xref: /linux/drivers/net/wireless/realtek/rtlwifi/rtl8192de/hw.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29 
30 #include "../wifi.h"
31 #include "../efuse.h"
32 #include "../base.h"
33 #include "../regd.h"
34 #include "../cam.h"
35 #include "../ps.h"
36 #include "../pci.h"
37 #include "reg.h"
38 #include "def.h"
39 #include "phy.h"
40 #include "dm.h"
41 #include "fw.h"
42 #include "led.h"
43 #include "sw.h"
44 #include "hw.h"
45 
46 u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
47 {
48 	struct rtl_priv *rtlpriv = rtl_priv(hw);
49 	u32 value;
50 
51 	rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
52 	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
53 	udelay(10);
54 	value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
55 	return value;
56 }
57 
58 void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
59 			     u16 offset, u32 value, u8 direct)
60 {
61 	struct rtl_priv *rtlpriv = rtl_priv(hw);
62 
63 	rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
64 	rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
65 	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
66 }
67 
68 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
69 				      u8 set_bits, u8 clear_bits)
70 {
71 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
72 	struct rtl_priv *rtlpriv = rtl_priv(hw);
73 
74 	rtlpci->reg_bcn_ctrl_val |= set_bits;
75 	rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
76 	rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
77 }
78 
79 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
80 {
81 	struct rtl_priv *rtlpriv = rtl_priv(hw);
82 	u8 tmp1byte;
83 
84 	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
85 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
86 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
87 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
88 	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
89 	tmp1byte &= ~(BIT(0));
90 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
91 }
92 
93 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
94 {
95 	struct rtl_priv *rtlpriv = rtl_priv(hw);
96 	u8 tmp1byte;
97 
98 	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
99 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
100 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
101 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
102 	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
103 	tmp1byte |= BIT(0);
104 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
105 }
106 
107 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
108 {
109 	_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
110 }
111 
112 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
113 {
114 	_rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
115 }
116 
117 void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
118 {
119 	struct rtl_priv *rtlpriv = rtl_priv(hw);
120 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
121 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
122 
123 	switch (variable) {
124 	case HW_VAR_RCR:
125 		*((u32 *) (val)) = rtlpci->receive_config;
126 		break;
127 	case HW_VAR_RF_STATE:
128 		*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
129 		break;
130 	case HW_VAR_FWLPS_RF_ON:{
131 		enum rf_pwrstate rfState;
132 		u32 val_rcr;
133 
134 		rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
135 					      (u8 *) (&rfState));
136 		if (rfState == ERFOFF) {
137 			*((bool *) (val)) = true;
138 		} else {
139 			val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
140 			val_rcr &= 0x00070000;
141 			if (val_rcr)
142 				*((bool *) (val)) = false;
143 			else
144 				*((bool *) (val)) = true;
145 		}
146 		break;
147 	}
148 	case HW_VAR_FW_PSMODE_STATUS:
149 		*((bool *) (val)) = ppsc->fw_current_inpsmode;
150 		break;
151 	case HW_VAR_CORRECT_TSF:{
152 		u64 tsf;
153 		u32 *ptsf_low = (u32 *)&tsf;
154 		u32 *ptsf_high = ((u32 *)&tsf) + 1;
155 
156 		*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
157 		*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
158 		*((u64 *) (val)) = tsf;
159 		break;
160 	}
161 	case HW_VAR_INT_MIGRATION:
162 		*((bool *)(val)) = rtlpriv->dm.interrupt_migration;
163 		break;
164 	case HW_VAR_INT_AC:
165 		*((bool *)(val)) = rtlpriv->dm.disable_tx_int;
166 		break;
167 	default:
168 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
169 			 "switch case not processed\n");
170 		break;
171 	}
172 }
173 
174 void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
175 {
176 	struct rtl_priv *rtlpriv = rtl_priv(hw);
177 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
178 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
179 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
180 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
181 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
182 	u8 idx;
183 
184 	switch (variable) {
185 	case HW_VAR_ETHER_ADDR:
186 		for (idx = 0; idx < ETH_ALEN; idx++) {
187 			rtl_write_byte(rtlpriv, (REG_MACID + idx),
188 				       val[idx]);
189 		}
190 		break;
191 	case HW_VAR_BASIC_RATE: {
192 		u16 rate_cfg = ((u16 *) val)[0];
193 		u8 rate_index = 0;
194 
195 		rate_cfg = rate_cfg & 0x15f;
196 		if (mac->vendor == PEER_CISCO &&
197 		    ((rate_cfg & 0x150) == 0))
198 			rate_cfg |= 0x01;
199 		rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
200 		rtl_write_byte(rtlpriv, REG_RRSR + 1,
201 			       (rate_cfg >> 8) & 0xff);
202 		while (rate_cfg > 0x1) {
203 			rate_cfg = (rate_cfg >> 1);
204 			rate_index++;
205 		}
206 		if (rtlhal->fw_version > 0xe)
207 			rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
208 				       rate_index);
209 		break;
210 	}
211 	case HW_VAR_BSSID:
212 		for (idx = 0; idx < ETH_ALEN; idx++) {
213 			rtl_write_byte(rtlpriv, (REG_BSSID + idx),
214 				       val[idx]);
215 		}
216 		break;
217 	case HW_VAR_SIFS:
218 		rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
219 		rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
220 		rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
221 		rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
222 		if (!mac->ht_enable)
223 			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
224 				       0x0e0e);
225 		else
226 			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
227 				       *((u16 *) val));
228 		break;
229 	case HW_VAR_SLOT_TIME: {
230 		u8 e_aci;
231 
232 		RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
233 			 "HW_VAR_SLOT_TIME %x\n", val[0]);
234 		rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
235 		for (e_aci = 0; e_aci < AC_MAX; e_aci++)
236 			rtlpriv->cfg->ops->set_hw_reg(hw,
237 						      HW_VAR_AC_PARAM,
238 						      (&e_aci));
239 		break;
240 	}
241 	case HW_VAR_ACK_PREAMBLE: {
242 		u8 reg_tmp;
243 		u8 short_preamble = (bool) (*val);
244 
245 		reg_tmp = (mac->cur_40_prime_sc) << 5;
246 		if (short_preamble)
247 			reg_tmp |= 0x80;
248 		rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
249 		break;
250 	}
251 	case HW_VAR_AMPDU_MIN_SPACE: {
252 		u8 min_spacing_to_set;
253 		u8 sec_min_space;
254 
255 		min_spacing_to_set = *val;
256 		if (min_spacing_to_set <= 7) {
257 			sec_min_space = 0;
258 			if (min_spacing_to_set < sec_min_space)
259 				min_spacing_to_set = sec_min_space;
260 			mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
261 					      min_spacing_to_set);
262 			*val = min_spacing_to_set;
263 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
264 				 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
265 				 mac->min_space_cfg);
266 			rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
267 				       mac->min_space_cfg);
268 		}
269 		break;
270 	}
271 	case HW_VAR_SHORTGI_DENSITY: {
272 		u8 density_to_set;
273 
274 		density_to_set = *val;
275 		mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
276 		mac->min_space_cfg |= (density_to_set << 3);
277 		RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
278 			 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
279 			 mac->min_space_cfg);
280 		rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
281 			       mac->min_space_cfg);
282 		break;
283 	}
284 	case HW_VAR_AMPDU_FACTOR: {
285 		u8 factor_toset;
286 		u32 regtoSet;
287 		u8 *ptmp_byte = NULL;
288 		u8 index;
289 
290 		if (rtlhal->macphymode == DUALMAC_DUALPHY)
291 			regtoSet = 0xb9726641;
292 		else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
293 			regtoSet = 0x66626641;
294 		else
295 			regtoSet = 0xb972a841;
296 		factor_toset = *val;
297 		if (factor_toset <= 3) {
298 			factor_toset = (1 << (factor_toset + 2));
299 			if (factor_toset > 0xf)
300 				factor_toset = 0xf;
301 			for (index = 0; index < 4; index++) {
302 				ptmp_byte = (u8 *) (&regtoSet) + index;
303 				if ((*ptmp_byte & 0xf0) >
304 				    (factor_toset << 4))
305 					*ptmp_byte = (*ptmp_byte & 0x0f)
306 						 | (factor_toset << 4);
307 				if ((*ptmp_byte & 0x0f) > factor_toset)
308 					*ptmp_byte = (*ptmp_byte & 0xf0)
309 						     | (factor_toset);
310 			}
311 			rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoSet);
312 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
313 				 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
314 				 factor_toset);
315 		}
316 		break;
317 	}
318 	case HW_VAR_AC_PARAM: {
319 		u8 e_aci = *val;
320 		rtl92d_dm_init_edca_turbo(hw);
321 		if (rtlpci->acm_method != EACMWAY2_SW)
322 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
323 						      &e_aci);
324 		break;
325 	}
326 	case HW_VAR_ACM_CTRL: {
327 		u8 e_aci = *val;
328 		union aci_aifsn *p_aci_aifsn =
329 		    (union aci_aifsn *)(&(mac->ac[0].aifs));
330 		u8 acm = p_aci_aifsn->f.acm;
331 		u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
332 
333 		acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?  0x0 : 0x1);
334 		if (acm) {
335 			switch (e_aci) {
336 			case AC0_BE:
337 				acm_ctrl |= ACMHW_BEQEN;
338 				break;
339 			case AC2_VI:
340 				acm_ctrl |= ACMHW_VIQEN;
341 				break;
342 			case AC3_VO:
343 				acm_ctrl |= ACMHW_VOQEN;
344 				break;
345 			default:
346 				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
347 					 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
348 					 acm);
349 				break;
350 			}
351 		} else {
352 			switch (e_aci) {
353 			case AC0_BE:
354 				acm_ctrl &= (~ACMHW_BEQEN);
355 				break;
356 			case AC2_VI:
357 				acm_ctrl &= (~ACMHW_VIQEN);
358 				break;
359 			case AC3_VO:
360 				acm_ctrl &= (~ACMHW_VOQEN);
361 				break;
362 			default:
363 				RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
364 					 "switch case not processed\n");
365 				break;
366 			}
367 		}
368 		RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
369 			 "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
370 			 acm_ctrl);
371 		rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
372 		break;
373 	}
374 	case HW_VAR_RCR:
375 		rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
376 		rtlpci->receive_config = ((u32 *) (val))[0];
377 		break;
378 	case HW_VAR_RETRY_LIMIT: {
379 		u8 retry_limit = val[0];
380 
381 		rtl_write_word(rtlpriv, REG_RL,
382 			       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
383 			       retry_limit << RETRY_LIMIT_LONG_SHIFT);
384 		break;
385 	}
386 	case HW_VAR_DUAL_TSF_RST:
387 		rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
388 		break;
389 	case HW_VAR_EFUSE_BYTES:
390 		rtlefuse->efuse_usedbytes = *((u16 *) val);
391 		break;
392 	case HW_VAR_EFUSE_USAGE:
393 		rtlefuse->efuse_usedpercentage = *val;
394 		break;
395 	case HW_VAR_IO_CMD:
396 		rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
397 		break;
398 	case HW_VAR_WPA_CONFIG:
399 		rtl_write_byte(rtlpriv, REG_SECCFG, *val);
400 		break;
401 	case HW_VAR_SET_RPWM:
402 		rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val));
403 		break;
404 	case HW_VAR_H2C_FW_PWRMODE:
405 		break;
406 	case HW_VAR_FW_PSMODE_STATUS:
407 		ppsc->fw_current_inpsmode = *((bool *) val);
408 		break;
409 	case HW_VAR_H2C_FW_JOINBSSRPT: {
410 		u8 mstatus = (*val);
411 		u8 tmp_regcr, tmp_reg422;
412 		bool recover = false;
413 
414 		if (mstatus == RT_MEDIA_CONNECT) {
415 			rtlpriv->cfg->ops->set_hw_reg(hw,
416 						      HW_VAR_AID, NULL);
417 			tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
418 			rtl_write_byte(rtlpriv, REG_CR + 1,
419 				       (tmp_regcr | BIT(0)));
420 			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
421 			_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
422 			tmp_reg422 = rtl_read_byte(rtlpriv,
423 						 REG_FWHW_TXQ_CTRL + 2);
424 			if (tmp_reg422 & BIT(6))
425 				recover = true;
426 			rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
427 				       tmp_reg422 & (~BIT(6)));
428 			rtl92d_set_fw_rsvdpagepkt(hw, 0);
429 			_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
430 			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
431 			if (recover)
432 				rtl_write_byte(rtlpriv,
433 					       REG_FWHW_TXQ_CTRL + 2,
434 					       tmp_reg422);
435 			rtl_write_byte(rtlpriv, REG_CR + 1,
436 				       (tmp_regcr & ~(BIT(0))));
437 		}
438 		rtl92d_set_fw_joinbss_report_cmd(hw, (*val));
439 		break;
440 	}
441 	case HW_VAR_AID: {
442 		u16 u2btmp;
443 		u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
444 		u2btmp &= 0xC000;
445 		rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
446 			       mac->assoc_id));
447 		break;
448 	}
449 	case HW_VAR_CORRECT_TSF: {
450 		u8 btype_ibss = val[0];
451 
452 		if (btype_ibss)
453 			_rtl92de_stop_tx_beacon(hw);
454 		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
455 		rtl_write_dword(rtlpriv, REG_TSFTR,
456 				(u32) (mac->tsf & 0xffffffff));
457 		rtl_write_dword(rtlpriv, REG_TSFTR + 4,
458 				(u32) ((mac->tsf >> 32) & 0xffffffff));
459 		_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
460 		if (btype_ibss)
461 			_rtl92de_resume_tx_beacon(hw);
462 
463 		break;
464 	}
465 	case HW_VAR_INT_MIGRATION: {
466 		bool int_migration = *(bool *) (val);
467 
468 		if (int_migration) {
469 			/* Set interrupt migration timer and
470 			 * corresponding Tx/Rx counter.
471 			 * timer 25ns*0xfa0=100us for 0xf packets.
472 			 * 0x306:Rx, 0x307:Tx */
473 			rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
474 			rtlpriv->dm.interrupt_migration = int_migration;
475 		} else {
476 			/* Reset all interrupt migration settings. */
477 			rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
478 			rtlpriv->dm.interrupt_migration = int_migration;
479 		}
480 		break;
481 	}
482 	case HW_VAR_INT_AC: {
483 		bool disable_ac_int = *((bool *) val);
484 
485 		/* Disable four ACs interrupts. */
486 		if (disable_ac_int) {
487 			/* Disable VO, VI, BE and BK four AC interrupts
488 			 * to gain more efficient CPU utilization.
489 			 * When extremely highly Rx OK occurs,
490 			 * we will disable Tx interrupts.
491 			 */
492 			rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
493 						 RT_AC_INT_MASKS);
494 			rtlpriv->dm.disable_tx_int = disable_ac_int;
495 		/* Enable four ACs interrupts. */
496 		} else {
497 			rtlpriv->cfg->ops->update_interrupt_mask(hw,
498 						 RT_AC_INT_MASKS, 0);
499 			rtlpriv->dm.disable_tx_int = disable_ac_int;
500 		}
501 		break;
502 	}
503 	default:
504 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
505 			 "switch case not processed\n");
506 		break;
507 	}
508 }
509 
510 static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
511 {
512 	struct rtl_priv *rtlpriv = rtl_priv(hw);
513 	bool status = true;
514 	long count = 0;
515 	u32 value = _LLT_INIT_ADDR(address) |
516 	    _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
517 
518 	rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
519 	do {
520 		value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
521 		if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
522 			break;
523 		if (count > POLLING_LLT_THRESHOLD) {
524 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
525 				 "Failed to polling write LLT done at address %d!\n",
526 				 address);
527 			status = false;
528 			break;
529 		}
530 	} while (++count);
531 	return status;
532 }
533 
534 static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
535 {
536 	struct rtl_priv *rtlpriv = rtl_priv(hw);
537 	unsigned short i;
538 	u8 txpktbuf_bndy;
539 	u8 maxPage;
540 	bool status;
541 	u32 value32; /* High+low page number */
542 	u8 value8;	 /* normal page number */
543 
544 	if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
545 		maxPage = 255;
546 		txpktbuf_bndy = 246;
547 		value8 = 0;
548 		value32 = 0x80bf0d29;
549 	} else {
550 		maxPage = 127;
551 		txpktbuf_bndy = 123;
552 		value8 = 0;
553 		value32 = 0x80750005;
554 	}
555 
556 	/* Set reserved page for each queue */
557 	/* 11.  RQPN 0x200[31:0] = 0x80BD1C1C */
558 	/* load RQPN */
559 	rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
560 	rtl_write_dword(rtlpriv, REG_RQPN, value32);
561 
562 	/* 12.  TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
563 	/* TXRKTBUG_PG_BNDY */
564 	rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
565 			(rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
566 			txpktbuf_bndy));
567 
568 	/* 13.  TDECTRL[15:8] 0x209[7:0] = 0xF6 */
569 	/* Beacon Head for TXDMA */
570 	rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
571 
572 	/* 14.  BCNQ_PGBNDY 0x424[7:0] =  0xF6 */
573 	/* BCNQ_PGBNDY */
574 	rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
575 	rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
576 
577 	/* 15.  WMAC_LBK_BF_HD 0x45D[7:0] =  0xF6 */
578 	/* WMAC_LBK_BF_HD */
579 	rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
580 
581 	/* Set Tx/Rx page size (Tx must be 128 Bytes, */
582 	/* Rx can be 64,128,256,512,1024 bytes) */
583 	/* 16.  PBP [7:0] = 0x11 */
584 	/* TRX page size */
585 	rtl_write_byte(rtlpriv, REG_PBP, 0x11);
586 
587 	/* 17.  DRV_INFO_SZ = 0x04 */
588 	rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
589 
590 	/* 18.  LLT_table_init(Adapter);  */
591 	for (i = 0; i < (txpktbuf_bndy - 1); i++) {
592 		status = _rtl92de_llt_write(hw, i, i + 1);
593 		if (true != status)
594 			return status;
595 	}
596 
597 	/* end of list */
598 	status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
599 	if (true != status)
600 		return status;
601 
602 	/* Make the other pages as ring buffer */
603 	/* This ring buffer is used as beacon buffer if we */
604 	/* config this MAC as two MAC transfer. */
605 	/* Otherwise used as local loopback buffer.  */
606 	for (i = txpktbuf_bndy; i < maxPage; i++) {
607 		status = _rtl92de_llt_write(hw, i, (i + 1));
608 		if (true != status)
609 			return status;
610 	}
611 
612 	/* Let last entry point to the start entry of ring buffer */
613 	status = _rtl92de_llt_write(hw, maxPage, txpktbuf_bndy);
614 	if (true != status)
615 		return status;
616 
617 	return true;
618 }
619 
620 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
621 {
622 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
623 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
624 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
625 	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
626 
627 	if (rtlpci->up_first_time)
628 		return;
629 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
630 		rtl92de_sw_led_on(hw, pLed0);
631 	else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
632 		rtl92de_sw_led_on(hw, pLed0);
633 	else
634 		rtl92de_sw_led_off(hw, pLed0);
635 }
636 
637 static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
638 {
639 	struct rtl_priv *rtlpriv = rtl_priv(hw);
640 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
641 	unsigned char bytetmp;
642 	unsigned short wordtmp;
643 	u16 retry;
644 
645 	rtl92d_phy_set_poweron(hw);
646 	/* Add for resume sequence of power domain according
647 	 * to power document V11. Chapter V.11....  */
648 	/* 0.   RSV_CTRL 0x1C[7:0] = 0x00  */
649 	/* unlock ISO/CLK/Power control register */
650 	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
651 	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
652 
653 	/* 1.   AFE_XTAL_CTRL [7:0] = 0x0F  enable XTAL */
654 	/* 2.   SPS0_CTRL 0x11[7:0] = 0x2b  enable SPS into PWM mode  */
655 	/* 3.   delay (1ms) this is not necessary when initially power on */
656 
657 	/* C.   Resume Sequence */
658 	/* a.   SPS0_CTRL 0x11[7:0] = 0x2b */
659 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
660 
661 	/* b.   AFE_XTAL_CTRL [7:0] = 0x0F */
662 	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
663 
664 	/* c.   DRV runs power on init flow */
665 
666 	/* auto enable WLAN */
667 	/* 4.   APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0   */
668 	/* Power On Reset for MAC Block */
669 	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
670 	udelay(2);
671 	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
672 	udelay(2);
673 
674 	/* 5.   Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
675 	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
676 	udelay(50);
677 	retry = 0;
678 	while ((bytetmp & BIT(0)) && retry < 1000) {
679 		retry++;
680 		bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
681 		udelay(50);
682 	}
683 
684 	/* Enable Radio off, GPIO, and LED function */
685 	/* 6.   APS_FSMCO 0x04[15:0] = 0x0012  when enable HWPDN */
686 	rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
687 
688 	/* release RF digital isolation  */
689 	/* 7.  SYS_ISO_CTRL 0x01[1]    = 0x0;  */
690 	/*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
691 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
692 	udelay(2);
693 
694 	/* make sure that BB reset OK. */
695 	/* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
696 
697 	/* Disable REG_CR before enable it to assure reset */
698 	rtl_write_word(rtlpriv, REG_CR, 0x0);
699 
700 	/* Release MAC IO register reset */
701 	rtl_write_word(rtlpriv, REG_CR, 0x2ff);
702 
703 	/* clear stopping tx/rx dma   */
704 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
705 
706 	/* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
707 
708 	/* System init */
709 	/* 18.  LLT_table_init(Adapter);  */
710 	if (!_rtl92de_llt_table_init(hw))
711 		return false;
712 
713 	/* Clear interrupt and enable interrupt */
714 	/* 19.  HISR 0x124[31:0] = 0xffffffff;  */
715 	/*      HISRE 0x12C[7:0] = 0xFF */
716 	rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
717 	rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
718 
719 	/* 20.  HIMR 0x120[31:0] |= [enable INT mask bit map];  */
720 	/* 21.  HIMRE 0x128[7:0] = [enable INT mask bit map] */
721 	/* The IMR should be enabled later after all init sequence
722 	 * is finished. */
723 
724 	/* 22.  PCIE configuration space configuration */
725 	/* 23.  Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ),  */
726 	/*      and PCIe gated clock function is enabled.    */
727 	/* PCIE configuration space will be written after
728 	 * all init sequence.(Or by BIOS) */
729 
730 	rtl92d_phy_config_maccoexist_rfpage(hw);
731 
732 	/* THe below section is not related to power document Vxx . */
733 	/* This is only useful for driver and OS setting. */
734 	/* -------------------Software Relative Setting---------------------- */
735 	wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
736 	wordtmp &= 0xf;
737 	wordtmp |= 0xF771;
738 	rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
739 
740 	/* Reported Tx status from HW for rate adaptive. */
741 	/* This should be realtive to power on step 14. But in document V11  */
742 	/* still not contain the description.!!! */
743 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
744 
745 	/* Set Tx/Rx page size (Tx must be 128 Bytes,
746 	 * Rx can be 64,128,256,512,1024 bytes) */
747 	/* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
748 
749 	/* Set RCR register */
750 	rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
751 	/* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
752 
753 	/*  Set TCR register */
754 	rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
755 
756 	/* disable earlymode */
757 	rtl_write_byte(rtlpriv, 0x4d0, 0x0);
758 
759 	/* Set TX/RX descriptor physical address(from OS API). */
760 	rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
761 			rtlpci->tx_ring[BEACON_QUEUE].dma);
762 	rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
763 	rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
764 	rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
765 	rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
766 	rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
767 	rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
768 	/* Set RX Desc Address */
769 	rtl_write_dword(rtlpriv, REG_RX_DESA,
770 			rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
771 
772 	/* if we want to support 64 bit DMA, we should set it here,
773 	 * but now we do not support 64 bit DMA*/
774 
775 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
776 
777 	/* Reset interrupt migration setting when initialization */
778 	rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
779 
780 	/* Reconsider when to do this operation after asking HWSD. */
781 	bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
782 	rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
783 	do {
784 		retry++;
785 		bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
786 	} while ((retry < 200) && !(bytetmp & BIT(7)));
787 
788 	/* After MACIO reset,we must refresh LED state. */
789 	_rtl92de_gen_refresh_led_state(hw);
790 
791 	/* Reset H2C protection register */
792 	rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
793 
794 	return true;
795 }
796 
797 static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
798 {
799 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
800 	struct rtl_priv *rtlpriv = rtl_priv(hw);
801 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
802 	u8 reg_bw_opmode = BW_OPMODE_20MHZ;
803 	u32 reg_rrsr;
804 
805 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
806 	rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
807 	rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
808 	rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
809 	rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
810 	rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
811 	rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
812 	rtl_write_word(rtlpriv, REG_RL, 0x0707);
813 	rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
814 	rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
815 	rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
816 	rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
817 	rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
818 	rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
819 	/* Aggregation threshold */
820 	if (rtlhal->macphymode == DUALMAC_DUALPHY)
821 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
822 	else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
823 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
824 	else
825 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
826 	rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
827 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
828 	rtlpci->reg_bcn_ctrl_val = 0x1f;
829 	rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
830 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
831 	rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
832 	rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
833 	rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
834 	/* For throughput */
835 	rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
836 	/* ACKTO for IOT issue. */
837 	rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
838 	/* Set Spec SIFS (used in NAV) */
839 	rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
840 	rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
841 	/* Set SIFS for CCK */
842 	rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
843 	/* Set SIFS for OFDM */
844 	rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
845 	/* Set Multicast Address. */
846 	rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
847 	rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
848 	switch (rtlpriv->phy.rf_type) {
849 	case RF_1T2R:
850 	case RF_1T1R:
851 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
852 		break;
853 	case RF_2T2R:
854 	case RF_2T2R_GREEN:
855 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
856 		break;
857 	}
858 }
859 
860 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
861 {
862 	struct rtl_priv *rtlpriv = rtl_priv(hw);
863 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
864 
865 	rtl_write_byte(rtlpriv, 0x34b, 0x93);
866 	rtl_write_word(rtlpriv, 0x350, 0x870c);
867 	rtl_write_byte(rtlpriv, 0x352, 0x1);
868 	if (ppsc->support_backdoor)
869 		rtl_write_byte(rtlpriv, 0x349, 0x1b);
870 	else
871 		rtl_write_byte(rtlpriv, 0x349, 0x03);
872 	rtl_write_word(rtlpriv, 0x350, 0x2718);
873 	rtl_write_byte(rtlpriv, 0x352, 0x1);
874 }
875 
876 void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
877 {
878 	struct rtl_priv *rtlpriv = rtl_priv(hw);
879 	u8 sec_reg_value;
880 
881 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
882 		 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
883 		 rtlpriv->sec.pairwise_enc_algorithm,
884 		 rtlpriv->sec.group_enc_algorithm);
885 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
886 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
887 			 "not open hw encryption\n");
888 		return;
889 	}
890 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
891 	if (rtlpriv->sec.use_defaultkey) {
892 		sec_reg_value |= SCR_TXUSEDK;
893 		sec_reg_value |= SCR_RXUSEDK;
894 	}
895 	sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
896 	rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
897 	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
898 		 "The SECR-value %x\n", sec_reg_value);
899 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
900 }
901 
902 int rtl92de_hw_init(struct ieee80211_hw *hw)
903 {
904 	struct rtl_priv *rtlpriv = rtl_priv(hw);
905 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
906 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
907 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
908 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
909 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
910 	bool rtstatus = true;
911 	u8 tmp_u1b;
912 	int i;
913 	int err;
914 	unsigned long flags;
915 
916 	rtlpci->being_init_adapter = true;
917 	rtlpci->init_ready = false;
918 	spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
919 	/* we should do iqk after disable/enable */
920 	rtl92d_phy_reset_iqk_result(hw);
921 	/* rtlpriv->intf_ops->disable_aspm(hw); */
922 	rtstatus = _rtl92de_init_mac(hw);
923 	if (!rtstatus) {
924 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
925 		err = 1;
926 		spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
927 		return err;
928 	}
929 	err = rtl92d_download_fw(hw);
930 	spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
931 	if (err) {
932 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
933 			 "Failed to download FW. Init HW without FW..\n");
934 		return 1;
935 	}
936 	rtlhal->last_hmeboxnum = 0;
937 	rtlpriv->psc.fw_current_inpsmode = false;
938 
939 	tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
940 	tmp_u1b = tmp_u1b | 0x30;
941 	rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
942 
943 	if (rtlhal->earlymode_enable) {
944 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
945 			 "EarlyMode Enabled!!!\n");
946 
947 		tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
948 		tmp_u1b = tmp_u1b | 0x1f;
949 		rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
950 
951 		rtl_write_byte(rtlpriv, 0x4d3, 0x80);
952 
953 		tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
954 		tmp_u1b = tmp_u1b | 0x40;
955 		rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
956 	}
957 
958 	if (mac->rdg_en) {
959 		rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
960 		rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
961 		rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
962 	}
963 
964 	rtl92d_phy_mac_config(hw);
965 	/* because last function modify RCR, so we update
966 	 * rcr var here, or TP will unstable for receive_config
967 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
968 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
969 	rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
970 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
971 
972 	rtl92d_phy_bb_config(hw);
973 
974 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
975 	/* set before initialize RF */
976 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
977 
978 	/* config RF */
979 	rtl92d_phy_rf_config(hw);
980 
981 	/* After read predefined TXT, we must set BB/MAC/RF
982 	 * register as our requirement */
983 	/* After load BB,RF params,we need do more for 92D. */
984 	rtl92d_update_bbrf_configuration(hw);
985 	/* set default value after initialize RF,  */
986 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
987 	rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
988 			RF_CHNLBW, RFREG_OFFSET_MASK);
989 	rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
990 			RF_CHNLBW, RFREG_OFFSET_MASK);
991 
992 	/*---- Set CCK and OFDM Block "ON"----*/
993 	if (rtlhal->current_bandtype == BAND_ON_2_4G)
994 		rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
995 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
996 	if (rtlhal->interfaceindex == 0) {
997 		/* RFPGA0_ANALOGPARAMETER2: cck clock select,
998 		 *  set to 20MHz by default */
999 		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
1000 			      BIT(11), 3);
1001 	} else {
1002 		/* Mac1 */
1003 		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
1004 			      BIT(10), 3);
1005 	}
1006 
1007 	_rtl92de_hw_configure(hw);
1008 
1009 	/* reset hw sec */
1010 	rtl_cam_reset_all_entry(hw);
1011 	rtl92de_enable_hw_security_config(hw);
1012 
1013 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1014 	/* TX power index for different rate set. */
1015 	rtl92d_phy_get_hw_reg_originalvalue(hw);
1016 	rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
1017 
1018 	ppsc->rfpwr_state = ERFON;
1019 
1020 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
1021 
1022 	_rtl92de_enable_aspm_back_door(hw);
1023 	/* rtlpriv->intf_ops->enable_aspm(hw); */
1024 
1025 	rtl92d_dm_init(hw);
1026 	rtlpci->being_init_adapter = false;
1027 
1028 	if (ppsc->rfpwr_state == ERFON) {
1029 		rtl92d_phy_lc_calibrate(hw);
1030 		/* 5G and 2.4G must wait sometime to let RF LO ready */
1031 		if (rtlhal->macphymode == DUALMAC_DUALPHY) {
1032 			u32 tmp_rega;
1033 			for (i = 0; i < 10000; i++) {
1034 				udelay(MAX_STALL_TIME);
1035 
1036 				tmp_rega = rtl_get_rfreg(hw,
1037 						  (enum radio_path)RF90_PATH_A,
1038 						  0x2a, MASKDWORD);
1039 
1040 				if (((tmp_rega & BIT(11)) == BIT(11)))
1041 					break;
1042 			}
1043 			/* check that loop was successful. If not, exit now */
1044 			if (i == 10000) {
1045 				rtlpci->init_ready = false;
1046 				return 1;
1047 			}
1048 		}
1049 	}
1050 	rtlpci->init_ready = true;
1051 	return err;
1052 }
1053 
1054 static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
1055 {
1056 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1057 	enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1058 	u32 value32;
1059 
1060 	value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
1061 	if (!(value32 & 0x000f0000)) {
1062 		version = VERSION_TEST_CHIP_92D_SINGLEPHY;
1063 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
1064 	} else {
1065 		version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1066 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
1067 	}
1068 	return version;
1069 }
1070 
1071 static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
1072 				     enum nl80211_iftype type)
1073 {
1074 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1075 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1076 	enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
1077 	u8 bcnfunc_enable;
1078 
1079 	bt_msr &= 0xfc;
1080 
1081 	if (type == NL80211_IFTYPE_UNSPECIFIED ||
1082 	    type == NL80211_IFTYPE_STATION) {
1083 		_rtl92de_stop_tx_beacon(hw);
1084 		_rtl92de_enable_bcn_sub_func(hw);
1085 	} else if (type == NL80211_IFTYPE_ADHOC ||
1086 		type == NL80211_IFTYPE_AP) {
1087 		_rtl92de_resume_tx_beacon(hw);
1088 		_rtl92de_disable_bcn_sub_func(hw);
1089 	} else {
1090 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1091 			 "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
1092 			 type);
1093 	}
1094 	bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL);
1095 	switch (type) {
1096 	case NL80211_IFTYPE_UNSPECIFIED:
1097 		bt_msr |= MSR_NOLINK;
1098 		ledaction = LED_CTL_LINK;
1099 		bcnfunc_enable &= 0xF7;
1100 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1101 			 "Set Network type to NO LINK!\n");
1102 		break;
1103 	case NL80211_IFTYPE_ADHOC:
1104 		bt_msr |= MSR_ADHOC;
1105 		bcnfunc_enable |= 0x08;
1106 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1107 			 "Set Network type to Ad Hoc!\n");
1108 		break;
1109 	case NL80211_IFTYPE_STATION:
1110 		bt_msr |= MSR_INFRA;
1111 		ledaction = LED_CTL_LINK;
1112 		bcnfunc_enable &= 0xF7;
1113 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1114 			 "Set Network type to STA!\n");
1115 		break;
1116 	case NL80211_IFTYPE_AP:
1117 		bt_msr |= MSR_AP;
1118 		bcnfunc_enable |= 0x08;
1119 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1120 			 "Set Network type to AP!\n");
1121 		break;
1122 	default:
1123 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1124 			 "Network type %d not supported!\n", type);
1125 		return 1;
1126 		break;
1127 
1128 	}
1129 	rtl_write_byte(rtlpriv, MSR, bt_msr);
1130 	rtlpriv->cfg->ops->led_control(hw, ledaction);
1131 	if ((bt_msr & MSR_MASK) == MSR_AP)
1132 		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
1133 	else
1134 		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
1135 	return 0;
1136 }
1137 
1138 void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1139 {
1140 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1141 	u32 reg_rcr;
1142 
1143 	if (rtlpriv->psc.rfpwr_state != ERFON)
1144 		return;
1145 
1146 	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1147 
1148 	if (check_bssid) {
1149 		reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1150 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1151 		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
1152 	} else if (!check_bssid) {
1153 		reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
1154 		_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
1155 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1156 	}
1157 }
1158 
1159 int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1160 {
1161 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1162 
1163 	if (_rtl92de_set_media_status(hw, type))
1164 		return -EOPNOTSUPP;
1165 
1166 	/* check bssid */
1167 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1168 		if (type != NL80211_IFTYPE_AP)
1169 			rtl92de_set_check_bssid(hw, true);
1170 	} else {
1171 		rtl92de_set_check_bssid(hw, false);
1172 	}
1173 	return 0;
1174 }
1175 
1176 /* do iqk or reload iqk */
1177 /* windows just rtl92d_phy_reload_iqk_setting in set channel,
1178  * but it's very strict for time sequence so we add
1179  * rtl92d_phy_reload_iqk_setting here */
1180 void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
1181 {
1182 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1183 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1184 	u8 indexforchannel;
1185 	u8 channel = rtlphy->current_channel;
1186 
1187 	indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
1188 	if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) {
1189 		RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
1190 			 "Do IQK for channel:%d\n", channel);
1191 		rtl92d_phy_iq_calibrate(hw);
1192 	}
1193 }
1194 
1195 /* don't set REG_EDCA_BE_PARAM here because
1196  * mac80211 will send pkt when scan */
1197 void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
1198 {
1199 	rtl92d_dm_init_edca_turbo(hw);
1200 }
1201 
1202 void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
1203 {
1204 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1205 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1206 
1207 	rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
1208 	rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
1209 }
1210 
1211 void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
1212 {
1213 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1214 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1215 
1216 	rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
1217 	rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
1218 	synchronize_irq(rtlpci->pdev->irq);
1219 }
1220 
1221 static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
1222 {
1223 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1224 	u8 u1b_tmp;
1225 	unsigned long flags;
1226 
1227 	rtlpriv->intf_ops->enable_aspm(hw);
1228 	rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
1229 	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
1230 	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
1231 
1232 	/* 0x20:value 05-->04 */
1233 	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
1234 
1235 	/*  ==== Reset digital sequence   ====== */
1236 	rtl92d_firmware_selfreset(hw);
1237 
1238 	/* f.   SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
1239 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
1240 
1241 	/* g.   MCUFWDL 0x80[1:0]=0 reset MCU ready status */
1242 	rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
1243 
1244 	/*  ==== Pull GPIO PIN to balance level and LED control ====== */
1245 
1246 	/* h.     GPIO_PIN_CTRL 0x44[31:0]=0x000  */
1247 	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
1248 
1249 	/* i.    Value = GPIO_PIN_CTRL[7:0] */
1250 	u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
1251 
1252 	/* j.    GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
1253 	/* write external PIN level  */
1254 	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
1255 			0x00FF0000 | (u1b_tmp << 8));
1256 
1257 	/* k.   GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
1258 	rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
1259 
1260 	/* l.   LEDCFG 0x4C[15:0] = 0x8080 */
1261 	rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
1262 
1263 	/*  ==== Disable analog sequence === */
1264 
1265 	/* m.   AFE_PLL_CTRL[7:0] = 0x80  disable PLL */
1266 	rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
1267 
1268 	/* n.   SPS0_CTRL 0x11[7:0] = 0x22  enter PFM mode */
1269 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
1270 
1271 	/* o.   AFE_XTAL_CTRL 0x24[7:0] = 0x0E  disable XTAL, if No BT COEX */
1272 	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
1273 
1274 	/* p.   RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
1275 	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
1276 
1277 	/*  ==== interface into suspend === */
1278 
1279 	/* q.   APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
1280 	/* According to power document V11, we need to set this */
1281 	/* value as 0x18. Otherwise, we may not L0s sometimes. */
1282 	/* This indluences power consumption. Bases on SD1's test, */
1283 	/* set as 0x00 do not affect power current. And if it */
1284 	/* is set as 0x18, they had ever met auto load fail problem. */
1285 	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
1286 
1287 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1288 		 "In PowerOff,reg0x%x=%X\n",
1289 		 REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
1290 	/* r.   Note: for PCIe interface, PON will not turn */
1291 	/* off m-bias and BandGap in PCIe suspend mode.  */
1292 
1293 	/* 0x17[7] 1b': power off in process  0b' : power off over */
1294 	if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
1295 		spin_lock_irqsave(&globalmutex_power, flags);
1296 		u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
1297 		u1b_tmp &= (~BIT(7));
1298 		rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
1299 		spin_unlock_irqrestore(&globalmutex_power, flags);
1300 	}
1301 
1302 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
1303 }
1304 
1305 void rtl92de_card_disable(struct ieee80211_hw *hw)
1306 {
1307 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1308 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1309 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1310 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1311 	enum nl80211_iftype opmode;
1312 
1313 	mac->link_state = MAC80211_NOLINK;
1314 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1315 	_rtl92de_set_media_status(hw, opmode);
1316 
1317 	if (rtlpci->driver_is_goingto_unload ||
1318 	    ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1319 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1320 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1321 	/* Power sequence for each MAC. */
1322 	/* a. stop tx DMA  */
1323 	/* b. close RF */
1324 	/* c. clear rx buf */
1325 	/* d. stop rx DMA */
1326 	/* e.  reset MAC */
1327 
1328 	/* a. stop tx DMA */
1329 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
1330 	udelay(50);
1331 
1332 	/* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
1333 
1334 	/* c. ========RF OFF sequence==========  */
1335 	/* 0x88c[23:20] = 0xf. */
1336 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
1337 	rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
1338 
1339 	/* APSD_CTRL 0x600[7:0] = 0x40 */
1340 	rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
1341 
1342 	/* Close antenna 0,0xc04,0xd04 */
1343 	rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0);
1344 	rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
1345 
1346 	/*  SYS_FUNC_EN 0x02[7:0] = 0xE2   reset BB state machine */
1347 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
1348 
1349 	/* Mac0 can not do Global reset. Mac1 can do. */
1350 	/* SYS_FUNC_EN 0x02[7:0] = 0xE0  reset BB state machine  */
1351 	if (rtlpriv->rtlhal.interfaceindex == 1)
1352 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
1353 	udelay(50);
1354 
1355 	/* d.  stop tx/rx dma before disable REG_CR (0x100) to fix */
1356 	/* dma hang issue when disable/enable device.  */
1357 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
1358 	udelay(50);
1359 	rtl_write_byte(rtlpriv, REG_CR, 0x0);
1360 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
1361 	if (rtl92d_phy_check_poweroff(hw))
1362 		_rtl92de_poweroff_adapter(hw);
1363 	return;
1364 }
1365 
1366 void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
1367 				  u32 *p_inta, u32 *p_intb)
1368 {
1369 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1370 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1371 
1372 	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1373 	rtl_write_dword(rtlpriv, ISR, *p_inta);
1374 
1375 	/*
1376 	 * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
1377 	 * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1378 	 */
1379 }
1380 
1381 void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
1382 {
1383 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1384 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1385 	u16 bcn_interval, atim_window;
1386 
1387 	bcn_interval = mac->beacon_interval;
1388 	atim_window = 2;
1389 	/*rtl92de_disable_interrupt(hw);  */
1390 	rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
1391 	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1392 	rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
1393 	rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
1394 	if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
1395 		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
1396 	else
1397 		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
1398 	rtl_write_byte(rtlpriv, 0x606, 0x30);
1399 }
1400 
1401 void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
1402 {
1403 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1404 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1405 	u16 bcn_interval = mac->beacon_interval;
1406 
1407 	RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
1408 		 "beacon_interval:%d\n", bcn_interval);
1409 	/* rtl92de_disable_interrupt(hw); */
1410 	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1411 	/* rtl92de_enable_interrupt(hw); */
1412 }
1413 
1414 void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
1415 				   u32 add_msr, u32 rm_msr)
1416 {
1417 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1418 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1419 
1420 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1421 		 add_msr, rm_msr);
1422 	if (add_msr)
1423 		rtlpci->irq_mask[0] |= add_msr;
1424 	if (rm_msr)
1425 		rtlpci->irq_mask[0] &= (~rm_msr);
1426 	rtl92de_disable_interrupt(hw);
1427 	rtl92de_enable_interrupt(hw);
1428 }
1429 
1430 static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
1431 				 u8 *rom_content, bool autoLoadfail)
1432 {
1433 	u32 rfpath, eeaddr, group, offset1, offset2;
1434 	u8 i;
1435 
1436 	memset(pwrinfo, 0, sizeof(struct txpower_info));
1437 	if (autoLoadfail) {
1438 		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1439 			for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1440 				if (group < CHANNEL_GROUP_MAX_2G) {
1441 					pwrinfo->cck_index[rfpath][group] =
1442 					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1443 					pwrinfo->ht40_1sindex[rfpath][group] =
1444 					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1445 				} else {
1446 					pwrinfo->ht40_1sindex[rfpath][group] =
1447 					    EEPROM_DEFAULT_TXPOWERLEVEL_5G;
1448 				}
1449 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1450 				    EEPROM_DEFAULT_HT40_2SDIFF;
1451 				pwrinfo->ht20indexdiff[rfpath][group] =
1452 				    EEPROM_DEFAULT_HT20_DIFF;
1453 				pwrinfo->ofdmindexdiff[rfpath][group] =
1454 				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1455 				pwrinfo->ht40maxoffset[rfpath][group] =
1456 				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1457 				pwrinfo->ht20maxoffset[rfpath][group] =
1458 				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1459 			}
1460 		}
1461 		for (i = 0; i < 3; i++) {
1462 			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1463 			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1464 		}
1465 		return;
1466 	}
1467 
1468 	/* Maybe autoload OK,buf the tx power index value is not filled.
1469 	 * If we find it, we set it to default value. */
1470 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1471 		for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
1472 			eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
1473 				 + group;
1474 			pwrinfo->cck_index[rfpath][group] =
1475 					(rom_content[eeaddr] == 0xFF) ?
1476 					     (eeaddr > 0x7B ?
1477 					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1478 					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1479 					     rom_content[eeaddr];
1480 		}
1481 	}
1482 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1483 		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1484 			offset1 = group / 3;
1485 			offset2 = group % 3;
1486 			eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
1487 			    offset2 + offset1 * 21;
1488 			pwrinfo->ht40_1sindex[rfpath][group] =
1489 			    (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
1490 					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1491 					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1492 						 rom_content[eeaddr];
1493 		}
1494 	}
1495 	/* These just for 92D efuse offset. */
1496 	for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1497 		for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1498 			int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
1499 
1500 			offset1 = group / 3;
1501 			offset2 = group % 3;
1502 
1503 			if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
1504 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1505 				    (rom_content[base1 +
1506 				     offset2 + offset1 * 21] >> (rfpath * 4))
1507 				     & 0xF;
1508 			else
1509 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1510 				    EEPROM_DEFAULT_HT40_2SDIFF;
1511 			if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
1512 			    + offset1 * 21] != 0xFF)
1513 				pwrinfo->ht20indexdiff[rfpath][group] =
1514 				    (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
1515 				    + offset2 + offset1 * 21] >> (rfpath * 4))
1516 				    & 0xF;
1517 			else
1518 				pwrinfo->ht20indexdiff[rfpath][group] =
1519 				    EEPROM_DEFAULT_HT20_DIFF;
1520 			if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
1521 			    + offset1 * 21] != 0xFF)
1522 				pwrinfo->ofdmindexdiff[rfpath][group] =
1523 				    (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
1524 				     + offset2 + offset1 * 21] >> (rfpath * 4))
1525 				     & 0xF;
1526 			else
1527 				pwrinfo->ofdmindexdiff[rfpath][group] =
1528 				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1529 			if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
1530 			    + offset1 * 21] != 0xFF)
1531 				pwrinfo->ht40maxoffset[rfpath][group] =
1532 				    (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
1533 				    + offset2 + offset1 * 21] >> (rfpath * 4))
1534 				    & 0xF;
1535 			else
1536 				pwrinfo->ht40maxoffset[rfpath][group] =
1537 				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1538 			if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
1539 			    + offset1 * 21] != 0xFF)
1540 				pwrinfo->ht20maxoffset[rfpath][group] =
1541 				    (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
1542 				     offset2 + offset1 * 21] >> (rfpath * 4)) &
1543 				     0xF;
1544 			else
1545 				pwrinfo->ht20maxoffset[rfpath][group] =
1546 				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1547 		}
1548 	}
1549 	if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
1550 		/* 5GL */
1551 		pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
1552 		pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
1553 		/* 5GM */
1554 		pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
1555 		pwrinfo->tssi_b[1] =
1556 		    (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
1557 		    (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
1558 		/* 5GH */
1559 		pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
1560 				      0xF0) >> 4 |
1561 		    (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
1562 		pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
1563 				      0xFC) >> 2;
1564 	} else {
1565 		for (i = 0; i < 3; i++) {
1566 			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1567 			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1568 		}
1569 	}
1570 }
1571 
1572 static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
1573 				       bool autoload_fail, u8 *hwinfo)
1574 {
1575 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1576 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1577 	struct txpower_info pwrinfo;
1578 	u8 tempval[2], i, pwr, diff;
1579 	u32 ch, rfPath, group;
1580 
1581 	_rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
1582 	if (!autoload_fail) {
1583 		/* bit0~2 */
1584 		rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
1585 		rtlefuse->eeprom_thermalmeter =
1586 			 hwinfo[EEPROM_THERMAL_METER] & 0x1f;
1587 		rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
1588 		tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
1589 		tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
1590 		rtlefuse->txpwr_fromeprom = true;
1591 		if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
1592 		    IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
1593 			rtlefuse->internal_pa_5g[0] =
1594 				!((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
1595 			rtlefuse->internal_pa_5g[1] =
1596 				!((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
1597 			RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
1598 				 "Is D cut,Internal PA0 %d Internal PA1 %d\n",
1599 				 rtlefuse->internal_pa_5g[0],
1600 				 rtlefuse->internal_pa_5g[1]);
1601 		}
1602 		rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
1603 		rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
1604 	} else {
1605 		rtlefuse->eeprom_regulatory = 0;
1606 		rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
1607 		rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
1608 		tempval[0] = tempval[1] = 3;
1609 	}
1610 
1611 	/* Use default value to fill parameters if
1612 	 * efuse is not filled on some place. */
1613 
1614 	/* ThermalMeter from EEPROM */
1615 	if (rtlefuse->eeprom_thermalmeter < 0x06 ||
1616 	    rtlefuse->eeprom_thermalmeter > 0x1c)
1617 		rtlefuse->eeprom_thermalmeter = 0x12;
1618 	rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
1619 
1620 	/* check XTAL_K */
1621 	if (rtlefuse->crystalcap == 0xFF)
1622 		rtlefuse->crystalcap = 0;
1623 	if (rtlefuse->eeprom_regulatory > 3)
1624 		rtlefuse->eeprom_regulatory = 0;
1625 
1626 	for (i = 0; i < 2; i++) {
1627 		switch (tempval[i]) {
1628 		case 0:
1629 			tempval[i] = 5;
1630 			break;
1631 		case 1:
1632 			tempval[i] = 4;
1633 			break;
1634 		case 2:
1635 			tempval[i] = 3;
1636 			break;
1637 		case 3:
1638 		default:
1639 			tempval[i] = 0;
1640 			break;
1641 		}
1642 	}
1643 
1644 	rtlefuse->delta_iqk = tempval[0];
1645 	if (tempval[1] > 0)
1646 		rtlefuse->delta_lck = tempval[1] - 1;
1647 	if (rtlefuse->eeprom_c9 == 0xFF)
1648 		rtlefuse->eeprom_c9 = 0x00;
1649 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1650 		 "EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1651 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1652 		 "ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1653 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1654 		 "CrystalCap = 0x%x\n", rtlefuse->crystalcap);
1655 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1656 		 "Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
1657 		 rtlefuse->delta_iqk, rtlefuse->delta_lck);
1658 
1659 	for (rfPath = 0; rfPath < RF6052_MAX_PATH; rfPath++) {
1660 		for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
1661 			group = rtl92d_get_chnlgroup_fromarray((u8) ch);
1662 			if (ch < CHANNEL_MAX_NUMBER_2G)
1663 				rtlefuse->txpwrlevel_cck[rfPath][ch] =
1664 				    pwrinfo.cck_index[rfPath][group];
1665 			rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] =
1666 				    pwrinfo.ht40_1sindex[rfPath][group];
1667 			rtlefuse->txpwr_ht20diff[rfPath][ch] =
1668 				    pwrinfo.ht20indexdiff[rfPath][group];
1669 			rtlefuse->txpwr_legacyhtdiff[rfPath][ch] =
1670 				    pwrinfo.ofdmindexdiff[rfPath][group];
1671 			rtlefuse->pwrgroup_ht20[rfPath][ch] =
1672 				    pwrinfo.ht20maxoffset[rfPath][group];
1673 			rtlefuse->pwrgroup_ht40[rfPath][ch] =
1674 				    pwrinfo.ht40maxoffset[rfPath][group];
1675 			pwr = pwrinfo.ht40_1sindex[rfPath][group];
1676 			diff = pwrinfo.ht40_2sindexdiff[rfPath][group];
1677 			rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] =
1678 				    (pwr > diff) ? (pwr - diff) : 0;
1679 		}
1680 	}
1681 }
1682 
1683 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
1684 					       u8 *content)
1685 {
1686 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1687 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1688 	u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
1689 
1690 	if (macphy_crvalue & BIT(3)) {
1691 		rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
1692 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1693 			 "MacPhyMode SINGLEMAC_SINGLEPHY\n");
1694 	} else {
1695 		rtlhal->macphymode = DUALMAC_DUALPHY;
1696 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1697 			 "MacPhyMode DUALMAC_DUALPHY\n");
1698 	}
1699 }
1700 
1701 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
1702 						  u8 *content)
1703 {
1704 	_rtl92de_read_macphymode_from_prom(hw, content);
1705 	rtl92d_phy_config_macphymode(hw);
1706 	rtl92d_phy_config_macphymode_info(hw);
1707 }
1708 
1709 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
1710 {
1711 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1712 	enum version_8192d chipver = rtlpriv->rtlhal.version;
1713 	u8 cutvalue[2];
1714 	u16 chipvalue;
1715 
1716 	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
1717 					   &cutvalue[1]);
1718 	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
1719 					   &cutvalue[0]);
1720 	chipvalue = (cutvalue[1] << 8) | cutvalue[0];
1721 	switch (chipvalue) {
1722 	case 0xAA55:
1723 		chipver |= CHIP_92D_C_CUT;
1724 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
1725 		break;
1726 	case 0x9966:
1727 		chipver |= CHIP_92D_D_CUT;
1728 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
1729 		break;
1730 	case 0xCC33:
1731 		chipver |= CHIP_92D_E_CUT;
1732 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
1733 		break;
1734 	default:
1735 		chipver |= CHIP_92D_D_CUT;
1736 		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Unknown CUT!\n");
1737 		break;
1738 	}
1739 	rtlpriv->rtlhal.version = chipver;
1740 }
1741 
1742 static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
1743 {
1744 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1745 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1746 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1747 	u16 i, usvalue;
1748 	u8 hwinfo[HWSET_MAX_SIZE];
1749 	u16 eeprom_id;
1750 	unsigned long flags;
1751 
1752 	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
1753 		spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
1754 		rtl_efuse_shadow_map_update(hw);
1755 		_rtl92de_efuse_update_chip_version(hw);
1756 		spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
1757 		memcpy((void *)hwinfo, (void *)&rtlefuse->efuse_map
1758 		       [EFUSE_INIT_MAP][0],
1759 		       HWSET_MAX_SIZE);
1760 	} else if (rtlefuse->epromtype == EEPROM_93C46) {
1761 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1762 			 "RTL819X Not boot from eeprom, check it !!\n");
1763 	}
1764 	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1765 		      hwinfo, HWSET_MAX_SIZE);
1766 
1767 	eeprom_id = *((u16 *)&hwinfo[0]);
1768 	if (eeprom_id != RTL8190_EEPROM_ID) {
1769 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1770 			 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1771 		rtlefuse->autoload_failflag = true;
1772 	} else {
1773 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1774 		rtlefuse->autoload_failflag = false;
1775 	}
1776 	if (rtlefuse->autoload_failflag) {
1777 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1778 			 "RTL819X Not boot from eeprom, check it !!\n");
1779 		return;
1780 	}
1781 	rtlefuse->eeprom_oemid = hwinfo[EEPROM_CUSTOMER_ID];
1782 	_rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
1783 
1784 	/* VID, DID  SE     0xA-D */
1785 	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1786 	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1787 	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1788 	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1789 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROMId = 0x%4x\n", eeprom_id);
1790 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1791 		 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1792 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1793 		 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1794 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1795 		 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1796 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1797 		 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1798 
1799 	/* Read Permanent MAC address */
1800 	if (rtlhal->interfaceindex == 0) {
1801 		for (i = 0; i < 6; i += 2) {
1802 			usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC0_92D + i];
1803 			*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1804 		}
1805 	} else {
1806 		for (i = 0; i < 6; i += 2) {
1807 			usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
1808 			*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1809 		}
1810 	}
1811 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
1812 				      rtlefuse->dev_addr);
1813 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1814 	_rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
1815 
1816 	/* Read Channel Plan */
1817 	switch (rtlhal->bandset) {
1818 	case BAND_ON_2_4G:
1819 		rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
1820 		break;
1821 	case BAND_ON_5G:
1822 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1823 		break;
1824 	case BAND_ON_BOTH:
1825 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1826 		break;
1827 	default:
1828 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1829 		break;
1830 	}
1831 	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1832 	rtlefuse->txpwr_fromeprom = true;
1833 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1834 		 "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1835 }
1836 
1837 void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
1838 {
1839 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1840 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1841 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1842 	u8 tmp_u1b;
1843 
1844 	rtlhal->version = _rtl92de_read_chip_version(hw);
1845 	tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
1846 	rtlefuse->autoload_status = tmp_u1b;
1847 	if (tmp_u1b & BIT(4)) {
1848 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1849 		rtlefuse->epromtype = EEPROM_93C46;
1850 	} else {
1851 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1852 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1853 	}
1854 	if (tmp_u1b & BIT(5)) {
1855 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1856 
1857 		rtlefuse->autoload_failflag = false;
1858 		_rtl92de_read_adapter_info(hw);
1859 	} else {
1860 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
1861 	}
1862 	return;
1863 }
1864 
1865 static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
1866 					  struct ieee80211_sta *sta)
1867 {
1868 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1869 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1870 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1871 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1872 	u32 ratr_value;
1873 	u8 ratr_index = 0;
1874 	u8 nmode = mac->ht_enable;
1875 	u8 mimo_ps = IEEE80211_SMPS_OFF;
1876 	u16 shortgi_rate;
1877 	u32 tmp_ratr_value;
1878 	u8 curtxbw_40mhz = mac->bw_40;
1879 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1880 							1 : 0;
1881 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1882 							1 : 0;
1883 	enum wireless_mode wirelessmode = mac->mode;
1884 
1885 	if (rtlhal->current_bandtype == BAND_ON_5G)
1886 		ratr_value = sta->supp_rates[1] << 4;
1887 	else
1888 		ratr_value = sta->supp_rates[0];
1889 	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1890 		       sta->ht_cap.mcs.rx_mask[0] << 12);
1891 	switch (wirelessmode) {
1892 	case WIRELESS_MODE_A:
1893 		ratr_value &= 0x00000FF0;
1894 		break;
1895 	case WIRELESS_MODE_B:
1896 		if (ratr_value & 0x0000000c)
1897 			ratr_value &= 0x0000000d;
1898 		else
1899 			ratr_value &= 0x0000000f;
1900 		break;
1901 	case WIRELESS_MODE_G:
1902 		ratr_value &= 0x00000FF5;
1903 		break;
1904 	case WIRELESS_MODE_N_24G:
1905 	case WIRELESS_MODE_N_5G:
1906 		nmode = 1;
1907 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
1908 			ratr_value &= 0x0007F005;
1909 		} else {
1910 			u32 ratr_mask;
1911 
1912 			if (get_rf_type(rtlphy) == RF_1T2R ||
1913 			    get_rf_type(rtlphy) == RF_1T1R) {
1914 				ratr_mask = 0x000ff005;
1915 			} else {
1916 				ratr_mask = 0x0f0ff005;
1917 			}
1918 
1919 			ratr_value &= ratr_mask;
1920 		}
1921 		break;
1922 	default:
1923 		if (rtlphy->rf_type == RF_1T2R)
1924 			ratr_value &= 0x000ff0ff;
1925 		else
1926 			ratr_value &= 0x0f0ff0ff;
1927 
1928 		break;
1929 	}
1930 	ratr_value &= 0x0FFFFFFF;
1931 	if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
1932 	    (!curtxbw_40mhz && curshortgi_20mhz))) {
1933 		ratr_value |= 0x10000000;
1934 		tmp_ratr_value = (ratr_value >> 12);
1935 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
1936 			if ((1 << shortgi_rate) & tmp_ratr_value)
1937 				break;
1938 		}
1939 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
1940 		    (shortgi_rate << 4) | (shortgi_rate);
1941 	}
1942 	rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
1943 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
1944 		 rtl_read_dword(rtlpriv, REG_ARFR0));
1945 }
1946 
1947 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
1948 		struct ieee80211_sta *sta, u8 rssi_level)
1949 {
1950 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1951 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1952 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1953 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1954 	struct rtl_sta_info *sta_entry = NULL;
1955 	u32 ratr_bitmap;
1956 	u8 ratr_index;
1957 	u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
1958 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1959 							1 : 0;
1960 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1961 							1 : 0;
1962 	enum wireless_mode wirelessmode = 0;
1963 	bool shortgi = false;
1964 	u32 value[2];
1965 	u8 macid = 0;
1966 	u8 mimo_ps = IEEE80211_SMPS_OFF;
1967 
1968 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
1969 	mimo_ps = sta_entry->mimo_ps;
1970 	wirelessmode = sta_entry->wireless_mode;
1971 	if (mac->opmode == NL80211_IFTYPE_STATION)
1972 		curtxbw_40mhz = mac->bw_40;
1973 	else if (mac->opmode == NL80211_IFTYPE_AP ||
1974 		mac->opmode == NL80211_IFTYPE_ADHOC)
1975 		macid = sta->aid + 1;
1976 
1977 	if (rtlhal->current_bandtype == BAND_ON_5G)
1978 		ratr_bitmap = sta->supp_rates[1] << 4;
1979 	else
1980 		ratr_bitmap = sta->supp_rates[0];
1981 	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1982 			sta->ht_cap.mcs.rx_mask[0] << 12);
1983 	switch (wirelessmode) {
1984 	case WIRELESS_MODE_B:
1985 		ratr_index = RATR_INX_WIRELESS_B;
1986 		if (ratr_bitmap & 0x0000000c)
1987 			ratr_bitmap &= 0x0000000d;
1988 		else
1989 			ratr_bitmap &= 0x0000000f;
1990 		break;
1991 	case WIRELESS_MODE_G:
1992 		ratr_index = RATR_INX_WIRELESS_GB;
1993 
1994 		if (rssi_level == 1)
1995 			ratr_bitmap &= 0x00000f00;
1996 		else if (rssi_level == 2)
1997 			ratr_bitmap &= 0x00000ff0;
1998 		else
1999 			ratr_bitmap &= 0x00000ff5;
2000 		break;
2001 	case WIRELESS_MODE_A:
2002 		ratr_index = RATR_INX_WIRELESS_G;
2003 		ratr_bitmap &= 0x00000ff0;
2004 		break;
2005 	case WIRELESS_MODE_N_24G:
2006 	case WIRELESS_MODE_N_5G:
2007 		if (wirelessmode == WIRELESS_MODE_N_24G)
2008 			ratr_index = RATR_INX_WIRELESS_NGB;
2009 		else
2010 			ratr_index = RATR_INX_WIRELESS_NG;
2011 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2012 			if (rssi_level == 1)
2013 				ratr_bitmap &= 0x00070000;
2014 			else if (rssi_level == 2)
2015 				ratr_bitmap &= 0x0007f000;
2016 			else
2017 				ratr_bitmap &= 0x0007f005;
2018 		} else {
2019 			if (rtlphy->rf_type == RF_1T2R ||
2020 			    rtlphy->rf_type == RF_1T1R) {
2021 				if (curtxbw_40mhz) {
2022 					if (rssi_level == 1)
2023 						ratr_bitmap &= 0x000f0000;
2024 					else if (rssi_level == 2)
2025 						ratr_bitmap &= 0x000ff000;
2026 					else
2027 						ratr_bitmap &= 0x000ff015;
2028 				} else {
2029 					if (rssi_level == 1)
2030 						ratr_bitmap &= 0x000f0000;
2031 					else if (rssi_level == 2)
2032 						ratr_bitmap &= 0x000ff000;
2033 					else
2034 						ratr_bitmap &= 0x000ff005;
2035 				}
2036 			} else {
2037 				if (curtxbw_40mhz) {
2038 					if (rssi_level == 1)
2039 						ratr_bitmap &= 0x0f0f0000;
2040 					else if (rssi_level == 2)
2041 						ratr_bitmap &= 0x0f0ff000;
2042 					else
2043 						ratr_bitmap &= 0x0f0ff015;
2044 				} else {
2045 					if (rssi_level == 1)
2046 						ratr_bitmap &= 0x0f0f0000;
2047 					else if (rssi_level == 2)
2048 						ratr_bitmap &= 0x0f0ff000;
2049 					else
2050 						ratr_bitmap &= 0x0f0ff005;
2051 				}
2052 			}
2053 		}
2054 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2055 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2056 
2057 			if (macid == 0)
2058 				shortgi = true;
2059 			else if (macid == 1)
2060 				shortgi = false;
2061 		}
2062 		break;
2063 	default:
2064 		ratr_index = RATR_INX_WIRELESS_NGB;
2065 
2066 		if (rtlphy->rf_type == RF_1T2R)
2067 			ratr_bitmap &= 0x000ff0ff;
2068 		else
2069 			ratr_bitmap &= 0x0f0ff0ff;
2070 		break;
2071 	}
2072 
2073 	value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
2074 	value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
2075 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
2076 		 "ratr_bitmap :%x value0:%x value1:%x\n",
2077 		 ratr_bitmap, value[0], value[1]);
2078 	rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
2079 	if (macid != 0)
2080 		sta_entry->ratr_index = ratr_index;
2081 }
2082 
2083 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
2084 		struct ieee80211_sta *sta, u8 rssi_level)
2085 {
2086 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2087 
2088 	if (rtlpriv->dm.useramask)
2089 		rtl92de_update_hal_rate_mask(hw, sta, rssi_level);
2090 	else
2091 		rtl92de_update_hal_rate_table(hw, sta);
2092 }
2093 
2094 void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
2095 {
2096 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2097 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2098 	u16 sifs_timer;
2099 
2100 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2101 				      &mac->slot_time);
2102 	if (!mac->ht_enable)
2103 		sifs_timer = 0x0a0a;
2104 	else
2105 		sifs_timer = 0x1010;
2106 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2107 }
2108 
2109 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2110 {
2111 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2112 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2113 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2114 	enum rf_pwrstate e_rfpowerstate_toset;
2115 	u8 u1tmp;
2116 	bool actuallyset = false;
2117 	unsigned long flag;
2118 
2119 	if (rtlpci->being_init_adapter)
2120 		return false;
2121 	if (ppsc->swrf_processing)
2122 		return false;
2123 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2124 	if (ppsc->rfchange_inprogress) {
2125 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2126 		return false;
2127 	} else {
2128 		ppsc->rfchange_inprogress = true;
2129 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2130 	}
2131 	rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
2132 			  REG_MAC_PINMUX_CFG) & ~(BIT(3)));
2133 	u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
2134 	e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
2135 	if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
2136 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2137 			 "GPIOChangeRF  - HW Radio ON, RF ON\n");
2138 		e_rfpowerstate_toset = ERFON;
2139 		ppsc->hwradiooff = false;
2140 		actuallyset = true;
2141 	} else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
2142 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2143 			 "GPIOChangeRF  - HW Radio OFF, RF OFF\n");
2144 		e_rfpowerstate_toset = ERFOFF;
2145 		ppsc->hwradiooff = true;
2146 		actuallyset = true;
2147 	}
2148 	if (actuallyset) {
2149 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2150 		ppsc->rfchange_inprogress = false;
2151 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2152 	} else {
2153 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
2154 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2155 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2156 		ppsc->rfchange_inprogress = false;
2157 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2158 	}
2159 	*valid = 1;
2160 	return !ppsc->hwradiooff;
2161 }
2162 
2163 void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
2164 		     u8 *p_macaddr, bool is_group, u8 enc_algo,
2165 		     bool is_wepkey, bool clear_all)
2166 {
2167 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2168 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2169 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2170 	u8 *macaddr = p_macaddr;
2171 	u32 entry_id;
2172 	bool is_pairwise = false;
2173 	static u8 cam_const_addr[4][6] = {
2174 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2175 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2176 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2177 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2178 	};
2179 	static u8 cam_const_broad[] = {
2180 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2181 	};
2182 
2183 	if (clear_all) {
2184 		u8 idx;
2185 		u8 cam_offset = 0;
2186 		u8 clear_number = 5;
2187 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2188 		for (idx = 0; idx < clear_number; idx++) {
2189 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2190 			rtl_cam_empty_entry(hw, cam_offset + idx);
2191 
2192 			if (idx < 5) {
2193 				memset(rtlpriv->sec.key_buf[idx], 0,
2194 				       MAX_KEY_LEN);
2195 				rtlpriv->sec.key_len[idx] = 0;
2196 			}
2197 		}
2198 	} else {
2199 		switch (enc_algo) {
2200 		case WEP40_ENCRYPTION:
2201 			enc_algo = CAM_WEP40;
2202 			break;
2203 		case WEP104_ENCRYPTION:
2204 			enc_algo = CAM_WEP104;
2205 			break;
2206 		case TKIP_ENCRYPTION:
2207 			enc_algo = CAM_TKIP;
2208 			break;
2209 		case AESCCMP_ENCRYPTION:
2210 			enc_algo = CAM_AES;
2211 			break;
2212 		default:
2213 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2214 				 "switch case not processed\n");
2215 			enc_algo = CAM_TKIP;
2216 			break;
2217 		}
2218 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2219 			macaddr = cam_const_addr[key_index];
2220 			entry_id = key_index;
2221 		} else {
2222 			if (is_group) {
2223 				macaddr = cam_const_broad;
2224 				entry_id = key_index;
2225 			} else {
2226 				if (mac->opmode == NL80211_IFTYPE_AP) {
2227 					entry_id = rtl_cam_get_free_entry(hw,
2228 								 p_macaddr);
2229 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2230 						RT_TRACE(rtlpriv, COMP_SEC,
2231 							 DBG_EMERG,
2232 							 "Can not find free hw security cam entry\n");
2233 						return;
2234 					}
2235 				} else {
2236 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2237 				}
2238 				key_index = PAIRWISE_KEYIDX;
2239 				is_pairwise = true;
2240 			}
2241 		}
2242 		if (rtlpriv->sec.key_len[key_index] == 0) {
2243 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2244 				 "delete one entry, entry_id is %d\n",
2245 				 entry_id);
2246 			if (mac->opmode == NL80211_IFTYPE_AP)
2247 				rtl_cam_del_entry(hw, p_macaddr);
2248 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2249 		} else {
2250 			RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2251 				 "The insert KEY length is %d\n",
2252 				 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
2253 			RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2254 				 "The insert KEY is %x %x\n",
2255 				 rtlpriv->sec.key_buf[0][0],
2256 				 rtlpriv->sec.key_buf[0][1]);
2257 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2258 				 "add one entry\n");
2259 			if (is_pairwise) {
2260 				RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2261 					      "Pairwise Key content",
2262 					      rtlpriv->sec.pairwise_key,
2263 					      rtlpriv->
2264 					      sec.key_len[PAIRWISE_KEYIDX]);
2265 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2266 					 "set Pairwise key\n");
2267 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2268 						      entry_id, enc_algo,
2269 						      CAM_CONFIG_NO_USEDK,
2270 						      rtlpriv->
2271 						      sec.key_buf[key_index]);
2272 			} else {
2273 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2274 					 "set group key\n");
2275 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2276 					rtl_cam_add_one_entry(hw,
2277 						rtlefuse->dev_addr,
2278 						PAIRWISE_KEYIDX,
2279 						CAM_PAIRWISE_KEY_POSITION,
2280 						enc_algo, CAM_CONFIG_NO_USEDK,
2281 						rtlpriv->sec.key_buf[entry_id]);
2282 				}
2283 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2284 						entry_id, enc_algo,
2285 						CAM_CONFIG_NO_USEDK,
2286 						rtlpriv->sec.key_buf
2287 						[entry_id]);
2288 			}
2289 		}
2290 	}
2291 }
2292 
2293 void rtl92de_suspend(struct ieee80211_hw *hw)
2294 {
2295 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2296 
2297 	rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
2298 		REG_MAC_PHY_CTRL_NORMAL);
2299 }
2300 
2301 void rtl92de_resume(struct ieee80211_hw *hw)
2302 {
2303 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2304 
2305 	rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
2306 		       rtlpriv->rtlhal.macphyctl_reg);
2307 }
2308