xref: /linux/drivers/net/wireless/realtek/rtlwifi/rtl8192se/hw.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29 
30 #include "../wifi.h"
31 #include "../efuse.h"
32 #include "../base.h"
33 #include "../regd.h"
34 #include "../cam.h"
35 #include "../ps.h"
36 #include "../pci.h"
37 #include "reg.h"
38 #include "def.h"
39 #include "phy.h"
40 #include "dm.h"
41 #include "fw.h"
42 #include "led.h"
43 #include "hw.h"
44 
45 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
46 {
47 	struct rtl_priv *rtlpriv = rtl_priv(hw);
48 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
49 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
50 
51 	switch (variable) {
52 	case HW_VAR_RCR: {
53 			*((u32 *) (val)) = rtlpci->receive_config;
54 			break;
55 		}
56 	case HW_VAR_RF_STATE: {
57 			*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
58 			break;
59 		}
60 	case HW_VAR_FW_PSMODE_STATUS: {
61 			*((bool *) (val)) = ppsc->fw_current_inpsmode;
62 			break;
63 		}
64 	case HW_VAR_CORRECT_TSF: {
65 			u64 tsf;
66 			u32 *ptsf_low = (u32 *)&tsf;
67 			u32 *ptsf_high = ((u32 *)&tsf) + 1;
68 
69 			*ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
70 			*ptsf_low = rtl_read_dword(rtlpriv, TSFR);
71 
72 			*((u64 *) (val)) = tsf;
73 
74 			break;
75 		}
76 	case HW_VAR_MRC: {
77 			*((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
78 			break;
79 		}
80 	default: {
81 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
82 			 "switch case not processed\n");
83 			break;
84 		}
85 	}
86 }
87 
88 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
89 {
90 	struct rtl_priv *rtlpriv = rtl_priv(hw);
91 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
92 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
93 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
94 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
95 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
96 
97 	switch (variable) {
98 	case HW_VAR_ETHER_ADDR:{
99 			rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
100 			rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
101 			break;
102 		}
103 	case HW_VAR_BASIC_RATE:{
104 			u16 rate_cfg = ((u16 *) val)[0];
105 			u8 rate_index = 0;
106 
107 			if (rtlhal->version == VERSION_8192S_ACUT)
108 				rate_cfg = rate_cfg & 0x150;
109 			else
110 				rate_cfg = rate_cfg & 0x15f;
111 
112 			rate_cfg |= 0x01;
113 
114 			rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
115 			rtl_write_byte(rtlpriv, RRSR + 1,
116 				       (rate_cfg >> 8) & 0xff);
117 
118 			while (rate_cfg > 0x1) {
119 				rate_cfg = (rate_cfg >> 1);
120 				rate_index++;
121 			}
122 			rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
123 
124 			break;
125 		}
126 	case HW_VAR_BSSID:{
127 			rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
128 			rtl_write_word(rtlpriv, BSSIDR + 4,
129 				       ((u16 *)(val + 4))[0]);
130 			break;
131 		}
132 	case HW_VAR_SIFS:{
133 			rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
134 			rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
135 			break;
136 		}
137 	case HW_VAR_SLOT_TIME:{
138 			u8 e_aci;
139 
140 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
141 				 "HW_VAR_SLOT_TIME %x\n", val[0]);
142 
143 			rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
144 
145 			for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
146 				rtlpriv->cfg->ops->set_hw_reg(hw,
147 						HW_VAR_AC_PARAM,
148 						(&e_aci));
149 			}
150 			break;
151 		}
152 	case HW_VAR_ACK_PREAMBLE:{
153 			u8 reg_tmp;
154 			u8 short_preamble = (bool) (*val);
155 			reg_tmp = (mac->cur_40_prime_sc) << 5;
156 			if (short_preamble)
157 				reg_tmp |= 0x80;
158 
159 			rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
160 			break;
161 		}
162 	case HW_VAR_AMPDU_MIN_SPACE:{
163 			u8 min_spacing_to_set;
164 			u8 sec_min_space;
165 
166 			min_spacing_to_set = *val;
167 			if (min_spacing_to_set <= 7) {
168 				if (rtlpriv->sec.pairwise_enc_algorithm ==
169 				    NO_ENCRYPTION)
170 					sec_min_space = 0;
171 				else
172 					sec_min_space = 1;
173 
174 				if (min_spacing_to_set < sec_min_space)
175 					min_spacing_to_set = sec_min_space;
176 				if (min_spacing_to_set > 5)
177 					min_spacing_to_set = 5;
178 
179 				mac->min_space_cfg =
180 						((mac->min_space_cfg & 0xf8) |
181 						min_spacing_to_set);
182 
183 				*val = min_spacing_to_set;
184 
185 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
186 					 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
187 					 mac->min_space_cfg);
188 
189 				rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
190 					       mac->min_space_cfg);
191 			}
192 			break;
193 		}
194 	case HW_VAR_SHORTGI_DENSITY:{
195 			u8 density_to_set;
196 
197 			density_to_set = *val;
198 			mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
199 			mac->min_space_cfg |= (density_to_set << 3);
200 
201 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
202 				 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
203 				 mac->min_space_cfg);
204 
205 			rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
206 				       mac->min_space_cfg);
207 
208 			break;
209 		}
210 	case HW_VAR_AMPDU_FACTOR:{
211 			u8 factor_toset;
212 			u8 regtoset;
213 			u8 factorlevel[18] = {
214 				2, 4, 4, 7, 7, 13, 13,
215 				13, 2, 7, 7, 13, 13,
216 				15, 15, 15, 15, 0};
217 			u8 index = 0;
218 
219 			factor_toset = *val;
220 			if (factor_toset <= 3) {
221 				factor_toset = (1 << (factor_toset + 2));
222 				if (factor_toset > 0xf)
223 					factor_toset = 0xf;
224 
225 				for (index = 0; index < 17; index++) {
226 					if (factorlevel[index] > factor_toset)
227 						factorlevel[index] =
228 								 factor_toset;
229 				}
230 
231 				for (index = 0; index < 8; index++) {
232 					regtoset = ((factorlevel[index * 2]) |
233 						    (factorlevel[index *
234 						    2 + 1] << 4));
235 					rtl_write_byte(rtlpriv,
236 						       AGGLEN_LMT_L + index,
237 						       regtoset);
238 				}
239 
240 				regtoset = ((factorlevel[16]) |
241 					    (factorlevel[17] << 4));
242 				rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
243 
244 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
245 					 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
246 					 factor_toset);
247 			}
248 			break;
249 		}
250 	case HW_VAR_AC_PARAM:{
251 			u8 e_aci = *val;
252 			rtl92s_dm_init_edca_turbo(hw);
253 
254 			if (rtlpci->acm_method != EACMWAY2_SW)
255 				rtlpriv->cfg->ops->set_hw_reg(hw,
256 						 HW_VAR_ACM_CTRL,
257 						 &e_aci);
258 			break;
259 		}
260 	case HW_VAR_ACM_CTRL:{
261 			u8 e_aci = *val;
262 			union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
263 							mac->ac[0].aifs));
264 			u8 acm = p_aci_aifsn->f.acm;
265 			u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
266 
267 			acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
268 				   0x0 : 0x1);
269 
270 			if (acm) {
271 				switch (e_aci) {
272 				case AC0_BE:
273 					acm_ctrl |= AcmHw_BeqEn;
274 					break;
275 				case AC2_VI:
276 					acm_ctrl |= AcmHw_ViqEn;
277 					break;
278 				case AC3_VO:
279 					acm_ctrl |= AcmHw_VoqEn;
280 					break;
281 				default:
282 					RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
283 						 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
284 						 acm);
285 					break;
286 				}
287 			} else {
288 				switch (e_aci) {
289 				case AC0_BE:
290 					acm_ctrl &= (~AcmHw_BeqEn);
291 					break;
292 				case AC2_VI:
293 					acm_ctrl &= (~AcmHw_ViqEn);
294 					break;
295 				case AC3_VO:
296 					acm_ctrl &= (~AcmHw_VoqEn);
297 					break;
298 				default:
299 					RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
300 						 "switch case not processed\n");
301 					break;
302 				}
303 			}
304 
305 			RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
306 				 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
307 			rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
308 			break;
309 		}
310 	case HW_VAR_RCR:{
311 			rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
312 			rtlpci->receive_config = ((u32 *) (val))[0];
313 			break;
314 		}
315 	case HW_VAR_RETRY_LIMIT:{
316 			u8 retry_limit = val[0];
317 
318 			rtl_write_word(rtlpriv, RETRY_LIMIT,
319 				       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
320 				       retry_limit << RETRY_LIMIT_LONG_SHIFT);
321 			break;
322 		}
323 	case HW_VAR_DUAL_TSF_RST: {
324 			break;
325 		}
326 	case HW_VAR_EFUSE_BYTES: {
327 			rtlefuse->efuse_usedbytes = *((u16 *) val);
328 			break;
329 		}
330 	case HW_VAR_EFUSE_USAGE: {
331 			rtlefuse->efuse_usedpercentage = *val;
332 			break;
333 		}
334 	case HW_VAR_IO_CMD: {
335 			break;
336 		}
337 	case HW_VAR_WPA_CONFIG: {
338 			rtl_write_byte(rtlpriv, REG_SECR, *val);
339 			break;
340 		}
341 	case HW_VAR_SET_RPWM:{
342 			break;
343 		}
344 	case HW_VAR_H2C_FW_PWRMODE:{
345 			break;
346 		}
347 	case HW_VAR_FW_PSMODE_STATUS: {
348 			ppsc->fw_current_inpsmode = *((bool *) val);
349 			break;
350 		}
351 	case HW_VAR_H2C_FW_JOINBSSRPT:{
352 			break;
353 		}
354 	case HW_VAR_AID:{
355 			break;
356 		}
357 	case HW_VAR_CORRECT_TSF:{
358 			break;
359 		}
360 	case HW_VAR_MRC: {
361 			bool bmrc_toset = *((bool *)val);
362 			u8 u1bdata = 0;
363 
364 			if (bmrc_toset) {
365 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
366 					      MASKBYTE0, 0x33);
367 				u1bdata = (u8)rtl_get_bbreg(hw,
368 						ROFDM1_TRXPATHENABLE,
369 						MASKBYTE0);
370 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
371 					      MASKBYTE0,
372 					      ((u1bdata & 0xf0) | 0x03));
373 				u1bdata = (u8)rtl_get_bbreg(hw,
374 						ROFDM0_TRXPATHENABLE,
375 						MASKBYTE1);
376 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
377 					      MASKBYTE1,
378 					      (u1bdata | 0x04));
379 
380 				/* Update current settings. */
381 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
382 			} else {
383 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
384 					      MASKBYTE0, 0x13);
385 				u1bdata = (u8)rtl_get_bbreg(hw,
386 						 ROFDM1_TRXPATHENABLE,
387 						 MASKBYTE0);
388 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
389 					      MASKBYTE0,
390 					      ((u1bdata & 0xf0) | 0x01));
391 				u1bdata = (u8)rtl_get_bbreg(hw,
392 						ROFDM0_TRXPATHENABLE,
393 						MASKBYTE1);
394 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
395 					      MASKBYTE1, (u1bdata & 0xfb));
396 
397 				/* Update current settings. */
398 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
399 			}
400 
401 			break;
402 		}
403 	case HW_VAR_FW_LPS_ACTION: {
404 		bool enter_fwlps = *((bool *)val);
405 		u8 rpwm_val, fw_pwrmode;
406 		bool fw_current_inps;
407 
408 		if (enter_fwlps) {
409 			rpwm_val = 0x02;	/* RF off */
410 			fw_current_inps = true;
411 			rtlpriv->cfg->ops->set_hw_reg(hw,
412 					HW_VAR_FW_PSMODE_STATUS,
413 					(u8 *)(&fw_current_inps));
414 			rtlpriv->cfg->ops->set_hw_reg(hw,
415 					HW_VAR_H2C_FW_PWRMODE,
416 					&ppsc->fwctrl_psmode);
417 
418 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
419 						      &rpwm_val);
420 		} else {
421 			rpwm_val = 0x0C;	/* RF on */
422 			fw_pwrmode = FW_PS_ACTIVE_MODE;
423 			fw_current_inps = false;
424 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
425 						      &rpwm_val);
426 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
427 						      &fw_pwrmode);
428 
429 			rtlpriv->cfg->ops->set_hw_reg(hw,
430 					HW_VAR_FW_PSMODE_STATUS,
431 					(u8 *)(&fw_current_inps));
432 		}
433 		break; }
434 	default:
435 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
436 			 "switch case not processed\n");
437 		break;
438 	}
439 
440 }
441 
442 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
443 {
444 	struct rtl_priv *rtlpriv = rtl_priv(hw);
445 	u8 sec_reg_value = 0x0;
446 
447 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
448 		 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
449 		 rtlpriv->sec.pairwise_enc_algorithm,
450 		 rtlpriv->sec.group_enc_algorithm);
451 
452 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
453 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
454 			 "not open hw encryption\n");
455 		return;
456 	}
457 
458 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
459 
460 	if (rtlpriv->sec.use_defaultkey) {
461 		sec_reg_value |= SCR_TXUSEDK;
462 		sec_reg_value |= SCR_RXUSEDK;
463 	}
464 
465 	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
466 		 sec_reg_value);
467 
468 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
469 
470 }
471 
472 static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
473 {
474 	struct rtl_priv *rtlpriv = rtl_priv(hw);
475 	u8 waitcount = 100;
476 	bool bresult = false;
477 	u8 tmpvalue;
478 
479 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
480 
481 	/* Wait the MAC synchronized. */
482 	udelay(400);
483 
484 	/* Check if it is set ready. */
485 	tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
486 	bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
487 
488 	if ((data & (BIT(6) | BIT(7))) == false) {
489 		waitcount = 100;
490 		tmpvalue = 0;
491 
492 		while (1) {
493 			waitcount--;
494 
495 			tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
496 			if ((tmpvalue & BIT(6)))
497 				break;
498 
499 			pr_err("wait for BIT(6) return value %x\n", tmpvalue);
500 			if (waitcount == 0)
501 				break;
502 
503 			udelay(10);
504 		}
505 
506 		if (waitcount == 0)
507 			bresult = false;
508 		else
509 			bresult = true;
510 	}
511 
512 	return bresult;
513 }
514 
515 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
516 {
517 	struct rtl_priv *rtlpriv = rtl_priv(hw);
518 	u8 u1tmp;
519 
520 	/* The following config GPIO function */
521 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
522 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
523 
524 	/* config GPIO3 to input */
525 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
526 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
527 
528 }
529 
530 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
531 {
532 	struct rtl_priv *rtlpriv = rtl_priv(hw);
533 	u8 u1tmp;
534 	u8 retval = ERFON;
535 
536 	/* The following config GPIO function */
537 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
538 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
539 
540 	/* config GPIO3 to input */
541 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
542 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
543 
544 	/* On some of the platform, driver cannot read correct
545 	 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
546 	mdelay(10);
547 
548 	/* check GPIO3 */
549 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
550 	retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
551 
552 	return retval;
553 }
554 
555 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
556 {
557 	struct rtl_priv *rtlpriv = rtl_priv(hw);
558 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
559 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
560 
561 	u8 i;
562 	u8 tmpu1b;
563 	u16 tmpu2b;
564 	u8 pollingcnt = 20;
565 
566 	if (rtlpci->first_init) {
567 		/* Reset PCIE Digital */
568 		tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
569 		tmpu1b &= 0xFE;
570 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
571 		udelay(1);
572 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
573 	}
574 
575 	/* Switch to SW IO control */
576 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
577 	if (tmpu1b & BIT(7)) {
578 		tmpu1b &= ~(BIT(6) | BIT(7));
579 
580 		/* Set failed, return to prevent hang. */
581 		if (!_rtl92se_halset_sysclk(hw, tmpu1b))
582 			return;
583 	}
584 
585 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
586 	udelay(50);
587 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
588 	udelay(50);
589 
590 	/* Clear FW RPWM for FW control LPS.*/
591 	rtl_write_byte(rtlpriv, RPWM, 0x0);
592 
593 	/* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
594 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
595 	tmpu1b &= 0x73;
596 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
597 	/* wait for BIT 10/11/15 to pull high automatically!! */
598 	mdelay(1);
599 
600 	rtl_write_byte(rtlpriv, CMDR, 0);
601 	rtl_write_byte(rtlpriv, TCR, 0);
602 
603 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
604 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
605 	tmpu1b |= 0x08;
606 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
607 	tmpu1b &= ~(BIT(3));
608 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
609 
610 	/* Enable AFE clock source */
611 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
612 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
613 	/* Delay 1.5ms */
614 	mdelay(2);
615 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
616 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
617 
618 	/* Enable AFE Macro Block's Bandgap */
619 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
620 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
621 	mdelay(1);
622 
623 	/* Enable AFE Mbias */
624 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
625 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
626 	mdelay(1);
627 
628 	/* Enable LDOA15 block	*/
629 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
630 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
631 
632 	/* Set Digital Vdd to Retention isolation Path. */
633 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
634 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
635 
636 	/* For warm reboot NIC disappera bug. */
637 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
638 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
639 
640 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
641 
642 	/* Enable AFE PLL Macro Block */
643 	/* We need to delay 100u before enabling PLL. */
644 	udelay(200);
645 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
646 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
647 
648 	/* for divider reset  */
649 	udelay(100);
650 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
651 		       BIT(4) | BIT(6)));
652 	udelay(10);
653 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
654 	udelay(10);
655 
656 	/* Enable MAC 80MHZ clock  */
657 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
658 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
659 	mdelay(1);
660 
661 	/* Release isolation AFE PLL & MD */
662 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
663 
664 	/* Enable MAC clock */
665 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
666 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
667 
668 	/* Enable Core digital and enable IOREG R/W */
669 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
670 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
671 
672 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
673 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
674 
675 	/* enable REG_EN */
676 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
677 
678 	/* Switch the control path. */
679 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
680 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
681 
682 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
683 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
684 	if (!_rtl92se_halset_sysclk(hw, tmpu1b))
685 		return; /* Set failed, return to prevent hang. */
686 
687 	rtl_write_word(rtlpriv, CMDR, 0x07FC);
688 
689 	/* MH We must enable the section of code to prevent load IMEM fail. */
690 	/* Load MAC register from WMAc temporarily We simulate macreg. */
691 	/* txt HW will provide MAC txt later  */
692 	rtl_write_byte(rtlpriv, 0x6, 0x30);
693 	rtl_write_byte(rtlpriv, 0x49, 0xf0);
694 
695 	rtl_write_byte(rtlpriv, 0x4b, 0x81);
696 
697 	rtl_write_byte(rtlpriv, 0xb5, 0x21);
698 
699 	rtl_write_byte(rtlpriv, 0xdc, 0xff);
700 	rtl_write_byte(rtlpriv, 0xdd, 0xff);
701 	rtl_write_byte(rtlpriv, 0xde, 0xff);
702 	rtl_write_byte(rtlpriv, 0xdf, 0xff);
703 
704 	rtl_write_byte(rtlpriv, 0x11a, 0x00);
705 	rtl_write_byte(rtlpriv, 0x11b, 0x00);
706 
707 	for (i = 0; i < 32; i++)
708 		rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
709 
710 	rtl_write_byte(rtlpriv, 0x236, 0xff);
711 
712 	rtl_write_byte(rtlpriv, 0x503, 0x22);
713 
714 	if (ppsc->support_aspm && !ppsc->support_backdoor)
715 		rtl_write_byte(rtlpriv, 0x560, 0x40);
716 	else
717 		rtl_write_byte(rtlpriv, 0x560, 0x00);
718 
719 	rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
720 
721 	/* Set RX Desc Address */
722 	rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
723 	rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
724 
725 	/* Set TX Desc Address */
726 	rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
727 	rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
728 	rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
729 	rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
730 	rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
731 	rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
732 	rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
733 	rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
734 	rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
735 
736 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
737 
738 	/* To make sure that TxDMA can ready to download FW. */
739 	/* We should reset TxDMA if IMEM RPT was not ready. */
740 	do {
741 		tmpu1b = rtl_read_byte(rtlpriv, TCR);
742 		if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
743 			break;
744 
745 		udelay(5);
746 	} while (pollingcnt--);
747 
748 	if (pollingcnt <= 0) {
749 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
750 			 "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
751 			 tmpu1b);
752 		tmpu1b = rtl_read_byte(rtlpriv, CMDR);
753 		rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
754 		udelay(2);
755 		/* Reset TxDMA */
756 		rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
757 	}
758 
759 	/* After MACIO reset,we must refresh LED state. */
760 	if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
761 	   (ppsc->rfoff_reason == 0)) {
762 		struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
763 		struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
764 		enum rf_pwrstate rfpwr_state_toset;
765 		rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
766 
767 		if (rfpwr_state_toset == ERFON)
768 			rtl92se_sw_led_on(hw, pLed0);
769 	}
770 }
771 
772 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
773 {
774 	struct rtl_priv *rtlpriv = rtl_priv(hw);
775 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
776 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
777 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
778 	u8 i;
779 	u16 tmpu2b;
780 
781 	/* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
782 
783 	/* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
784 	/* Turn on 0x40 Command register */
785 	rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
786 			SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
787 			RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
788 
789 	/* Set TCR TX DMA pre 2 FULL enable bit	*/
790 	rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
791 			TXDMAPRE2FULL);
792 
793 	/* Set RCR	*/
794 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
795 
796 	/* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
797 
798 	/* 4. Timing Control Register  (Offset: 0x0080 - 0x009F) */
799 	/* Set CCK/OFDM SIFS */
800 	/* CCK SIFS shall always be 10us. */
801 	rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
802 	rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
803 
804 	/* Set AckTimeout */
805 	rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
806 
807 	/* Beacon related */
808 	rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
809 	rtl_write_word(rtlpriv, ATIMWND, 2);
810 
811 	/* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
812 	/* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
813 	/* Firmware allocate now, associate with FW internal setting.!!! */
814 
815 	/* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
816 	/* 5.3 Set driver info, we only accept PHY status now. */
817 	/* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO  */
818 	rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
819 
820 	/* 6. Adaptive Control Register  (Offset: 0x0160 - 0x01CF) */
821 	/* Set RRSR to all legacy rate and HT rate
822 	 * CCK rate is supported by default.
823 	 * CCK rate will be filtered out only when associated
824 	 * AP does not support it.
825 	 * Only enable ACK rate to OFDM 24M
826 	 * Disable RRSR for CCK rate in A-Cut	*/
827 
828 	if (rtlhal->version == VERSION_8192S_ACUT)
829 		rtl_write_byte(rtlpriv, RRSR, 0xf0);
830 	else if (rtlhal->version == VERSION_8192S_BCUT)
831 		rtl_write_byte(rtlpriv, RRSR, 0xff);
832 	rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
833 	rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
834 
835 	/* A-Cut IC do not support CCK rate. We forbid ARFR to */
836 	/* fallback to CCK rate */
837 	for (i = 0; i < 8; i++) {
838 		/*Disable RRSR for CCK rate in A-Cut */
839 		if (rtlhal->version == VERSION_8192S_ACUT)
840 			rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
841 	}
842 
843 	/* Different rate use different AMPDU size */
844 	/* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
845 	rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
846 	/* MCS0/1/2/3 use max AMPDU size 4*2=8K */
847 	rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
848 	/* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
849 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
850 	/* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
851 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
852 	/* MCS12/13/14/15 use max AMPDU size 15*2=30K */
853 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
854 
855 	/* Set Data / Response auto rate fallack retry count */
856 	rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
857 	rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
858 	rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
859 	rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
860 
861 	/* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
862 	/* Set all rate to support SG */
863 	rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
864 
865 	/* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
866 	/* Set NAV protection length */
867 	rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
868 	/* CF-END Threshold */
869 	rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
870 	/* Set AMPDU minimum space */
871 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
872 	/* Set TXOP stall control for several queue/HI/BCN/MGT/ */
873 	rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
874 
875 	/* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
876 	/* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
877 	/* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
878 	/* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
879 	/* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
880 
881 	/* 14. Set driver info, we only accept PHY status now. */
882 	rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
883 
884 	/* 15. For EEPROM R/W Workaround */
885 	/* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
886 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
887 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
888 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
889 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
890 
891 	/* 17. For EFUSE */
892 	/* We may R/W EFUSE in EEPROM mode */
893 	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
894 		u8	tempval;
895 
896 		tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
897 		tempval &= 0xFE;
898 		rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
899 
900 		/* Change Program timing */
901 		rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
902 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
903 	}
904 
905 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
906 
907 }
908 
909 static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
910 {
911 	struct rtl_priv *rtlpriv = rtl_priv(hw);
912 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
913 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
914 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
915 
916 	u8 reg_bw_opmode = 0;
917 	u32 reg_rrsr = 0;
918 	u8 regtmp = 0;
919 
920 	reg_bw_opmode = BW_OPMODE_20MHZ;
921 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
922 
923 	regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
924 	reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
925 	rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
926 	rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
927 
928 	/* Set Retry Limit here */
929 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
930 			(u8 *)(&rtlpci->shortretry_limit));
931 
932 	rtl_write_byte(rtlpriv, MLT, 0x8f);
933 
934 	/* For Min Spacing configuration. */
935 	switch (rtlphy->rf_type) {
936 	case RF_1T2R:
937 	case RF_1T1R:
938 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
939 		break;
940 	case RF_2T2R:
941 	case RF_2T2R_GREEN:
942 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
943 		break;
944 	}
945 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
946 }
947 
948 int rtl92se_hw_init(struct ieee80211_hw *hw)
949 {
950 	struct rtl_priv *rtlpriv = rtl_priv(hw);
951 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
952 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
953 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
954 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
955 	u8 tmp_byte = 0;
956 	unsigned long flags;
957 	bool rtstatus = true;
958 	u8 tmp_u1b;
959 	int err = false;
960 	u8 i;
961 	int wdcapra_add[] = {
962 		EDCAPARA_BE, EDCAPARA_BK,
963 		EDCAPARA_VI, EDCAPARA_VO};
964 	u8 secr_value = 0x0;
965 
966 	rtlpci->being_init_adapter = true;
967 
968 	/* As this function can take a very long time (up to 350 ms)
969 	 * and can be called with irqs disabled, reenable the irqs
970 	 * to let the other devices continue being serviced.
971 	 *
972 	 * It is safe doing so since our own interrupts will only be enabled
973 	 * in a subsequent step.
974 	 */
975 	local_save_flags(flags);
976 	local_irq_enable();
977 
978 	rtlpriv->intf_ops->disable_aspm(hw);
979 
980 	/* 1. MAC Initialize */
981 	/* Before FW download, we have to set some MAC register */
982 	_rtl92se_macconfig_before_fwdownload(hw);
983 
984 	rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
985 			PMC_FSM) >> 16) & 0xF);
986 
987 	rtl8192se_gpiobit3_cfg_inputmode(hw);
988 
989 	/* 2. download firmware */
990 	rtstatus = rtl92s_download_fw(hw);
991 	if (!rtstatus) {
992 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
993 			 "Failed to download FW. Init HW without FW now... "
994 			 "Please copy FW into /lib/firmware/rtlwifi\n");
995 		err = 1;
996 		goto exit;
997 	}
998 
999 	/* After FW download, we have to reset MAC register */
1000 	_rtl92se_macconfig_after_fwdownload(hw);
1001 
1002 	/*Retrieve default FW Cmd IO map. */
1003 	rtlhal->fwcmd_iomap =	rtl_read_word(rtlpriv, LBUS_MON_ADDR);
1004 	rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
1005 
1006 	/* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
1007 	if (!rtl92s_phy_mac_config(hw)) {
1008 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n");
1009 		err = rtstatus;
1010 		goto exit;
1011 	}
1012 
1013 	/* because last function modify RCR, so we update
1014 	 * rcr var here, or TP will unstable for receive_config
1015 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
1016 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
1017 	 */
1018 	rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
1019 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
1020 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
1021 
1022 	/* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
1023 	/* We must set flag avoid BB/RF config period later!! */
1024 	rtl_write_dword(rtlpriv, CMDR, 0x37FC);
1025 
1026 	/* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
1027 	if (!rtl92s_phy_bb_config(hw)) {
1028 		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n");
1029 		err = rtstatus;
1030 		goto exit;
1031 	}
1032 
1033 	/* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1034 	/* Before initalizing RF. We can not use FW to do RF-R/W. */
1035 
1036 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
1037 
1038 	/* Before RF-R/W we must execute the IO from Scott's suggestion. */
1039 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1040 	if (rtlhal->version == VERSION_8192S_ACUT)
1041 		rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1042 	else
1043 		rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1044 
1045 	if (!rtl92s_phy_rf_config(hw)) {
1046 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1047 		err = rtstatus;
1048 		goto exit;
1049 	}
1050 
1051 	/* After read predefined TXT, we must set BB/MAC/RF
1052 	 * register as our requirement */
1053 
1054 	rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1055 							   (enum radio_path)0,
1056 							   RF_CHNLBW,
1057 							   RFREG_OFFSET_MASK);
1058 	rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1059 							   (enum radio_path)1,
1060 							   RF_CHNLBW,
1061 							   RFREG_OFFSET_MASK);
1062 
1063 	/*---- Set CCK and OFDM Block "ON"----*/
1064 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1065 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1066 
1067 	/*3 Set Hardware(Do nothing now) */
1068 	_rtl92se_hw_configure(hw);
1069 
1070 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1071 	/* TX power index for different rate set. */
1072 	/* Get original hw reg values */
1073 	rtl92s_phy_get_hw_reg_originalvalue(hw);
1074 	/* Write correct tx power index */
1075 	rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1076 
1077 	/* We must set MAC address after firmware download. */
1078 	for (i = 0; i < 6; i++)
1079 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1080 
1081 	/* EEPROM R/W workaround */
1082 	tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1083 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1084 
1085 	rtl_write_byte(rtlpriv, 0x4d, 0x0);
1086 
1087 	if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1088 		tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1089 		tmp_byte = tmp_byte | BIT(5);
1090 		rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1091 		rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1092 	}
1093 
1094 	/* We enable high power and RA related mechanism after NIC
1095 	 * initialized. */
1096 	if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
1097 		/* Fw v.53 and later. */
1098 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1099 	} else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
1100 		/* Fw v.52. */
1101 		rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
1102 		rtl92s_phy_chk_fwcmd_iodone(hw);
1103 	} else {
1104 		/* Compatible earlier FW version. */
1105 		rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
1106 		rtl92s_phy_chk_fwcmd_iodone(hw);
1107 		rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
1108 		rtl92s_phy_chk_fwcmd_iodone(hw);
1109 		rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
1110 		rtl92s_phy_chk_fwcmd_iodone(hw);
1111 	}
1112 
1113 	/* Add to prevent ASPM bug. */
1114 	/* Always enable hst and NIC clock request. */
1115 	rtl92s_phy_switch_ephy_parameter(hw);
1116 
1117 	/* Security related
1118 	 * 1. Clear all H/W keys.
1119 	 * 2. Enable H/W encryption/decryption. */
1120 	rtl_cam_reset_all_entry(hw);
1121 	secr_value |= SCR_TXENCENABLE;
1122 	secr_value |= SCR_RXENCENABLE;
1123 	secr_value |= SCR_NOSKMC;
1124 	rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1125 
1126 	for (i = 0; i < 4; i++)
1127 		rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1128 
1129 	if (rtlphy->rf_type == RF_1T2R) {
1130 		bool mrc2set = true;
1131 		/* Turn on B-Path */
1132 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1133 	}
1134 
1135 	rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1136 	rtl92s_dm_init(hw);
1137 exit:
1138 	local_irq_restore(flags);
1139 	rtlpci->being_init_adapter = false;
1140 	return err;
1141 }
1142 
1143 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
1144 {
1145 	/* This is a stub. */
1146 }
1147 
1148 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1149 {
1150 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1151 	u32 reg_rcr;
1152 
1153 	if (rtlpriv->psc.rfpwr_state != ERFON)
1154 		return;
1155 
1156 	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1157 
1158 	if (check_bssid) {
1159 		reg_rcr |= (RCR_CBSSID);
1160 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1161 	} else if (!check_bssid) {
1162 		reg_rcr &= (~RCR_CBSSID);
1163 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1164 	}
1165 
1166 }
1167 
1168 static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1169 				     enum nl80211_iftype type)
1170 {
1171 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1172 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1173 	u32 temp;
1174 	bt_msr &= ~MSR_LINK_MASK;
1175 
1176 	switch (type) {
1177 	case NL80211_IFTYPE_UNSPECIFIED:
1178 		bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1179 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1180 			 "Set Network type to NO LINK!\n");
1181 		break;
1182 	case NL80211_IFTYPE_ADHOC:
1183 		bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1184 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1185 			 "Set Network type to Ad Hoc!\n");
1186 		break;
1187 	case NL80211_IFTYPE_STATION:
1188 		bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1189 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1190 			 "Set Network type to STA!\n");
1191 		break;
1192 	case NL80211_IFTYPE_AP:
1193 		bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1194 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1195 			 "Set Network type to AP!\n");
1196 		break;
1197 	default:
1198 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1199 			 "Network type %d not supported!\n", type);
1200 		return 1;
1201 
1202 	}
1203 
1204 	if (type != NL80211_IFTYPE_AP &&
1205 	    rtlpriv->mac80211.link_state < MAC80211_LINKED)
1206 		bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK;
1207 	rtl_write_byte(rtlpriv, MSR, bt_msr);
1208 
1209 	temp = rtl_read_dword(rtlpriv, TCR);
1210 	rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1211 	rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1212 
1213 
1214 	return 0;
1215 }
1216 
1217 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1218 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1219 {
1220 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1221 
1222 	if (_rtl92se_set_media_status(hw, type))
1223 		return -EOPNOTSUPP;
1224 
1225 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1226 		if (type != NL80211_IFTYPE_AP)
1227 			rtl92se_set_check_bssid(hw, true);
1228 	} else {
1229 		rtl92se_set_check_bssid(hw, false);
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1236 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1237 {
1238 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1239 	rtl92s_dm_init_edca_turbo(hw);
1240 
1241 	switch (aci) {
1242 	case AC1_BK:
1243 		rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1244 		break;
1245 	case AC0_BE:
1246 		/* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1247 		break;
1248 	case AC2_VI:
1249 		rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1250 		break;
1251 	case AC3_VO:
1252 		rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1253 		break;
1254 	default:
1255 		RT_ASSERT(false, "invalid aci: %d !\n", aci);
1256 		break;
1257 	}
1258 }
1259 
1260 void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1261 {
1262 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1263 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1264 
1265 	rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1266 	/* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1267 	rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1268 	rtlpci->irq_enabled = true;
1269 }
1270 
1271 void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1272 {
1273 	struct rtl_priv *rtlpriv;
1274 	struct rtl_pci *rtlpci;
1275 
1276 	rtlpriv = rtl_priv(hw);
1277 	/* if firmware not available, no interrupts */
1278 	if (!rtlpriv || !rtlpriv->max_fw_size)
1279 		return;
1280 	rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1281 	rtl_write_dword(rtlpriv, INTA_MASK, 0);
1282 	rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1283 	rtlpci->irq_enabled = false;
1284 }
1285 
1286 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1287 {
1288 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1289 	u8 waitcnt = 100;
1290 	bool result = false;
1291 	u8 tmp;
1292 
1293 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1294 
1295 	/* Wait the MAC synchronized. */
1296 	udelay(400);
1297 
1298 	/* Check if it is set ready. */
1299 	tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1300 	result = ((tmp & BIT(7)) == (data & BIT(7)));
1301 
1302 	if ((data & (BIT(6) | BIT(7))) == false) {
1303 		waitcnt = 100;
1304 		tmp = 0;
1305 
1306 		while (1) {
1307 			waitcnt--;
1308 			tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1309 
1310 			if ((tmp & BIT(6)))
1311 				break;
1312 
1313 			pr_err("wait for BIT(6) return value %x\n", tmp);
1314 
1315 			if (waitcnt == 0)
1316 				break;
1317 			udelay(10);
1318 		}
1319 
1320 		if (waitcnt == 0)
1321 			result = false;
1322 		else
1323 			result = true;
1324 	}
1325 
1326 	return result;
1327 }
1328 
1329 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1330 {
1331 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1332 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1333 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1334 	u8 u1btmp;
1335 
1336 	if (rtlhal->driver_going2unload)
1337 		rtl_write_byte(rtlpriv, 0x560, 0x0);
1338 
1339 	/* Power save for BB/RF */
1340 	u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1341 	u1btmp |= BIT(0);
1342 	rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1343 	rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1344 	rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1345 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1346 	udelay(100);
1347 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1348 	rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1349 	udelay(10);
1350 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1351 	udelay(10);
1352 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1353 	udelay(10);
1354 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1355 	rtl_write_word(rtlpriv, CMDR, 0x0000);
1356 
1357 	if (rtlhal->driver_going2unload) {
1358 		u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1359 		u1btmp &= ~(BIT(0));
1360 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1361 	}
1362 
1363 	u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1364 
1365 	/* Add description. After switch control path. register
1366 	 * after page1 will be invisible. We can not do any IO
1367 	 * for register>0x40. After resume&MACIO reset, we need
1368 	 * to remember previous reg content. */
1369 	if (u1btmp & BIT(7)) {
1370 		u1btmp &= ~(BIT(6) | BIT(7));
1371 		if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1372 			pr_err("Switch ctrl path fail\n");
1373 			return;
1374 		}
1375 	}
1376 
1377 	/* Power save for MAC */
1378 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS  &&
1379 		!rtlhal->driver_going2unload) {
1380 		/* enable LED function */
1381 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1382 	/* SW/HW radio off or halt adapter!! For example S3/S4 */
1383 	} else {
1384 		/* LED function disable. Power range is about 8mA now. */
1385 		/* if write 0xF1 disconnet_pci power
1386 		 *	 ifconfig wlan0 down power are both high 35:70 */
1387 		/* if write oxF9 disconnet_pci power
1388 		 * ifconfig wlan0 down power are both low  12:45*/
1389 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1390 	}
1391 
1392 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1393 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1394 	rtl_write_byte(rtlpriv,  AFE_PLL_CTRL, 0x00);
1395 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1396 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1397 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1398 
1399 }
1400 
1401 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1402 {
1403 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1404 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1405 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
1406 	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
1407 
1408 	if (rtlpci->up_first_time == 1)
1409 		return;
1410 
1411 	if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1412 		rtl92se_sw_led_on(hw, pLed0);
1413 	else
1414 		rtl92se_sw_led_off(hw, pLed0);
1415 }
1416 
1417 
1418 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1419 {
1420 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1421 	u16 tmpu2b;
1422 	u8 tmpu1b;
1423 
1424 	rtlpriv->psc.pwrdomain_protect = true;
1425 
1426 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1427 	if (tmpu1b & BIT(7)) {
1428 		tmpu1b &= ~(BIT(6) | BIT(7));
1429 		if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1430 			rtlpriv->psc.pwrdomain_protect = false;
1431 			return;
1432 		}
1433 	}
1434 
1435 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1436 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1437 
1438 	/* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1439 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1440 
1441 	/* If IPS we need to turn LED on. So we not
1442 	 * not disable BIT 3/7 of reg3. */
1443 	if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1444 		tmpu1b &= 0xFB;
1445 	else
1446 		tmpu1b &= 0x73;
1447 
1448 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1449 	/* wait for BIT 10/11/15 to pull high automatically!! */
1450 	mdelay(1);
1451 
1452 	rtl_write_byte(rtlpriv, CMDR, 0);
1453 	rtl_write_byte(rtlpriv, TCR, 0);
1454 
1455 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1456 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1457 	tmpu1b |= 0x08;
1458 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1459 	tmpu1b &= ~(BIT(3));
1460 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1461 
1462 	/* Enable AFE clock source */
1463 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1464 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1465 	/* Delay 1.5ms */
1466 	udelay(1500);
1467 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1468 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1469 
1470 	/* Enable AFE Macro Block's Bandgap */
1471 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1472 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1473 	mdelay(1);
1474 
1475 	/* Enable AFE Mbias */
1476 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1477 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1478 	mdelay(1);
1479 
1480 	/* Enable LDOA15 block */
1481 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1482 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1483 
1484 	/* Set Digital Vdd to Retention isolation Path. */
1485 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1486 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1487 
1488 
1489 	/* For warm reboot NIC disappera bug. */
1490 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1491 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1492 
1493 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1494 
1495 	/* Enable AFE PLL Macro Block */
1496 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1497 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1498 	/* Enable MAC 80MHZ clock */
1499 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1500 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1501 	mdelay(1);
1502 
1503 	/* Release isolation AFE PLL & MD */
1504 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1505 
1506 	/* Enable MAC clock */
1507 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1508 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1509 
1510 	/* Enable Core digital and enable IOREG R/W */
1511 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1512 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1513 	/* enable REG_EN */
1514 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1515 
1516 	/* Switch the control path. */
1517 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1518 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1519 
1520 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1521 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1522 	if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1523 		rtlpriv->psc.pwrdomain_protect = false;
1524 		return;
1525 	}
1526 
1527 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1528 
1529 	/* After MACIO reset,we must refresh LED state. */
1530 	_rtl92se_gen_refreshledstate(hw);
1531 
1532 	rtlpriv->psc.pwrdomain_protect = false;
1533 }
1534 
1535 void rtl92se_card_disable(struct ieee80211_hw *hw)
1536 {
1537 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1538 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1539 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1540 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1541 	enum nl80211_iftype opmode;
1542 	u8 wait = 30;
1543 
1544 	rtlpriv->intf_ops->enable_aspm(hw);
1545 
1546 	if (rtlpci->driver_is_goingto_unload ||
1547 		ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1548 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1549 
1550 	/* we should chnge GPIO to input mode
1551 	 * this will drop away current about 25mA*/
1552 	rtl8192se_gpiobit3_cfg_inputmode(hw);
1553 
1554 	/* this is very important for ips power save */
1555 	while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1556 		if (rtlpriv->psc.pwrdomain_protect)
1557 			mdelay(20);
1558 		else
1559 			break;
1560 	}
1561 
1562 	mac->link_state = MAC80211_NOLINK;
1563 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1564 	_rtl92se_set_media_status(hw, opmode);
1565 
1566 	_rtl92s_phy_set_rfhalt(hw);
1567 	udelay(100);
1568 }
1569 
1570 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
1571 			     u32 *p_intb)
1572 {
1573 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1574 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1575 
1576 	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1577 	rtl_write_dword(rtlpriv, ISR, *p_inta);
1578 
1579 	*p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1580 	rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1581 }
1582 
1583 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1584 {
1585 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1586 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1587 	u16 bcntime_cfg = 0;
1588 	u16 bcn_cw = 6, bcn_ifs = 0xf;
1589 	u16 atim_window = 2;
1590 
1591 	/* ATIM Window (in unit of TU). */
1592 	rtl_write_word(rtlpriv, ATIMWND, atim_window);
1593 
1594 	/* Beacon interval (in unit of TU). */
1595 	rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1596 
1597 	/* DrvErlyInt (in unit of TU). (Time to send
1598 	 * interrupt to notify driver to change
1599 	 * beacon content) */
1600 	rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1601 
1602 	/* BcnDMATIM(in unit of us). Indicates the
1603 	 * time before TBTT to perform beacon queue DMA  */
1604 	rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1605 
1606 	/* Force beacon frame transmission even
1607 	 * after receiving beacon frame from
1608 	 * other ad hoc STA */
1609 	rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1610 
1611 	/* Beacon Time Configuration */
1612 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
1613 		bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
1614 
1615 	/* TODO: bcn_ifs may required to be changed on ASIC */
1616 	bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
1617 
1618 	/*for beacon changed */
1619 	rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1620 }
1621 
1622 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1623 {
1624 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1625 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1626 	u16 bcn_interval = mac->beacon_interval;
1627 
1628 	/* Beacon interval (in unit of TU). */
1629 	rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1630 	/* 2008.10.24 added by tynli for beacon changed. */
1631 	rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1632 }
1633 
1634 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1635 		u32 add_msr, u32 rm_msr)
1636 {
1637 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1638 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1639 
1640 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1641 		 add_msr, rm_msr);
1642 
1643 	if (add_msr)
1644 		rtlpci->irq_mask[0] |= add_msr;
1645 
1646 	if (rm_msr)
1647 		rtlpci->irq_mask[0] &= (~rm_msr);
1648 
1649 	rtl92se_disable_interrupt(hw);
1650 	rtl92se_enable_interrupt(hw);
1651 }
1652 
1653 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
1654 {
1655 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1656 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1657 	u8 efuse_id;
1658 
1659 	rtlhal->ic_class = IC_INFERIORITY_A;
1660 
1661 	/* Only retrieving while using EFUSE. */
1662 	if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1663 		!rtlefuse->autoload_failflag) {
1664 		efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1665 
1666 		if (efuse_id == 0xfe)
1667 			rtlhal->ic_class = IC_INFERIORITY_B;
1668 	}
1669 }
1670 
1671 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1672 {
1673 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1674 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1675 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1676 	u16 i, usvalue;
1677 	u16	eeprom_id;
1678 	u8 tempval;
1679 	u8 hwinfo[HWSET_MAX_SIZE_92S];
1680 	u8 rf_path, index;
1681 
1682 	if (rtlefuse->epromtype == EEPROM_93C46) {
1683 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1684 			 "RTL819X Not boot from eeprom, check it !!\n");
1685 	} else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
1686 		rtl_efuse_shadow_map_update(hw);
1687 
1688 		memcpy((void *)hwinfo, (void *)
1689 			&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1690 			HWSET_MAX_SIZE_92S);
1691 	}
1692 
1693 	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1694 		      hwinfo, HWSET_MAX_SIZE_92S);
1695 
1696 	eeprom_id = *((u16 *)&hwinfo[0]);
1697 	if (eeprom_id != RTL8190_EEPROM_ID) {
1698 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1699 			 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1700 		rtlefuse->autoload_failflag = true;
1701 	} else {
1702 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1703 		rtlefuse->autoload_failflag = false;
1704 	}
1705 
1706 	if (rtlefuse->autoload_failflag)
1707 		return;
1708 
1709 	_rtl8192se_get_IC_Inferiority(hw);
1710 
1711 	/* Read IC Version && Channel Plan */
1712 	/* VID, DID	 SE	0xA-D */
1713 	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1714 	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1715 	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1716 	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1717 	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1718 
1719 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1720 		 "EEPROMId = 0x%4x\n", eeprom_id);
1721 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1722 		 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1723 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1724 		 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1725 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1726 		 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1727 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1728 		 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1729 
1730 	for (i = 0; i < 6; i += 2) {
1731 		usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1732 		*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1733 	}
1734 
1735 	for (i = 0; i < 6; i++)
1736 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1737 
1738 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1739 
1740 	/* Get Tx Power Level by Channel */
1741 	/* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1742 	/* 92S suupport RF A & B */
1743 	for (rf_path = 0; rf_path < 2; rf_path++) {
1744 		for (i = 0; i < 3; i++) {
1745 			/* Read CCK RF A & B Tx power  */
1746 			rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1747 			hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1748 
1749 			/* Read OFDM RF A & B Tx power for 1T */
1750 			rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1751 			hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1752 
1753 			/* Read OFDM RF A & B Tx power for 2T */
1754 			rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
1755 				 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1756 				   rf_path * 3 + i];
1757 		}
1758 	}
1759 
1760 	for (rf_path = 0; rf_path < 2; rf_path++)
1761 		for (i = 0; i < 3; i++)
1762 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1763 				"RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1764 				rf_path, i,
1765 				rtlefuse->eeprom_chnlarea_txpwr_cck
1766 				[rf_path][i]);
1767 	for (rf_path = 0; rf_path < 2; rf_path++)
1768 		for (i = 0; i < 3; i++)
1769 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1770 				"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1771 				rf_path, i,
1772 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1773 				[rf_path][i]);
1774 	for (rf_path = 0; rf_path < 2; rf_path++)
1775 		for (i = 0; i < 3; i++)
1776 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1777 				"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1778 				rf_path, i,
1779 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1780 				[rf_path][i]);
1781 
1782 	for (rf_path = 0; rf_path < 2; rf_path++) {
1783 
1784 		/* Assign dedicated channel tx power */
1785 		for (i = 0; i < 14; i++)	{
1786 			/* channel 1~3 use the same Tx Power Level. */
1787 			if (i < 3)
1788 				index = 0;
1789 			/* Channel 4-8 */
1790 			else if (i < 8)
1791 				index = 1;
1792 			/* Channel 9-14 */
1793 			else
1794 				index = 2;
1795 
1796 			/* Record A & B CCK /OFDM - 1T/2T Channel area
1797 			 * tx power */
1798 			rtlefuse->txpwrlevel_cck[rf_path][i]  =
1799 				rtlefuse->eeprom_chnlarea_txpwr_cck
1800 							[rf_path][index];
1801 			rtlefuse->txpwrlevel_ht40_1s[rf_path][i]  =
1802 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1803 							[rf_path][index];
1804 			rtlefuse->txpwrlevel_ht40_2s[rf_path][i]  =
1805 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1806 							[rf_path][index];
1807 		}
1808 
1809 		for (i = 0; i < 14; i++) {
1810 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1811 				"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1812 				rf_path, i,
1813 				rtlefuse->txpwrlevel_cck[rf_path][i],
1814 				rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1815 				rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1816 		}
1817 	}
1818 
1819 	for (rf_path = 0; rf_path < 2; rf_path++) {
1820 		for (i = 0; i < 3; i++) {
1821 			/* Read Power diff limit. */
1822 			rtlefuse->eeprom_pwrgroup[rf_path][i] =
1823 				hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1824 		}
1825 	}
1826 
1827 	for (rf_path = 0; rf_path < 2; rf_path++) {
1828 		/* Fill Pwr group */
1829 		for (i = 0; i < 14; i++) {
1830 			/* Chanel 1-3 */
1831 			if (i < 3)
1832 				index = 0;
1833 			/* Channel 4-8 */
1834 			else if (i < 8)
1835 				index = 1;
1836 			/* Channel 9-13 */
1837 			else
1838 				index = 2;
1839 
1840 			rtlefuse->pwrgroup_ht20[rf_path][i] =
1841 				(rtlefuse->eeprom_pwrgroup[rf_path][index] &
1842 				0xf);
1843 			rtlefuse->pwrgroup_ht40[rf_path][i] =
1844 				((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1845 				0xf0) >> 4);
1846 
1847 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1848 				"RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1849 				rf_path, i,
1850 				rtlefuse->pwrgroup_ht20[rf_path][i]);
1851 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1852 				"RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1853 				rf_path, i,
1854 				rtlefuse->pwrgroup_ht40[rf_path][i]);
1855 			}
1856 	}
1857 
1858 	for (i = 0; i < 14; i++) {
1859 		/* Read tx power difference between HT OFDM 20/40 MHZ */
1860 		/* channel 1-3 */
1861 		if (i < 3)
1862 			index = 0;
1863 		/* Channel 4-8 */
1864 		else if (i < 8)
1865 			index = 1;
1866 		/* Channel 9-14 */
1867 		else
1868 			index = 2;
1869 
1870 		tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
1871 		rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1872 		rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1873 						 ((tempval >> 4) & 0xF);
1874 
1875 		/* Read OFDM<->HT tx power diff */
1876 		/* Channel 1-3 */
1877 		if (i < 3)
1878 			index = 0;
1879 		/* Channel 4-8 */
1880 		else if (i < 8)
1881 			index = 0x11;
1882 		/* Channel 9-14 */
1883 		else
1884 			index = 1;
1885 
1886 		tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
1887 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1888 				 (tempval & 0xF);
1889 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1890 				 ((tempval >> 4) & 0xF);
1891 
1892 		tempval = hwinfo[TX_PWR_SAFETY_CHK];
1893 		rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1894 	}
1895 
1896 	rtlefuse->eeprom_regulatory = 0;
1897 	if (rtlefuse->eeprom_version >= 2) {
1898 		/* BIT(0)~2 */
1899 		if (rtlefuse->eeprom_version >= 4)
1900 			rtlefuse->eeprom_regulatory =
1901 				 (hwinfo[EEPROM_REGULATORY] & 0x7);
1902 		else /* BIT(0) */
1903 			rtlefuse->eeprom_regulatory =
1904 				 (hwinfo[EEPROM_REGULATORY] & 0x1);
1905 	}
1906 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1907 		"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1908 
1909 	for (i = 0; i < 14; i++)
1910 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1911 			"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1912 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1913 	for (i = 0; i < 14; i++)
1914 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1915 			"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1916 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1917 	for (i = 0; i < 14; i++)
1918 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1919 			"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1920 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1921 	for (i = 0; i < 14; i++)
1922 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1923 			"RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1924 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1925 
1926 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1927 		"TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1928 
1929 	/* Read RF-indication and Tx Power gain
1930 	 * index diff of legacy to HT OFDM rate. */
1931 	tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
1932 	rtlefuse->eeprom_txpowerdiff = tempval;
1933 	rtlefuse->legacy_httxpowerdiff =
1934 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1935 
1936 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1937 		"TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1938 
1939 	/* Get TSSI value for each path. */
1940 	usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1941 	rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1942 	usvalue = hwinfo[EEPROM_TSSI_B];
1943 	rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1944 
1945 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1946 		rtlefuse->eeprom_tssi[RF90_PATH_A],
1947 		rtlefuse->eeprom_tssi[RF90_PATH_B]);
1948 
1949 	/* Read antenna tx power offset of B/C/D to A  from EEPROM */
1950 	/* and read ThermalMeter from EEPROM */
1951 	tempval = hwinfo[EEPROM_THERMALMETER];
1952 	rtlefuse->eeprom_thermalmeter = tempval;
1953 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1954 		"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1955 
1956 	/* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1957 	rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1958 	rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1959 
1960 	/* Read CrystalCap from EEPROM */
1961 	tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
1962 	rtlefuse->eeprom_crystalcap = tempval;
1963 	/* CrystalCap, BIT(12)~15 */
1964 	rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1965 
1966 	/* Read IC Version && Channel Plan */
1967 	/* Version ID, Channel plan */
1968 	rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
1969 	rtlefuse->txpwr_fromeprom = true;
1970 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1971 		"EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1972 
1973 	/* Read Customer ID or Board Type!!! */
1974 	tempval = hwinfo[EEPROM_BOARDTYPE];
1975 	/* Change RF type definition */
1976 	if (tempval == 0)
1977 		rtlphy->rf_type = RF_2T2R;
1978 	else if (tempval == 1)
1979 		rtlphy->rf_type = RF_1T2R;
1980 	else if (tempval == 2)
1981 		rtlphy->rf_type = RF_1T2R;
1982 	else if (tempval == 3)
1983 		rtlphy->rf_type = RF_1T1R;
1984 
1985 	/* 1T2R but 1SS (1x1 receive combining) */
1986 	rtlefuse->b1x1_recvcombine = false;
1987 	if (rtlphy->rf_type == RF_1T2R) {
1988 		tempval = rtl_read_byte(rtlpriv, 0x07);
1989 		if (!(tempval & BIT(0))) {
1990 			rtlefuse->b1x1_recvcombine = true;
1991 			RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1992 				 "RF_TYPE=1T2R but only 1SS\n");
1993 		}
1994 	}
1995 	rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
1996 	rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
1997 
1998 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x",
1999 		 rtlefuse->eeprom_oemid);
2000 
2001 	/* set channel paln to world wide 13 */
2002 	rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
2003 }
2004 
2005 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
2006 {
2007 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2008 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2009 	u8 tmp_u1b = 0;
2010 
2011 	tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
2012 
2013 	if (tmp_u1b & BIT(4)) {
2014 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
2015 		rtlefuse->epromtype = EEPROM_93C46;
2016 	} else {
2017 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
2018 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
2019 	}
2020 
2021 	if (tmp_u1b & BIT(5)) {
2022 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
2023 		rtlefuse->autoload_failflag = false;
2024 		_rtl92se_read_adapter_info(hw);
2025 	} else {
2026 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
2027 		rtlefuse->autoload_failflag = true;
2028 	}
2029 }
2030 
2031 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
2032 					  struct ieee80211_sta *sta)
2033 {
2034 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2035 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2036 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2037 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2038 	u32 ratr_value;
2039 	u8 ratr_index = 0;
2040 	u8 nmode = mac->ht_enable;
2041 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2042 	u16 shortgi_rate = 0;
2043 	u32 tmp_ratr_value = 0;
2044 	u8 curtxbw_40mhz = mac->bw_40;
2045 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2046 				1 : 0;
2047 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2048 				1 : 0;
2049 	enum wireless_mode wirelessmode = mac->mode;
2050 
2051 	if (rtlhal->current_bandtype == BAND_ON_5G)
2052 		ratr_value = sta->supp_rates[1] << 4;
2053 	else
2054 		ratr_value = sta->supp_rates[0];
2055 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2056 		ratr_value = 0xfff;
2057 	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2058 			sta->ht_cap.mcs.rx_mask[0] << 12);
2059 	switch (wirelessmode) {
2060 	case WIRELESS_MODE_B:
2061 		ratr_value &= 0x0000000D;
2062 		break;
2063 	case WIRELESS_MODE_G:
2064 		ratr_value &= 0x00000FF5;
2065 		break;
2066 	case WIRELESS_MODE_N_24G:
2067 	case WIRELESS_MODE_N_5G:
2068 		nmode = 1;
2069 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2070 			ratr_value &= 0x0007F005;
2071 		} else {
2072 			u32 ratr_mask;
2073 
2074 			if (get_rf_type(rtlphy) == RF_1T2R ||
2075 			    get_rf_type(rtlphy) == RF_1T1R) {
2076 				if (curtxbw_40mhz)
2077 					ratr_mask = 0x000ff015;
2078 				else
2079 					ratr_mask = 0x000ff005;
2080 			} else {
2081 				if (curtxbw_40mhz)
2082 					ratr_mask = 0x0f0ff015;
2083 				else
2084 					ratr_mask = 0x0f0ff005;
2085 			}
2086 
2087 			ratr_value &= ratr_mask;
2088 		}
2089 		break;
2090 	default:
2091 		if (rtlphy->rf_type == RF_1T2R)
2092 			ratr_value &= 0x000ff0ff;
2093 		else
2094 			ratr_value &= 0x0f0ff0ff;
2095 
2096 		break;
2097 	}
2098 
2099 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2100 		ratr_value &= 0x0FFFFFFF;
2101 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2102 		ratr_value &= 0x0FFFFFF0;
2103 
2104 	if (nmode && ((curtxbw_40mhz &&
2105 			 curshortgi_40mhz) || (!curtxbw_40mhz &&
2106 						 curshortgi_20mhz))) {
2107 
2108 		ratr_value |= 0x10000000;
2109 		tmp_ratr_value = (ratr_value >> 12);
2110 
2111 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2112 			if ((1 << shortgi_rate) & tmp_ratr_value)
2113 				break;
2114 		}
2115 
2116 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2117 		    (shortgi_rate << 4) | (shortgi_rate);
2118 
2119 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2120 	}
2121 
2122 	rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2123 	if (ratr_value & 0xfffff000)
2124 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2125 	else
2126 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2127 
2128 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2129 		 rtl_read_dword(rtlpriv, ARFR0));
2130 }
2131 
2132 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2133 					 struct ieee80211_sta *sta,
2134 					 u8 rssi_level)
2135 {
2136 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2137 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2138 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2139 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2140 	struct rtl_sta_info *sta_entry = NULL;
2141 	u32 ratr_bitmap;
2142 	u8 ratr_index = 0;
2143 	u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
2144 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2145 				1 : 0;
2146 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2147 				1 : 0;
2148 	enum wireless_mode wirelessmode = 0;
2149 	bool shortgi = false;
2150 	u32 ratr_value = 0;
2151 	u8 shortgi_rate = 0;
2152 	u32 mask = 0;
2153 	u32 band = 0;
2154 	bool bmulticast = false;
2155 	u8 macid = 0;
2156 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2157 
2158 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2159 	wirelessmode = sta_entry->wireless_mode;
2160 	if (mac->opmode == NL80211_IFTYPE_STATION)
2161 		curtxbw_40mhz = mac->bw_40;
2162 	else if (mac->opmode == NL80211_IFTYPE_AP ||
2163 		mac->opmode == NL80211_IFTYPE_ADHOC)
2164 		macid = sta->aid + 1;
2165 
2166 	if (rtlhal->current_bandtype == BAND_ON_5G)
2167 		ratr_bitmap = sta->supp_rates[1] << 4;
2168 	else
2169 		ratr_bitmap = sta->supp_rates[0];
2170 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2171 		ratr_bitmap = 0xfff;
2172 	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2173 			sta->ht_cap.mcs.rx_mask[0] << 12);
2174 	switch (wirelessmode) {
2175 	case WIRELESS_MODE_B:
2176 		band |= WIRELESS_11B;
2177 		ratr_index = RATR_INX_WIRELESS_B;
2178 		if (ratr_bitmap & 0x0000000c)
2179 			ratr_bitmap &= 0x0000000d;
2180 		else
2181 			ratr_bitmap &= 0x0000000f;
2182 		break;
2183 	case WIRELESS_MODE_G:
2184 		band |= (WIRELESS_11G | WIRELESS_11B);
2185 		ratr_index = RATR_INX_WIRELESS_GB;
2186 
2187 		if (rssi_level == 1)
2188 			ratr_bitmap &= 0x00000f00;
2189 		else if (rssi_level == 2)
2190 			ratr_bitmap &= 0x00000ff0;
2191 		else
2192 			ratr_bitmap &= 0x00000ff5;
2193 		break;
2194 	case WIRELESS_MODE_A:
2195 		band |= WIRELESS_11A;
2196 		ratr_index = RATR_INX_WIRELESS_A;
2197 		ratr_bitmap &= 0x00000ff0;
2198 		break;
2199 	case WIRELESS_MODE_N_24G:
2200 	case WIRELESS_MODE_N_5G:
2201 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2202 		ratr_index = RATR_INX_WIRELESS_NGB;
2203 
2204 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2205 			if (rssi_level == 1)
2206 				ratr_bitmap &= 0x00070000;
2207 			else if (rssi_level == 2)
2208 				ratr_bitmap &= 0x0007f000;
2209 			else
2210 				ratr_bitmap &= 0x0007f005;
2211 		} else {
2212 			if (rtlphy->rf_type == RF_1T2R ||
2213 				rtlphy->rf_type == RF_1T1R) {
2214 				if (rssi_level == 1) {
2215 						ratr_bitmap &= 0x000f0000;
2216 				} else if (rssi_level == 3) {
2217 					ratr_bitmap &= 0x000fc000;
2218 				} else if (rssi_level == 5) {
2219 						ratr_bitmap &= 0x000ff000;
2220 				} else {
2221 					if (curtxbw_40mhz)
2222 						ratr_bitmap &= 0x000ff015;
2223 					else
2224 						ratr_bitmap &= 0x000ff005;
2225 				}
2226 			} else {
2227 				if (rssi_level == 1) {
2228 					ratr_bitmap &= 0x0f8f0000;
2229 				} else if (rssi_level == 3) {
2230 					ratr_bitmap &= 0x0f8fc000;
2231 				} else if (rssi_level == 5) {
2232 					ratr_bitmap &= 0x0f8ff000;
2233 				} else {
2234 					if (curtxbw_40mhz)
2235 						ratr_bitmap &= 0x0f8ff015;
2236 					else
2237 						ratr_bitmap &= 0x0f8ff005;
2238 				}
2239 			}
2240 		}
2241 
2242 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2243 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2244 			if (macid == 0)
2245 				shortgi = true;
2246 			else if (macid == 1)
2247 				shortgi = false;
2248 		}
2249 		break;
2250 	default:
2251 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2252 		ratr_index = RATR_INX_WIRELESS_NGB;
2253 
2254 		if (rtlphy->rf_type == RF_1T2R)
2255 			ratr_bitmap &= 0x000ff0ff;
2256 		else
2257 			ratr_bitmap &= 0x0f8ff0ff;
2258 		break;
2259 	}
2260 	sta_entry->ratr_index = ratr_index;
2261 
2262 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2263 		ratr_bitmap &= 0x0FFFFFFF;
2264 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2265 		ratr_bitmap &= 0x0FFFFFF0;
2266 
2267 	if (shortgi) {
2268 		ratr_bitmap |= 0x10000000;
2269 		/* Get MAX MCS available. */
2270 		ratr_value = (ratr_bitmap >> 12);
2271 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2272 			if ((1 << shortgi_rate) & ratr_value)
2273 				break;
2274 		}
2275 
2276 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2277 			(shortgi_rate << 4) | (shortgi_rate);
2278 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2279 	}
2280 
2281 	mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2282 
2283 	RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2284 		 mask, ratr_bitmap);
2285 	rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2286 	rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2287 
2288 	if (macid != 0)
2289 		sta_entry->ratr_index = ratr_index;
2290 }
2291 
2292 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2293 		struct ieee80211_sta *sta, u8 rssi_level)
2294 {
2295 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2296 
2297 	if (rtlpriv->dm.useramask)
2298 		rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
2299 	else
2300 		rtl92se_update_hal_rate_table(hw, sta);
2301 }
2302 
2303 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2304 {
2305 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2306 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2307 	u16 sifs_timer;
2308 
2309 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2310 				      &mac->slot_time);
2311 	sifs_timer = 0x0e0e;
2312 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2313 
2314 }
2315 
2316 /* this ifunction is for RFKILL, it's different with windows,
2317  * because UI will disable wireless when GPIO Radio Off.
2318  * And here we not check or Disable/Enable ASPM like windows*/
2319 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2320 {
2321 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2322 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2323 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2324 	enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2325 	unsigned long flag = 0;
2326 	bool actuallyset = false;
2327 	bool turnonbypowerdomain = false;
2328 
2329 	/* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2330 	if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
2331 		return false;
2332 
2333 	if (ppsc->swrf_processing)
2334 		return false;
2335 
2336 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2337 	if (ppsc->rfchange_inprogress) {
2338 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2339 		return false;
2340 	} else {
2341 		ppsc->rfchange_inprogress = true;
2342 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2343 	}
2344 
2345 	/* cur_rfstate = ppsc->rfpwr_state;*/
2346 
2347 	/* because after _rtl92s_phy_set_rfhalt, all power
2348 	 * closed, so we must open some power for GPIO check,
2349 	 * or we will always check GPIO RFOFF here,
2350 	 * And we should close power after GPIO check */
2351 	if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2352 		_rtl92se_power_domain_init(hw);
2353 		turnonbypowerdomain = true;
2354 	}
2355 
2356 	rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2357 
2358 	if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2359 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2360 			 "RFKILL-HW Radio ON, RF ON\n");
2361 
2362 		rfpwr_toset = ERFON;
2363 		ppsc->hwradiooff = false;
2364 		actuallyset = true;
2365 	} else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2366 		RT_TRACE(rtlpriv, COMP_RF,
2367 			 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2368 
2369 		rfpwr_toset = ERFOFF;
2370 		ppsc->hwradiooff = true;
2371 		actuallyset = true;
2372 	}
2373 
2374 	if (actuallyset) {
2375 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2376 		ppsc->rfchange_inprogress = false;
2377 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2378 
2379 	/* this not include ifconfig wlan0 down case */
2380 	/* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2381 	} else {
2382 		/* because power_domain_init may be happen when
2383 		 * _rtl92s_phy_set_rfhalt, this will open some powers
2384 		 * and cause current increasing about 40 mA for ips,
2385 		 * rfoff and ifconfig down, so we set
2386 		 * _rtl92s_phy_set_rfhalt again here */
2387 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2388 			turnonbypowerdomain) {
2389 			_rtl92s_phy_set_rfhalt(hw);
2390 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2391 		}
2392 
2393 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2394 		ppsc->rfchange_inprogress = false;
2395 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2396 	}
2397 
2398 	*valid = 1;
2399 	return !ppsc->hwradiooff;
2400 
2401 }
2402 
2403 /* Is_wepkey just used for WEP used as group & pairwise key
2404  * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2405 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2406 	bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2407 {
2408 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2409 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2410 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2411 	u8 *macaddr = p_macaddr;
2412 
2413 	u32 entry_id = 0;
2414 	bool is_pairwise = false;
2415 
2416 	static u8 cam_const_addr[4][6] = {
2417 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2418 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2419 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2420 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2421 	};
2422 	static u8 cam_const_broad[] = {
2423 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2424 	};
2425 
2426 	if (clear_all) {
2427 		u8 idx = 0;
2428 		u8 cam_offset = 0;
2429 		u8 clear_number = 5;
2430 
2431 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2432 
2433 		for (idx = 0; idx < clear_number; idx++) {
2434 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2435 			rtl_cam_empty_entry(hw, cam_offset + idx);
2436 
2437 			if (idx < 5) {
2438 				memset(rtlpriv->sec.key_buf[idx], 0,
2439 				       MAX_KEY_LEN);
2440 				rtlpriv->sec.key_len[idx] = 0;
2441 			}
2442 		}
2443 
2444 	} else {
2445 		switch (enc_algo) {
2446 		case WEP40_ENCRYPTION:
2447 			enc_algo = CAM_WEP40;
2448 			break;
2449 		case WEP104_ENCRYPTION:
2450 			enc_algo = CAM_WEP104;
2451 			break;
2452 		case TKIP_ENCRYPTION:
2453 			enc_algo = CAM_TKIP;
2454 			break;
2455 		case AESCCMP_ENCRYPTION:
2456 			enc_algo = CAM_AES;
2457 			break;
2458 		default:
2459 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2460 				 "switch case not processed\n");
2461 			enc_algo = CAM_TKIP;
2462 			break;
2463 		}
2464 
2465 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2466 			macaddr = cam_const_addr[key_index];
2467 			entry_id = key_index;
2468 		} else {
2469 			if (is_group) {
2470 				macaddr = cam_const_broad;
2471 				entry_id = key_index;
2472 			} else {
2473 				if (mac->opmode == NL80211_IFTYPE_AP) {
2474 					entry_id = rtl_cam_get_free_entry(hw,
2475 								 p_macaddr);
2476 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2477 						RT_TRACE(rtlpriv,
2478 							 COMP_SEC, DBG_EMERG,
2479 							 "Can not find free hw security cam entry\n");
2480 						return;
2481 					}
2482 				} else {
2483 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2484 				}
2485 
2486 				key_index = PAIRWISE_KEYIDX;
2487 				is_pairwise = true;
2488 			}
2489 		}
2490 
2491 		if (rtlpriv->sec.key_len[key_index] == 0) {
2492 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2493 				 "delete one entry, entry_id is %d\n",
2494 				 entry_id);
2495 			if (mac->opmode == NL80211_IFTYPE_AP)
2496 				rtl_cam_del_entry(hw, p_macaddr);
2497 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2498 		} else {
2499 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2500 				 "add one entry\n");
2501 			if (is_pairwise) {
2502 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2503 					 "set Pairwise key\n");
2504 
2505 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2506 					entry_id, enc_algo,
2507 					CAM_CONFIG_NO_USEDK,
2508 					rtlpriv->sec.key_buf[key_index]);
2509 			} else {
2510 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2511 					 "set group key\n");
2512 
2513 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2514 					rtl_cam_add_one_entry(hw,
2515 						rtlefuse->dev_addr,
2516 						PAIRWISE_KEYIDX,
2517 						CAM_PAIRWISE_KEY_POSITION,
2518 						enc_algo, CAM_CONFIG_NO_USEDK,
2519 						rtlpriv->sec.key_buf[entry_id]);
2520 				}
2521 
2522 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2523 					      entry_id, enc_algo,
2524 					      CAM_CONFIG_NO_USEDK,
2525 					      rtlpriv->sec.key_buf[entry_id]);
2526 			}
2527 
2528 		}
2529 	}
2530 }
2531 
2532 void rtl92se_suspend(struct ieee80211_hw *hw)
2533 {
2534 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2535 
2536 	rtlpci->up_first_time = true;
2537 }
2538 
2539 void rtl92se_resume(struct ieee80211_hw *hw)
2540 {
2541 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2542 	u32 val;
2543 
2544 	pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2545 	if ((val & 0x0000ff00) != 0)
2546 		pci_write_config_dword(rtlpci->pdev, 0x40,
2547 			val & 0xffff00ff);
2548 }
2549