xref: /linux/drivers/net/wireless/realtek/rtlwifi/rtl8192se/hw.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009-2012  Realtek Corporation.*/
3 
4 #include "../wifi.h"
5 #include "../efuse.h"
6 #include "../base.h"
7 #include "../regd.h"
8 #include "../cam.h"
9 #include "../ps.h"
10 #include "../pci.h"
11 #include "reg.h"
12 #include "def.h"
13 #include "phy.h"
14 #include "dm.h"
15 #include "fw.h"
16 #include "led.h"
17 #include "hw.h"
18 
19 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
20 {
21 	struct rtl_priv *rtlpriv = rtl_priv(hw);
22 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
23 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
24 
25 	switch (variable) {
26 	case HW_VAR_RCR: {
27 			*((u32 *) (val)) = rtlpci->receive_config;
28 			break;
29 		}
30 	case HW_VAR_RF_STATE: {
31 			*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
32 			break;
33 		}
34 	case HW_VAR_FW_PSMODE_STATUS: {
35 			*((bool *) (val)) = ppsc->fw_current_inpsmode;
36 			break;
37 		}
38 	case HW_VAR_CORRECT_TSF: {
39 			u64 tsf;
40 			u32 *ptsf_low = (u32 *)&tsf;
41 			u32 *ptsf_high = ((u32 *)&tsf) + 1;
42 
43 			*ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
44 			*ptsf_low = rtl_read_dword(rtlpriv, TSFR);
45 
46 			*((u64 *) (val)) = tsf;
47 
48 			break;
49 		}
50 	case HW_VAR_MRC: {
51 			*((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
52 			break;
53 		}
54 	case HAL_DEF_WOWLAN:
55 		break;
56 	default:
57 		pr_err("switch case %#x not processed\n", variable);
58 		break;
59 	}
60 }
61 
62 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
63 {
64 	struct rtl_priv *rtlpriv = rtl_priv(hw);
65 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
66 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
67 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
68 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
69 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
70 
71 	switch (variable) {
72 	case HW_VAR_ETHER_ADDR:{
73 			rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
74 			rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
75 			break;
76 		}
77 	case HW_VAR_BASIC_RATE:{
78 			u16 rate_cfg = ((u16 *) val)[0];
79 			u8 rate_index = 0;
80 
81 			if (rtlhal->version == VERSION_8192S_ACUT)
82 				rate_cfg = rate_cfg & 0x150;
83 			else
84 				rate_cfg = rate_cfg & 0x15f;
85 
86 			rate_cfg |= 0x01;
87 
88 			rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
89 			rtl_write_byte(rtlpriv, RRSR + 1,
90 				       (rate_cfg >> 8) & 0xff);
91 
92 			while (rate_cfg > 0x1) {
93 				rate_cfg = (rate_cfg >> 1);
94 				rate_index++;
95 			}
96 			rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
97 
98 			break;
99 		}
100 	case HW_VAR_BSSID:{
101 			rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
102 			rtl_write_word(rtlpriv, BSSIDR + 4,
103 				       ((u16 *)(val + 4))[0]);
104 			break;
105 		}
106 	case HW_VAR_SIFS:{
107 			rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
108 			rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
109 			break;
110 		}
111 	case HW_VAR_SLOT_TIME:{
112 			u8 e_aci;
113 
114 			rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
115 				"HW_VAR_SLOT_TIME %x\n", val[0]);
116 
117 			rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
118 
119 			for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
120 				rtlpriv->cfg->ops->set_hw_reg(hw,
121 						HW_VAR_AC_PARAM,
122 						(&e_aci));
123 			}
124 			break;
125 		}
126 	case HW_VAR_ACK_PREAMBLE:{
127 			u8 reg_tmp;
128 			u8 short_preamble = (bool) (*val);
129 			reg_tmp = (mac->cur_40_prime_sc) << 5;
130 			if (short_preamble)
131 				reg_tmp |= 0x80;
132 
133 			rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
134 			break;
135 		}
136 	case HW_VAR_AMPDU_MIN_SPACE:{
137 			u8 min_spacing_to_set;
138 			u8 sec_min_space;
139 
140 			min_spacing_to_set = *val;
141 			if (min_spacing_to_set <= 7) {
142 				if (rtlpriv->sec.pairwise_enc_algorithm ==
143 				    NO_ENCRYPTION)
144 					sec_min_space = 0;
145 				else
146 					sec_min_space = 1;
147 
148 				if (min_spacing_to_set < sec_min_space)
149 					min_spacing_to_set = sec_min_space;
150 				if (min_spacing_to_set > 5)
151 					min_spacing_to_set = 5;
152 
153 				mac->min_space_cfg =
154 						((mac->min_space_cfg & 0xf8) |
155 						min_spacing_to_set);
156 
157 				*val = min_spacing_to_set;
158 
159 				rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
160 					"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
161 					mac->min_space_cfg);
162 
163 				rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
164 					       mac->min_space_cfg);
165 			}
166 			break;
167 		}
168 	case HW_VAR_SHORTGI_DENSITY:{
169 			u8 density_to_set;
170 
171 			density_to_set = *val;
172 			mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
173 			mac->min_space_cfg |= (density_to_set << 3);
174 
175 			rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
176 				"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
177 				mac->min_space_cfg);
178 
179 			rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
180 				       mac->min_space_cfg);
181 
182 			break;
183 		}
184 	case HW_VAR_AMPDU_FACTOR:{
185 			u8 factor_toset;
186 			u8 regtoset;
187 			u8 factorlevel[18] = {
188 				2, 4, 4, 7, 7, 13, 13,
189 				13, 2, 7, 7, 13, 13,
190 				15, 15, 15, 15, 0};
191 			u8 index = 0;
192 
193 			factor_toset = *val;
194 			if (factor_toset <= 3) {
195 				factor_toset = (1 << (factor_toset + 2));
196 				if (factor_toset > 0xf)
197 					factor_toset = 0xf;
198 
199 				for (index = 0; index < 17; index++) {
200 					if (factorlevel[index] > factor_toset)
201 						factorlevel[index] =
202 								 factor_toset;
203 				}
204 
205 				for (index = 0; index < 8; index++) {
206 					regtoset = ((factorlevel[index * 2]) |
207 						    (factorlevel[index *
208 						    2 + 1] << 4));
209 					rtl_write_byte(rtlpriv,
210 						       AGGLEN_LMT_L + index,
211 						       regtoset);
212 				}
213 
214 				regtoset = ((factorlevel[16]) |
215 					    (factorlevel[17] << 4));
216 				rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
217 
218 				rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
219 					"Set HW_VAR_AMPDU_FACTOR: %#x\n",
220 					factor_toset);
221 			}
222 			break;
223 		}
224 	case HW_VAR_AC_PARAM:{
225 			u8 e_aci = *val;
226 			rtl92s_dm_init_edca_turbo(hw);
227 
228 			if (rtlpci->acm_method != EACMWAY2_SW)
229 				rtlpriv->cfg->ops->set_hw_reg(hw,
230 						 HW_VAR_ACM_CTRL,
231 						 &e_aci);
232 			break;
233 		}
234 	case HW_VAR_ACM_CTRL:{
235 			u8 e_aci = *val;
236 			union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
237 							mac->ac[0].aifs));
238 			u8 acm = p_aci_aifsn->f.acm;
239 			u8 acm_ctrl = rtl_read_byte(rtlpriv, ACMHWCTRL);
240 
241 			acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
242 				   0x0 : 0x1);
243 
244 			if (acm) {
245 				switch (e_aci) {
246 				case AC0_BE:
247 					acm_ctrl |= ACMHW_BEQEN;
248 					break;
249 				case AC2_VI:
250 					acm_ctrl |= ACMHW_VIQEN;
251 					break;
252 				case AC3_VO:
253 					acm_ctrl |= ACMHW_VOQEN;
254 					break;
255 				default:
256 					rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
257 						"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
258 						acm);
259 					break;
260 				}
261 			} else {
262 				switch (e_aci) {
263 				case AC0_BE:
264 					acm_ctrl &= (~ACMHW_BEQEN);
265 					break;
266 				case AC2_VI:
267 					acm_ctrl &= (~ACMHW_VIQEN);
268 					break;
269 				case AC3_VO:
270 					acm_ctrl &= (~ACMHW_VOQEN);
271 					break;
272 				default:
273 					pr_err("switch case %#x not processed\n",
274 					       e_aci);
275 					break;
276 				}
277 			}
278 
279 			rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE,
280 				"HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
281 			rtl_write_byte(rtlpriv, ACMHWCTRL, acm_ctrl);
282 			break;
283 		}
284 	case HW_VAR_RCR:{
285 			rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
286 			rtlpci->receive_config = ((u32 *) (val))[0];
287 			break;
288 		}
289 	case HW_VAR_RETRY_LIMIT:{
290 			u8 retry_limit = val[0];
291 
292 			rtl_write_word(rtlpriv, RETRY_LIMIT,
293 				       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
294 				       retry_limit << RETRY_LIMIT_LONG_SHIFT);
295 			break;
296 		}
297 	case HW_VAR_DUAL_TSF_RST: {
298 			break;
299 		}
300 	case HW_VAR_EFUSE_BYTES: {
301 			rtlefuse->efuse_usedbytes = *((u16 *) val);
302 			break;
303 		}
304 	case HW_VAR_EFUSE_USAGE: {
305 			rtlefuse->efuse_usedpercentage = *val;
306 			break;
307 		}
308 	case HW_VAR_IO_CMD: {
309 			break;
310 		}
311 	case HW_VAR_WPA_CONFIG: {
312 			rtl_write_byte(rtlpriv, REG_SECR, *val);
313 			break;
314 		}
315 	case HW_VAR_SET_RPWM:{
316 			break;
317 		}
318 	case HW_VAR_H2C_FW_PWRMODE:{
319 			break;
320 		}
321 	case HW_VAR_FW_PSMODE_STATUS: {
322 			ppsc->fw_current_inpsmode = *((bool *) val);
323 			break;
324 		}
325 	case HW_VAR_H2C_FW_JOINBSSRPT:{
326 			break;
327 		}
328 	case HW_VAR_AID:{
329 			break;
330 		}
331 	case HW_VAR_CORRECT_TSF:{
332 			break;
333 		}
334 	case HW_VAR_MRC: {
335 			bool bmrc_toset = *((bool *)val);
336 			u8 u1bdata = 0;
337 
338 			if (bmrc_toset) {
339 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
340 					      MASKBYTE0, 0x33);
341 				u1bdata = (u8)rtl_get_bbreg(hw,
342 						ROFDM1_TRXPATHENABLE,
343 						MASKBYTE0);
344 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
345 					      MASKBYTE0,
346 					      ((u1bdata & 0xf0) | 0x03));
347 				u1bdata = (u8)rtl_get_bbreg(hw,
348 						ROFDM0_TRXPATHENABLE,
349 						MASKBYTE1);
350 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
351 					      MASKBYTE1,
352 					      (u1bdata | 0x04));
353 
354 				/* Update current settings. */
355 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
356 			} else {
357 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
358 					      MASKBYTE0, 0x13);
359 				u1bdata = (u8)rtl_get_bbreg(hw,
360 						 ROFDM1_TRXPATHENABLE,
361 						 MASKBYTE0);
362 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
363 					      MASKBYTE0,
364 					      ((u1bdata & 0xf0) | 0x01));
365 				u1bdata = (u8)rtl_get_bbreg(hw,
366 						ROFDM0_TRXPATHENABLE,
367 						MASKBYTE1);
368 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
369 					      MASKBYTE1, (u1bdata & 0xfb));
370 
371 				/* Update current settings. */
372 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
373 			}
374 
375 			break;
376 		}
377 	case HW_VAR_FW_LPS_ACTION: {
378 		bool enter_fwlps = *((bool *)val);
379 		u8 rpwm_val, fw_pwrmode;
380 		bool fw_current_inps;
381 
382 		if (enter_fwlps) {
383 			rpwm_val = 0x02;	/* RF off */
384 			fw_current_inps = true;
385 			rtlpriv->cfg->ops->set_hw_reg(hw,
386 					HW_VAR_FW_PSMODE_STATUS,
387 					(u8 *)(&fw_current_inps));
388 			rtlpriv->cfg->ops->set_hw_reg(hw,
389 					HW_VAR_H2C_FW_PWRMODE,
390 					&ppsc->fwctrl_psmode);
391 
392 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
393 						      &rpwm_val);
394 		} else {
395 			rpwm_val = 0x0C;	/* RF on */
396 			fw_pwrmode = FW_PS_ACTIVE_MODE;
397 			fw_current_inps = false;
398 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
399 						      &rpwm_val);
400 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
401 						      &fw_pwrmode);
402 
403 			rtlpriv->cfg->ops->set_hw_reg(hw,
404 					HW_VAR_FW_PSMODE_STATUS,
405 					(u8 *)(&fw_current_inps));
406 		}
407 		break; }
408 	default:
409 		pr_err("switch case %#x not processed\n", variable);
410 		break;
411 	}
412 
413 }
414 
415 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
416 {
417 	struct rtl_priv *rtlpriv = rtl_priv(hw);
418 	u8 sec_reg_value = 0x0;
419 
420 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
421 		"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
422 		rtlpriv->sec.pairwise_enc_algorithm,
423 		rtlpriv->sec.group_enc_algorithm);
424 
425 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
426 		rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
427 			"not open hw encryption\n");
428 		return;
429 	}
430 
431 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
432 
433 	if (rtlpriv->sec.use_defaultkey) {
434 		sec_reg_value |= SCR_TXUSEDK;
435 		sec_reg_value |= SCR_RXUSEDK;
436 	}
437 
438 	rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
439 		sec_reg_value);
440 
441 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
442 
443 }
444 
445 static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
446 {
447 	struct rtl_priv *rtlpriv = rtl_priv(hw);
448 	u8 waitcount = 100;
449 	bool bresult = false;
450 	u8 tmpvalue;
451 
452 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
453 
454 	/* Wait the MAC synchronized. */
455 	udelay(400);
456 
457 	/* Check if it is set ready. */
458 	tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
459 	bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
460 
461 	if (!(data & (BIT(6) | BIT(7)))) {
462 		waitcount = 100;
463 		tmpvalue = 0;
464 
465 		while (1) {
466 			waitcount--;
467 
468 			tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
469 			if ((tmpvalue & BIT(6)))
470 				break;
471 
472 			pr_err("wait for BIT(6) return value %x\n", tmpvalue);
473 			if (waitcount == 0)
474 				break;
475 
476 			udelay(10);
477 		}
478 
479 		if (waitcount == 0)
480 			bresult = false;
481 		else
482 			bresult = true;
483 	}
484 
485 	return bresult;
486 }
487 
488 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
489 {
490 	struct rtl_priv *rtlpriv = rtl_priv(hw);
491 	u8 u1tmp;
492 
493 	/* The following config GPIO function */
494 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
495 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
496 
497 	/* config GPIO3 to input */
498 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
499 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
500 
501 }
502 
503 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
504 {
505 	struct rtl_priv *rtlpriv = rtl_priv(hw);
506 	u8 u1tmp;
507 	u8 retval = ERFON;
508 
509 	/* The following config GPIO function */
510 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
511 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
512 
513 	/* config GPIO3 to input */
514 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
515 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
516 
517 	/* On some of the platform, driver cannot read correct
518 	 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
519 	mdelay(10);
520 
521 	/* check GPIO3 */
522 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
523 	retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
524 
525 	return retval;
526 }
527 
528 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
529 {
530 	struct rtl_priv *rtlpriv = rtl_priv(hw);
531 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
532 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
533 
534 	u8 i;
535 	u8 tmpu1b;
536 	u16 tmpu2b;
537 	u8 pollingcnt = 20;
538 
539 	if (rtlpci->first_init) {
540 		/* Reset PCIE Digital */
541 		tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
542 		tmpu1b &= 0xFE;
543 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
544 		udelay(1);
545 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
546 	}
547 
548 	/* Switch to SW IO control */
549 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
550 	if (tmpu1b & BIT(7)) {
551 		tmpu1b &= ~(BIT(6) | BIT(7));
552 
553 		/* Set failed, return to prevent hang. */
554 		if (!_rtl92se_halset_sysclk(hw, tmpu1b))
555 			return;
556 	}
557 
558 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
559 	udelay(50);
560 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
561 	udelay(50);
562 
563 	/* Clear FW RPWM for FW control LPS.*/
564 	rtl_write_byte(rtlpriv, RPWM, 0x0);
565 
566 	/* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
567 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
568 	tmpu1b &= 0x73;
569 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
570 	/* wait for BIT 10/11/15 to pull high automatically!! */
571 	mdelay(1);
572 
573 	rtl_write_byte(rtlpriv, CMDR, 0);
574 	rtl_write_byte(rtlpriv, TCR, 0);
575 
576 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
577 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
578 	tmpu1b |= 0x08;
579 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
580 	tmpu1b &= ~(BIT(3));
581 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
582 
583 	/* Enable AFE clock source */
584 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
585 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
586 	/* Delay 1.5ms */
587 	mdelay(2);
588 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
589 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
590 
591 	/* Enable AFE Macro Block's Bandgap */
592 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
593 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
594 	mdelay(1);
595 
596 	/* Enable AFE Mbias */
597 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
598 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
599 	mdelay(1);
600 
601 	/* Enable LDOA15 block	*/
602 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
603 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
604 
605 	/* Set Digital Vdd to Retention isolation Path. */
606 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
607 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
608 
609 	/* For warm reboot NIC disappera bug. */
610 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
611 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
612 
613 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
614 
615 	/* Enable AFE PLL Macro Block */
616 	/* We need to delay 100u before enabling PLL. */
617 	udelay(200);
618 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
619 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
620 
621 	/* for divider reset  */
622 	udelay(100);
623 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
624 		       BIT(4) | BIT(6)));
625 	udelay(10);
626 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
627 	udelay(10);
628 
629 	/* Enable MAC 80MHZ clock  */
630 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
631 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
632 	mdelay(1);
633 
634 	/* Release isolation AFE PLL & MD */
635 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
636 
637 	/* Enable MAC clock */
638 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
639 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
640 
641 	/* Enable Core digital and enable IOREG R/W */
642 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
643 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
644 
645 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
646 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
647 
648 	/* enable REG_EN */
649 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
650 
651 	/* Switch the control path. */
652 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
653 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
654 
655 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
656 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
657 	if (!_rtl92se_halset_sysclk(hw, tmpu1b))
658 		return; /* Set failed, return to prevent hang. */
659 
660 	rtl_write_word(rtlpriv, CMDR, 0x07FC);
661 
662 	/* MH We must enable the section of code to prevent load IMEM fail. */
663 	/* Load MAC register from WMAc temporarily We simulate macreg. */
664 	/* txt HW will provide MAC txt later  */
665 	rtl_write_byte(rtlpriv, 0x6, 0x30);
666 	rtl_write_byte(rtlpriv, 0x49, 0xf0);
667 
668 	rtl_write_byte(rtlpriv, 0x4b, 0x81);
669 
670 	rtl_write_byte(rtlpriv, 0xb5, 0x21);
671 
672 	rtl_write_byte(rtlpriv, 0xdc, 0xff);
673 	rtl_write_byte(rtlpriv, 0xdd, 0xff);
674 	rtl_write_byte(rtlpriv, 0xde, 0xff);
675 	rtl_write_byte(rtlpriv, 0xdf, 0xff);
676 
677 	rtl_write_byte(rtlpriv, 0x11a, 0x00);
678 	rtl_write_byte(rtlpriv, 0x11b, 0x00);
679 
680 	for (i = 0; i < 32; i++)
681 		rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
682 
683 	rtl_write_byte(rtlpriv, 0x236, 0xff);
684 
685 	rtl_write_byte(rtlpriv, 0x503, 0x22);
686 
687 	if (ppsc->support_aspm && !ppsc->support_backdoor)
688 		rtl_write_byte(rtlpriv, 0x560, 0x40);
689 	else
690 		rtl_write_byte(rtlpriv, 0x560, 0x00);
691 
692 	rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
693 
694 	/* Set RX Desc Address */
695 	rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
696 	rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
697 
698 	/* Set TX Desc Address */
699 	rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
700 	rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
701 	rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
702 	rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
703 	rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
704 	rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
705 	rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
706 	rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
707 	rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
708 
709 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
710 
711 	/* To make sure that TxDMA can ready to download FW. */
712 	/* We should reset TxDMA if IMEM RPT was not ready. */
713 	do {
714 		tmpu1b = rtl_read_byte(rtlpriv, TCR);
715 		if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
716 			break;
717 
718 		udelay(5);
719 	} while (pollingcnt--);
720 
721 	if (pollingcnt <= 0) {
722 		pr_err("Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
723 		       tmpu1b);
724 		tmpu1b = rtl_read_byte(rtlpriv, CMDR);
725 		rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
726 		udelay(2);
727 		/* Reset TxDMA */
728 		rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
729 	}
730 
731 	/* After MACIO reset,we must refresh LED state. */
732 	if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
733 	   (ppsc->rfoff_reason == 0)) {
734 		struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0;
735 		enum rf_pwrstate rfpwr_state_toset;
736 		rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
737 
738 		if (rfpwr_state_toset == ERFON)
739 			rtl92se_sw_led_on(hw, pled0);
740 	}
741 }
742 
743 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
744 {
745 	struct rtl_priv *rtlpriv = rtl_priv(hw);
746 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
747 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
748 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
749 	u8 i;
750 	u16 tmpu2b;
751 
752 	/* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
753 
754 	/* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
755 	/* Turn on 0x40 Command register */
756 	rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
757 			SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
758 			RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
759 
760 	/* Set TCR TX DMA pre 2 FULL enable bit	*/
761 	rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
762 			TXDMAPRE2FULL);
763 
764 	/* Set RCR	*/
765 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
766 
767 	/* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
768 
769 	/* 4. Timing Control Register  (Offset: 0x0080 - 0x009F) */
770 	/* Set CCK/OFDM SIFS */
771 	/* CCK SIFS shall always be 10us. */
772 	rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
773 	rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
774 
775 	/* Set AckTimeout */
776 	rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
777 
778 	/* Beacon related */
779 	rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
780 	rtl_write_word(rtlpriv, ATIMWND, 2);
781 
782 	/* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
783 	/* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
784 	/* Firmware allocate now, associate with FW internal setting.!!! */
785 
786 	/* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
787 	/* 5.3 Set driver info, we only accept PHY status now. */
788 	/* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO  */
789 	rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
790 
791 	/* 6. Adaptive Control Register  (Offset: 0x0160 - 0x01CF) */
792 	/* Set RRSR to all legacy rate and HT rate
793 	 * CCK rate is supported by default.
794 	 * CCK rate will be filtered out only when associated
795 	 * AP does not support it.
796 	 * Only enable ACK rate to OFDM 24M
797 	 * Disable RRSR for CCK rate in A-Cut	*/
798 
799 	if (rtlhal->version == VERSION_8192S_ACUT)
800 		rtl_write_byte(rtlpriv, RRSR, 0xf0);
801 	else if (rtlhal->version == VERSION_8192S_BCUT)
802 		rtl_write_byte(rtlpriv, RRSR, 0xff);
803 	rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
804 	rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
805 
806 	/* A-Cut IC do not support CCK rate. We forbid ARFR to */
807 	/* fallback to CCK rate */
808 	for (i = 0; i < 8; i++) {
809 		/*Disable RRSR for CCK rate in A-Cut */
810 		if (rtlhal->version == VERSION_8192S_ACUT)
811 			rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
812 	}
813 
814 	/* Different rate use different AMPDU size */
815 	/* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
816 	rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
817 	/* MCS0/1/2/3 use max AMPDU size 4*2=8K */
818 	rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
819 	/* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
820 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
821 	/* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
822 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
823 	/* MCS12/13/14/15 use max AMPDU size 15*2=30K */
824 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
825 
826 	/* Set Data / Response auto rate fallack retry count */
827 	rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
828 	rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
829 	rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
830 	rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
831 
832 	/* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
833 	/* Set all rate to support SG */
834 	rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
835 
836 	/* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
837 	/* Set NAV protection length */
838 	rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
839 	/* CF-END Threshold */
840 	rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
841 	/* Set AMPDU minimum space */
842 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
843 	/* Set TXOP stall control for several queue/HI/BCN/MGT/ */
844 	rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
845 
846 	/* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
847 	/* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
848 	/* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
849 	/* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
850 	/* 13. Test mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
851 
852 	/* 14. Set driver info, we only accept PHY status now. */
853 	rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
854 
855 	/* 15. For EEPROM R/W Workaround */
856 	/* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
857 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
858 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
859 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
860 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
861 
862 	/* 17. For EFUSE */
863 	/* We may R/W EFUSE in EEPROM mode */
864 	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
865 		u8	tempval;
866 
867 		tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
868 		tempval &= 0xFE;
869 		rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
870 
871 		/* Change Program timing */
872 		rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
873 		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
874 	}
875 
876 	rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
877 
878 }
879 
880 static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
881 {
882 	struct rtl_priv *rtlpriv = rtl_priv(hw);
883 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
884 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
885 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
886 
887 	u8 reg_bw_opmode = 0;
888 	u32 reg_rrsr = 0;
889 	u8 regtmp = 0;
890 
891 	reg_bw_opmode = BW_OPMODE_20MHZ;
892 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
893 
894 	regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
895 	reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
896 	rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
897 	rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
898 
899 	/* Set Retry Limit here */
900 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
901 			(u8 *)(&rtlpci->shortretry_limit));
902 
903 	rtl_write_byte(rtlpriv, MLT, 0x8f);
904 
905 	/* For Min Spacing configuration. */
906 	switch (rtlphy->rf_type) {
907 	case RF_1T2R:
908 	case RF_1T1R:
909 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
910 		break;
911 	case RF_2T2R:
912 	case RF_2T2R_GREEN:
913 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
914 		break;
915 	}
916 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
917 }
918 
919 int rtl92se_hw_init(struct ieee80211_hw *hw)
920 {
921 	struct rtl_priv *rtlpriv = rtl_priv(hw);
922 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
923 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
924 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
925 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
926 	u8 tmp_byte = 0;
927 	unsigned long flags;
928 	bool rtstatus = true;
929 	u8 tmp_u1b;
930 	int err = false;
931 	u8 i;
932 	int wdcapra_add[] = {
933 		EDCAPARA_BE, EDCAPARA_BK,
934 		EDCAPARA_VI, EDCAPARA_VO};
935 	u8 secr_value = 0x0;
936 
937 	rtlpci->being_init_adapter = true;
938 
939 	/* As this function can take a very long time (up to 350 ms)
940 	 * and can be called with irqs disabled, reenable the irqs
941 	 * to let the other devices continue being serviced.
942 	 *
943 	 * It is safe doing so since our own interrupts will only be enabled
944 	 * in a subsequent step.
945 	 */
946 	local_save_flags(flags);
947 	local_irq_enable();
948 
949 	rtlpriv->intf_ops->disable_aspm(hw);
950 
951 	/* 1. MAC Initialize */
952 	/* Before FW download, we have to set some MAC register */
953 	_rtl92se_macconfig_before_fwdownload(hw);
954 
955 	rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
956 			PMC_FSM) >> 16) & 0xF);
957 
958 	rtl8192se_gpiobit3_cfg_inputmode(hw);
959 
960 	/* 2. download firmware */
961 	rtstatus = rtl92s_download_fw(hw);
962 	if (!rtstatus) {
963 		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
964 			"Failed to download FW. Init HW without FW now... Please copy FW into /lib/firmware/rtlwifi\n");
965 		err = 1;
966 		goto exit;
967 	}
968 
969 	/* After FW download, we have to reset MAC register */
970 	_rtl92se_macconfig_after_fwdownload(hw);
971 
972 	/*Retrieve default FW Cmd IO map. */
973 	rtlhal->fwcmd_iomap =	rtl_read_word(rtlpriv, LBUS_MON_ADDR);
974 	rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
975 
976 	/* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
977 	if (!rtl92s_phy_mac_config(hw)) {
978 		pr_err("MAC Config failed\n");
979 		err = rtstatus;
980 		goto exit;
981 	}
982 
983 	/* because last function modify RCR, so we update
984 	 * rcr var here, or TP will unstable for receive_config
985 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
986 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
987 	 */
988 	rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
989 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
990 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
991 
992 	/* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
993 	/* We must set flag avoid BB/RF config period later!! */
994 	rtl_write_dword(rtlpriv, CMDR, 0x37FC);
995 
996 	/* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
997 	if (!rtl92s_phy_bb_config(hw)) {
998 		pr_err("BB Config failed\n");
999 		err = rtstatus;
1000 		goto exit;
1001 	}
1002 
1003 	/* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1004 	/* Before initalizing RF. We can not use FW to do RF-R/W. */
1005 
1006 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
1007 
1008 	/* Before RF-R/W we must execute the IO from Scott's suggestion. */
1009 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1010 	if (rtlhal->version == VERSION_8192S_ACUT)
1011 		rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1012 	else
1013 		rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1014 
1015 	if (!rtl92s_phy_rf_config(hw)) {
1016 		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1017 		err = rtstatus;
1018 		goto exit;
1019 	}
1020 
1021 	/* After read predefined TXT, we must set BB/MAC/RF
1022 	 * register as our requirement */
1023 
1024 	rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1025 							   (enum radio_path)0,
1026 							   RF_CHNLBW,
1027 							   RFREG_OFFSET_MASK);
1028 	rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1029 							   (enum radio_path)1,
1030 							   RF_CHNLBW,
1031 							   RFREG_OFFSET_MASK);
1032 
1033 	/*---- Set CCK and OFDM Block "ON"----*/
1034 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1035 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1036 
1037 	/*3 Set Hardware(Do nothing now) */
1038 	_rtl92se_hw_configure(hw);
1039 
1040 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1041 	/* TX power index for different rate set. */
1042 	/* Get original hw reg values */
1043 	rtl92s_phy_get_hw_reg_originalvalue(hw);
1044 	/* Write correct tx power index */
1045 	rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1046 
1047 	/* We must set MAC address after firmware download. */
1048 	for (i = 0; i < 6; i++)
1049 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1050 
1051 	/* EEPROM R/W workaround */
1052 	tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1053 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1054 
1055 	rtl_write_byte(rtlpriv, 0x4d, 0x0);
1056 
1057 	if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1058 		tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1059 		tmp_byte = tmp_byte | BIT(5);
1060 		rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1061 		rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1062 	}
1063 
1064 	/* We enable high power and RA related mechanism after NIC
1065 	 * initialized. */
1066 	if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
1067 		/* Fw v.53 and later. */
1068 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1069 	} else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
1070 		/* Fw v.52. */
1071 		rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
1072 		rtl92s_phy_chk_fwcmd_iodone(hw);
1073 	} else {
1074 		/* Compatible earlier FW version. */
1075 		rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
1076 		rtl92s_phy_chk_fwcmd_iodone(hw);
1077 		rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
1078 		rtl92s_phy_chk_fwcmd_iodone(hw);
1079 		rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
1080 		rtl92s_phy_chk_fwcmd_iodone(hw);
1081 	}
1082 
1083 	/* Add to prevent ASPM bug. */
1084 	/* Always enable hst and NIC clock request. */
1085 	rtl92s_phy_switch_ephy_parameter(hw);
1086 
1087 	/* Security related
1088 	 * 1. Clear all H/W keys.
1089 	 * 2. Enable H/W encryption/decryption. */
1090 	rtl_cam_reset_all_entry(hw);
1091 	secr_value |= SCR_TXENCENABLE;
1092 	secr_value |= SCR_RXENCENABLE;
1093 	secr_value |= SCR_NOSKMC;
1094 	rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1095 
1096 	for (i = 0; i < 4; i++)
1097 		rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1098 
1099 	if (rtlphy->rf_type == RF_1T2R) {
1100 		bool mrc2set = true;
1101 		/* Turn on B-Path */
1102 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1103 	}
1104 
1105 	rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1106 	rtl92s_dm_init(hw);
1107 exit:
1108 	local_irq_restore(flags);
1109 	rtlpci->being_init_adapter = false;
1110 	return err;
1111 }
1112 
1113 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
1114 {
1115 	/* This is a stub. */
1116 }
1117 
1118 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1119 {
1120 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1121 	u32 reg_rcr;
1122 
1123 	if (rtlpriv->psc.rfpwr_state != ERFON)
1124 		return;
1125 
1126 	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1127 
1128 	if (check_bssid) {
1129 		reg_rcr |= (RCR_CBSSID);
1130 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1131 	} else if (!check_bssid) {
1132 		reg_rcr &= (~RCR_CBSSID);
1133 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1134 	}
1135 
1136 }
1137 
1138 static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1139 				     enum nl80211_iftype type)
1140 {
1141 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1142 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1143 	u32 temp;
1144 	bt_msr &= ~MSR_LINK_MASK;
1145 
1146 	switch (type) {
1147 	case NL80211_IFTYPE_UNSPECIFIED:
1148 		bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1149 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1150 			"Set Network type to NO LINK!\n");
1151 		break;
1152 	case NL80211_IFTYPE_ADHOC:
1153 		bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1154 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1155 			"Set Network type to Ad Hoc!\n");
1156 		break;
1157 	case NL80211_IFTYPE_STATION:
1158 		bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1159 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1160 			"Set Network type to STA!\n");
1161 		break;
1162 	case NL80211_IFTYPE_AP:
1163 		bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1164 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1165 			"Set Network type to AP!\n");
1166 		break;
1167 	default:
1168 		pr_err("Network type %d not supported!\n", type);
1169 		return 1;
1170 
1171 	}
1172 
1173 	if (type != NL80211_IFTYPE_AP &&
1174 	    rtlpriv->mac80211.link_state < MAC80211_LINKED)
1175 		bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK;
1176 	rtl_write_byte(rtlpriv, MSR, bt_msr);
1177 
1178 	temp = rtl_read_dword(rtlpriv, TCR);
1179 	rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1180 	rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1181 
1182 
1183 	return 0;
1184 }
1185 
1186 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1187 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1188 {
1189 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1190 
1191 	if (_rtl92se_set_media_status(hw, type))
1192 		return -EOPNOTSUPP;
1193 
1194 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1195 		if (type != NL80211_IFTYPE_AP)
1196 			rtl92se_set_check_bssid(hw, true);
1197 	} else {
1198 		rtl92se_set_check_bssid(hw, false);
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1205 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1206 {
1207 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1208 	rtl92s_dm_init_edca_turbo(hw);
1209 
1210 	switch (aci) {
1211 	case AC1_BK:
1212 		rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1213 		break;
1214 	case AC0_BE:
1215 		/* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1216 		break;
1217 	case AC2_VI:
1218 		rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1219 		break;
1220 	case AC3_VO:
1221 		rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1222 		break;
1223 	default:
1224 		WARN_ONCE(true, "rtl8192se: invalid aci: %d !\n", aci);
1225 		break;
1226 	}
1227 }
1228 
1229 void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1230 {
1231 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1232 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1233 
1234 	rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1235 	/* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1236 	rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1237 	rtlpci->irq_enabled = true;
1238 }
1239 
1240 void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1241 {
1242 	struct rtl_priv *rtlpriv;
1243 	struct rtl_pci *rtlpci;
1244 
1245 	rtlpriv = rtl_priv(hw);
1246 	/* if firmware not available, no interrupts */
1247 	if (!rtlpriv || !rtlpriv->max_fw_size)
1248 		return;
1249 	rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1250 	rtl_write_dword(rtlpriv, INTA_MASK, 0);
1251 	rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1252 	rtlpci->irq_enabled = false;
1253 }
1254 
1255 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1256 {
1257 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1258 	u8 waitcnt = 100;
1259 	bool result = false;
1260 	u8 tmp;
1261 
1262 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1263 
1264 	/* Wait the MAC synchronized. */
1265 	udelay(400);
1266 
1267 	/* Check if it is set ready. */
1268 	tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1269 	result = ((tmp & BIT(7)) == (data & BIT(7)));
1270 
1271 	if (!(data & (BIT(6) | BIT(7)))) {
1272 		waitcnt = 100;
1273 		tmp = 0;
1274 
1275 		while (1) {
1276 			waitcnt--;
1277 			tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1278 
1279 			if ((tmp & BIT(6)))
1280 				break;
1281 
1282 			pr_err("wait for BIT(6) return value %x\n", tmp);
1283 
1284 			if (waitcnt == 0)
1285 				break;
1286 			udelay(10);
1287 		}
1288 
1289 		if (waitcnt == 0)
1290 			result = false;
1291 		else
1292 			result = true;
1293 	}
1294 
1295 	return result;
1296 }
1297 
1298 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1299 {
1300 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1301 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1302 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1303 	u8 u1btmp;
1304 
1305 	if (rtlhal->driver_going2unload)
1306 		rtl_write_byte(rtlpriv, 0x560, 0x0);
1307 
1308 	/* Power save for BB/RF */
1309 	u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1310 	u1btmp |= BIT(0);
1311 	rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1312 	rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1313 	rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1314 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1315 	udelay(100);
1316 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1317 	rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1318 	udelay(10);
1319 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1320 	udelay(10);
1321 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1322 	udelay(10);
1323 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1324 	rtl_write_word(rtlpriv, CMDR, 0x0000);
1325 
1326 	if (rtlhal->driver_going2unload) {
1327 		u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1328 		u1btmp &= ~(BIT(0));
1329 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1330 	}
1331 
1332 	u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1333 
1334 	/* Add description. After switch control path. register
1335 	 * after page1 will be invisible. We can not do any IO
1336 	 * for register>0x40. After resume&MACIO reset, we need
1337 	 * to remember previous reg content. */
1338 	if (u1btmp & BIT(7)) {
1339 		u1btmp &= ~(BIT(6) | BIT(7));
1340 		if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1341 			pr_err("Switch ctrl path fail\n");
1342 			return;
1343 		}
1344 	}
1345 
1346 	/* Power save for MAC */
1347 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS  &&
1348 		!rtlhal->driver_going2unload) {
1349 		/* enable LED function */
1350 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1351 	/* SW/HW radio off or halt adapter!! For example S3/S4 */
1352 	} else {
1353 		/* LED function disable. Power range is about 8mA now. */
1354 		/* if write 0xF1 disconnect_pci power
1355 		 *	 ifconfig wlan0 down power are both high 35:70 */
1356 		/* if write oxF9 disconnect_pci power
1357 		 * ifconfig wlan0 down power are both low  12:45*/
1358 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1359 	}
1360 
1361 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1362 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1363 	rtl_write_byte(rtlpriv,  AFE_PLL_CTRL, 0x00);
1364 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1365 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1366 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1367 
1368 }
1369 
1370 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1371 {
1372 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1373 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1374 	struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0;
1375 
1376 	if (rtlpci->up_first_time)
1377 		return;
1378 
1379 	if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1380 		rtl92se_sw_led_on(hw, pled0);
1381 	else
1382 		rtl92se_sw_led_off(hw, pled0);
1383 }
1384 
1385 
1386 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1387 {
1388 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1389 	u16 tmpu2b;
1390 	u8 tmpu1b;
1391 
1392 	rtlpriv->psc.pwrdomain_protect = true;
1393 
1394 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1395 	if (tmpu1b & BIT(7)) {
1396 		tmpu1b &= ~(BIT(6) | BIT(7));
1397 		if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1398 			rtlpriv->psc.pwrdomain_protect = false;
1399 			return;
1400 		}
1401 	}
1402 
1403 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1404 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1405 
1406 	/* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1407 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1408 
1409 	/* If IPS we need to turn LED on. So we not
1410 	 * disable BIT 3/7 of reg3. */
1411 	if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1412 		tmpu1b &= 0xFB;
1413 	else
1414 		tmpu1b &= 0x73;
1415 
1416 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1417 	/* wait for BIT 10/11/15 to pull high automatically!! */
1418 	mdelay(1);
1419 
1420 	rtl_write_byte(rtlpriv, CMDR, 0);
1421 	rtl_write_byte(rtlpriv, TCR, 0);
1422 
1423 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1424 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1425 	tmpu1b |= 0x08;
1426 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1427 	tmpu1b &= ~(BIT(3));
1428 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1429 
1430 	/* Enable AFE clock source */
1431 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1432 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1433 	/* Delay 1.5ms */
1434 	udelay(1500);
1435 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1436 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1437 
1438 	/* Enable AFE Macro Block's Bandgap */
1439 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1440 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1441 	mdelay(1);
1442 
1443 	/* Enable AFE Mbias */
1444 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1445 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1446 	mdelay(1);
1447 
1448 	/* Enable LDOA15 block */
1449 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1450 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1451 
1452 	/* Set Digital Vdd to Retention isolation Path. */
1453 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1454 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1455 
1456 
1457 	/* For warm reboot NIC disappera bug. */
1458 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1459 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1460 
1461 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1462 
1463 	/* Enable AFE PLL Macro Block */
1464 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1465 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1466 	/* Enable MAC 80MHZ clock */
1467 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1468 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1469 	mdelay(1);
1470 
1471 	/* Release isolation AFE PLL & MD */
1472 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1473 
1474 	/* Enable MAC clock */
1475 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1476 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1477 
1478 	/* Enable Core digital and enable IOREG R/W */
1479 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1480 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1481 	/* enable REG_EN */
1482 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1483 
1484 	/* Switch the control path. */
1485 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1486 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1487 
1488 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1489 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1490 	if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1491 		rtlpriv->psc.pwrdomain_protect = false;
1492 		return;
1493 	}
1494 
1495 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1496 
1497 	/* After MACIO reset,we must refresh LED state. */
1498 	_rtl92se_gen_refreshledstate(hw);
1499 
1500 	rtlpriv->psc.pwrdomain_protect = false;
1501 }
1502 
1503 void rtl92se_card_disable(struct ieee80211_hw *hw)
1504 {
1505 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1506 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1507 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1508 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1509 	enum nl80211_iftype opmode;
1510 	u8 wait = 30;
1511 
1512 	rtlpriv->intf_ops->enable_aspm(hw);
1513 
1514 	if (rtlpci->driver_is_goingto_unload ||
1515 		ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1516 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1517 
1518 	/* we should chnge GPIO to input mode
1519 	 * this will drop away current about 25mA*/
1520 	rtl8192se_gpiobit3_cfg_inputmode(hw);
1521 
1522 	/* this is very important for ips power save */
1523 	while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1524 		if (rtlpriv->psc.pwrdomain_protect)
1525 			mdelay(20);
1526 		else
1527 			break;
1528 	}
1529 
1530 	mac->link_state = MAC80211_NOLINK;
1531 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1532 	_rtl92se_set_media_status(hw, opmode);
1533 
1534 	_rtl92s_phy_set_rfhalt(hw);
1535 	udelay(100);
1536 }
1537 
1538 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw,
1539 				  struct rtl_int *intvec)
1540 {
1541 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1542 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1543 
1544 	intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1545 	rtl_write_dword(rtlpriv, ISR, intvec->inta);
1546 
1547 	intvec->intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1548 	rtl_write_dword(rtlpriv, ISR + 4, intvec->intb);
1549 }
1550 
1551 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1552 {
1553 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1554 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1555 	u16 atim_window = 2;
1556 
1557 	/* ATIM Window (in unit of TU). */
1558 	rtl_write_word(rtlpriv, ATIMWND, atim_window);
1559 
1560 	/* Beacon interval (in unit of TU). */
1561 	rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1562 
1563 	/* DrvErlyInt (in unit of TU). (Time to send
1564 	 * interrupt to notify driver to change
1565 	 * beacon content) */
1566 	rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1567 
1568 	/* BcnDMATIM(in unit of us). Indicates the
1569 	 * time before TBTT to perform beacon queue DMA  */
1570 	rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1571 
1572 	/* Force beacon frame transmission even
1573 	 * after receiving beacon frame from
1574 	 * other ad hoc STA */
1575 	rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1576 
1577 	/*for beacon changed */
1578 	rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1579 }
1580 
1581 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1582 {
1583 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1584 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1585 	u16 bcn_interval = mac->beacon_interval;
1586 
1587 	/* Beacon interval (in unit of TU). */
1588 	rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1589 	/* 2008.10.24 added by tynli for beacon changed. */
1590 	rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1591 }
1592 
1593 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1594 		u32 add_msr, u32 rm_msr)
1595 {
1596 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1597 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1598 
1599 	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1600 		add_msr, rm_msr);
1601 
1602 	if (add_msr)
1603 		rtlpci->irq_mask[0] |= add_msr;
1604 
1605 	if (rm_msr)
1606 		rtlpci->irq_mask[0] &= (~rm_msr);
1607 
1608 	rtl92se_disable_interrupt(hw);
1609 	rtl92se_enable_interrupt(hw);
1610 }
1611 
1612 static void _rtl8192se_get_ic_inferiority(struct ieee80211_hw *hw)
1613 {
1614 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1615 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1616 	u8 efuse_id;
1617 
1618 	rtlhal->ic_class = IC_INFERIORITY_A;
1619 
1620 	/* Only retrieving while using EFUSE. */
1621 	if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1622 		!rtlefuse->autoload_failflag) {
1623 		efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1624 
1625 		if (efuse_id == 0xfe)
1626 			rtlhal->ic_class = IC_INFERIORITY_B;
1627 	}
1628 }
1629 
1630 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1631 {
1632 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1633 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1634 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1635 	struct device *dev = &rtl_pcipriv(hw)->dev.pdev->dev;
1636 	u16 i, usvalue;
1637 	u16	eeprom_id;
1638 	u8 tempval;
1639 	u8 hwinfo[HWSET_MAX_SIZE_92S];
1640 	u8 rf_path, index;
1641 
1642 	switch (rtlefuse->epromtype) {
1643 	case EEPROM_BOOT_EFUSE:
1644 		rtl_efuse_shadow_map_update(hw);
1645 		break;
1646 
1647 	case EEPROM_93C46:
1648 		pr_err("RTL819X Not boot from eeprom, check it !!\n");
1649 		return;
1650 
1651 	default:
1652 		dev_warn(dev, "no efuse data\n");
1653 		return;
1654 	}
1655 
1656 	memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1657 	       HWSET_MAX_SIZE_92S);
1658 
1659 	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1660 		      hwinfo, HWSET_MAX_SIZE_92S);
1661 
1662 	eeprom_id = *((u16 *)&hwinfo[0]);
1663 	if (eeprom_id != RTL8190_EEPROM_ID) {
1664 		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
1665 			"EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1666 		rtlefuse->autoload_failflag = true;
1667 	} else {
1668 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1669 		rtlefuse->autoload_failflag = false;
1670 	}
1671 
1672 	if (rtlefuse->autoload_failflag)
1673 		return;
1674 
1675 	_rtl8192se_get_ic_inferiority(hw);
1676 
1677 	/* Read IC Version && Channel Plan */
1678 	/* VID, DID	 SE	0xA-D */
1679 	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1680 	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1681 	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1682 	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1683 	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1684 
1685 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1686 		"EEPROMId = 0x%4x\n", eeprom_id);
1687 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1688 		"EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1689 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1690 		"EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1691 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1692 		"EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1693 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1694 		"EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1695 
1696 	for (i = 0; i < 6; i += 2) {
1697 		usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1698 		*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1699 	}
1700 
1701 	for (i = 0; i < 6; i++)
1702 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1703 
1704 	rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1705 
1706 	/* Get Tx Power Level by Channel */
1707 	/* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1708 	/* 92S suupport RF A & B */
1709 	for (rf_path = 0; rf_path < 2; rf_path++) {
1710 		for (i = 0; i < 3; i++) {
1711 			/* Read CCK RF A & B Tx power  */
1712 			rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1713 			hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1714 
1715 			/* Read OFDM RF A & B Tx power for 1T */
1716 			rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1717 			hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1718 
1719 			/* Read OFDM RF A & B Tx power for 2T */
1720 			rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
1721 				 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1722 				   rf_path * 3 + i];
1723 		}
1724 	}
1725 
1726 	for (rf_path = 0; rf_path < 2; rf_path++)
1727 		for (i = 0; i < 3; i++)
1728 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1729 				"RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1730 				rf_path, i,
1731 				rtlefuse->eeprom_chnlarea_txpwr_cck
1732 				[rf_path][i]);
1733 	for (rf_path = 0; rf_path < 2; rf_path++)
1734 		for (i = 0; i < 3; i++)
1735 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1736 				"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1737 				rf_path, i,
1738 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1739 				[rf_path][i]);
1740 	for (rf_path = 0; rf_path < 2; rf_path++)
1741 		for (i = 0; i < 3; i++)
1742 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1743 				"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1744 				rf_path, i,
1745 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1746 				[rf_path][i]);
1747 
1748 	for (rf_path = 0; rf_path < 2; rf_path++) {
1749 
1750 		/* Assign dedicated channel tx power */
1751 		for (i = 0; i < 14; i++)	{
1752 			/* channel 1~3 use the same Tx Power Level. */
1753 			if (i < 3)
1754 				index = 0;
1755 			/* Channel 4-8 */
1756 			else if (i < 8)
1757 				index = 1;
1758 			/* Channel 9-14 */
1759 			else
1760 				index = 2;
1761 
1762 			/* Record A & B CCK /OFDM - 1T/2T Channel area
1763 			 * tx power */
1764 			rtlefuse->txpwrlevel_cck[rf_path][i]  =
1765 				rtlefuse->eeprom_chnlarea_txpwr_cck
1766 							[rf_path][index];
1767 			rtlefuse->txpwrlevel_ht40_1s[rf_path][i]  =
1768 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1769 							[rf_path][index];
1770 			rtlefuse->txpwrlevel_ht40_2s[rf_path][i]  =
1771 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1772 							[rf_path][index];
1773 		}
1774 
1775 		for (i = 0; i < 14; i++) {
1776 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1777 				"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1778 				rf_path, i,
1779 				rtlefuse->txpwrlevel_cck[rf_path][i],
1780 				rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1781 				rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1782 		}
1783 	}
1784 
1785 	for (rf_path = 0; rf_path < 2; rf_path++) {
1786 		for (i = 0; i < 3; i++) {
1787 			/* Read Power diff limit. */
1788 			rtlefuse->eeprom_pwrgroup[rf_path][i] =
1789 				hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1790 		}
1791 	}
1792 
1793 	for (rf_path = 0; rf_path < 2; rf_path++) {
1794 		/* Fill Pwr group */
1795 		for (i = 0; i < 14; i++) {
1796 			/* Chanel 1-3 */
1797 			if (i < 3)
1798 				index = 0;
1799 			/* Channel 4-8 */
1800 			else if (i < 8)
1801 				index = 1;
1802 			/* Channel 9-13 */
1803 			else
1804 				index = 2;
1805 
1806 			rtlefuse->pwrgroup_ht20[rf_path][i] =
1807 				(rtlefuse->eeprom_pwrgroup[rf_path][index] &
1808 				0xf);
1809 			rtlefuse->pwrgroup_ht40[rf_path][i] =
1810 				((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1811 				0xf0) >> 4);
1812 
1813 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1814 				"RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1815 				rf_path, i,
1816 				rtlefuse->pwrgroup_ht20[rf_path][i]);
1817 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1818 				"RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1819 				rf_path, i,
1820 				rtlefuse->pwrgroup_ht40[rf_path][i]);
1821 			}
1822 	}
1823 
1824 	for (i = 0; i < 14; i++) {
1825 		/* Read tx power difference between HT OFDM 20/40 MHZ */
1826 		/* channel 1-3 */
1827 		if (i < 3)
1828 			index = 0;
1829 		/* Channel 4-8 */
1830 		else if (i < 8)
1831 			index = 1;
1832 		/* Channel 9-14 */
1833 		else
1834 			index = 2;
1835 
1836 		tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
1837 		rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1838 		rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1839 						 ((tempval >> 4) & 0xF);
1840 
1841 		/* Read OFDM<->HT tx power diff */
1842 		/* Channel 1-3 */
1843 		if (i < 3)
1844 			index = 0;
1845 		/* Channel 4-8 */
1846 		else if (i < 8)
1847 			index = 0x11;
1848 		/* Channel 9-14 */
1849 		else
1850 			index = 1;
1851 
1852 		tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
1853 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1854 				 (tempval & 0xF);
1855 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1856 				 ((tempval >> 4) & 0xF);
1857 
1858 		tempval = hwinfo[TX_PWR_SAFETY_CHK];
1859 		rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1860 	}
1861 
1862 	rtlefuse->eeprom_regulatory = 0;
1863 	if (rtlefuse->eeprom_version >= 2) {
1864 		/* BIT(0)~2 */
1865 		if (rtlefuse->eeprom_version >= 4)
1866 			rtlefuse->eeprom_regulatory =
1867 				 (hwinfo[EEPROM_REGULATORY] & 0x7);
1868 		else /* BIT(0) */
1869 			rtlefuse->eeprom_regulatory =
1870 				 (hwinfo[EEPROM_REGULATORY] & 0x1);
1871 	}
1872 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1873 		"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1874 
1875 	for (i = 0; i < 14; i++)
1876 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1877 			"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1878 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1879 	for (i = 0; i < 14; i++)
1880 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1881 			"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1882 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1883 	for (i = 0; i < 14; i++)
1884 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1885 			"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1886 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1887 	for (i = 0; i < 14; i++)
1888 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1889 			"RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1890 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1891 
1892 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1893 		"TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1894 
1895 	/* Read RF-indication and Tx Power gain
1896 	 * index diff of legacy to HT OFDM rate. */
1897 	tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
1898 	rtlefuse->eeprom_txpowerdiff = tempval;
1899 	rtlefuse->legacy_ht_txpowerdiff =
1900 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1901 
1902 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1903 		"TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1904 
1905 	/* Get TSSI value for each path. */
1906 	usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1907 	rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1908 	usvalue = hwinfo[EEPROM_TSSI_B];
1909 	rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1910 
1911 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1912 		rtlefuse->eeprom_tssi[RF90_PATH_A],
1913 		rtlefuse->eeprom_tssi[RF90_PATH_B]);
1914 
1915 	/* Read antenna tx power offset of B/C/D to A  from EEPROM */
1916 	/* and read ThermalMeter from EEPROM */
1917 	tempval = hwinfo[EEPROM_THERMALMETER];
1918 	rtlefuse->eeprom_thermalmeter = tempval;
1919 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1920 		"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1921 
1922 	/* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1923 	rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1924 	rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1925 
1926 	/* Read CrystalCap from EEPROM */
1927 	tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
1928 	rtlefuse->eeprom_crystalcap = tempval;
1929 	/* CrystalCap, BIT(12)~15 */
1930 	rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1931 
1932 	/* Read IC Version && Channel Plan */
1933 	/* Version ID, Channel plan */
1934 	rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
1935 	rtlefuse->txpwr_fromeprom = true;
1936 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1937 		"EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1938 
1939 	/* Read Customer ID or Board Type!!! */
1940 	tempval = hwinfo[EEPROM_BOARDTYPE];
1941 	/* Change RF type definition */
1942 	if (tempval == 0)
1943 		rtlphy->rf_type = RF_2T2R;
1944 	else if (tempval == 1)
1945 		rtlphy->rf_type = RF_1T2R;
1946 	else if (tempval == 2)
1947 		rtlphy->rf_type = RF_1T2R;
1948 	else if (tempval == 3)
1949 		rtlphy->rf_type = RF_1T1R;
1950 
1951 	/* 1T2R but 1SS (1x1 receive combining) */
1952 	rtlefuse->b1x1_recvcombine = false;
1953 	if (rtlphy->rf_type == RF_1T2R) {
1954 		tempval = rtl_read_byte(rtlpriv, 0x07);
1955 		if (!(tempval & BIT(0))) {
1956 			rtlefuse->b1x1_recvcombine = true;
1957 			rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1958 				"RF_TYPE=1T2R but only 1SS\n");
1959 		}
1960 	}
1961 	rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
1962 	rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
1963 
1964 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n",
1965 		rtlefuse->eeprom_oemid);
1966 
1967 	/* set channel paln to world wide 13 */
1968 	rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
1969 }
1970 
1971 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
1972 {
1973 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1974 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1975 	u8 tmp_u1b = 0;
1976 
1977 	tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
1978 
1979 	if (tmp_u1b & BIT(4)) {
1980 		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1981 		rtlefuse->epromtype = EEPROM_93C46;
1982 	} else {
1983 		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1984 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1985 	}
1986 
1987 	if (tmp_u1b & BIT(5)) {
1988 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1989 		rtlefuse->autoload_failflag = false;
1990 		_rtl92se_read_adapter_info(hw);
1991 	} else {
1992 		pr_err("Autoload ERR!!\n");
1993 		rtlefuse->autoload_failflag = true;
1994 	}
1995 }
1996 
1997 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
1998 					  struct ieee80211_sta *sta)
1999 {
2000 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2001 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2002 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2003 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2004 	u32 ratr_value;
2005 	u8 ratr_index = 0;
2006 	u8 nmode = mac->ht_enable;
2007 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2008 	u16 shortgi_rate = 0;
2009 	u32 tmp_ratr_value = 0;
2010 	u8 curtxbw_40mhz = mac->bw_40;
2011 	u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2012 				1 : 0;
2013 	u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2014 				1 : 0;
2015 	enum wireless_mode wirelessmode = mac->mode;
2016 
2017 	if (rtlhal->current_bandtype == BAND_ON_5G)
2018 		ratr_value = sta->deflink.supp_rates[1] << 4;
2019 	else
2020 		ratr_value = sta->deflink.supp_rates[0];
2021 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2022 		ratr_value = 0xfff;
2023 	ratr_value |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
2024 			sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
2025 	switch (wirelessmode) {
2026 	case WIRELESS_MODE_B:
2027 		ratr_value &= 0x0000000D;
2028 		break;
2029 	case WIRELESS_MODE_G:
2030 		ratr_value &= 0x00000FF5;
2031 		break;
2032 	case WIRELESS_MODE_N_24G:
2033 	case WIRELESS_MODE_N_5G:
2034 		nmode = 1;
2035 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2036 			ratr_value &= 0x0007F005;
2037 		} else {
2038 			u32 ratr_mask;
2039 
2040 			if (get_rf_type(rtlphy) == RF_1T2R ||
2041 			    get_rf_type(rtlphy) == RF_1T1R) {
2042 				if (curtxbw_40mhz)
2043 					ratr_mask = 0x000ff015;
2044 				else
2045 					ratr_mask = 0x000ff005;
2046 			} else {
2047 				if (curtxbw_40mhz)
2048 					ratr_mask = 0x0f0ff015;
2049 				else
2050 					ratr_mask = 0x0f0ff005;
2051 			}
2052 
2053 			ratr_value &= ratr_mask;
2054 		}
2055 		break;
2056 	default:
2057 		if (rtlphy->rf_type == RF_1T2R)
2058 			ratr_value &= 0x000ff0ff;
2059 		else
2060 			ratr_value &= 0x0f0ff0ff;
2061 
2062 		break;
2063 	}
2064 
2065 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2066 		ratr_value &= 0x0FFFFFFF;
2067 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2068 		ratr_value &= 0x0FFFFFF0;
2069 
2070 	if (nmode && ((curtxbw_40mhz &&
2071 			 curshortgi_40mhz) || (!curtxbw_40mhz &&
2072 						 curshortgi_20mhz))) {
2073 
2074 		ratr_value |= 0x10000000;
2075 		tmp_ratr_value = (ratr_value >> 12);
2076 
2077 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2078 			if ((1 << shortgi_rate) & tmp_ratr_value)
2079 				break;
2080 		}
2081 
2082 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2083 		    (shortgi_rate << 4) | (shortgi_rate);
2084 
2085 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2086 	}
2087 
2088 	rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2089 	if (ratr_value & 0xfffff000)
2090 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2091 	else
2092 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2093 
2094 	rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2095 		rtl_read_dword(rtlpriv, ARFR0));
2096 }
2097 
2098 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2099 					 struct ieee80211_sta *sta,
2100 					 u8 rssi_level, bool update_bw)
2101 {
2102 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2103 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2104 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2105 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2106 	struct rtl_sta_info *sta_entry = NULL;
2107 	u32 ratr_bitmap;
2108 	u8 ratr_index = 0;
2109 	u8 curtxbw_40mhz = (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
2110 	u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2111 				1 : 0;
2112 	u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2113 				1 : 0;
2114 	enum wireless_mode wirelessmode = 0;
2115 	bool shortgi = false;
2116 	u32 ratr_value = 0;
2117 	u8 shortgi_rate = 0;
2118 	u32 mask = 0;
2119 	u32 band = 0;
2120 	bool bmulticast = false;
2121 	u8 macid = 0;
2122 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2123 
2124 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2125 	wirelessmode = sta_entry->wireless_mode;
2126 	if (mac->opmode == NL80211_IFTYPE_STATION)
2127 		curtxbw_40mhz = mac->bw_40;
2128 	else if (mac->opmode == NL80211_IFTYPE_AP ||
2129 		mac->opmode == NL80211_IFTYPE_ADHOC)
2130 		macid = sta->aid + 1;
2131 
2132 	if (rtlhal->current_bandtype == BAND_ON_5G)
2133 		ratr_bitmap = sta->deflink.supp_rates[1] << 4;
2134 	else
2135 		ratr_bitmap = sta->deflink.supp_rates[0];
2136 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2137 		ratr_bitmap = 0xfff;
2138 	ratr_bitmap |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
2139 			sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
2140 	switch (wirelessmode) {
2141 	case WIRELESS_MODE_B:
2142 		band |= WIRELESS_11B;
2143 		ratr_index = RATR_INX_WIRELESS_B;
2144 		if (ratr_bitmap & 0x0000000c)
2145 			ratr_bitmap &= 0x0000000d;
2146 		else
2147 			ratr_bitmap &= 0x0000000f;
2148 		break;
2149 	case WIRELESS_MODE_G:
2150 		band |= (WIRELESS_11G | WIRELESS_11B);
2151 		ratr_index = RATR_INX_WIRELESS_GB;
2152 
2153 		if (rssi_level == 1)
2154 			ratr_bitmap &= 0x00000f00;
2155 		else if (rssi_level == 2)
2156 			ratr_bitmap &= 0x00000ff0;
2157 		else
2158 			ratr_bitmap &= 0x00000ff5;
2159 		break;
2160 	case WIRELESS_MODE_A:
2161 		band |= WIRELESS_11A;
2162 		ratr_index = RATR_INX_WIRELESS_A;
2163 		ratr_bitmap &= 0x00000ff0;
2164 		break;
2165 	case WIRELESS_MODE_N_24G:
2166 	case WIRELESS_MODE_N_5G:
2167 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2168 		ratr_index = RATR_INX_WIRELESS_NGB;
2169 
2170 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2171 			if (rssi_level == 1)
2172 				ratr_bitmap &= 0x00070000;
2173 			else if (rssi_level == 2)
2174 				ratr_bitmap &= 0x0007f000;
2175 			else
2176 				ratr_bitmap &= 0x0007f005;
2177 		} else {
2178 			if (rtlphy->rf_type == RF_1T2R ||
2179 				rtlphy->rf_type == RF_1T1R) {
2180 				if (rssi_level == 1) {
2181 						ratr_bitmap &= 0x000f0000;
2182 				} else if (rssi_level == 3) {
2183 					ratr_bitmap &= 0x000fc000;
2184 				} else if (rssi_level == 5) {
2185 						ratr_bitmap &= 0x000ff000;
2186 				} else {
2187 					if (curtxbw_40mhz)
2188 						ratr_bitmap &= 0x000ff015;
2189 					else
2190 						ratr_bitmap &= 0x000ff005;
2191 				}
2192 			} else {
2193 				if (rssi_level == 1) {
2194 					ratr_bitmap &= 0x0f8f0000;
2195 				} else if (rssi_level == 3) {
2196 					ratr_bitmap &= 0x0f8fc000;
2197 				} else if (rssi_level == 5) {
2198 					ratr_bitmap &= 0x0f8ff000;
2199 				} else {
2200 					if (curtxbw_40mhz)
2201 						ratr_bitmap &= 0x0f8ff015;
2202 					else
2203 						ratr_bitmap &= 0x0f8ff005;
2204 				}
2205 			}
2206 		}
2207 
2208 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2209 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2210 			if (macid == 0)
2211 				shortgi = true;
2212 			else if (macid == 1)
2213 				shortgi = false;
2214 		}
2215 		break;
2216 	default:
2217 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2218 		ratr_index = RATR_INX_WIRELESS_NGB;
2219 
2220 		if (rtlphy->rf_type == RF_1T2R)
2221 			ratr_bitmap &= 0x000ff0ff;
2222 		else
2223 			ratr_bitmap &= 0x0f8ff0ff;
2224 		break;
2225 	}
2226 	sta_entry->ratr_index = ratr_index;
2227 
2228 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2229 		ratr_bitmap &= 0x0FFFFFFF;
2230 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2231 		ratr_bitmap &= 0x0FFFFFF0;
2232 
2233 	if (shortgi) {
2234 		ratr_bitmap |= 0x10000000;
2235 		/* Get MAX MCS available. */
2236 		ratr_value = (ratr_bitmap >> 12);
2237 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2238 			if ((1 << shortgi_rate) & ratr_value)
2239 				break;
2240 		}
2241 
2242 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2243 			(shortgi_rate << 4) | (shortgi_rate);
2244 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2245 	}
2246 
2247 	mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2248 
2249 	rtl_dbg(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2250 		mask, ratr_bitmap);
2251 	rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2252 	rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2253 
2254 	if (macid != 0)
2255 		sta_entry->ratr_index = ratr_index;
2256 }
2257 
2258 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2259 		struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
2260 {
2261 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2262 
2263 	if (rtlpriv->dm.useramask)
2264 		rtl92se_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
2265 	else
2266 		rtl92se_update_hal_rate_table(hw, sta);
2267 }
2268 
2269 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2270 {
2271 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2272 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2273 	u16 sifs_timer;
2274 
2275 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2276 				      &mac->slot_time);
2277 	sifs_timer = 0x0e0e;
2278 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2279 
2280 }
2281 
2282 /* this ifunction is for RFKILL, it's different with windows,
2283  * because UI will disable wireless when GPIO Radio Off.
2284  * And here we not check or Disable/Enable ASPM like windows*/
2285 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2286 {
2287 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2288 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2289 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2290 	enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2291 	unsigned long flag = 0;
2292 	bool actuallyset = false;
2293 	bool turnonbypowerdomain = false;
2294 
2295 	/* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2296 	if (rtlpci->up_first_time || rtlpci->being_init_adapter)
2297 		return false;
2298 
2299 	if (ppsc->swrf_processing)
2300 		return false;
2301 
2302 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2303 	if (ppsc->rfchange_inprogress) {
2304 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2305 		return false;
2306 	} else {
2307 		ppsc->rfchange_inprogress = true;
2308 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2309 	}
2310 
2311 	/* cur_rfstate = ppsc->rfpwr_state;*/
2312 
2313 	/* because after _rtl92s_phy_set_rfhalt, all power
2314 	 * closed, so we must open some power for GPIO check,
2315 	 * or we will always check GPIO RFOFF here,
2316 	 * And we should close power after GPIO check */
2317 	if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2318 		_rtl92se_power_domain_init(hw);
2319 		turnonbypowerdomain = true;
2320 	}
2321 
2322 	rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2323 
2324 	if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2325 		rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2326 			"RFKILL-HW Radio ON, RF ON\n");
2327 
2328 		rfpwr_toset = ERFON;
2329 		ppsc->hwradiooff = false;
2330 		actuallyset = true;
2331 	} else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2332 		rtl_dbg(rtlpriv, COMP_RF,
2333 			DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2334 
2335 		rfpwr_toset = ERFOFF;
2336 		ppsc->hwradiooff = true;
2337 		actuallyset = true;
2338 	}
2339 
2340 	if (actuallyset) {
2341 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2342 		ppsc->rfchange_inprogress = false;
2343 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2344 
2345 	/* this not include ifconfig wlan0 down case */
2346 	/* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2347 	} else {
2348 		/* because power_domain_init may be happen when
2349 		 * _rtl92s_phy_set_rfhalt, this will open some powers
2350 		 * and cause current increasing about 40 mA for ips,
2351 		 * rfoff and ifconfig down, so we set
2352 		 * _rtl92s_phy_set_rfhalt again here */
2353 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2354 			turnonbypowerdomain) {
2355 			_rtl92s_phy_set_rfhalt(hw);
2356 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2357 		}
2358 
2359 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2360 		ppsc->rfchange_inprogress = false;
2361 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2362 	}
2363 
2364 	*valid = 1;
2365 	return !ppsc->hwradiooff;
2366 
2367 }
2368 
2369 /* Is_wepkey just used for WEP used as group & pairwise key
2370  * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2371 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2372 	bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2373 {
2374 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2375 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2376 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2377 	u8 *macaddr = p_macaddr;
2378 
2379 	u32 entry_id = 0;
2380 	bool is_pairwise = false;
2381 
2382 	static u8 cam_const_addr[4][6] = {
2383 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2384 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2385 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2386 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2387 	};
2388 	static u8 cam_const_broad[] = {
2389 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2390 	};
2391 
2392 	if (clear_all) {
2393 		u8 idx = 0;
2394 		u8 cam_offset = 0;
2395 		u8 clear_number = 5;
2396 
2397 		rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2398 
2399 		for (idx = 0; idx < clear_number; idx++) {
2400 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2401 			rtl_cam_empty_entry(hw, cam_offset + idx);
2402 
2403 			if (idx < 5) {
2404 				memset(rtlpriv->sec.key_buf[idx], 0,
2405 				       MAX_KEY_LEN);
2406 				rtlpriv->sec.key_len[idx] = 0;
2407 			}
2408 		}
2409 
2410 	} else {
2411 		switch (enc_algo) {
2412 		case WEP40_ENCRYPTION:
2413 			enc_algo = CAM_WEP40;
2414 			break;
2415 		case WEP104_ENCRYPTION:
2416 			enc_algo = CAM_WEP104;
2417 			break;
2418 		case TKIP_ENCRYPTION:
2419 			enc_algo = CAM_TKIP;
2420 			break;
2421 		case AESCCMP_ENCRYPTION:
2422 			enc_algo = CAM_AES;
2423 			break;
2424 		default:
2425 			pr_err("switch case %#x not processed\n",
2426 			       enc_algo);
2427 			enc_algo = CAM_TKIP;
2428 			break;
2429 		}
2430 
2431 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2432 			macaddr = cam_const_addr[key_index];
2433 			entry_id = key_index;
2434 		} else {
2435 			if (is_group) {
2436 				macaddr = cam_const_broad;
2437 				entry_id = key_index;
2438 			} else {
2439 				if (mac->opmode == NL80211_IFTYPE_AP) {
2440 					entry_id = rtl_cam_get_free_entry(hw,
2441 								 p_macaddr);
2442 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2443 						pr_err("Can not find free hw security cam entry\n");
2444 						return;
2445 					}
2446 				} else {
2447 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2448 				}
2449 
2450 				key_index = PAIRWISE_KEYIDX;
2451 				is_pairwise = true;
2452 			}
2453 		}
2454 
2455 		if (rtlpriv->sec.key_len[key_index] == 0) {
2456 			rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2457 				"delete one entry, entry_id is %d\n",
2458 				entry_id);
2459 			if (mac->opmode == NL80211_IFTYPE_AP)
2460 				rtl_cam_del_entry(hw, p_macaddr);
2461 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2462 		} else {
2463 			rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2464 				"add one entry\n");
2465 			if (is_pairwise) {
2466 				rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2467 					"set Pairwise key\n");
2468 
2469 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2470 					entry_id, enc_algo,
2471 					CAM_CONFIG_NO_USEDK,
2472 					rtlpriv->sec.key_buf[key_index]);
2473 			} else {
2474 				rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2475 					"set group key\n");
2476 
2477 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2478 					rtl_cam_add_one_entry(hw,
2479 						rtlefuse->dev_addr,
2480 						PAIRWISE_KEYIDX,
2481 						CAM_PAIRWISE_KEY_POSITION,
2482 						enc_algo, CAM_CONFIG_NO_USEDK,
2483 						rtlpriv->sec.key_buf[entry_id]);
2484 				}
2485 
2486 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2487 					      entry_id, enc_algo,
2488 					      CAM_CONFIG_NO_USEDK,
2489 					      rtlpriv->sec.key_buf[entry_id]);
2490 			}
2491 
2492 		}
2493 	}
2494 }
2495 
2496 void rtl92se_suspend(struct ieee80211_hw *hw)
2497 {
2498 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2499 
2500 	rtlpci->up_first_time = true;
2501 }
2502 
2503 void rtl92se_resume(struct ieee80211_hw *hw)
2504 {
2505 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2506 	u32 val;
2507 
2508 	pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2509 	if ((val & 0x0000ff00) != 0)
2510 		pci_write_config_dword(rtlpci->pdev, 0x40,
2511 			val & 0xffff00ff);
2512 }
2513