temp; 1174 bt_msr &= ~MSR_LINK_MASK; 1175 1176 switch (type) { 1177 case NL80211_IFTYPE_UNSPECIFIED: 1178 bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT); 1179 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, 1180 "Set Network type to NO LINK!\n"); 1181 break; 1182 case NL80211_IFTYPE_ADHOC: 1183 bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT); 1184 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, 1185 "Set Network type to Ad Hoc!\n"); 1186 break; 1187 case NL80211_IFTYPE_STATION: 1188 bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT); 1189 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, 1190 "Set Network type to STA!\n"); 1191 break; 1192 case NL80211_IFTYPE_AP: 1193 bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT); 1194 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, 1195 "Set Network type to AP!\n"); 1196 break; 1197 default: 1198 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 1199 "Network type %d not supported!\n", type); 1200 return 1; 1201 1202 } 1203 1204 if (type != NL80211_IFTYPE_AP && 1205 rtlpriv->mac80211.link_state < MAC80211_LINKED) 1206 bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK; 1207 rtl_write_byte(rtlpriv, MSR, bt_msr); 1208 1209 temp = rtl_read_dword(rtlpriv, TCR); 1210 rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8))); 1211 rtl_write_dword(rtlpriv, TCR, temp | BIT(8)); 1212 1213 1214 return 0; 1215 } 1216 1217 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */ 1218 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) 1219 { 1220 struct rtl_priv *rtlpriv = rtl_priv(hw); 1221 1222 if (_rtl92se_set_media_status(hw, type)) 1223 return -EOPNOTSUPP; 1224 1225 if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { 1226 if (type != NL80211_IFTYPE_AP) 1227 rtl92se_set_check_bssid(hw, true); 1228 } else { 1229 rtl92se_set_check_bssid(hw, false); 1230 } 1231 1232 return 0; 1233 } 1234 1235 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */ 1236 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci) 1237 { 1238 struct rtl_priv *rtlpriv = rtl_priv(hw); 1239 rtl92s_dm_init_edca_turbo(hw); 1240 1241 switch (aci) { 1242 case AC1_BK: 1243 rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f); 1244 break; 1245 case AC0_BE: 1246 /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */ 1247 break; 1248 case AC2_VI: 1249 rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322); 1250 break; 1251 case AC3_VO: 1252 rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222); 1253 break; 1254 default: 1255 RT_ASSERT(false, "invalid aci: %d !\n", aci); 1256 break; 1257 } 1258 } 1259 1260 void rtl92se_enable_interrupt(struct ieee80211_hw *hw) 1261 { 1262 struct rtl_priv *rtlpriv = rtl_priv(hw); 1263 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1264 1265 rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]); 1266 /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */ 1267 rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F); 1268 rtlpci->irq_enabled = true; 1269 } 1270 1271 void rtl92se_disable_interrupt(struct ieee80211_hw *hw) 1272 { 1273 struct rtl_priv *rtlpriv; 1274 struct rtl_pci *rtlpci; 1275 1276 rtlpriv = rtl_priv(hw); 1277 /* if firmware not available, no interrupts */ 1278 if (!rtlpriv || !rtlpriv->max_fw_size) 1279 return; 1280 rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1281 rtl_write_dword(rtlpriv, INTA_MASK, 0); 1282 rtl_write_dword(rtlpriv, INTA_MASK + 4, 0); 1283 rtlpci->irq_enabled = false; 1284 } 1285 1286 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data) 1287 { 1288 struct rtl_priv *rtlpriv = rtl_priv(hw); 1289 u8 waitcnt = 100; 1290 bool result = false; 1291 u8 tmp; 1292 1293 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data); 1294 1295 /* Wait the MAC synchronized. */ 1296 udelay(400); 1297 1298 /* Check if it is set ready. */ 1299 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1); 1300 result = ((tmp & BIT(7)) == (data & BIT(7))); 1301 1302 if ((data & (BIT(6) | BIT(7))) == false) { 1303 waitcnt = 100; 1304 tmp = 0; 1305 1306 while (1) { 1307 waitcnt--; 1308 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1); 1309 1310 if ((tmp & BIT(6))) 1311 break; 1312 1313 pr_err("wait for BIT(6) return value %x\n", tmp); 1314 1315 if (waitcnt == 0) 1316 break; 1317 udelay(10); 1318 } 1319 1320 if (waitcnt == 0) 1321 result = false; 1322 else 1323 result = true; 1324 } 1325 1326 return result; 1327 } 1328 1329 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw) 1330 { 1331 struct rtl_priv *rtlpriv = rtl_priv(hw); 1332 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1333 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 1334 u8 u1btmp; 1335 1336 if (rtlhal->driver_going2unload) 1337 rtl_write_byte(rtlpriv, 0x560, 0x0); 1338 1339 /* Power save for BB/RF */ 1340 u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL); 1341 u1btmp |= BIT(0); 1342 rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp); 1343 rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0); 1344 rtl_write_byte(rtlpriv, TXPAUSE, 0xFF); 1345 rtl_write_word(rtlpriv, CMDR, 0x57FC); 1346 udelay(100); 1347 rtl_write_word(rtlpriv, CMDR, 0x77FC); 1348 rtl_write_byte(rtlpriv, PHY_CCA, 0x0); 1349 udelay(10); 1350 rtl_write_word(rtlpriv, CMDR, 0x37FC); 1351 udelay(10); 1352 rtl_write_word(rtlpriv, CMDR, 0x77FC); 1353 udelay(10); 1354 rtl_write_word(rtlpriv, CMDR, 0x57FC); 1355 rtl_write_word(rtlpriv, CMDR, 0x0000); 1356 1357 if (rtlhal->driver_going2unload) { 1358 u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1)); 1359 u1btmp &= ~(BIT(0)); 1360 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp); 1361 } 1362 1363 u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); 1364 1365 /* Add description. After switch control path. register 1366 * after page1 will be invisible. We can not do any IO 1367 * for register>0x40. After resume&MACIO reset, we need 1368 * to remember previous reg content. */ 1369 if (u1btmp & BIT(7)) { 1370 u1btmp &= ~(BIT(6) | BIT(7)); 1371 if (!_rtl92s_set_sysclk(hw, u1btmp)) { 1372 pr_err("Switch ctrl path fail\n"); 1373 return; 1374 } 1375 } 1376 1377 /* Power save for MAC */ 1378 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS && 1379 !rtlhal->driver_going2unload) { 1380 /* enable LED function */ 1381 rtl_write_byte(rtlpriv, 0x03, 0xF9); 1382 /* SW/HW radio off or halt adapter!! For example S3/S4 */ 1383 } else { 1384 /* LED function disable. Power range is about 8mA now. */ 1385 /* if write 0xF1 disconnet_pci power 1386 * ifconfig wlan0 down power are both high 35:70 */ 1387 /* if write oxF9 disconnet_pci power 1388 * ifconfig wlan0 down power are both low 12:45*/ 1389 rtl_write_byte(rtlpriv, 0x03, 0xF9); 1390 } 1391 1392 rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70); 1393 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68); 1394 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00); 1395 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34); 1396 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E); 1397 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); 1398 1399 } 1400 1401 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw) 1402 { 1403 struct rtl_priv *rtlpriv = rtl_priv(hw); 1404 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1405 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); 1406 struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0); 1407 1408 if (rtlpci->up_first_time == 1) 1409 return; 1410 1411 if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS) 1412 rtl92se_sw_led_on(hw, pLed0); 1413 else 1414 rtl92se_sw_led_off(hw, pLed0); 1415 } 1416 1417 1418 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw) 1419 { 1420 struct rtl_priv *rtlpriv = rtl_priv(hw); 1421 u16 tmpu2b; 1422 u8 tmpu1b; 1423 1424 rtlpriv->psc.pwrdomain_protect = true; 1425 1426 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); 1427 if (tmpu1b & BIT(7)) { 1428 tmpu1b &= ~(BIT(6) | BIT(7)); 1429 if (!_rtl92s_set_sysclk(hw, tmpu1b)) { 1430 rtlpriv->psc.pwrdomain_protect = false; 1431 return; 1432 } 1433 } 1434 1435 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0); 1436 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34); 1437 1438 /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */ 1439 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); 1440 1441 /* If IPS we need to turn LED on. So we not 1442 * not disable BIT 3/7 of reg3. */ 1443 if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW)) 1444 tmpu1b &= 0xFB; 1445 else 1446 tmpu1b &= 0x73; 1447 1448 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b); 1449 /* wait for BIT 10/11/15 to pull high automatically!! */ 1450 mdelay(1); 1451 1452 rtl_write_byte(rtlpriv, CMDR, 0); 1453 rtl_write_byte(rtlpriv, TCR, 0); 1454 1455 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */ 1456 tmpu1b = rtl_read_byte(rtlpriv, 0x562); 1457 tmpu1b |= 0x08; 1458 rtl_write_byte(rtlpriv, 0x562, tmpu1b); 1459 tmpu1b &= ~(BIT(3)); 1460 rtl_write_byte(rtlpriv, 0x562, tmpu1b); 1461 1462 /* Enable AFE clock source */ 1463 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL); 1464 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01)); 1465 /* Delay 1.5ms */ 1466 udelay(1500); 1467 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1); 1468 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb)); 1469 1470 /* Enable AFE Macro Block's Bandgap */ 1471 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); 1472 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0))); 1473 mdelay(1); 1474 1475 /* Enable AFE Mbias */ 1476 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); 1477 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02)); 1478 mdelay(1); 1479 1480 /* Enable LDOA15 block */ 1481 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL); 1482 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0))); 1483 1484 /* Set Digital Vdd to Retention isolation Path. */ 1485 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL); 1486 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11))); 1487 1488 1489 /* For warm reboot NIC disappera bug. */ 1490 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); 1491 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13))); 1492 1493 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68); 1494 1495 /* Enable AFE PLL Macro Block */ 1496 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL); 1497 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4))); 1498 /* Enable MAC 80MHZ clock */ 1499 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1); 1500 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0))); 1501 mdelay(1); 1502 1503 /* Release isolation AFE PLL & MD */ 1504 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6); 1505 1506 /* Enable MAC clock */ 1507 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); 1508 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11))); 1509 1510 /* Enable Core digital and enable IOREG R/W */ 1511 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); 1512 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11))); 1513 /* enable REG_EN */ 1514 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15))); 1515 1516 /* Switch the control path. */ 1517 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); 1518 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2)))); 1519 1520 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); 1521 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6))); 1522 if (!_rtl92s_set_sysclk(hw, tmpu1b)) { 1523 rtlpriv->psc.pwrdomain_protect = false; 1524 return; 1525 } 1526 1527 rtl_write_word(rtlpriv, CMDR, 0x37FC); 1528 1529 /* After MACIO reset,we must refresh LED state. */ 1530 _rtl92se_gen_refreshledstate(hw); 1531 1532 rtlpriv->psc.pwrdomain_protect = false; 1533 } 1534 1535 void rtl92se_card_disable(struct ieee80211_hw *hw) 1536 { 1537 struct rtl_priv *rtlpriv = rtl_priv(hw); 1538 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1539 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1540 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 1541 enum nl80211_iftype opmode; 1542 u8 wait = 30; 1543 1544 rtlpriv->intf_ops->enable_aspm(hw); 1545 1546 if (rtlpci->driver_is_goingto_unload || 1547 ppsc->rfoff_reason > RF_CHANGE_BY_PS) 1548 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); 1549 1550 /* we should chnge GPIO to input mode 1551 * this will drop away current about 25mA*/ 1552 rtl8192se_gpiobit3_cfg_inputmode(hw); 1553 1554 /* this is very important for ips power save */ 1555 while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) { 1556 if (rtlpriv->psc.pwrdomain_protect) 1557 mdelay(20); 1558 else 1559 break; 1560 } 1561 1562 mac->link_state = MAC80211_NOLINK; 1563 opmode = NL80211_IFTYPE_UNSPECIFIED; 1564 _rtl92se_set_media_status(hw, opmode); 1565 1566 _rtl92s_phy_set_rfhalt(hw); 1567 udelay(100); 1568 } 1569 1570 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta, 1571 u32 *p_intb) 1572 { 1573 struct rtl_priv *rtlpriv = rtl_priv(hw); 1574 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1575 1576 *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; 1577 rtl_write_dword(rtlpriv, ISR, *p_inta); 1578 1579 *p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1]; 1580 rtl_write_dword(rtlpriv, ISR + 4, *p_intb); 1581 } 1582 1583 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw) 1584 { 1585 struct rtl_priv *rtlpriv = rtl_priv(hw); 1586 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1587 u16 bcntime_cfg = 0; 1588 u16 bcn_cw = 6, bcn_ifs = 0xf; 1589 u16 atim_window = 2; 1590 1591 /* ATIM Window (in unit of TU). */ 1592 rtl_write_word(rtlpriv, ATIMWND, atim_window); 1593 1594 /* Beacon interval (in unit of TU). */ 1595 rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval); 1596 1597 /* DrvErlyInt (in unit of TU). (Time to send 1598 * interrupt to notify driver to change 1599 * beacon content) */ 1600 rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4); 1601 1602 /* BcnDMATIM(in unit of us). Indicates the 1603 * time before TBTT to perform beacon queue DMA */ 1604 rtl_write_word(rtlpriv, BCN_DMATIME, 256); 1605 1606 /* Force beacon frame transmission even 1607 * after receiving beacon frame from 1608 * other ad hoc STA */ 1609 rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100); 1610 1611 /* Beacon Time Configuration */ 1612 if (mac->opmode == NL80211_IFTYPE_ADHOC) 1613 bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT); 1614 1615 /* TODO: bcn_ifs may required to be changed on ASIC */ 1616 bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS; 1617 1618 /*for beacon changed */ 1619 rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval); 1620 } 1621 1622 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw) 1623 { 1624 struct rtl_priv *rtlpriv = rtl_priv(hw); 1625 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1626 u16 bcn_interval = mac->beacon_interval; 1627 1628 /* Beacon interval (in unit of TU). */ 1629 rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval); 1630 /* 2008.10.24 added by tynli for beacon changed. */ 1631 rtl92s_phy_set_beacon_hwreg(hw, bcn_interval); 1632 } 1633 1634 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw, 1635 u32 add_msr, u32 rm_msr) 1636 { 1637 struct rtl_priv *rtlpriv = rtl_priv(hw); 1638 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1639 1640 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", 1641 add_msr, rm_msr); 1642 1643 if (add_msr) 1644 rtlpci->irq_mask[0] |= add_msr; 1645 1646 if (rm_msr) 1647 rtlpci->irq_mask[0] &= (~rm_msr); 1648 1649 rtl92se_disable_interrupt(hw); 1650 rtl92se_enable_interrupt(hw); 1651 } 1652 1653 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw) 1654 { 1655 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 1656 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1657 u8 efuse_id; 1658 1659 rtlhal->ic_class = IC_INFERIORITY_A; 1660 1661 /* Only retrieving while using EFUSE. */ 1662 if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) && 1663 !rtlefuse->autoload_failflag) { 1664 efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET); 1665 1666 if (efuse_id == 0xfe) 1667 rtlhal->ic_class = IC_INFERIORITY_B; 1668 } 1669 } 1670 1671 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw) 1672 { 1673 struct rtl_priv *rtlpriv = rtl_priv(hw); 1674 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 1675 struct rtl_phy *rtlphy = &(rtlpriv->phy); 1676 u16 i, usvalue; 1677 u16 eeprom_id; 1678 u8 tempval; 1679 u8 hwinfo[HWSET_MAX_SIZE_92S]; 1680 u8 rf_path, index; 1681 1682 if (rtlefuse->epromtype == EEPROM_93C46) { 1683 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 1684 "RTL819X Not boot from eeprom, check it !!\n"); 1685 } else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) { 1686 rtl_efuse_shadow_map_update(hw); 1687 1688 memcpy((void *)hwinfo, (void *) 1689 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 1690 HWSET_MAX_SIZE_92S); 1691 } 1692 1693 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP", 1694 hwinfo, HWSET_MAX_SIZE_92S); 1695 1696 eeprom_id = *((u16 *)&hwinfo[0]); 1697 if (eeprom_id != RTL8190_EEPROM_ID) { 1698 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, 1699 "EEPROM ID(%#x) is invalid!!\n", eeprom_id); 1700 rtlefuse->autoload_failflag = true; 1701 } else { 1702 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); 1703 rtlefuse->autoload_failflag = false; 1704 } 1705 1706 if (rtlefuse->autoload_failflag) 1707 return; 1708 1709 _rtl8192se_get_IC_Inferiority(hw); 1710 1711 /* Read IC Version && Channel Plan */ 1712 /* VID, DID SE 0xA-D */ 1713 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID]; 1714 rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID]; 1715 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID]; 1716 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID]; 1717 rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION]; 1718 1719 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1720 "EEPROMId = 0x%4x\n", eeprom_id); 1721 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1722 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid); 1723 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1724 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did); 1725 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1726 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid); 1727 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1728 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid); 1729 1730 for (i = 0; i < 6; i += 2) { 1731 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i]; 1732 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue; 1733 } 1734 1735 for (i = 0; i < 6; i++) 1736 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]); 1737 1738 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr); 1739 1740 /* Get Tx Power Level by Channel */ 1741 /* Read Tx power of Channel 1 ~ 14 from EEPROM. */ 1742 /* 92S suupport RF A & B */ 1743 for (rf_path = 0; rf_path < 2; rf_path++) { 1744 for (i = 0; i < 3; i++) { 1745 /* Read CCK RF A & B Tx power */ 1746 rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] = 1747 hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i]; 1748 1749 /* Read OFDM RF A & B Tx power for 1T */ 1750 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] = 1751 hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i]; 1752 1753 /* Read OFDM RF A & B Tx power for 2T */ 1754 rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i] 1755 = hwinfo[EEPROM_TXPOWERBASE + 12 + 1756 rf_path * 3 + i]; 1757 } 1758 } 1759 1760 for (rf_path = 0; rf_path < 2; rf_path++) 1761 for (i = 0; i < 3; i++) 1762 RTPRINT(rtlpriv, FINIT, INIT_EEPROM, 1763 "RF(%d) EEPROM CCK Area(%d) = 0x%x\n", 1764 rf_path, i, 1765 rtlefuse->eeprom_chnlarea_txpwr_cck 1766 [rf_path][i]); 1767 for (rf_path = 0; rf_path < 2; rf_path++) 1768 for (i = 0; i < 3; i++) 1769 RTPRINT(rtlpriv, FINIT, INIT_EEPROM, 1770 "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n", 1771 rf_path, i, 1772 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s 1773 [rf_path][i]); 1774 for (rf_path = 0; rf_path < 2; rf_path++) 1775 for (i = 0; i < 3; i++) 1776 RTPRINT(rtlpriv, FINIT, INIT_EEPROM, 1777 "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n", 1778 rf_path, i, 1779 rtlefuse->eprom_chnl_txpwr_ht40_2sdf 1780 [rf_path][i]); 1781 1782 for (rf_path = 0; rf_path < 2; rf_path++) { 1783 1784 /* Assign dedicated channel tx power */ 1785 for (i = 0; i < 14; i++) { 1786 /* channel 1~3 use the same Tx Power Level. */ 1787 if (i < 3) 1788 index = 0; 1789 /* Channel 4-8 */ 1790 else if (i < 8) 1791 index = 1; 1792 /* Channel 9-14 */ 1793 else 1794 index = 2; 1795 1796 /* Record A & B CCK /OFDM - 1T/2T Channel area 1797 * tx power */ 1798 rtlefuse->txpwrlevel_cck[rf_path][i] = 1799 rtlefuse->eeprom_chnlarea_txpwr_cck 1800 [rf_path][index]; 1801 rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = 1802 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s 1803 [rf_path][index]; 1804 rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 1805 rtlefuse->eprom_chnl_txpwr_ht40_2sdf 1806 [rf_path][index]; 1807 } 1808 1809 for (i = 0; i < 14; i++) { 1810 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1811 "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n", 1812 rf_path, i, 1813 rtlefuse->txpwrlevel_cck[rf_path][i], 1814 rtlefuse->txpwrlevel_ht40_1s[rf_path][i], 1815 rtlefuse->txpwrlevel_ht40_2s[rf_path][i]); 1816 } 1817 } 1818 1819 for (rf_path = 0; rf_path < 2; rf_path++) { 1820 for (i = 0; i < 3; i++) { 1821 /* Read Power diff limit. */ 1822 rtlefuse->eeprom_pwrgroup[rf_path][i] = 1823 hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i]; 1824 } 1825 } 1826 1827 for (rf_path = 0; rf_path < 2; rf_path++) { 1828 /* Fill Pwr group */ 1829 for (i = 0; i < 14; i++) { 1830 /* Chanel 1-3 */ 1831 if (i < 3) 1832 index = 0; 1833 /* Channel 4-8 */ 1834 else if (i < 8) 1835 index = 1; 1836 /* Channel 9-13 */ 1837 else 1838 index = 2; 1839 1840 rtlefuse->pwrgroup_ht20[rf_path][i] = 1841 (rtlefuse->eeprom_pwrgroup[rf_path][index] & 1842 0xf); 1843 rtlefuse->pwrgroup_ht40[rf_path][i] = 1844 ((rtlefuse->eeprom_pwrgroup[rf_path][index] & 1845 0xf0) >> 4); 1846 1847 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1848 "RF-%d pwrgroup_ht20[%d] = 0x%x\n", 1849 rf_path, i, 1850 rtlefuse->pwrgroup_ht20[rf_path][i]); 1851 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1852 "RF-%d pwrgroup_ht40[%d] = 0x%x\n", 1853 rf_path, i, 1854 rtlefuse->pwrgroup_ht40[rf_path][i]); 1855 } 1856 } 1857 1858 for (i = 0; i < 14; i++) { 1859 /* Read tx power difference between HT OFDM 20/40 MHZ */ 1860 /* channel 1-3 */ 1861 if (i < 3) 1862 index = 0; 1863 /* Channel 4-8 */ 1864 else if (i < 8) 1865 index = 1; 1866 /* Channel 9-14 */ 1867 else 1868 index = 2; 1869 1870 tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff; 1871 rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF); 1872 rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] = 1873 ((tempval >> 4) & 0xF); 1874 1875 /* Read OFDM<->HT tx power diff */ 1876 /* Channel 1-3 */ 1877 if (i < 3) 1878 index = 0; 1879 /* Channel 4-8 */ 1880 else if (i < 8) 1881 index = 0x11; 1882 /* Channel 9-14 */ 1883 else 1884 index = 1; 1885 1886 tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff; 1887 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = 1888 (tempval & 0xF); 1889 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] = 1890 ((tempval >> 4) & 0xF); 1891 1892 tempval = hwinfo[TX_PWR_SAFETY_CHK]; 1893 rtlefuse->txpwr_safetyflag = (tempval & 0x01); 1894 } 1895 1896 rtlefuse->eeprom_regulatory = 0; 1897 if (rtlefuse->eeprom_version >= 2) { 1898 /* BIT(0)~2 */ 1899 if (rtlefuse->eeprom_version >= 4) 1900 rtlefuse->eeprom_regulatory = 1901 (hwinfo[EEPROM_REGULATORY] & 0x7); 1902 else /* BIT(0) */ 1903 rtlefuse->eeprom_regulatory = 1904 (hwinfo[EEPROM_REGULATORY] & 0x1); 1905 } 1906 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1907 "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory); 1908 1909 for (i = 0; i < 14; i++) 1910 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1911 "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", 1912 i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]); 1913 for (i = 0; i < 14; i++) 1914 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1915 "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", 1916 i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]); 1917 for (i = 0; i < 14; i++) 1918 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1919 "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", 1920 i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]); 1921 for (i = 0; i < 14; i++) 1922 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1923 "RF-B Legacy to HT40 Diff[%d] = 0x%x\n", 1924 i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]); 1925 1926 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1927 "TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag); 1928 1929 /* Read RF-indication and Tx Power gain 1930 * index diff of legacy to HT OFDM rate. */ 1931 tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff; 1932 rtlefuse->eeprom_txpowerdiff = tempval; 1933 rtlefuse->legacy_httxpowerdiff = 1934 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0]; 1935 1936 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1937 "TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff); 1938 1939 /* Get TSSI value for each path. */ 1940 usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A]; 1941 rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8); 1942 usvalue = hwinfo[EEPROM_TSSI_B]; 1943 rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff); 1944 1945 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n", 1946 rtlefuse->eeprom_tssi[RF90_PATH_A], 1947 rtlefuse->eeprom_tssi[RF90_PATH_B]); 1948 1949 /* Read antenna tx power offset of B/C/D to A from EEPROM */ 1950 /* and read ThermalMeter from EEPROM */ 1951 tempval = hwinfo[EEPROM_THERMALMETER]; 1952 rtlefuse->eeprom_thermalmeter = tempval; 1953 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1954 "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); 1955 1956 /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */ 1957 rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f); 1958 rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100; 1959 1960 /* Read CrystalCap from EEPROM */ 1961 tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4; 1962 rtlefuse->eeprom_crystalcap = tempval; 1963 /* CrystalCap, BIT(12)~15 */ 1964 rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap; 1965 1966 /* Read IC Version && Channel Plan */ 1967 /* Version ID, Channel plan */ 1968 rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN]; 1969 rtlefuse->txpwr_fromeprom = true; 1970 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1971 "EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan); 1972 1973 /* Read Customer ID or Board Type!!! */ 1974 tempval = hwinfo[EEPROM_BOARDTYPE]; 1975 /* Change RF type definition */ 1976 if (tempval == 0) 1977 rtlphy->rf_type = RF_2T2R; 1978 else if (tempval == 1) 1979 rtlphy->rf_type = RF_1T2R; 1980 else if (tempval == 2) 1981 rtlphy->rf_type = RF_1T2R; 1982 else if (tempval == 3) 1983 rtlphy->rf_type = RF_1T1R; 1984 1985 /* 1T2R but 1SS (1x1 receive combining) */ 1986 rtlefuse->b1x1_recvcombine = false; 1987 if (rtlphy->rf_type == RF_1T2R) { 1988 tempval = rtl_read_byte(rtlpriv, 0x07); 1989 if (!(tempval & BIT(0))) { 1990 rtlefuse->b1x1_recvcombine = true; 1991 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1992 "RF_TYPE=1T2R but only 1SS\n"); 1993 } 1994 } 1995 rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine; 1996 rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID]; 1997 1998 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x", 1999 rtlefuse->eeprom_oemid); 2000 2001 /* set channel paln to world wide 13 */ 2002 rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13; 2003 } 2004 2005 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw) 2006 { 2007 struct rtl_priv *rtlpriv = rtl_priv(hw); 2008 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 2009 u8 tmp_u1b = 0; 2010 2011 tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD); 2012 2013 if (tmp_u1b & BIT(4)) { 2014 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); 2015 rtlefuse->epromtype = EEPROM_93C46; 2016 } else { 2017 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); 2018 rtlefuse->epromtype = EEPROM_BOOT_EFUSE; 2019 } 2020 2021 if (tmp_u1b & BIT(5)) { 2022 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); 2023 rtlefuse->autoload_failflag = false; 2024 _rtl92se_read_adapter_info(hw); 2025 } else { 2026 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n"); 2027 rtlefuse->autoload_failflag = true; 2028 } 2029 } 2030 2031 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw, 2032 struct ieee80211_sta *sta) 2033 { 2034 struct rtl_priv *rtlpriv = rtl_priv(hw); 2035 struct rtl_phy *rtlphy = &(rtlpriv->phy); 2036 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 2037 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 2038 u32 ratr_value; 2039 u8 ratr_index = 0; 2040 u8 nmode = mac->ht_enable; 2041 u8 mimo_ps = IEEE80211_SMPS_OFF; 2042 u16 shortgi_rate = 0; 2043 u32 tmp_ratr_value = 0; 2044 u8 curtxbw_40mhz = mac->bw_40; 2045 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 2046 1 : 0; 2047 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 2048 1 : 0; 2049 enum wireless_mode wirelessmode = mac->mode; 2050 2051 if (rtlhal->current_bandtype == BAND_ON_5G) 2052 ratr_value = sta->supp_rates[1] << 4; 2053 else 2054 ratr_value = sta->supp_rates[0]; 2055 if (mac->opmode == NL80211_IFTYPE_ADHOC) 2056 ratr_value = 0xfff; 2057 ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 | 2058 sta->ht_cap.mcs.rx_mask[0] << 12); 2059 switch (wirelessmode) { 2060 case WIRELESS_MODE_B: 2061 ratr_value &= 0x0000000D; 2062 break; 2063 case WIRELESS_MODE_G: 2064 ratr_value &= 0x00000FF5; 2065 break; 2066 case WIRELESS_MODE_N_24G: 2067 case WIRELESS_MODE_N_5G: 2068 nmode = 1; 2069 if (mimo_ps == IEEE80211_SMPS_STATIC) { 2070 ratr_value &= 0x0007F005; 2071 } else { 2072 u32 ratr_mask; 2073 2074 if (get_rf_type(rtlphy) == RF_1T2R || 2075 get_rf_type(rtlphy) == RF_1T1R) { 2076 if (curtxbw_40mhz) 2077 ratr_mask = 0x000ff015; 2078 else 2079 ratr_mask = 0x000ff005; 2080 } else { 2081 if (curtxbw_40mhz) 2082 ratr_mask = 0x0f0ff015; 2083 else 2084 ratr_mask = 0x0f0ff005; 2085 } 2086 2087 ratr_value &= ratr_mask; 2088 } 2089 break; 2090 default: 2091 if (rtlphy->rf_type == RF_1T2R) 2092 ratr_value &= 0x000ff0ff; 2093 else 2094 ratr_value &= 0x0f0ff0ff; 2095 2096 break; 2097 } 2098 2099 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT) 2100 ratr_value &= 0x0FFFFFFF; 2101 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT) 2102 ratr_value &= 0x0FFFFFF0; 2103 2104 if (nmode && ((curtxbw_40mhz && 2105 curshortgi_40mhz) || (!curtxbw_40mhz && 2106 curshortgi_20mhz))) { 2107 2108 ratr_value |= 0x10000000; 2109 tmp_ratr_value = (ratr_value >> 12); 2110 2111 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { 2112 if ((1 << shortgi_rate) & tmp_ratr_value) 2113 break; 2114 } 2115 2116 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | 2117 (shortgi_rate << 4) | (shortgi_rate); 2118 2119 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate); 2120 } 2121 2122 rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value); 2123 if (ratr_value & 0xfffff000) 2124 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N); 2125 else 2126 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG); 2127 2128 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n", 2129 rtl_read_dword(rtlpriv, ARFR0)); 2130 } 2131 2132 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw, 2133 struct ieee80211_sta *sta, 2134 u8 rssi_level) 2135 { 2136 struct rtl_priv *rtlpriv = rtl_priv(hw); 2137 struct rtl_phy *rtlphy = &(rtlpriv->phy); 2138 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 2139 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 2140 struct rtl_sta_info *sta_entry = NULL; 2141 u32 ratr_bitmap; 2142 u8 ratr_index = 0; 2143 u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0; 2144 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 2145 1 : 0; 2146 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 2147 1 : 0; 2148 enum wireless_mode wirelessmode = 0; 2149 bool shortgi = false; 2150 u32 ratr_value = 0; 2151 u8 shortgi_rate = 0; 2152 u32 mask = 0; 2153 u32 band = 0; 2154 bool bmulticast = false; 2155 u8 macid = 0; 2156 u8 mimo_ps = IEEE80211_SMPS_OFF; 2157 2158 sta_entry = (struct rtl_sta_info *) sta->drv_priv; 2159 wirelessmode = sta_entry->wireless_mode; 2160 if (mac->opmode == NL80211_IFTYPE_STATION) 2161 curtxbw_40mhz = mac->bw_40; 2162 else if (mac->opmode == NL80211_IFTYPE_AP || 2163 mac->opmode == NL80211_IFTYPE_ADHOC) 2164 macid = sta->aid + 1; 2165 2166 if (rtlhal->current_bandtype == BAND_ON_5G) 2167 ratr_bitmap = sta->supp_rates[1] << 4; 2168 else 2169 ratr_bitmap = sta->supp_rates[0]; 2170 if (mac->opmode == NL80211_IFTYPE_ADHOC) 2171 ratr_bitmap = 0xfff; 2172 ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | 2173 sta->ht_cap.mcs.rx_mask[0] << 12); 2174 switch (wirelessmode) { 2175 case WIRELESS_MODE_B: 2176 band |= WIRELESS_11B; 2177 ratr_index = RATR_INX_WIRELESS_B; 2178 if (ratr_bitmap & 0x0000000c) 2179 ratr_bitmap &= 0x0000000d; 2180 else 2181 ratr_bitmap &= 0x0000000f; 2182 break; 2183 case WIRELESS_MODE_G: 2184 band |= (WIRELESS_11G | WIRELESS_11B); 2185 ratr_index = RATR_INX_WIRELESS_GB; 2186 2187 if (rssi_level == 1) 2188 ratr_bitmap &= 0x00000f00; 2189 else if (rssi_level == 2) 2190 ratr_bitmap &= 0x00000ff0; 2191 else 2192 ratr_bitmap &= 0x00000ff5; 2193 break; 2194 case WIRELESS_MODE_A: 2195 band |= WIRELESS_11A; 2196 ratr_index = RATR_INX_WIRELESS_A; 2197 ratr_bitmap &= 0x00000ff0; 2198 break; 2199 case WIRELESS_MODE_N_24G: 2200 case WIRELESS_MODE_N_5G: 2201 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B); 2202 ratr_index = RATR_INX_WIRELESS_NGB; 2203 2204 if (mimo_ps == IEEE80211_SMPS_STATIC) { 2205 if (rssi_level == 1) 2206 ratr_bitmap &= 0x00070000; 2207 else if (rssi_level == 2) 2208 ratr_bitmap &= 0x0007f000; 2209 else 2210 ratr_bitmap &= 0x0007f005; 2211 } else { 2212 if (rtlphy->rf_type == RF_1T2R || 2213 rtlphy->rf_type == RF_1T1R) { 2214 if (rssi_level == 1) { 2215 ratr_bitmap &= 0x000f0000; 2216 } else if (rssi_level == 3) { 2217 ratr_bitmap &= 0x000fc000; 2218 } else if (rssi_level == 5) { 2219 ratr_bitmap &= 0x000ff000; 2220 } else { 2221 if (curtxbw_40mhz) 2222 ratr_bitmap &= 0x000ff015; 2223 else 2224 ratr_bitmap &= 0x000ff005; 2225 } 2226 } else { 2227 if (rssi_level == 1) { 2228 ratr_bitmap &= 0x0f8f0000; 2229 } else if (rssi_level == 3) { 2230 ratr_bitmap &= 0x0f8fc000; 2231 } else if (rssi_level == 5) { 2232 ratr_bitmap &= 0x0f8ff000; 2233 } else { 2234 if (curtxbw_40mhz) 2235 ratr_bitmap &= 0x0f8ff015; 2236 else 2237 ratr_bitmap &= 0x0f8ff005; 2238 } 2239 } 2240 } 2241 2242 if ((curtxbw_40mhz && curshortgi_40mhz) || 2243 (!curtxbw_40mhz && curshortgi_20mhz)) { 2244 if (macid == 0) 2245 shortgi = true; 2246 else if (macid == 1) 2247 shortgi = false; 2248 } 2249 break; 2250 default: 2251 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B); 2252 ratr_index = RATR_INX_WIRELESS_NGB; 2253 2254 if (rtlphy->rf_type == RF_1T2R) 2255 ratr_bitmap &= 0x000ff0ff; 2256 else 2257 ratr_bitmap &= 0x0f8ff0ff; 2258 break; 2259 } 2260 sta_entry->ratr_index = ratr_index; 2261 2262 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT) 2263 ratr_bitmap &= 0x0FFFFFFF; 2264 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT) 2265 ratr_bitmap &= 0x0FFFFFF0; 2266 2267 if (shortgi) { 2268 ratr_bitmap |= 0x10000000; 2269 /* Get MAX MCS available. */ 2270 ratr_value = (ratr_bitmap >> 12); 2271 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { 2272 if ((1 << shortgi_rate) & ratr_value) 2273 break; 2274 } 2275 2276 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | 2277 (shortgi_rate << 4) | (shortgi_rate); 2278 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate); 2279 } 2280 2281 mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf); 2282 2283 RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n", 2284 mask, ratr_bitmap); 2285 rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap); 2286 rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8))); 2287 2288 if (macid != 0) 2289 sta_entry->ratr_index = ratr_index; 2290 } 2291 2292 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw, 2293 struct ieee80211_sta *sta, u8 rssi_level) 2294 { 2295 struct rtl_priv *rtlpriv = rtl_priv(hw); 2296 2297 if (rtlpriv->dm.useramask) 2298 rtl92se_update_hal_rate_mask(hw, sta, rssi_level); 2299 else 2300 rtl92se_update_hal_rate_table(hw, sta); 2301 } 2302 2303 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw) 2304 { 2305 struct rtl_priv *rtlpriv = rtl_priv(hw); 2306 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 2307 u16 sifs_timer; 2308 2309 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, 2310 &mac->slot_time); 2311 sifs_timer = 0x0e0e; 2312 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); 2313 2314 } 2315 2316 /* this ifunction is for RFKILL, it's different with windows, 2317 * because UI will disable wireless when GPIO Radio Off. 2318 * And here we not check or Disable/Enable ASPM like windows*/ 2319 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) 2320 { 2321 struct rtl_priv *rtlpriv = rtl_priv(hw); 2322 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 2323 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 2324 enum rf_pwrstate rfpwr_toset /*, cur_rfstate */; 2325 unsigned long flag = 0; 2326 bool actuallyset = false; 2327 bool turnonbypowerdomain = false; 2328 2329 /* just 8191se can check gpio before firstup, 92c/92d have fixed it */ 2330 if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter)) 2331 return false; 2332 2333 if (ppsc->swrf_processing) 2334 return false; 2335 2336 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); 2337 if (ppsc->rfchange_inprogress) { 2338 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2339 return false; 2340 } else { 2341 ppsc->rfchange_inprogress = true; 2342 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2343 } 2344 2345 /* cur_rfstate = ppsc->rfpwr_state;*/ 2346 2347 /* because after _rtl92s_phy_set_rfhalt, all power 2348 * closed, so we must open some power for GPIO check, 2349 * or we will always check GPIO RFOFF here, 2350 * And we should close power after GPIO check */ 2351 if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) { 2352 _rtl92se_power_domain_init(hw); 2353 turnonbypowerdomain = true; 2354 } 2355 2356 rfpwr_toset = _rtl92se_rf_onoff_detect(hw); 2357 2358 if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) { 2359 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, 2360 "RFKILL-HW Radio ON, RF ON\n"); 2361 2362 rfpwr_toset = ERFON; 2363 ppsc->hwradiooff = false; 2364 actuallyset = true; 2365 } else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) { 2366 RT_TRACE(rtlpriv, COMP_RF, 2367 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n"); 2368 2369 rfpwr_toset = ERFOFF; 2370 ppsc->hwradiooff = true; 2371 actuallyset = true; 2372 } 2373 2374 if (actuallyset) { 2375 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); 2376 ppsc->rfchange_inprogress = false; 2377 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2378 2379 /* this not include ifconfig wlan0 down case */ 2380 /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */ 2381 } else { 2382 /* because power_domain_init may be happen when 2383 * _rtl92s_phy_set_rfhalt, this will open some powers 2384 * and cause current increasing about 40 mA for ips, 2385 * rfoff and ifconfig down, so we set 2386 * _rtl92s_phy_set_rfhalt again here */ 2387 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC && 2388 turnonbypowerdomain) { 2389 _rtl92s_phy_set_rfhalt(hw); 2390 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); 2391 } 2392 2393 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); 2394 ppsc->rfchange_inprogress = false; 2395 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2396 } 2397 2398 *valid = 1; 2399 return !ppsc->hwradiooff; 2400 2401 } 2402 2403 /* Is_wepkey just used for WEP used as group & pairwise key 2404 * if pairwise is AES ang group is WEP Is_wepkey == false.*/ 2405 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr, 2406 bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all) 2407 { 2408 struct rtl_priv *rtlpriv = rtl_priv(hw); 2409 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 2410 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 2411 u8 *macaddr = p_macaddr; 2412 2413 u32 entry_id = 0; 2414 bool is_pairwise = false; 2415 2416 static u8 cam_const_addr[4][6] = { 2417 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 2418 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, 2419 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, 2420 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} 2421 }; 2422 static u8 cam_const_broad[] = { 2423 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2424 }; 2425 2426 if (clear_all) { 2427 u8 idx = 0; 2428 u8 cam_offset = 0; 2429 u8 clear_number = 5; 2430 2431 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); 2432 2433 for (idx = 0; idx < clear_number; idx++) { 2434 rtl_cam_mark_invalid(hw, cam_offset + idx); 2435 rtl_cam_empty_entry(hw, cam_offset + idx); 2436 2437 if (idx < 5) { 2438 memset(rtlpriv->sec.key_buf[idx], 0, 2439 MAX_KEY_LEN); 2440 rtlpriv->sec.key_len[idx] = 0; 2441 } 2442 } 2443 2444 } else { 2445 switch (enc_algo) { 2446 case WEP40_ENCRYPTION: 2447 enc_algo = CAM_WEP40; 2448 break; 2449 case WEP104_ENCRYPTION: 2450 enc_algo = CAM_WEP104; 2451 break; 2452 case TKIP_ENCRYPTION: 2453 enc_algo = CAM_TKIP; 2454 break; 2455 case AESCCMP_ENCRYPTION: 2456 enc_algo = CAM_AES; 2457 break; 2458 default: 2459 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 2460 "switch case not processed\n"); 2461 enc_algo = CAM_TKIP; 2462 break; 2463 } 2464 2465 if (is_wepkey || rtlpriv->sec.use_defaultkey) { 2466 macaddr = cam_const_addr[key_index]; 2467 entry_id = key_index; 2468 } else { 2469 if (is_group) { 2470 macaddr = cam_const_broad; 2471 entry_id = key_index; 2472 } else { 2473 if (mac->opmode == NL80211_IFTYPE_AP) { 2474 entry_id = rtl_cam_get_free_entry(hw, 2475 p_macaddr); 2476 if (entry_id >= TOTAL_CAM_ENTRY) { 2477 RT_TRACE(rtlpriv, 2478 COMP_SEC, DBG_EMERG, 2479 "Can not find free hw security cam entry\n"); 2480 return; 2481 } 2482 } else { 2483 entry_id = CAM_PAIRWISE_KEY_POSITION; 2484 } 2485 2486 key_index = PAIRWISE_KEYIDX; 2487 is_pairwise = true; 2488 } 2489 } 2490 2491 if (rtlpriv->sec.key_len[key_index] == 0) { 2492 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 2493 "delete one entry, entry_id is %d\n", 2494 entry_id); 2495 if (mac->opmode == NL80211_IFTYPE_AP) 2496 rtl_cam_del_entry(hw, p_macaddr); 2497 rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); 2498 } else { 2499 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 2500 "add one entry\n"); 2501 if (is_pairwise) { 2502 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 2503 "set Pairwise key\n"); 2504 2505 rtl_cam_add_one_entry(hw, macaddr, key_index, 2506 entry_id, enc_algo, 2507 CAM_CONFIG_NO_USEDK, 2508 rtlpriv->sec.key_buf[key_index]); 2509 } else { 2510 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 2511 "set group key\n"); 2512 2513 if (mac->opmode == NL80211_IFTYPE_ADHOC) { 2514 rtl_cam_add_one_entry(hw, 2515 rtlefuse->dev_addr, 2516 PAIRWISE_KEYIDX, 2517 CAM_PAIRWISE_KEY_POSITION, 2518 enc_algo, CAM_CONFIG_NO_USEDK, 2519 rtlpriv->sec.key_buf[entry_id]); 2520 } 2521 2522 rtl_cam_add_one_entry(hw, macaddr, key_index, 2523 entry_id, enc_algo, 2524 CAM_CONFIG_NO_USEDK, 2525 rtlpriv->sec.key_buf[entry_id]); 2526 } 2527 2528 } 2529 } 2530 } 2531 2532 void rtl92se_suspend(struct ieee80211_hw *hw) 2533 { 2534 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 2535 2536 rtlpci->up_first_time = true; 2537 } 2538 2539 void rtl92se_resume(struct ieee80211_hw *hw) 2540 { 2541 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 2542 u32 val; 2543 2544 pci_read_config_dword(rtlpci->pdev, 0x40, &val); 2545 if ((val & 0x0000ff00) != 0) 2546 pci_write_config_dword(rtlpci->pdev, 0x40, 2547 val & 0xffff00ff); 2548 } 2549