1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2009-2012 Realtek Corporation.*/ 3 4 #include "../wifi.h" 5 #include "../efuse.h" 6 #include "../base.h" 7 #include "../regd.h" 8 #include "../cam.h" 9 #include "../ps.h" 10 #include "../pci.h" 11 #include "reg.h" 12 #include "def.h" 13 #include "phy.h" 14 #include "dm.h" 15 #include "fw.h" 16 #include "led.h" 17 #include "sw.h" 18 #include "hw.h" 19 20 u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct) 21 { 22 struct rtl_priv *rtlpriv = rtl_priv(hw); 23 u32 value; 24 25 rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC)); 26 rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct); 27 udelay(10); 28 value = rtl_read_dword(rtlpriv, REG_DBI_RDATA); 29 return value; 30 } 31 32 void rtl92de_write_dword_dbi(struct ieee80211_hw *hw, 33 u16 offset, u32 value, u8 direct) 34 { 35 struct rtl_priv *rtlpriv = rtl_priv(hw); 36 37 rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000)); 38 rtl_write_dword(rtlpriv, REG_DBI_WDATA, value); 39 rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct); 40 } 41 42 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw, 43 u8 set_bits, u8 clear_bits) 44 { 45 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 46 struct rtl_priv *rtlpriv = rtl_priv(hw); 47 48 rtlpci->reg_bcn_ctrl_val |= set_bits; 49 rtlpci->reg_bcn_ctrl_val &= ~clear_bits; 50 rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val); 51 } 52 53 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw) 54 { 55 struct rtl_priv *rtlpriv = rtl_priv(hw); 56 u8 tmp1byte; 57 58 tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); 59 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6))); 60 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff); 61 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64); 62 tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); 63 tmp1byte &= ~(BIT(0)); 64 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); 65 } 66 67 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw) 68 { 69 struct rtl_priv *rtlpriv = rtl_priv(hw); 70 u8 tmp1byte; 71 72 tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); 73 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6)); 74 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a); 75 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); 76 tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); 77 tmp1byte |= BIT(0); 78 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); 79 } 80 81 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw) 82 { 83 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1)); 84 } 85 86 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw) 87 { 88 _rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0); 89 } 90 91 void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) 92 { 93 struct rtl_priv *rtlpriv = rtl_priv(hw); 94 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 95 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 96 97 switch (variable) { 98 case HW_VAR_RCR: 99 *((u32 *) (val)) = rtlpci->receive_config; 100 break; 101 case HW_VAR_RF_STATE: 102 *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; 103 break; 104 case HW_VAR_FWLPS_RF_ON:{ 105 enum rf_pwrstate rfstate; 106 u32 val_rcr; 107 108 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, 109 (u8 *)(&rfstate)); 110 if (rfstate == ERFOFF) { 111 *((bool *) (val)) = true; 112 } else { 113 val_rcr = rtl_read_dword(rtlpriv, REG_RCR); 114 val_rcr &= 0x00070000; 115 if (val_rcr) 116 *((bool *) (val)) = false; 117 else 118 *((bool *) (val)) = true; 119 } 120 break; 121 } 122 case HW_VAR_FW_PSMODE_STATUS: 123 *((bool *) (val)) = ppsc->fw_current_inpsmode; 124 break; 125 case HW_VAR_CORRECT_TSF:{ 126 u64 tsf; 127 u32 *ptsf_low = (u32 *)&tsf; 128 u32 *ptsf_high = ((u32 *)&tsf) + 1; 129 130 *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4)); 131 *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR); 132 *((u64 *) (val)) = tsf; 133 break; 134 } 135 case HW_VAR_INT_MIGRATION: 136 *((bool *)(val)) = rtlpriv->dm.interrupt_migration; 137 break; 138 case HW_VAR_INT_AC: 139 *((bool *)(val)) = rtlpriv->dm.disable_tx_int; 140 break; 141 case HAL_DEF_WOWLAN: 142 break; 143 default: 144 pr_err("switch case %#x not processed\n", variable); 145 break; 146 } 147 } 148 149 void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) 150 { 151 struct rtl_priv *rtlpriv = rtl_priv(hw); 152 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 153 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 154 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 155 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 156 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 157 u8 idx; 158 159 switch (variable) { 160 case HW_VAR_ETHER_ADDR: 161 for (idx = 0; idx < ETH_ALEN; idx++) { 162 rtl_write_byte(rtlpriv, (REG_MACID + idx), 163 val[idx]); 164 } 165 break; 166 case HW_VAR_BASIC_RATE: { 167 u16 rate_cfg = ((u16 *) val)[0]; 168 u8 rate_index = 0; 169 170 rate_cfg = rate_cfg & 0x15f; 171 if (mac->vendor == PEER_CISCO && 172 ((rate_cfg & 0x150) == 0)) 173 rate_cfg |= 0x01; 174 rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff); 175 rtl_write_byte(rtlpriv, REG_RRSR + 1, 176 (rate_cfg >> 8) & 0xff); 177 while (rate_cfg > 0x1) { 178 rate_cfg = (rate_cfg >> 1); 179 rate_index++; 180 } 181 if (rtlhal->fw_version > 0xe) 182 rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 183 rate_index); 184 break; 185 } 186 case HW_VAR_BSSID: 187 for (idx = 0; idx < ETH_ALEN; idx++) { 188 rtl_write_byte(rtlpriv, (REG_BSSID + idx), 189 val[idx]); 190 } 191 break; 192 case HW_VAR_SIFS: 193 rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]); 194 rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]); 195 rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]); 196 rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]); 197 if (!mac->ht_enable) 198 rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 199 0x0e0e); 200 else 201 rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 202 *((u16 *) val)); 203 break; 204 case HW_VAR_SLOT_TIME: { 205 u8 e_aci; 206 207 rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, 208 "HW_VAR_SLOT_TIME %x\n", val[0]); 209 rtl_write_byte(rtlpriv, REG_SLOT, val[0]); 210 for (e_aci = 0; e_aci < AC_MAX; e_aci++) 211 rtlpriv->cfg->ops->set_hw_reg(hw, 212 HW_VAR_AC_PARAM, 213 (&e_aci)); 214 break; 215 } 216 case HW_VAR_ACK_PREAMBLE: { 217 u8 reg_tmp; 218 u8 short_preamble = (bool) (*val); 219 220 reg_tmp = (mac->cur_40_prime_sc) << 5; 221 if (short_preamble) 222 reg_tmp |= 0x80; 223 rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp); 224 break; 225 } 226 case HW_VAR_AMPDU_MIN_SPACE: { 227 u8 min_spacing_to_set; 228 229 min_spacing_to_set = *val; 230 if (min_spacing_to_set <= 7) { 231 mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) | 232 min_spacing_to_set); 233 *val = min_spacing_to_set; 234 rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, 235 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", 236 mac->min_space_cfg); 237 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 238 mac->min_space_cfg); 239 } 240 break; 241 } 242 case HW_VAR_SHORTGI_DENSITY: { 243 u8 density_to_set; 244 245 density_to_set = *val; 246 mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg; 247 mac->min_space_cfg |= (density_to_set << 3); 248 rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, 249 "Set HW_VAR_SHORTGI_DENSITY: %#x\n", 250 mac->min_space_cfg); 251 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 252 mac->min_space_cfg); 253 break; 254 } 255 case HW_VAR_AMPDU_FACTOR: { 256 u8 factor_toset; 257 u32 regtoset; 258 u8 *ptmp_byte = NULL; 259 u8 index; 260 261 if (rtlhal->macphymode == DUALMAC_DUALPHY) 262 regtoset = 0xb9726641; 263 else if (rtlhal->macphymode == DUALMAC_SINGLEPHY) 264 regtoset = 0x66626641; 265 else 266 regtoset = 0xb972a841; 267 factor_toset = *val; 268 if (factor_toset <= 3) { 269 factor_toset = (1 << (factor_toset + 2)); 270 if (factor_toset > 0xf) 271 factor_toset = 0xf; 272 for (index = 0; index < 4; index++) { 273 ptmp_byte = (u8 *)(®toset) + index; 274 if ((*ptmp_byte & 0xf0) > 275 (factor_toset << 4)) 276 *ptmp_byte = (*ptmp_byte & 0x0f) 277 | (factor_toset << 4); 278 if ((*ptmp_byte & 0x0f) > factor_toset) 279 *ptmp_byte = (*ptmp_byte & 0xf0) 280 | (factor_toset); 281 } 282 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoset); 283 rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, 284 "Set HW_VAR_AMPDU_FACTOR: %#x\n", 285 factor_toset); 286 } 287 break; 288 } 289 case HW_VAR_AC_PARAM: { 290 u8 e_aci = *val; 291 rtl92d_dm_init_edca_turbo(hw); 292 if (rtlpci->acm_method != EACMWAY2_SW) 293 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, 294 &e_aci); 295 break; 296 } 297 case HW_VAR_ACM_CTRL: { 298 u8 e_aci = *val; 299 union aci_aifsn *p_aci_aifsn = 300 (union aci_aifsn *)(&(mac->ac[0].aifs)); 301 u8 acm = p_aci_aifsn->f.acm; 302 u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL); 303 304 acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1); 305 if (acm) { 306 switch (e_aci) { 307 case AC0_BE: 308 acm_ctrl |= ACMHW_BEQEN; 309 break; 310 case AC2_VI: 311 acm_ctrl |= ACMHW_VIQEN; 312 break; 313 case AC3_VO: 314 acm_ctrl |= ACMHW_VOQEN; 315 break; 316 default: 317 rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, 318 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", 319 acm); 320 break; 321 } 322 } else { 323 switch (e_aci) { 324 case AC0_BE: 325 acm_ctrl &= (~ACMHW_BEQEN); 326 break; 327 case AC2_VI: 328 acm_ctrl &= (~ACMHW_VIQEN); 329 break; 330 case AC3_VO: 331 acm_ctrl &= (~ACMHW_VOQEN); 332 break; 333 default: 334 pr_err("switch case %#x not processed\n", 335 e_aci); 336 break; 337 } 338 } 339 rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE, 340 "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", 341 acm_ctrl); 342 rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl); 343 break; 344 } 345 case HW_VAR_RCR: 346 rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]); 347 rtlpci->receive_config = ((u32 *) (val))[0]; 348 break; 349 case HW_VAR_RETRY_LIMIT: { 350 u8 retry_limit = val[0]; 351 352 rtl_write_word(rtlpriv, REG_RL, 353 retry_limit << RETRY_LIMIT_SHORT_SHIFT | 354 retry_limit << RETRY_LIMIT_LONG_SHIFT); 355 break; 356 } 357 case HW_VAR_DUAL_TSF_RST: 358 rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1))); 359 break; 360 case HW_VAR_EFUSE_BYTES: 361 rtlefuse->efuse_usedbytes = *((u16 *) val); 362 break; 363 case HW_VAR_EFUSE_USAGE: 364 rtlefuse->efuse_usedpercentage = *val; 365 break; 366 case HW_VAR_IO_CMD: 367 rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val)); 368 break; 369 case HW_VAR_WPA_CONFIG: 370 rtl_write_byte(rtlpriv, REG_SECCFG, *val); 371 break; 372 case HW_VAR_SET_RPWM: 373 rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val)); 374 break; 375 case HW_VAR_H2C_FW_PWRMODE: 376 break; 377 case HW_VAR_FW_PSMODE_STATUS: 378 ppsc->fw_current_inpsmode = *((bool *) val); 379 break; 380 case HW_VAR_H2C_FW_JOINBSSRPT: { 381 u8 mstatus = (*val); 382 u8 tmp_regcr, tmp_reg422; 383 bool recover = false; 384 385 if (mstatus == RT_MEDIA_CONNECT) { 386 rtlpriv->cfg->ops->set_hw_reg(hw, 387 HW_VAR_AID, NULL); 388 tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1); 389 rtl_write_byte(rtlpriv, REG_CR + 1, 390 (tmp_regcr | BIT(0))); 391 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3)); 392 _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0); 393 tmp_reg422 = rtl_read_byte(rtlpriv, 394 REG_FWHW_TXQ_CTRL + 2); 395 if (tmp_reg422 & BIT(6)) 396 recover = true; 397 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, 398 tmp_reg422 & (~BIT(6))); 399 rtl92d_set_fw_rsvdpagepkt(hw, 0); 400 _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0); 401 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4)); 402 if (recover) 403 rtl_write_byte(rtlpriv, 404 REG_FWHW_TXQ_CTRL + 2, 405 tmp_reg422); 406 rtl_write_byte(rtlpriv, REG_CR + 1, 407 (tmp_regcr & ~(BIT(0)))); 408 } 409 rtl92d_set_fw_joinbss_report_cmd(hw, (*val)); 410 break; 411 } 412 case HW_VAR_AID: { 413 u16 u2btmp; 414 u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT); 415 u2btmp &= 0xC000; 416 rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp | 417 mac->assoc_id)); 418 break; 419 } 420 case HW_VAR_CORRECT_TSF: { 421 u8 btype_ibss = val[0]; 422 423 if (btype_ibss) 424 _rtl92de_stop_tx_beacon(hw); 425 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3)); 426 rtl_write_dword(rtlpriv, REG_TSFTR, 427 (u32) (mac->tsf & 0xffffffff)); 428 rtl_write_dword(rtlpriv, REG_TSFTR + 4, 429 (u32) ((mac->tsf >> 32) & 0xffffffff)); 430 _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0); 431 if (btype_ibss) 432 _rtl92de_resume_tx_beacon(hw); 433 434 break; 435 } 436 case HW_VAR_INT_MIGRATION: { 437 bool int_migration = *(bool *) (val); 438 439 if (int_migration) { 440 /* Set interrupt migration timer and 441 * corresponding Tx/Rx counter. 442 * timer 25ns*0xfa0=100us for 0xf packets. 443 * 0x306:Rx, 0x307:Tx */ 444 rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0); 445 rtlpriv->dm.interrupt_migration = int_migration; 446 } else { 447 /* Reset all interrupt migration settings. */ 448 rtl_write_dword(rtlpriv, REG_INT_MIG, 0); 449 rtlpriv->dm.interrupt_migration = int_migration; 450 } 451 break; 452 } 453 case HW_VAR_INT_AC: { 454 bool disable_ac_int = *((bool *) val); 455 456 /* Disable four ACs interrupts. */ 457 if (disable_ac_int) { 458 /* Disable VO, VI, BE and BK four AC interrupts 459 * to gain more efficient CPU utilization. 460 * When extremely highly Rx OK occurs, 461 * we will disable Tx interrupts. 462 */ 463 rtlpriv->cfg->ops->update_interrupt_mask(hw, 0, 464 RT_AC_INT_MASKS); 465 rtlpriv->dm.disable_tx_int = disable_ac_int; 466 /* Enable four ACs interrupts. */ 467 } else { 468 rtlpriv->cfg->ops->update_interrupt_mask(hw, 469 RT_AC_INT_MASKS, 0); 470 rtlpriv->dm.disable_tx_int = disable_ac_int; 471 } 472 break; 473 } 474 default: 475 pr_err("switch case %#x not processed\n", variable); 476 break; 477 } 478 } 479 480 static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data) 481 { 482 struct rtl_priv *rtlpriv = rtl_priv(hw); 483 bool status = true; 484 long count = 0; 485 u32 value = _LLT_INIT_ADDR(address) | 486 _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); 487 488 rtl_write_dword(rtlpriv, REG_LLT_INIT, value); 489 do { 490 value = rtl_read_dword(rtlpriv, REG_LLT_INIT); 491 if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) 492 break; 493 if (count > POLLING_LLT_THRESHOLD) { 494 pr_err("Failed to polling write LLT done at address %d!\n", 495 address); 496 status = false; 497 break; 498 } 499 } while (++count); 500 return status; 501 } 502 503 static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw) 504 { 505 struct rtl_priv *rtlpriv = rtl_priv(hw); 506 unsigned short i; 507 u8 txpktbuf_bndy; 508 u8 maxpage; 509 bool status; 510 u32 value32; /* High+low page number */ 511 u8 value8; /* normal page number */ 512 513 if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) { 514 maxpage = 255; 515 txpktbuf_bndy = 246; 516 value8 = 0; 517 value32 = 0x80bf0d29; 518 } else { 519 maxpage = 127; 520 txpktbuf_bndy = 123; 521 value8 = 0; 522 value32 = 0x80750005; 523 } 524 525 /* Set reserved page for each queue */ 526 /* 11. RQPN 0x200[31:0] = 0x80BD1C1C */ 527 /* load RQPN */ 528 rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8); 529 rtl_write_dword(rtlpriv, REG_RQPN, value32); 530 531 /* 12. TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */ 532 /* TXRKTBUG_PG_BNDY */ 533 rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, 534 (rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 | 535 txpktbuf_bndy)); 536 537 /* 13. TDECTRL[15:8] 0x209[7:0] = 0xF6 */ 538 /* Beacon Head for TXDMA */ 539 rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy); 540 541 /* 14. BCNQ_PGBNDY 0x424[7:0] = 0xF6 */ 542 /* BCNQ_PGBNDY */ 543 rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); 544 rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); 545 546 /* 15. WMAC_LBK_BF_HD 0x45D[7:0] = 0xF6 */ 547 /* WMAC_LBK_BF_HD */ 548 rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy); 549 550 /* Set Tx/Rx page size (Tx must be 128 Bytes, */ 551 /* Rx can be 64,128,256,512,1024 bytes) */ 552 /* 16. PBP [7:0] = 0x11 */ 553 /* TRX page size */ 554 rtl_write_byte(rtlpriv, REG_PBP, 0x11); 555 556 /* 17. DRV_INFO_SZ = 0x04 */ 557 rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4); 558 559 /* 18. LLT_table_init(Adapter); */ 560 for (i = 0; i < (txpktbuf_bndy - 1); i++) { 561 status = _rtl92de_llt_write(hw, i, i + 1); 562 if (!status) 563 return status; 564 } 565 566 /* end of list */ 567 status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF); 568 if (!status) 569 return status; 570 571 /* Make the other pages as ring buffer */ 572 /* This ring buffer is used as beacon buffer if we */ 573 /* config this MAC as two MAC transfer. */ 574 /* Otherwise used as local loopback buffer. */ 575 for (i = txpktbuf_bndy; i < maxpage; i++) { 576 status = _rtl92de_llt_write(hw, i, (i + 1)); 577 if (!status) 578 return status; 579 } 580 581 /* Let last entry point to the start entry of ring buffer */ 582 status = _rtl92de_llt_write(hw, maxpage, txpktbuf_bndy); 583 if (!status) 584 return status; 585 586 return true; 587 } 588 589 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw) 590 { 591 struct rtl_priv *rtlpriv = rtl_priv(hw); 592 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 593 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 594 enum rtl_led_pin pin0 = rtlpriv->ledctl.sw_led0; 595 596 if (rtlpci->up_first_time) 597 return; 598 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) 599 rtl92de_sw_led_on(hw, pin0); 600 else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT) 601 rtl92de_sw_led_on(hw, pin0); 602 else 603 rtl92de_sw_led_off(hw, pin0); 604 } 605 606 static bool _rtl92de_init_mac(struct ieee80211_hw *hw) 607 { 608 struct rtl_priv *rtlpriv = rtl_priv(hw); 609 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 610 unsigned char bytetmp; 611 unsigned short wordtmp; 612 u16 retry; 613 614 rtl92d_phy_set_poweron(hw); 615 /* Add for resume sequence of power domain according 616 * to power document V11. Chapter V.11.... */ 617 /* 0. RSV_CTRL 0x1C[7:0] = 0x00 */ 618 /* unlock ISO/CLK/Power control register */ 619 rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00); 620 rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05); 621 622 /* 1. AFE_XTAL_CTRL [7:0] = 0x0F enable XTAL */ 623 /* 2. SPS0_CTRL 0x11[7:0] = 0x2b enable SPS into PWM mode */ 624 /* 3. delay (1ms) this is not necessary when initially power on */ 625 626 /* C. Resume Sequence */ 627 /* a. SPS0_CTRL 0x11[7:0] = 0x2b */ 628 rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b); 629 630 /* b. AFE_XTAL_CTRL [7:0] = 0x0F */ 631 rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F); 632 633 /* c. DRV runs power on init flow */ 634 635 /* auto enable WLAN */ 636 /* 4. APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0 */ 637 /* Power On Reset for MAC Block */ 638 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0); 639 udelay(2); 640 rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp); 641 udelay(2); 642 643 /* 5. Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */ 644 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1); 645 udelay(50); 646 retry = 0; 647 while ((bytetmp & BIT(0)) && retry < 1000) { 648 retry++; 649 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1); 650 udelay(50); 651 } 652 653 /* Enable Radio off, GPIO, and LED function */ 654 /* 6. APS_FSMCO 0x04[15:0] = 0x0012 when enable HWPDN */ 655 rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012); 656 657 /* release RF digital isolation */ 658 /* 7. SYS_ISO_CTRL 0x01[1] = 0x0; */ 659 /*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */ 660 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82); 661 udelay(2); 662 663 /* make sure that BB reset OK. */ 664 /* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */ 665 666 /* Disable REG_CR before enable it to assure reset */ 667 rtl_write_word(rtlpriv, REG_CR, 0x0); 668 669 /* Release MAC IO register reset */ 670 rtl_write_word(rtlpriv, REG_CR, 0x2ff); 671 672 /* clear stopping tx/rx dma */ 673 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0); 674 675 /* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */ 676 677 /* System init */ 678 /* 18. LLT_table_init(Adapter); */ 679 if (!_rtl92de_llt_table_init(hw)) 680 return false; 681 682 /* Clear interrupt and enable interrupt */ 683 /* 19. HISR 0x124[31:0] = 0xffffffff; */ 684 /* HISRE 0x12C[7:0] = 0xFF */ 685 rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff); 686 rtl_write_byte(rtlpriv, REG_HISRE, 0xff); 687 688 /* 20. HIMR 0x120[31:0] |= [enable INT mask bit map]; */ 689 /* 21. HIMRE 0x128[7:0] = [enable INT mask bit map] */ 690 /* The IMR should be enabled later after all init sequence 691 * is finished. */ 692 693 /* 22. PCIE configuration space configuration */ 694 /* 23. Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ), */ 695 /* and PCIe gated clock function is enabled. */ 696 /* PCIE configuration space will be written after 697 * all init sequence.(Or by BIOS) */ 698 699 rtl92d_phy_config_maccoexist_rfpage(hw); 700 701 /* THe below section is not related to power document Vxx . */ 702 /* This is only useful for driver and OS setting. */ 703 /* -------------------Software Relative Setting---------------------- */ 704 wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL); 705 wordtmp &= 0xf; 706 wordtmp |= 0xF771; 707 rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp); 708 709 /* Reported Tx status from HW for rate adaptive. */ 710 /* This should be realtive to power on step 14. But in document V11 */ 711 /* still not contain the description.!!! */ 712 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F); 713 714 /* Set Tx/Rx page size (Tx must be 128 Bytes, 715 * Rx can be 64,128,256,512,1024 bytes) */ 716 /* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */ 717 718 /* Set RCR register */ 719 rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); 720 /* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */ 721 722 /* Set TCR register */ 723 rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config); 724 725 /* disable earlymode */ 726 rtl_write_byte(rtlpriv, 0x4d0, 0x0); 727 728 /* Set TX/RX descriptor physical address(from OS API). */ 729 rtl_write_dword(rtlpriv, REG_BCNQ_DESA, 730 rtlpci->tx_ring[BEACON_QUEUE].dma); 731 rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma); 732 rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma); 733 rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma); 734 rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma); 735 rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma); 736 rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma); 737 /* Set RX Desc Address */ 738 rtl_write_dword(rtlpriv, REG_RX_DESA, 739 rtlpci->rx_ring[RX_MPDU_QUEUE].dma); 740 741 /* if we want to support 64 bit DMA, we should set it here, 742 * but now we do not support 64 bit DMA*/ 743 744 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33); 745 746 /* Reset interrupt migration setting when initialization */ 747 rtl_write_dword(rtlpriv, REG_INT_MIG, 0); 748 749 /* Reconsider when to do this operation after asking HWSD. */ 750 bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL); 751 rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6)); 752 do { 753 retry++; 754 bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL); 755 } while ((retry < 200) && !(bytetmp & BIT(7))); 756 757 /* After MACIO reset,we must refresh LED state. */ 758 _rtl92de_gen_refresh_led_state(hw); 759 760 /* Reset H2C protection register */ 761 rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0); 762 763 return true; 764 } 765 766 static void _rtl92de_hw_configure(struct ieee80211_hw *hw) 767 { 768 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 769 struct rtl_priv *rtlpriv = rtl_priv(hw); 770 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 771 u8 reg_bw_opmode = BW_OPMODE_20MHZ; 772 u32 reg_rrsr; 773 774 reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; 775 rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8); 776 rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode); 777 rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr); 778 rtl_write_byte(rtlpriv, REG_SLOT, 0x09); 779 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0); 780 rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80); 781 rtl_write_word(rtlpriv, REG_RL, 0x0707); 782 rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802); 783 rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF); 784 rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000); 785 rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504); 786 rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000); 787 rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504); 788 /* Aggregation threshold */ 789 if (rtlhal->macphymode == DUALMAC_DUALPHY) 790 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641); 791 else if (rtlhal->macphymode == DUALMAC_SINGLEPHY) 792 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641); 793 else 794 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841); 795 rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2); 796 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a); 797 rtlpci->reg_bcn_ctrl_val = 0x1f; 798 rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val); 799 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); 800 rtl_write_byte(rtlpriv, REG_PIFS, 0x1C); 801 rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16); 802 rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020); 803 /* For throughput */ 804 rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666); 805 /* ACKTO for IOT issue. */ 806 rtl_write_byte(rtlpriv, REG_ACKTO, 0x40); 807 /* Set Spec SIFS (used in NAV) */ 808 rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010); 809 rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010); 810 /* Set SIFS for CCK */ 811 rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010); 812 /* Set SIFS for OFDM */ 813 rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010); 814 /* Set Multicast Address. */ 815 rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff); 816 rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff); 817 switch (rtlpriv->phy.rf_type) { 818 case RF_1T2R: 819 case RF_1T1R: 820 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3); 821 break; 822 case RF_2T2R: 823 case RF_2T2R_GREEN: 824 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3); 825 break; 826 } 827 } 828 829 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw) 830 { 831 struct rtl_priv *rtlpriv = rtl_priv(hw); 832 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 833 834 rtl_write_byte(rtlpriv, 0x34b, 0x93); 835 rtl_write_word(rtlpriv, 0x350, 0x870c); 836 rtl_write_byte(rtlpriv, 0x352, 0x1); 837 if (ppsc->support_backdoor) 838 rtl_write_byte(rtlpriv, 0x349, 0x1b); 839 else 840 rtl_write_byte(rtlpriv, 0x349, 0x03); 841 rtl_write_word(rtlpriv, 0x350, 0x2718); 842 rtl_write_byte(rtlpriv, 0x352, 0x1); 843 } 844 845 void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw) 846 { 847 struct rtl_priv *rtlpriv = rtl_priv(hw); 848 u8 sec_reg_value; 849 850 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, 851 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", 852 rtlpriv->sec.pairwise_enc_algorithm, 853 rtlpriv->sec.group_enc_algorithm); 854 if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { 855 rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, 856 "not open hw encryption\n"); 857 return; 858 } 859 sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE; 860 if (rtlpriv->sec.use_defaultkey) { 861 sec_reg_value |= SCR_TXUSEDK; 862 sec_reg_value |= SCR_RXUSEDK; 863 } 864 sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK); 865 rtl_write_byte(rtlpriv, REG_CR + 1, 0x02); 866 rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD, 867 "The SECR-value %x\n", sec_reg_value); 868 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); 869 } 870 871 int rtl92de_hw_init(struct ieee80211_hw *hw) 872 { 873 struct rtl_priv *rtlpriv = rtl_priv(hw); 874 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 875 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 876 struct rtl_phy *rtlphy = &(rtlpriv->phy); 877 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 878 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 879 bool rtstatus = true; 880 u8 tmp_u1b; 881 int i; 882 int err; 883 unsigned long flags; 884 885 rtlpci->being_init_adapter = true; 886 rtlpci->init_ready = false; 887 spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags); 888 /* we should do iqk after disable/enable */ 889 rtl92d_phy_reset_iqk_result(hw); 890 /* rtlpriv->intf_ops->disable_aspm(hw); */ 891 rtstatus = _rtl92de_init_mac(hw); 892 if (!rtstatus) { 893 pr_err("Init MAC failed\n"); 894 err = 1; 895 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags); 896 return err; 897 } 898 err = rtl92d_download_fw(hw); 899 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags); 900 if (err) { 901 rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, 902 "Failed to download FW. Init HW without FW..\n"); 903 return 1; 904 } 905 rtlhal->last_hmeboxnum = 0; 906 rtlpriv->psc.fw_current_inpsmode = false; 907 908 tmp_u1b = rtl_read_byte(rtlpriv, 0x605); 909 tmp_u1b = tmp_u1b | 0x30; 910 rtl_write_byte(rtlpriv, 0x605, tmp_u1b); 911 912 if (rtlhal->earlymode_enable) { 913 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, 914 "EarlyMode Enabled!!!\n"); 915 916 tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0); 917 tmp_u1b = tmp_u1b | 0x1f; 918 rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b); 919 920 rtl_write_byte(rtlpriv, 0x4d3, 0x80); 921 922 tmp_u1b = rtl_read_byte(rtlpriv, 0x605); 923 tmp_u1b = tmp_u1b | 0x40; 924 rtl_write_byte(rtlpriv, 0x605, tmp_u1b); 925 } 926 927 if (mac->rdg_en) { 928 rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff); 929 rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200); 930 rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05); 931 } 932 933 rtl92d_phy_mac_config(hw); 934 /* because last function modify RCR, so we update 935 * rcr var here, or TP will unstable for receive_config 936 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx 937 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/ 938 rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR); 939 rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); 940 941 rtl92d_phy_bb_config(hw); 942 943 rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; 944 /* set before initialize RF */ 945 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf); 946 947 /* config RF */ 948 rtl92d_phy_rf_config(hw); 949 950 /* After read predefined TXT, we must set BB/MAC/RF 951 * register as our requirement */ 952 /* After load BB,RF params,we need do more for 92D. */ 953 rtl92d_update_bbrf_configuration(hw); 954 /* set default value after initialize RF, */ 955 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0); 956 rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0, 957 RF_CHNLBW, RFREG_OFFSET_MASK); 958 rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1, 959 RF_CHNLBW, RFREG_OFFSET_MASK); 960 961 /*---- Set CCK and OFDM Block "ON"----*/ 962 if (rtlhal->current_bandtype == BAND_ON_2_4G) 963 rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); 964 rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); 965 if (rtlhal->interfaceindex == 0) { 966 /* RFPGA0_ANALOGPARAMETER2: cck clock select, 967 * set to 20MHz by default */ 968 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) | 969 BIT(11), 3); 970 } else { 971 /* Mac1 */ 972 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) | 973 BIT(10), 3); 974 } 975 976 _rtl92de_hw_configure(hw); 977 978 /* reset hw sec */ 979 rtl_cam_reset_all_entry(hw); 980 rtl92de_enable_hw_security_config(hw); 981 982 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */ 983 /* TX power index for different rate set. */ 984 rtl92d_phy_get_hw_reg_originalvalue(hw); 985 rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel); 986 987 ppsc->rfpwr_state = ERFON; 988 989 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr); 990 991 _rtl92de_enable_aspm_back_door(hw); 992 /* rtlpriv->intf_ops->enable_aspm(hw); */ 993 994 rtl92d_dm_init(hw); 995 rtlpci->being_init_adapter = false; 996 997 if (ppsc->rfpwr_state == ERFON) { 998 rtl92d_phy_lc_calibrate(hw); 999 /* 5G and 2.4G must wait sometime to let RF LO ready */ 1000 if (rtlhal->macphymode == DUALMAC_DUALPHY) { 1001 u32 tmp_rega; 1002 for (i = 0; i < 10000; i++) { 1003 udelay(MAX_STALL_TIME); 1004 1005 tmp_rega = rtl_get_rfreg(hw, 1006 (enum radio_path)RF90_PATH_A, 1007 0x2a, MASKDWORD); 1008 1009 if (((tmp_rega & BIT(11)) == BIT(11))) 1010 break; 1011 } 1012 /* check that loop was successful. If not, exit now */ 1013 if (i == 10000) { 1014 rtlpci->init_ready = false; 1015 return 1; 1016 } 1017 } 1018 } 1019 rtlpci->init_ready = true; 1020 return err; 1021 } 1022 1023 static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw) 1024 { 1025 struct rtl_priv *rtlpriv = rtl_priv(hw); 1026 enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY; 1027 u32 value32; 1028 1029 value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG); 1030 if (!(value32 & 0x000f0000)) { 1031 version = VERSION_TEST_CHIP_92D_SINGLEPHY; 1032 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n"); 1033 } else { 1034 version = VERSION_NORMAL_CHIP_92D_SINGLEPHY; 1035 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n"); 1036 } 1037 return version; 1038 } 1039 1040 static int _rtl92de_set_media_status(struct ieee80211_hw *hw, 1041 enum nl80211_iftype type) 1042 { 1043 struct rtl_priv *rtlpriv = rtl_priv(hw); 1044 u8 bt_msr = rtl_read_byte(rtlpriv, MSR); 1045 enum led_ctl_mode ledaction = LED_CTL_NO_LINK; 1046 1047 bt_msr &= 0xfc; 1048 1049 if (type == NL80211_IFTYPE_UNSPECIFIED || 1050 type == NL80211_IFTYPE_STATION) { 1051 _rtl92de_stop_tx_beacon(hw); 1052 _rtl92de_enable_bcn_sub_func(hw); 1053 } else if (type == NL80211_IFTYPE_ADHOC || 1054 type == NL80211_IFTYPE_AP) { 1055 _rtl92de_resume_tx_beacon(hw); 1056 _rtl92de_disable_bcn_sub_func(hw); 1057 } else { 1058 rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, 1059 "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n", 1060 type); 1061 } 1062 switch (type) { 1063 case NL80211_IFTYPE_UNSPECIFIED: 1064 bt_msr |= MSR_NOLINK; 1065 ledaction = LED_CTL_LINK; 1066 rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, 1067 "Set Network type to NO LINK!\n"); 1068 break; 1069 case NL80211_IFTYPE_ADHOC: 1070 bt_msr |= MSR_ADHOC; 1071 rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, 1072 "Set Network type to Ad Hoc!\n"); 1073 break; 1074 case NL80211_IFTYPE_STATION: 1075 bt_msr |= MSR_INFRA; 1076 ledaction = LED_CTL_LINK; 1077 rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, 1078 "Set Network type to STA!\n"); 1079 break; 1080 case NL80211_IFTYPE_AP: 1081 bt_msr |= MSR_AP; 1082 rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, 1083 "Set Network type to AP!\n"); 1084 break; 1085 default: 1086 pr_err("Network type %d not supported!\n", type); 1087 return 1; 1088 } 1089 rtl_write_byte(rtlpriv, MSR, bt_msr); 1090 rtlpriv->cfg->ops->led_control(hw, ledaction); 1091 if ((bt_msr & MSR_MASK) == MSR_AP) 1092 rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00); 1093 else 1094 rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66); 1095 return 0; 1096 } 1097 1098 void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) 1099 { 1100 struct rtl_priv *rtlpriv = rtl_priv(hw); 1101 u32 reg_rcr; 1102 1103 if (rtlpriv->psc.rfpwr_state != ERFON) 1104 return; 1105 1106 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); 1107 1108 if (check_bssid) { 1109 reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN); 1110 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); 1111 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4)); 1112 } else if (!check_bssid) { 1113 reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)); 1114 _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0); 1115 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); 1116 } 1117 } 1118 1119 int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) 1120 { 1121 struct rtl_priv *rtlpriv = rtl_priv(hw); 1122 1123 if (_rtl92de_set_media_status(hw, type)) 1124 return -EOPNOTSUPP; 1125 1126 /* check bssid */ 1127 if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { 1128 if (type != NL80211_IFTYPE_AP) 1129 rtl92de_set_check_bssid(hw, true); 1130 } else { 1131 rtl92de_set_check_bssid(hw, false); 1132 } 1133 return 0; 1134 } 1135 1136 /* do iqk or reload iqk */ 1137 /* windows just rtl92d_phy_reload_iqk_setting in set channel, 1138 * but it's very strict for time sequence so we add 1139 * rtl92d_phy_reload_iqk_setting here */ 1140 void rtl92d_linked_set_reg(struct ieee80211_hw *hw) 1141 { 1142 struct rtl_priv *rtlpriv = rtl_priv(hw); 1143 struct rtl_phy *rtlphy = &(rtlpriv->phy); 1144 u8 indexforchannel; 1145 u8 channel = rtlphy->current_channel; 1146 1147 indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel); 1148 if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) { 1149 rtl_dbg(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG, 1150 "Do IQK for channel:%d\n", channel); 1151 rtl92d_phy_iq_calibrate(hw); 1152 } 1153 } 1154 1155 /* don't set REG_EDCA_BE_PARAM here because 1156 * mac80211 will send pkt when scan */ 1157 void rtl92de_set_qos(struct ieee80211_hw *hw, int aci) 1158 { 1159 rtl92d_dm_init_edca_turbo(hw); 1160 } 1161 1162 void rtl92de_enable_interrupt(struct ieee80211_hw *hw) 1163 { 1164 struct rtl_priv *rtlpriv = rtl_priv(hw); 1165 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1166 1167 rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF); 1168 rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF); 1169 rtlpci->irq_enabled = true; 1170 } 1171 1172 void rtl92de_disable_interrupt(struct ieee80211_hw *hw) 1173 { 1174 struct rtl_priv *rtlpriv = rtl_priv(hw); 1175 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1176 1177 rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED); 1178 rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED); 1179 rtlpci->irq_enabled = false; 1180 } 1181 1182 static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw) 1183 { 1184 struct rtl_priv *rtlpriv = rtl_priv(hw); 1185 u8 u1b_tmp; 1186 unsigned long flags; 1187 1188 rtlpriv->intf_ops->enable_aspm(hw); 1189 rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00); 1190 rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0); 1191 rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0); 1192 1193 /* 0x20:value 05-->04 */ 1194 rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04); 1195 1196 /* ==== Reset digital sequence ====== */ 1197 rtl92d_firmware_selfreset(hw); 1198 1199 /* f. SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */ 1200 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51); 1201 1202 /* g. MCUFWDL 0x80[1:0]=0 reset MCU ready status */ 1203 rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00); 1204 1205 /* ==== Pull GPIO PIN to balance level and LED control ====== */ 1206 1207 /* h. GPIO_PIN_CTRL 0x44[31:0]=0x000 */ 1208 rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000); 1209 1210 /* i. Value = GPIO_PIN_CTRL[7:0] */ 1211 u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL); 1212 1213 /* j. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */ 1214 /* write external PIN level */ 1215 rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 1216 0x00FF0000 | (u1b_tmp << 8)); 1217 1218 /* k. GPIO_MUXCFG 0x42 [15:0] = 0x0780 */ 1219 rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790); 1220 1221 /* l. LEDCFG 0x4C[15:0] = 0x8080 */ 1222 rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080); 1223 1224 /* ==== Disable analog sequence === */ 1225 1226 /* m. AFE_PLL_CTRL[7:0] = 0x80 disable PLL */ 1227 rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80); 1228 1229 /* n. SPS0_CTRL 0x11[7:0] = 0x22 enter PFM mode */ 1230 rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23); 1231 1232 /* o. AFE_XTAL_CTRL 0x24[7:0] = 0x0E disable XTAL, if No BT COEX */ 1233 rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e); 1234 1235 /* p. RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */ 1236 rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e); 1237 1238 /* ==== interface into suspend === */ 1239 1240 /* q. APS_FSMCO[15:8] = 0x58 PCIe suspend mode */ 1241 /* According to power document V11, we need to set this */ 1242 /* value as 0x18. Otherwise, we may not L0s sometimes. */ 1243 /* This indluences power consumption. Bases on SD1's test, */ 1244 /* set as 0x00 do not affect power current. And if it */ 1245 /* is set as 0x18, they had ever met auto load fail problem. */ 1246 rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10); 1247 1248 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, 1249 "In PowerOff,reg0x%x=%X\n", 1250 REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL)); 1251 /* r. Note: for PCIe interface, PON will not turn */ 1252 /* off m-bias and BandGap in PCIe suspend mode. */ 1253 1254 /* 0x17[7] 1b': power off in process 0b' : power off over */ 1255 if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) { 1256 spin_lock_irqsave(&globalmutex_power, flags); 1257 u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS); 1258 u1b_tmp &= (~BIT(7)); 1259 rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp); 1260 spin_unlock_irqrestore(&globalmutex_power, flags); 1261 } 1262 1263 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n"); 1264 } 1265 1266 void rtl92de_card_disable(struct ieee80211_hw *hw) 1267 { 1268 struct rtl_priv *rtlpriv = rtl_priv(hw); 1269 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 1270 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1271 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1272 enum nl80211_iftype opmode; 1273 1274 mac->link_state = MAC80211_NOLINK; 1275 opmode = NL80211_IFTYPE_UNSPECIFIED; 1276 _rtl92de_set_media_status(hw, opmode); 1277 1278 if (rtlpci->driver_is_goingto_unload || 1279 ppsc->rfoff_reason > RF_CHANGE_BY_PS) 1280 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); 1281 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); 1282 /* Power sequence for each MAC. */ 1283 /* a. stop tx DMA */ 1284 /* b. close RF */ 1285 /* c. clear rx buf */ 1286 /* d. stop rx DMA */ 1287 /* e. reset MAC */ 1288 1289 /* a. stop tx DMA */ 1290 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE); 1291 udelay(50); 1292 1293 /* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */ 1294 1295 /* c. ========RF OFF sequence========== */ 1296 /* 0x88c[23:20] = 0xf. */ 1297 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf); 1298 rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00); 1299 1300 /* APSD_CTRL 0x600[7:0] = 0x40 */ 1301 rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40); 1302 1303 /* Close antenna 0,0xc04,0xd04 */ 1304 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0); 1305 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0); 1306 1307 /* SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB state machine */ 1308 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2); 1309 1310 /* Mac0 can not do Global reset. Mac1 can do. */ 1311 /* SYS_FUNC_EN 0x02[7:0] = 0xE0 reset BB state machine */ 1312 if (rtlpriv->rtlhal.interfaceindex == 1) 1313 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0); 1314 udelay(50); 1315 1316 /* d. stop tx/rx dma before disable REG_CR (0x100) to fix */ 1317 /* dma hang issue when disable/enable device. */ 1318 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff); 1319 udelay(50); 1320 rtl_write_byte(rtlpriv, REG_CR, 0x0); 1321 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n"); 1322 if (rtl92d_phy_check_poweroff(hw)) 1323 _rtl92de_poweroff_adapter(hw); 1324 return; 1325 } 1326 1327 void rtl92de_interrupt_recognized(struct ieee80211_hw *hw, 1328 struct rtl_int *intvec) 1329 { 1330 struct rtl_priv *rtlpriv = rtl_priv(hw); 1331 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1332 1333 intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; 1334 rtl_write_dword(rtlpriv, ISR, intvec->inta); 1335 } 1336 1337 void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw) 1338 { 1339 struct rtl_priv *rtlpriv = rtl_priv(hw); 1340 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1341 u16 bcn_interval, atim_window; 1342 1343 bcn_interval = mac->beacon_interval; 1344 atim_window = 2; 1345 rtl92de_disable_interrupt(hw); 1346 rtl_write_word(rtlpriv, REG_ATIMWND, atim_window); 1347 rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); 1348 rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f); 1349 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20); 1350 if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) 1351 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30); 1352 else 1353 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20); 1354 rtl_write_byte(rtlpriv, 0x606, 0x30); 1355 } 1356 1357 void rtl92de_set_beacon_interval(struct ieee80211_hw *hw) 1358 { 1359 struct rtl_priv *rtlpriv = rtl_priv(hw); 1360 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1361 u16 bcn_interval = mac->beacon_interval; 1362 1363 rtl_dbg(rtlpriv, COMP_BEACON, DBG_DMESG, 1364 "beacon_interval:%d\n", bcn_interval); 1365 rtl92de_disable_interrupt(hw); 1366 rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); 1367 rtl92de_enable_interrupt(hw); 1368 } 1369 1370 void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw, 1371 u32 add_msr, u32 rm_msr) 1372 { 1373 struct rtl_priv *rtlpriv = rtl_priv(hw); 1374 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1375 1376 rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", 1377 add_msr, rm_msr); 1378 if (add_msr) 1379 rtlpci->irq_mask[0] |= add_msr; 1380 if (rm_msr) 1381 rtlpci->irq_mask[0] &= (~rm_msr); 1382 rtl92de_disable_interrupt(hw); 1383 rtl92de_enable_interrupt(hw); 1384 } 1385 1386 static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo, 1387 u8 *rom_content, bool autoloadfail) 1388 { 1389 u32 rfpath, eeaddr, group, offset1, offset2; 1390 u8 i; 1391 1392 memset(pwrinfo, 0, sizeof(struct txpower_info)); 1393 if (autoloadfail) { 1394 for (group = 0; group < CHANNEL_GROUP_MAX; group++) { 1395 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { 1396 if (group < CHANNEL_GROUP_MAX_2G) { 1397 pwrinfo->cck_index[rfpath][group] = 1398 EEPROM_DEFAULT_TXPOWERLEVEL_2G; 1399 pwrinfo->ht40_1sindex[rfpath][group] = 1400 EEPROM_DEFAULT_TXPOWERLEVEL_2G; 1401 } else { 1402 pwrinfo->ht40_1sindex[rfpath][group] = 1403 EEPROM_DEFAULT_TXPOWERLEVEL_5G; 1404 } 1405 pwrinfo->ht40_2sindexdiff[rfpath][group] = 1406 EEPROM_DEFAULT_HT40_2SDIFF; 1407 pwrinfo->ht20indexdiff[rfpath][group] = 1408 EEPROM_DEFAULT_HT20_DIFF; 1409 pwrinfo->ofdmindexdiff[rfpath][group] = 1410 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF; 1411 pwrinfo->ht40maxoffset[rfpath][group] = 1412 EEPROM_DEFAULT_HT40_PWRMAXOFFSET; 1413 pwrinfo->ht20maxoffset[rfpath][group] = 1414 EEPROM_DEFAULT_HT20_PWRMAXOFFSET; 1415 } 1416 } 1417 for (i = 0; i < 3; i++) { 1418 pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI; 1419 pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI; 1420 } 1421 return; 1422 } 1423 1424 /* Maybe autoload OK,buf the tx power index value is not filled. 1425 * If we find it, we set it to default value. */ 1426 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { 1427 for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) { 1428 eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3) 1429 + group; 1430 pwrinfo->cck_index[rfpath][group] = 1431 (rom_content[eeaddr] == 0xFF) ? 1432 (eeaddr > 0x7B ? 1433 EEPROM_DEFAULT_TXPOWERLEVEL_5G : 1434 EEPROM_DEFAULT_TXPOWERLEVEL_2G) : 1435 rom_content[eeaddr]; 1436 } 1437 } 1438 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { 1439 for (group = 0; group < CHANNEL_GROUP_MAX; group++) { 1440 offset1 = group / 3; 1441 offset2 = group % 3; 1442 eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) + 1443 offset2 + offset1 * 21; 1444 pwrinfo->ht40_1sindex[rfpath][group] = 1445 (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ? 1446 EEPROM_DEFAULT_TXPOWERLEVEL_5G : 1447 EEPROM_DEFAULT_TXPOWERLEVEL_2G) : 1448 rom_content[eeaddr]; 1449 } 1450 } 1451 /* These just for 92D efuse offset. */ 1452 for (group = 0; group < CHANNEL_GROUP_MAX; group++) { 1453 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { 1454 int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G; 1455 1456 offset1 = group / 3; 1457 offset2 = group % 3; 1458 1459 if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF) 1460 pwrinfo->ht40_2sindexdiff[rfpath][group] = 1461 (rom_content[base1 + 1462 offset2 + offset1 * 21] >> (rfpath * 4)) 1463 & 0xF; 1464 else 1465 pwrinfo->ht40_2sindexdiff[rfpath][group] = 1466 EEPROM_DEFAULT_HT40_2SDIFF; 1467 if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2 1468 + offset1 * 21] != 0xFF) 1469 pwrinfo->ht20indexdiff[rfpath][group] = 1470 (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G 1471 + offset2 + offset1 * 21] >> (rfpath * 4)) 1472 & 0xF; 1473 else 1474 pwrinfo->ht20indexdiff[rfpath][group] = 1475 EEPROM_DEFAULT_HT20_DIFF; 1476 if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2 1477 + offset1 * 21] != 0xFF) 1478 pwrinfo->ofdmindexdiff[rfpath][group] = 1479 (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G 1480 + offset2 + offset1 * 21] >> (rfpath * 4)) 1481 & 0xF; 1482 else 1483 pwrinfo->ofdmindexdiff[rfpath][group] = 1484 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF; 1485 if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2 1486 + offset1 * 21] != 0xFF) 1487 pwrinfo->ht40maxoffset[rfpath][group] = 1488 (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G 1489 + offset2 + offset1 * 21] >> (rfpath * 4)) 1490 & 0xF; 1491 else 1492 pwrinfo->ht40maxoffset[rfpath][group] = 1493 EEPROM_DEFAULT_HT40_PWRMAXOFFSET; 1494 if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2 1495 + offset1 * 21] != 0xFF) 1496 pwrinfo->ht20maxoffset[rfpath][group] = 1497 (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + 1498 offset2 + offset1 * 21] >> (rfpath * 4)) & 1499 0xF; 1500 else 1501 pwrinfo->ht20maxoffset[rfpath][group] = 1502 EEPROM_DEFAULT_HT20_PWRMAXOFFSET; 1503 } 1504 } 1505 if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) { 1506 /* 5GL */ 1507 pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F; 1508 pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F; 1509 /* 5GM */ 1510 pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F; 1511 pwrinfo->tssi_b[1] = 1512 (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 | 1513 (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2; 1514 /* 5GH */ 1515 pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] & 1516 0xF0) >> 4 | 1517 (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4; 1518 pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] & 1519 0xFC) >> 2; 1520 } else { 1521 for (i = 0; i < 3; i++) { 1522 pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI; 1523 pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI; 1524 } 1525 } 1526 } 1527 1528 static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw, 1529 bool autoload_fail, u8 *hwinfo) 1530 { 1531 struct rtl_priv *rtlpriv = rtl_priv(hw); 1532 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 1533 struct txpower_info pwrinfo; 1534 u8 tempval[2], i, pwr, diff; 1535 u32 ch, rfpath, group; 1536 1537 _rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail); 1538 if (!autoload_fail) { 1539 /* bit0~2 */ 1540 rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7); 1541 rtlefuse->eeprom_thermalmeter = 1542 hwinfo[EEPROM_THERMAL_METER] & 0x1f; 1543 rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K]; 1544 tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03; 1545 tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2; 1546 rtlefuse->txpwr_fromeprom = true; 1547 if (IS_92D_D_CUT(rtlpriv->rtlhal.version) || 1548 IS_92D_E_CUT(rtlpriv->rtlhal.version)) { 1549 rtlefuse->internal_pa_5g[0] = 1550 !((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6); 1551 rtlefuse->internal_pa_5g[1] = 1552 !((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6); 1553 rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, 1554 "Is D cut,Internal PA0 %d Internal PA1 %d\n", 1555 rtlefuse->internal_pa_5g[0], 1556 rtlefuse->internal_pa_5g[1]); 1557 } 1558 rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6]; 1559 rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7]; 1560 } else { 1561 rtlefuse->eeprom_regulatory = 0; 1562 rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; 1563 rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP; 1564 tempval[0] = tempval[1] = 3; 1565 } 1566 1567 /* Use default value to fill parameters if 1568 * efuse is not filled on some place. */ 1569 1570 /* ThermalMeter from EEPROM */ 1571 if (rtlefuse->eeprom_thermalmeter < 0x06 || 1572 rtlefuse->eeprom_thermalmeter > 0x1c) 1573 rtlefuse->eeprom_thermalmeter = 0x12; 1574 rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; 1575 1576 /* check XTAL_K */ 1577 if (rtlefuse->crystalcap == 0xFF) 1578 rtlefuse->crystalcap = 0; 1579 if (rtlefuse->eeprom_regulatory > 3) 1580 rtlefuse->eeprom_regulatory = 0; 1581 1582 for (i = 0; i < 2; i++) { 1583 switch (tempval[i]) { 1584 case 0: 1585 tempval[i] = 5; 1586 break; 1587 case 1: 1588 tempval[i] = 4; 1589 break; 1590 case 2: 1591 tempval[i] = 3; 1592 break; 1593 case 3: 1594 default: 1595 tempval[i] = 0; 1596 break; 1597 } 1598 } 1599 1600 rtlefuse->delta_iqk = tempval[0]; 1601 if (tempval[1] > 0) 1602 rtlefuse->delta_lck = tempval[1] - 1; 1603 if (rtlefuse->eeprom_c9 == 0xFF) 1604 rtlefuse->eeprom_c9 = 0x00; 1605 rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, 1606 "EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory); 1607 rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, 1608 "ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); 1609 rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, 1610 "CrystalCap = 0x%x\n", rtlefuse->crystalcap); 1611 rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, 1612 "Delta_IQK = 0x%x Delta_LCK = 0x%x\n", 1613 rtlefuse->delta_iqk, rtlefuse->delta_lck); 1614 1615 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { 1616 for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) { 1617 group = rtl92d_get_chnlgroup_fromarray((u8) ch); 1618 if (ch < CHANNEL_MAX_NUMBER_2G) 1619 rtlefuse->txpwrlevel_cck[rfpath][ch] = 1620 pwrinfo.cck_index[rfpath][group]; 1621 rtlefuse->txpwrlevel_ht40_1s[rfpath][ch] = 1622 pwrinfo.ht40_1sindex[rfpath][group]; 1623 rtlefuse->txpwr_ht20diff[rfpath][ch] = 1624 pwrinfo.ht20indexdiff[rfpath][group]; 1625 rtlefuse->txpwr_legacyhtdiff[rfpath][ch] = 1626 pwrinfo.ofdmindexdiff[rfpath][group]; 1627 rtlefuse->pwrgroup_ht20[rfpath][ch] = 1628 pwrinfo.ht20maxoffset[rfpath][group]; 1629 rtlefuse->pwrgroup_ht40[rfpath][ch] = 1630 pwrinfo.ht40maxoffset[rfpath][group]; 1631 pwr = pwrinfo.ht40_1sindex[rfpath][group]; 1632 diff = pwrinfo.ht40_2sindexdiff[rfpath][group]; 1633 rtlefuse->txpwrlevel_ht40_2s[rfpath][ch] = 1634 (pwr > diff) ? (pwr - diff) : 0; 1635 } 1636 } 1637 } 1638 1639 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw, 1640 u8 *content) 1641 { 1642 struct rtl_priv *rtlpriv = rtl_priv(hw); 1643 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1644 u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION]; 1645 1646 if (macphy_crvalue & BIT(3)) { 1647 rtlhal->macphymode = SINGLEMAC_SINGLEPHY; 1648 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, 1649 "MacPhyMode SINGLEMAC_SINGLEPHY\n"); 1650 } else { 1651 rtlhal->macphymode = DUALMAC_DUALPHY; 1652 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, 1653 "MacPhyMode DUALMAC_DUALPHY\n"); 1654 } 1655 } 1656 1657 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw, 1658 u8 *content) 1659 { 1660 _rtl92de_read_macphymode_from_prom(hw, content); 1661 rtl92d_phy_config_macphymode(hw); 1662 rtl92d_phy_config_macphymode_info(hw); 1663 } 1664 1665 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw) 1666 { 1667 struct rtl_priv *rtlpriv = rtl_priv(hw); 1668 enum version_8192d chipver = rtlpriv->rtlhal.version; 1669 u8 cutvalue[2]; 1670 u16 chipvalue; 1671 1672 read_efuse_byte(hw, EEPROME_CHIP_VERSION_H, &cutvalue[1]); 1673 read_efuse_byte(hw, EEPROME_CHIP_VERSION_L, &cutvalue[0]); 1674 chipvalue = (cutvalue[1] << 8) | cutvalue[0]; 1675 switch (chipvalue) { 1676 case 0xAA55: 1677 chipver |= CHIP_92D_C_CUT; 1678 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n"); 1679 break; 1680 case 0x9966: 1681 chipver |= CHIP_92D_D_CUT; 1682 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n"); 1683 break; 1684 case 0xCC33: 1685 chipver |= CHIP_92D_E_CUT; 1686 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n"); 1687 break; 1688 default: 1689 chipver |= CHIP_92D_D_CUT; 1690 pr_err("Unknown CUT!\n"); 1691 break; 1692 } 1693 rtlpriv->rtlhal.version = chipver; 1694 } 1695 1696 static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw) 1697 { 1698 struct rtl_priv *rtlpriv = rtl_priv(hw); 1699 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 1700 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1701 int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID, 1702 EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR_MAC0_92D, 1703 EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID, 1704 COUNTRY_CODE_WORLD_WIDE_13}; 1705 int i; 1706 u16 usvalue; 1707 u8 *hwinfo; 1708 1709 hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL); 1710 if (!hwinfo) 1711 return; 1712 1713 if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params)) 1714 goto exit; 1715 1716 _rtl92de_efuse_update_chip_version(hw); 1717 _rtl92de_read_macphymode_and_bandtype(hw, hwinfo); 1718 1719 /* Read Permanent MAC address for 2nd interface */ 1720 if (rtlhal->interfaceindex != 0) { 1721 for (i = 0; i < 6; i += 2) { 1722 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i]; 1723 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue; 1724 } 1725 } 1726 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, 1727 rtlefuse->dev_addr); 1728 rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr); 1729 _rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo); 1730 1731 /* Read Channel Plan */ 1732 switch (rtlhal->bandset) { 1733 case BAND_ON_2_4G: 1734 rtlefuse->channel_plan = COUNTRY_CODE_TELEC; 1735 break; 1736 case BAND_ON_5G: 1737 rtlefuse->channel_plan = COUNTRY_CODE_FCC; 1738 break; 1739 case BAND_ON_BOTH: 1740 rtlefuse->channel_plan = COUNTRY_CODE_FCC; 1741 break; 1742 default: 1743 rtlefuse->channel_plan = COUNTRY_CODE_FCC; 1744 break; 1745 } 1746 rtlefuse->txpwr_fromeprom = true; 1747 exit: 1748 kfree(hwinfo); 1749 } 1750 1751 void rtl92de_read_eeprom_info(struct ieee80211_hw *hw) 1752 { 1753 struct rtl_priv *rtlpriv = rtl_priv(hw); 1754 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 1755 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1756 u8 tmp_u1b; 1757 1758 rtlhal->version = _rtl92de_read_chip_version(hw); 1759 tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR); 1760 rtlefuse->autoload_status = tmp_u1b; 1761 if (tmp_u1b & BIT(4)) { 1762 rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); 1763 rtlefuse->epromtype = EEPROM_93C46; 1764 } else { 1765 rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); 1766 rtlefuse->epromtype = EEPROM_BOOT_EFUSE; 1767 } 1768 if (tmp_u1b & BIT(5)) { 1769 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); 1770 1771 rtlefuse->autoload_failflag = false; 1772 _rtl92de_read_adapter_info(hw); 1773 } else { 1774 pr_err("Autoload ERR!!\n"); 1775 } 1776 return; 1777 } 1778 1779 static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw, 1780 struct ieee80211_sta *sta) 1781 { 1782 struct rtl_priv *rtlpriv = rtl_priv(hw); 1783 struct rtl_phy *rtlphy = &(rtlpriv->phy); 1784 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1785 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1786 u32 ratr_value; 1787 u8 ratr_index = 0; 1788 u8 nmode = mac->ht_enable; 1789 u8 mimo_ps = IEEE80211_SMPS_OFF; 1790 u16 shortgi_rate; 1791 u32 tmp_ratr_value; 1792 u8 curtxbw_40mhz = mac->bw_40; 1793 u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1794 1 : 0; 1795 u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1796 1 : 0; 1797 enum wireless_mode wirelessmode = mac->mode; 1798 1799 if (rtlhal->current_bandtype == BAND_ON_5G) 1800 ratr_value = sta->deflink.supp_rates[1] << 4; 1801 else 1802 ratr_value = sta->deflink.supp_rates[0]; 1803 ratr_value |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 | 1804 sta->deflink.ht_cap.mcs.rx_mask[0] << 12); 1805 switch (wirelessmode) { 1806 case WIRELESS_MODE_A: 1807 ratr_value &= 0x00000FF0; 1808 break; 1809 case WIRELESS_MODE_B: 1810 if (ratr_value & 0x0000000c) 1811 ratr_value &= 0x0000000d; 1812 else 1813 ratr_value &= 0x0000000f; 1814 break; 1815 case WIRELESS_MODE_G: 1816 ratr_value &= 0x00000FF5; 1817 break; 1818 case WIRELESS_MODE_N_24G: 1819 case WIRELESS_MODE_N_5G: 1820 nmode = 1; 1821 if (mimo_ps == IEEE80211_SMPS_STATIC) { 1822 ratr_value &= 0x0007F005; 1823 } else { 1824 u32 ratr_mask; 1825 1826 if (get_rf_type(rtlphy) == RF_1T2R || 1827 get_rf_type(rtlphy) == RF_1T1R) { 1828 ratr_mask = 0x000ff005; 1829 } else { 1830 ratr_mask = 0x0f0ff005; 1831 } 1832 1833 ratr_value &= ratr_mask; 1834 } 1835 break; 1836 default: 1837 if (rtlphy->rf_type == RF_1T2R) 1838 ratr_value &= 0x000ff0ff; 1839 else 1840 ratr_value &= 0x0f0ff0ff; 1841 1842 break; 1843 } 1844 ratr_value &= 0x0FFFFFFF; 1845 if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) || 1846 (!curtxbw_40mhz && curshortgi_20mhz))) { 1847 ratr_value |= 0x10000000; 1848 tmp_ratr_value = (ratr_value >> 12); 1849 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { 1850 if ((1 << shortgi_rate) & tmp_ratr_value) 1851 break; 1852 } 1853 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | 1854 (shortgi_rate << 4) | (shortgi_rate); 1855 } 1856 rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value); 1857 rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n", 1858 rtl_read_dword(rtlpriv, REG_ARFR0)); 1859 } 1860 1861 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw, 1862 struct ieee80211_sta *sta, u8 rssi_level, bool update_bw) 1863 { 1864 struct rtl_priv *rtlpriv = rtl_priv(hw); 1865 struct rtl_phy *rtlphy = &(rtlpriv->phy); 1866 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1867 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1868 struct rtl_sta_info *sta_entry = NULL; 1869 u32 ratr_bitmap; 1870 u8 ratr_index; 1871 u8 curtxbw_40mhz = (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0; 1872 u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1873 1 : 0; 1874 u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1875 1 : 0; 1876 enum wireless_mode wirelessmode = 0; 1877 bool shortgi = false; 1878 u32 value[2]; 1879 u8 macid = 0; 1880 u8 mimo_ps = IEEE80211_SMPS_OFF; 1881 1882 sta_entry = (struct rtl_sta_info *) sta->drv_priv; 1883 mimo_ps = sta_entry->mimo_ps; 1884 wirelessmode = sta_entry->wireless_mode; 1885 if (mac->opmode == NL80211_IFTYPE_STATION) 1886 curtxbw_40mhz = mac->bw_40; 1887 else if (mac->opmode == NL80211_IFTYPE_AP || 1888 mac->opmode == NL80211_IFTYPE_ADHOC) 1889 macid = sta->aid + 1; 1890 1891 if (rtlhal->current_bandtype == BAND_ON_5G) 1892 ratr_bitmap = sta->deflink.supp_rates[1] << 4; 1893 else 1894 ratr_bitmap = sta->deflink.supp_rates[0]; 1895 ratr_bitmap |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 | 1896 sta->deflink.ht_cap.mcs.rx_mask[0] << 12); 1897 switch (wirelessmode) { 1898 case WIRELESS_MODE_B: 1899 ratr_index = RATR_INX_WIRELESS_B; 1900 if (ratr_bitmap & 0x0000000c) 1901 ratr_bitmap &= 0x0000000d; 1902 else 1903 ratr_bitmap &= 0x0000000f; 1904 break; 1905 case WIRELESS_MODE_G: 1906 ratr_index = RATR_INX_WIRELESS_GB; 1907 1908 if (rssi_level == 1) 1909 ratr_bitmap &= 0x00000f00; 1910 else if (rssi_level == 2) 1911 ratr_bitmap &= 0x00000ff0; 1912 else 1913 ratr_bitmap &= 0x00000ff5; 1914 break; 1915 case WIRELESS_MODE_A: 1916 ratr_index = RATR_INX_WIRELESS_G; 1917 ratr_bitmap &= 0x00000ff0; 1918 break; 1919 case WIRELESS_MODE_N_24G: 1920 case WIRELESS_MODE_N_5G: 1921 if (wirelessmode == WIRELESS_MODE_N_24G) 1922 ratr_index = RATR_INX_WIRELESS_NGB; 1923 else 1924 ratr_index = RATR_INX_WIRELESS_NG; 1925 if (mimo_ps == IEEE80211_SMPS_STATIC) { 1926 if (rssi_level == 1) 1927 ratr_bitmap &= 0x00070000; 1928 else if (rssi_level == 2) 1929 ratr_bitmap &= 0x0007f000; 1930 else 1931 ratr_bitmap &= 0x0007f005; 1932 } else { 1933 if (rtlphy->rf_type == RF_1T2R || 1934 rtlphy->rf_type == RF_1T1R) { 1935 if (curtxbw_40mhz) { 1936 if (rssi_level == 1) 1937 ratr_bitmap &= 0x000f0000; 1938 else if (rssi_level == 2) 1939 ratr_bitmap &= 0x000ff000; 1940 else 1941 ratr_bitmap &= 0x000ff015; 1942 } else { 1943 if (rssi_level == 1) 1944 ratr_bitmap &= 0x000f0000; 1945 else if (rssi_level == 2) 1946 ratr_bitmap &= 0x000ff000; 1947 else 1948 ratr_bitmap &= 0x000ff005; 1949 } 1950 } else { 1951 if (curtxbw_40mhz) { 1952 if (rssi_level == 1) 1953 ratr_bitmap &= 0x0f0f0000; 1954 else if (rssi_level == 2) 1955 ratr_bitmap &= 0x0f0ff000; 1956 else 1957 ratr_bitmap &= 0x0f0ff015; 1958 } else { 1959 if (rssi_level == 1) 1960 ratr_bitmap &= 0x0f0f0000; 1961 else if (rssi_level == 2) 1962 ratr_bitmap &= 0x0f0ff000; 1963 else 1964 ratr_bitmap &= 0x0f0ff005; 1965 } 1966 } 1967 } 1968 if ((curtxbw_40mhz && curshortgi_40mhz) || 1969 (!curtxbw_40mhz && curshortgi_20mhz)) { 1970 1971 if (macid == 0) 1972 shortgi = true; 1973 else if (macid == 1) 1974 shortgi = false; 1975 } 1976 break; 1977 default: 1978 ratr_index = RATR_INX_WIRELESS_NGB; 1979 1980 if (rtlphy->rf_type == RF_1T2R) 1981 ratr_bitmap &= 0x000ff0ff; 1982 else 1983 ratr_bitmap &= 0x0f0ff0ff; 1984 break; 1985 } 1986 1987 value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28); 1988 value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80; 1989 rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, 1990 "ratr_bitmap :%x value0:%x value1:%x\n", 1991 ratr_bitmap, value[0], value[1]); 1992 rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value); 1993 if (macid != 0) 1994 sta_entry->ratr_index = ratr_index; 1995 } 1996 1997 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw, 1998 struct ieee80211_sta *sta, u8 rssi_level, bool update_bw) 1999 { 2000 struct rtl_priv *rtlpriv = rtl_priv(hw); 2001 2002 if (rtlpriv->dm.useramask) 2003 rtl92de_update_hal_rate_mask(hw, sta, rssi_level, update_bw); 2004 else 2005 rtl92de_update_hal_rate_table(hw, sta); 2006 } 2007 2008 void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw) 2009 { 2010 struct rtl_priv *rtlpriv = rtl_priv(hw); 2011 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 2012 u16 sifs_timer; 2013 2014 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, 2015 &mac->slot_time); 2016 if (!mac->ht_enable) 2017 sifs_timer = 0x0a0a; 2018 else 2019 sifs_timer = 0x1010; 2020 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); 2021 } 2022 2023 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) 2024 { 2025 struct rtl_priv *rtlpriv = rtl_priv(hw); 2026 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 2027 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 2028 enum rf_pwrstate e_rfpowerstate_toset; 2029 u8 u1tmp; 2030 bool actuallyset = false; 2031 unsigned long flag; 2032 2033 if (rtlpci->being_init_adapter) 2034 return false; 2035 if (ppsc->swrf_processing) 2036 return false; 2037 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); 2038 if (ppsc->rfchange_inprogress) { 2039 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2040 return false; 2041 } else { 2042 ppsc->rfchange_inprogress = true; 2043 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2044 } 2045 rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv, 2046 REG_MAC_PINMUX_CFG) & ~(BIT(3))); 2047 u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL); 2048 e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF; 2049 if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) { 2050 rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG, 2051 "GPIOChangeRF - HW Radio ON, RF ON\n"); 2052 e_rfpowerstate_toset = ERFON; 2053 ppsc->hwradiooff = false; 2054 actuallyset = true; 2055 } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) { 2056 rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG, 2057 "GPIOChangeRF - HW Radio OFF, RF OFF\n"); 2058 e_rfpowerstate_toset = ERFOFF; 2059 ppsc->hwradiooff = true; 2060 actuallyset = true; 2061 } 2062 if (actuallyset) { 2063 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); 2064 ppsc->rfchange_inprogress = false; 2065 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2066 } else { 2067 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) 2068 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); 2069 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); 2070 ppsc->rfchange_inprogress = false; 2071 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2072 } 2073 *valid = 1; 2074 return !ppsc->hwradiooff; 2075 } 2076 2077 void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index, 2078 u8 *p_macaddr, bool is_group, u8 enc_algo, 2079 bool is_wepkey, bool clear_all) 2080 { 2081 struct rtl_priv *rtlpriv = rtl_priv(hw); 2082 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 2083 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 2084 u8 *macaddr = p_macaddr; 2085 u32 entry_id; 2086 bool is_pairwise = false; 2087 static u8 cam_const_addr[4][6] = { 2088 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 2089 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, 2090 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, 2091 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} 2092 }; 2093 static u8 cam_const_broad[] = { 2094 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2095 }; 2096 2097 if (clear_all) { 2098 u8 idx; 2099 u8 cam_offset = 0; 2100 u8 clear_number = 5; 2101 rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); 2102 for (idx = 0; idx < clear_number; idx++) { 2103 rtl_cam_mark_invalid(hw, cam_offset + idx); 2104 rtl_cam_empty_entry(hw, cam_offset + idx); 2105 2106 if (idx < 5) { 2107 memset(rtlpriv->sec.key_buf[idx], 0, 2108 MAX_KEY_LEN); 2109 rtlpriv->sec.key_len[idx] = 0; 2110 } 2111 } 2112 } else { 2113 switch (enc_algo) { 2114 case WEP40_ENCRYPTION: 2115 enc_algo = CAM_WEP40; 2116 break; 2117 case WEP104_ENCRYPTION: 2118 enc_algo = CAM_WEP104; 2119 break; 2120 case TKIP_ENCRYPTION: 2121 enc_algo = CAM_TKIP; 2122 break; 2123 case AESCCMP_ENCRYPTION: 2124 enc_algo = CAM_AES; 2125 break; 2126 default: 2127 pr_err("switch case %#x not processed\n", 2128 enc_algo); 2129 enc_algo = CAM_TKIP; 2130 break; 2131 } 2132 if (is_wepkey || rtlpriv->sec.use_defaultkey) { 2133 macaddr = cam_const_addr[key_index]; 2134 entry_id = key_index; 2135 } else { 2136 if (is_group) { 2137 macaddr = cam_const_broad; 2138 entry_id = key_index; 2139 } else { 2140 if (mac->opmode == NL80211_IFTYPE_AP) { 2141 entry_id = rtl_cam_get_free_entry(hw, 2142 p_macaddr); 2143 if (entry_id >= TOTAL_CAM_ENTRY) { 2144 pr_err("Can not find free hw security cam entry\n"); 2145 return; 2146 } 2147 } else { 2148 entry_id = CAM_PAIRWISE_KEY_POSITION; 2149 } 2150 key_index = PAIRWISE_KEYIDX; 2151 is_pairwise = true; 2152 } 2153 } 2154 if (rtlpriv->sec.key_len[key_index] == 0) { 2155 rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, 2156 "delete one entry, entry_id is %d\n", 2157 entry_id); 2158 if (mac->opmode == NL80211_IFTYPE_AP) 2159 rtl_cam_del_entry(hw, p_macaddr); 2160 rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); 2161 } else { 2162 rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD, 2163 "The insert KEY length is %d\n", 2164 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]); 2165 rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD, 2166 "The insert KEY is %x %x\n", 2167 rtlpriv->sec.key_buf[0][0], 2168 rtlpriv->sec.key_buf[0][1]); 2169 rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, 2170 "add one entry\n"); 2171 if (is_pairwise) { 2172 RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD, 2173 "Pairwise Key content", 2174 rtlpriv->sec.pairwise_key, 2175 rtlpriv-> 2176 sec.key_len[PAIRWISE_KEYIDX]); 2177 rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, 2178 "set Pairwise key\n"); 2179 rtl_cam_add_one_entry(hw, macaddr, key_index, 2180 entry_id, enc_algo, 2181 CAM_CONFIG_NO_USEDK, 2182 rtlpriv-> 2183 sec.key_buf[key_index]); 2184 } else { 2185 rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, 2186 "set group key\n"); 2187 if (mac->opmode == NL80211_IFTYPE_ADHOC) { 2188 rtl_cam_add_one_entry(hw, 2189 rtlefuse->dev_addr, 2190 PAIRWISE_KEYIDX, 2191 CAM_PAIRWISE_KEY_POSITION, 2192 enc_algo, CAM_CONFIG_NO_USEDK, 2193 rtlpriv->sec.key_buf[entry_id]); 2194 } 2195 rtl_cam_add_one_entry(hw, macaddr, key_index, 2196 entry_id, enc_algo, 2197 CAM_CONFIG_NO_USEDK, 2198 rtlpriv->sec.key_buf 2199 [entry_id]); 2200 } 2201 } 2202 } 2203 } 2204 2205 void rtl92de_suspend(struct ieee80211_hw *hw) 2206 { 2207 struct rtl_priv *rtlpriv = rtl_priv(hw); 2208 2209 rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv, 2210 REG_MAC_PHY_CTRL_NORMAL); 2211 } 2212 2213 void rtl92de_resume(struct ieee80211_hw *hw) 2214 { 2215 struct rtl_priv *rtlpriv = rtl_priv(hw); 2216 2217 rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL, 2218 rtlpriv->rtlhal.macphyctl_reg); 2219 } 2220