xref: /linux/drivers/net/wireless/realtek/rtlwifi/efuse.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * Tme full GNU General Public License is included in this distribution in the
15  * file called LICENSE.
16  *
17  * Contact Information:
18  * wlanfae <wlanfae@realtek.com>
19  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20  * Hsinchu 300, Taiwan.
21  *
22  * Larry Finger <Larry.Finger@lwfinger.net>
23  *
24  *****************************************************************************/
25 #include "wifi.h"
26 #include "efuse.h"
27 #include <linux/export.h>
28 
29 static const u8 MAX_PGPKT_SIZE = 9;
30 static const u8 PGPKT_DATA_SIZE = 8;
31 static const int EFUSE_MAX_SIZE = 512;
32 
33 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
34 	{0, 0, 0, 2},
35 	{0, 1, 0, 2},
36 	{0, 2, 0, 2},
37 	{1, 0, 0, 1},
38 	{1, 0, 1, 1},
39 	{1, 1, 0, 1},
40 	{1, 1, 1, 3},
41 	{1, 3, 0, 17},
42 	{3, 3, 1, 48},
43 	{10, 0, 0, 6},
44 	{10, 3, 0, 1},
45 	{10, 3, 1, 1},
46 	{11, 0, 0, 28}
47 };
48 
49 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
50 				    u8 *value);
51 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
52 				    u16 *value);
53 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
54 				    u32 *value);
55 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
56 				     u8 value);
57 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
58 				     u16 value);
59 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
60 				     u32 value);
61 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
62 				u8 data);
63 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
64 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
65 				u8 *data);
66 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
67 				 u8 word_en, u8 *data);
68 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
69 					u8 *targetdata);
70 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
71 				  u16 efuse_addr, u8 word_en, u8 *data);
72 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
73 			       u8 pwrstate);
74 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
75 static u8 efuse_calculate_word_cnts(u8 word_en);
76 
77 void efuse_initialize(struct ieee80211_hw *hw)
78 {
79 	struct rtl_priv *rtlpriv = rtl_priv(hw);
80 	u8 bytetemp;
81 	u8 temp;
82 
83 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
84 	temp = bytetemp | 0x20;
85 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
86 
87 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
88 	temp = bytetemp & 0xFE;
89 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
90 
91 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
92 	temp = bytetemp | 0x80;
93 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
94 
95 	rtl_write_byte(rtlpriv, 0x2F8, 0x3);
96 
97 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
98 
99 }
100 
101 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
102 {
103 	struct rtl_priv *rtlpriv = rtl_priv(hw);
104 	u8 data;
105 	u8 bytetemp;
106 	u8 temp;
107 	u32 k = 0;
108 	const u32 efuse_len =
109 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
110 
111 	if (address < efuse_len) {
112 		temp = address & 0xFF;
113 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
114 			       temp);
115 		bytetemp = rtl_read_byte(rtlpriv,
116 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
117 		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
118 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
119 			       temp);
120 
121 		bytetemp = rtl_read_byte(rtlpriv,
122 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
123 		temp = bytetemp & 0x7F;
124 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
125 			       temp);
126 
127 		bytetemp = rtl_read_byte(rtlpriv,
128 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
129 		while (!(bytetemp & 0x80)) {
130 			bytetemp = rtl_read_byte(rtlpriv,
131 						 rtlpriv->cfg->
132 						 maps[EFUSE_CTRL] + 3);
133 			k++;
134 			if (k == 1000) {
135 				k = 0;
136 				break;
137 			}
138 		}
139 		data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
140 		return data;
141 	} else
142 		return 0xFF;
143 
144 }
145 EXPORT_SYMBOL(efuse_read_1byte);
146 
147 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
148 {
149 	struct rtl_priv *rtlpriv = rtl_priv(hw);
150 	u8 bytetemp;
151 	u8 temp;
152 	u32 k = 0;
153 	const u32 efuse_len =
154 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
155 
156 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
157 		 address, value);
158 
159 	if (address < efuse_len) {
160 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
161 
162 		temp = address & 0xFF;
163 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
164 			       temp);
165 		bytetemp = rtl_read_byte(rtlpriv,
166 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
167 
168 		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
169 		rtl_write_byte(rtlpriv,
170 			       rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
171 
172 		bytetemp = rtl_read_byte(rtlpriv,
173 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
174 		temp = bytetemp | 0x80;
175 		rtl_write_byte(rtlpriv,
176 			       rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
177 
178 		bytetemp = rtl_read_byte(rtlpriv,
179 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
180 
181 		while (bytetemp & 0x80) {
182 			bytetemp = rtl_read_byte(rtlpriv,
183 						 rtlpriv->cfg->
184 						 maps[EFUSE_CTRL] + 3);
185 			k++;
186 			if (k == 100) {
187 				k = 0;
188 				break;
189 			}
190 		}
191 	}
192 
193 }
194 
195 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
196 {
197 	struct rtl_priv *rtlpriv = rtl_priv(hw);
198 	u32 value32;
199 	u8 readbyte;
200 	u16 retry;
201 
202 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
203 		       (_offset & 0xff));
204 	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
205 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
206 		       ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
207 
208 	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
209 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
210 		       (readbyte & 0x7f));
211 
212 	retry = 0;
213 	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
214 	while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
215 		value32 = rtl_read_dword(rtlpriv,
216 					 rtlpriv->cfg->maps[EFUSE_CTRL]);
217 		retry++;
218 	}
219 
220 	udelay(50);
221 	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
222 
223 	*pbuf = (u8) (value32 & 0xff);
224 }
225 EXPORT_SYMBOL_GPL(read_efuse_byte);
226 
227 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
228 {
229 	struct rtl_priv *rtlpriv = rtl_priv(hw);
230 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
231 	u8 *efuse_tbl;
232 	u8 rtemp8[1];
233 	u16 efuse_addr = 0;
234 	u8 offset, wren;
235 	u8 u1temp = 0;
236 	u16 i;
237 	u16 j;
238 	const u16 efuse_max_section =
239 		rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
240 	const u32 efuse_len =
241 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
242 	u16 **efuse_word;
243 	u16 efuse_utilized = 0;
244 	u8 efuse_usage;
245 
246 	if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
247 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
248 			 "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
249 			 _offset, _size_byte);
250 		return;
251 	}
252 
253 	/* allocate memory for efuse_tbl and efuse_word */
254 	efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
255 			    sizeof(u8), GFP_ATOMIC);
256 	if (!efuse_tbl)
257 		return;
258 	efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
259 	if (!efuse_word)
260 		goto out;
261 	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
262 		efuse_word[i] = kzalloc(efuse_max_section * sizeof(u16),
263 					GFP_ATOMIC);
264 		if (!efuse_word[i])
265 			goto done;
266 	}
267 
268 	for (i = 0; i < efuse_max_section; i++)
269 		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
270 			efuse_word[j][i] = 0xFFFF;
271 
272 	read_efuse_byte(hw, efuse_addr, rtemp8);
273 	if (*rtemp8 != 0xFF) {
274 		efuse_utilized++;
275 		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
276 			"Addr=%d\n", efuse_addr);
277 		efuse_addr++;
278 	}
279 
280 	while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
281 		/*  Check PG header for section num.  */
282 		if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
283 			u1temp = ((*rtemp8 & 0xE0) >> 5);
284 			read_efuse_byte(hw, efuse_addr, rtemp8);
285 
286 			if ((*rtemp8 & 0x0F) == 0x0F) {
287 				efuse_addr++;
288 				read_efuse_byte(hw, efuse_addr, rtemp8);
289 
290 				if (*rtemp8 != 0xFF &&
291 				    (efuse_addr < efuse_len)) {
292 					efuse_addr++;
293 				}
294 				continue;
295 			} else {
296 				offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
297 				wren = (*rtemp8 & 0x0F);
298 				efuse_addr++;
299 			}
300 		} else {
301 			offset = ((*rtemp8 >> 4) & 0x0f);
302 			wren = (*rtemp8 & 0x0f);
303 		}
304 
305 		if (offset < efuse_max_section) {
306 			RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
307 				"offset-%d Worden=%x\n", offset, wren);
308 
309 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
310 				if (!(wren & 0x01)) {
311 					RTPRINT(rtlpriv, FEEPROM,
312 						EFUSE_READ_ALL,
313 						"Addr=%d\n", efuse_addr);
314 
315 					read_efuse_byte(hw, efuse_addr, rtemp8);
316 					efuse_addr++;
317 					efuse_utilized++;
318 					efuse_word[i][offset] =
319 							 (*rtemp8 & 0xff);
320 
321 					if (efuse_addr >= efuse_len)
322 						break;
323 
324 					RTPRINT(rtlpriv, FEEPROM,
325 						EFUSE_READ_ALL,
326 						"Addr=%d\n", efuse_addr);
327 
328 					read_efuse_byte(hw, efuse_addr, rtemp8);
329 					efuse_addr++;
330 					efuse_utilized++;
331 					efuse_word[i][offset] |=
332 					    (((u16)*rtemp8 << 8) & 0xff00);
333 
334 					if (efuse_addr >= efuse_len)
335 						break;
336 				}
337 
338 				wren >>= 1;
339 			}
340 		}
341 
342 		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
343 			"Addr=%d\n", efuse_addr);
344 		read_efuse_byte(hw, efuse_addr, rtemp8);
345 		if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
346 			efuse_utilized++;
347 			efuse_addr++;
348 		}
349 	}
350 
351 	for (i = 0; i < efuse_max_section; i++) {
352 		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
353 			efuse_tbl[(i * 8) + (j * 2)] =
354 			    (efuse_word[j][i] & 0xff);
355 			efuse_tbl[(i * 8) + ((j * 2) + 1)] =
356 			    ((efuse_word[j][i] >> 8) & 0xff);
357 		}
358 	}
359 
360 	for (i = 0; i < _size_byte; i++)
361 		pbuf[i] = efuse_tbl[_offset + i];
362 
363 	rtlefuse->efuse_usedbytes = efuse_utilized;
364 	efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
365 	rtlefuse->efuse_usedpercentage = efuse_usage;
366 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
367 				      (u8 *)&efuse_utilized);
368 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
369 				      &efuse_usage);
370 done:
371 	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
372 		kfree(efuse_word[i]);
373 	kfree(efuse_word);
374 out:
375 	kfree(efuse_tbl);
376 }
377 
378 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
379 {
380 	struct rtl_priv *rtlpriv = rtl_priv(hw);
381 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
382 	u8 section_idx, i, Base;
383 	u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
384 	bool wordchanged, result = true;
385 
386 	for (section_idx = 0; section_idx < 16; section_idx++) {
387 		Base = section_idx * 8;
388 		wordchanged = false;
389 
390 		for (i = 0; i < 8; i = i + 2) {
391 			if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
392 			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
393 			    (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
394 			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
395 								   1])) {
396 				words_need++;
397 				wordchanged = true;
398 			}
399 		}
400 
401 		if (wordchanged)
402 			hdr_num++;
403 	}
404 
405 	totalbytes = hdr_num + words_need * 2;
406 	efuse_used = rtlefuse->efuse_usedbytes;
407 
408 	if ((totalbytes + efuse_used) >=
409 	    (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
410 		result = false;
411 
412 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
413 		 "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
414 		 totalbytes, hdr_num, words_need, efuse_used);
415 
416 	return result;
417 }
418 
419 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
420 		       u16 offset, u32 *value)
421 {
422 	if (type == 1)
423 		efuse_shadow_read_1byte(hw, offset, (u8 *)value);
424 	else if (type == 2)
425 		efuse_shadow_read_2byte(hw, offset, (u16 *)value);
426 	else if (type == 4)
427 		efuse_shadow_read_4byte(hw, offset, value);
428 
429 }
430 EXPORT_SYMBOL(efuse_shadow_read);
431 
432 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
433 				u32 value)
434 {
435 	if (type == 1)
436 		efuse_shadow_write_1byte(hw, offset, (u8) value);
437 	else if (type == 2)
438 		efuse_shadow_write_2byte(hw, offset, (u16) value);
439 	else if (type == 4)
440 		efuse_shadow_write_4byte(hw, offset, value);
441 
442 }
443 
444 bool efuse_shadow_update(struct ieee80211_hw *hw)
445 {
446 	struct rtl_priv *rtlpriv = rtl_priv(hw);
447 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
448 	u16 i, offset, base;
449 	u8 word_en = 0x0F;
450 	u8 first_pg = false;
451 
452 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
453 
454 	if (!efuse_shadow_update_chk(hw)) {
455 		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
456 		memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
457 		       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
458 		       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
459 
460 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
461 			 "efuse out of capacity!!\n");
462 		return false;
463 	}
464 	efuse_power_switch(hw, true, true);
465 
466 	for (offset = 0; offset < 16; offset++) {
467 
468 		word_en = 0x0F;
469 		base = offset * 8;
470 
471 		for (i = 0; i < 8; i++) {
472 			if (first_pg) {
473 				word_en &= ~(BIT(i / 2));
474 
475 				rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
476 				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
477 			} else {
478 
479 				if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
480 				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
481 					word_en &= ~(BIT(i / 2));
482 
483 					rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
484 					    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
485 				}
486 			}
487 		}
488 
489 		if (word_en != 0x0F) {
490 			u8 tmpdata[8];
491 			memcpy(tmpdata,
492 			       &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
493 			       8);
494 			RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
495 				      "U-efuse\n", tmpdata, 8);
496 
497 			if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
498 						   tmpdata)) {
499 				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
500 					 "PG section(%#x) fail!!\n", offset);
501 				break;
502 			}
503 		}
504 
505 	}
506 
507 	efuse_power_switch(hw, true, false);
508 	efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
509 
510 	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
511 	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
512 	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
513 
514 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
515 	return true;
516 }
517 
518 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
519 {
520 	struct rtl_priv *rtlpriv = rtl_priv(hw);
521 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
522 
523 	if (rtlefuse->autoload_failflag)
524 		memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
525 		       0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
526 	else
527 		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
528 
529 	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
530 			&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
531 			rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
532 
533 }
534 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
535 
536 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
537 {
538 	u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
539 
540 	efuse_power_switch(hw, true, true);
541 
542 	efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
543 
544 	efuse_power_switch(hw, true, false);
545 
546 }
547 
548 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
549 {
550 }
551 
552 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
553 				    u16 offset, u8 *value)
554 {
555 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
556 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
557 }
558 
559 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
560 				    u16 offset, u16 *value)
561 {
562 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
563 
564 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
565 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
566 
567 }
568 
569 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
570 				    u16 offset, u32 *value)
571 {
572 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
573 
574 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
575 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
576 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
577 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
578 }
579 
580 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
581 				     u16 offset, u8 value)
582 {
583 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
584 
585 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
586 }
587 
588 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
589 				     u16 offset, u16 value)
590 {
591 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
592 
593 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
594 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
595 
596 }
597 
598 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
599 				     u16 offset, u32 value)
600 {
601 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
602 
603 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
604 	    (u8) (value & 0x000000FF);
605 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
606 	    (u8) ((value >> 8) & 0x0000FF);
607 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
608 	    (u8) ((value >> 16) & 0x00FF);
609 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
610 	    (u8) ((value >> 24) & 0xFF);
611 
612 }
613 
614 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
615 {
616 	struct rtl_priv *rtlpriv = rtl_priv(hw);
617 	u8 tmpidx = 0;
618 	int result;
619 
620 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
621 		       (u8) (addr & 0xff));
622 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
623 		       ((u8) ((addr >> 8) & 0x03)) |
624 		       (rtl_read_byte(rtlpriv,
625 				      rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
626 			0xFC));
627 
628 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
629 
630 	while (!(0x80 & rtl_read_byte(rtlpriv,
631 				      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
632 	       && (tmpidx < 100)) {
633 		tmpidx++;
634 	}
635 
636 	if (tmpidx < 100) {
637 		*data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
638 		result = true;
639 	} else {
640 		*data = 0xff;
641 		result = false;
642 	}
643 	return result;
644 }
645 EXPORT_SYMBOL(efuse_one_byte_read);
646 
647 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
648 {
649 	struct rtl_priv *rtlpriv = rtl_priv(hw);
650 	u8 tmpidx = 0;
651 
652 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
653 		 "Addr = %x Data=%x\n", addr, data);
654 
655 	rtl_write_byte(rtlpriv,
656 		       rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
657 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
658 		       (rtl_read_byte(rtlpriv,
659 			 rtlpriv->cfg->maps[EFUSE_CTRL] +
660 			 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
661 
662 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
663 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
664 
665 	while ((0x80 & rtl_read_byte(rtlpriv,
666 				     rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
667 	       && (tmpidx < 100)) {
668 		tmpidx++;
669 	}
670 
671 	if (tmpidx < 100)
672 		return true;
673 	return false;
674 }
675 
676 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
677 {
678 	struct rtl_priv *rtlpriv = rtl_priv(hw);
679 	efuse_power_switch(hw, false, true);
680 	read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
681 	efuse_power_switch(hw, false, false);
682 }
683 
684 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
685 				u8 efuse_data, u8 offset, u8 *tmpdata,
686 				u8 *readstate)
687 {
688 	bool dataempty = true;
689 	u8 hoffset;
690 	u8 tmpidx;
691 	u8 hworden;
692 	u8 word_cnts;
693 
694 	hoffset = (efuse_data >> 4) & 0x0F;
695 	hworden = efuse_data & 0x0F;
696 	word_cnts = efuse_calculate_word_cnts(hworden);
697 
698 	if (hoffset == offset) {
699 		for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
700 			if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
701 						&efuse_data)) {
702 				tmpdata[tmpidx] = efuse_data;
703 				if (efuse_data != 0xff)
704 					dataempty = false;
705 			}
706 		}
707 
708 		if (!dataempty) {
709 			*readstate = PG_STATE_DATA;
710 		} else {
711 			*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
712 			*readstate = PG_STATE_HEADER;
713 		}
714 
715 	} else {
716 		*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
717 		*readstate = PG_STATE_HEADER;
718 	}
719 }
720 
721 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
722 {
723 	u8 readstate = PG_STATE_HEADER;
724 
725 	bool continual = true;
726 
727 	u8 efuse_data, word_cnts = 0;
728 	u16 efuse_addr = 0;
729 	u8 tmpdata[8];
730 
731 	if (data == NULL)
732 		return false;
733 	if (offset > 15)
734 		return false;
735 
736 	memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
737 	memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
738 
739 	while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
740 		if (readstate & PG_STATE_HEADER) {
741 			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
742 			    && (efuse_data != 0xFF))
743 				efuse_read_data_case1(hw, &efuse_addr,
744 						      efuse_data, offset,
745 						      tmpdata, &readstate);
746 			else
747 				continual = false;
748 		} else if (readstate & PG_STATE_DATA) {
749 			efuse_word_enable_data_read(0, tmpdata, data);
750 			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
751 			readstate = PG_STATE_HEADER;
752 		}
753 
754 	}
755 
756 	if ((data[0] == 0xff) && (data[1] == 0xff) &&
757 	    (data[2] == 0xff) && (data[3] == 0xff) &&
758 	    (data[4] == 0xff) && (data[5] == 0xff) &&
759 	    (data[6] == 0xff) && (data[7] == 0xff))
760 		return false;
761 	else
762 		return true;
763 
764 }
765 
766 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
767 				   u8 efuse_data, u8 offset,
768 				   int *continual, u8 *write_state,
769 				   struct pgpkt_struct *target_pkt,
770 				   int *repeat_times, int *result, u8 word_en)
771 {
772 	struct rtl_priv *rtlpriv = rtl_priv(hw);
773 	struct pgpkt_struct tmp_pkt;
774 	int dataempty = true;
775 	u8 originaldata[8 * sizeof(u8)];
776 	u8 badworden = 0x0F;
777 	u8 match_word_en, tmp_word_en;
778 	u8 tmpindex;
779 	u8 tmp_header = efuse_data;
780 	u8 tmp_word_cnts;
781 
782 	tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
783 	tmp_pkt.word_en = tmp_header & 0x0F;
784 	tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
785 
786 	if (tmp_pkt.offset != target_pkt->offset) {
787 		*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
788 		*write_state = PG_STATE_HEADER;
789 	} else {
790 		for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
791 			if (efuse_one_byte_read(hw,
792 						(*efuse_addr + 1 + tmpindex),
793 						&efuse_data) &&
794 			    (efuse_data != 0xFF))
795 				dataempty = false;
796 		}
797 
798 		if (!dataempty) {
799 			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
800 			*write_state = PG_STATE_HEADER;
801 		} else {
802 			match_word_en = 0x0F;
803 			if (!((target_pkt->word_en & BIT(0)) |
804 			    (tmp_pkt.word_en & BIT(0))))
805 				match_word_en &= (~BIT(0));
806 
807 			if (!((target_pkt->word_en & BIT(1)) |
808 			    (tmp_pkt.word_en & BIT(1))))
809 				match_word_en &= (~BIT(1));
810 
811 			if (!((target_pkt->word_en & BIT(2)) |
812 			    (tmp_pkt.word_en & BIT(2))))
813 				match_word_en &= (~BIT(2));
814 
815 			if (!((target_pkt->word_en & BIT(3)) |
816 			    (tmp_pkt.word_en & BIT(3))))
817 				match_word_en &= (~BIT(3));
818 
819 			if ((match_word_en & 0x0F) != 0x0F) {
820 				badworden =
821 				  enable_efuse_data_write(hw,
822 							  *efuse_addr + 1,
823 							  tmp_pkt.word_en,
824 							  target_pkt->data);
825 
826 				if (0x0F != (badworden & 0x0F))	{
827 					u8 reorg_offset = offset;
828 					u8 reorg_worden = badworden;
829 					efuse_pg_packet_write(hw, reorg_offset,
830 							      reorg_worden,
831 							      originaldata);
832 				}
833 
834 				tmp_word_en = 0x0F;
835 				if ((target_pkt->word_en & BIT(0)) ^
836 				    (match_word_en & BIT(0)))
837 					tmp_word_en &= (~BIT(0));
838 
839 				if ((target_pkt->word_en & BIT(1)) ^
840 				    (match_word_en & BIT(1)))
841 					tmp_word_en &= (~BIT(1));
842 
843 				if ((target_pkt->word_en & BIT(2)) ^
844 				    (match_word_en & BIT(2)))
845 					tmp_word_en &= (~BIT(2));
846 
847 				if ((target_pkt->word_en & BIT(3)) ^
848 				    (match_word_en & BIT(3)))
849 					tmp_word_en &= (~BIT(3));
850 
851 				if ((tmp_word_en & 0x0F) != 0x0F) {
852 					*efuse_addr = efuse_get_current_size(hw);
853 					target_pkt->offset = offset;
854 					target_pkt->word_en = tmp_word_en;
855 				} else {
856 					*continual = false;
857 				}
858 				*write_state = PG_STATE_HEADER;
859 				*repeat_times += 1;
860 				if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
861 					*continual = false;
862 					*result = false;
863 				}
864 			} else {
865 				*efuse_addr += (2 * tmp_word_cnts) + 1;
866 				target_pkt->offset = offset;
867 				target_pkt->word_en = word_en;
868 				*write_state = PG_STATE_HEADER;
869 			}
870 		}
871 	}
872 	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
873 }
874 
875 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
876 				   int *continual, u8 *write_state,
877 				   struct pgpkt_struct target_pkt,
878 				   int *repeat_times, int *result)
879 {
880 	struct rtl_priv *rtlpriv = rtl_priv(hw);
881 	struct pgpkt_struct tmp_pkt;
882 	u8 pg_header;
883 	u8 tmp_header;
884 	u8 originaldata[8 * sizeof(u8)];
885 	u8 tmp_word_cnts;
886 	u8 badworden = 0x0F;
887 
888 	pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
889 	efuse_one_byte_write(hw, *efuse_addr, pg_header);
890 	efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
891 
892 	if (tmp_header == pg_header) {
893 		*write_state = PG_STATE_DATA;
894 	} else if (tmp_header == 0xFF) {
895 		*write_state = PG_STATE_HEADER;
896 		*repeat_times += 1;
897 		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
898 			*continual = false;
899 			*result = false;
900 		}
901 	} else {
902 		tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
903 		tmp_pkt.word_en = tmp_header & 0x0F;
904 
905 		tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
906 
907 		memset(originaldata, 0xff,  8 * sizeof(u8));
908 
909 		if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
910 			badworden = enable_efuse_data_write(hw,
911 							    *efuse_addr + 1,
912 							    tmp_pkt.word_en,
913 							    originaldata);
914 
915 			if (0x0F != (badworden & 0x0F)) {
916 				u8 reorg_offset = tmp_pkt.offset;
917 				u8 reorg_worden = badworden;
918 				efuse_pg_packet_write(hw, reorg_offset,
919 						      reorg_worden,
920 						      originaldata);
921 				*efuse_addr = efuse_get_current_size(hw);
922 			} else {
923 				*efuse_addr = *efuse_addr +
924 					      (tmp_word_cnts * 2) + 1;
925 			}
926 		} else {
927 			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
928 		}
929 
930 		*write_state = PG_STATE_HEADER;
931 		*repeat_times += 1;
932 		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
933 			*continual = false;
934 			*result = false;
935 		}
936 
937 		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
938 			"efuse PG_STATE_HEADER-2\n");
939 	}
940 }
941 
942 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
943 				 u8 offset, u8 word_en, u8 *data)
944 {
945 	struct rtl_priv *rtlpriv = rtl_priv(hw);
946 	struct pgpkt_struct target_pkt;
947 	u8 write_state = PG_STATE_HEADER;
948 	int continual = true, dataempty = true, result = true;
949 	u16 efuse_addr = 0;
950 	u8 efuse_data;
951 	u8 target_word_cnts = 0;
952 	u8 badworden = 0x0F;
953 	static int repeat_times;
954 
955 	if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
956 		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
957 		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
958 			"efuse_pg_packet_write error\n");
959 		return false;
960 	}
961 
962 	target_pkt.offset = offset;
963 	target_pkt.word_en = word_en;
964 
965 	memset(target_pkt.data, 0xFF,  8 * sizeof(u8));
966 
967 	efuse_word_enable_data_read(word_en, data, target_pkt.data);
968 	target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
969 
970 	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
971 
972 	while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
973 		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
974 
975 		if (write_state == PG_STATE_HEADER) {
976 			dataempty = true;
977 			badworden = 0x0F;
978 			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
979 				"efuse PG_STATE_HEADER\n");
980 
981 			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
982 			    (efuse_data != 0xFF))
983 				efuse_write_data_case1(hw, &efuse_addr,
984 						       efuse_data, offset,
985 						       &continual,
986 						       &write_state,
987 						       &target_pkt,
988 						       &repeat_times, &result,
989 						       word_en);
990 			else
991 				efuse_write_data_case2(hw, &efuse_addr,
992 						       &continual,
993 						       &write_state,
994 						       target_pkt,
995 						       &repeat_times,
996 						       &result);
997 
998 		} else if (write_state == PG_STATE_DATA) {
999 			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1000 				"efuse PG_STATE_DATA\n");
1001 			badworden = 0x0f;
1002 			badworden =
1003 			    enable_efuse_data_write(hw, efuse_addr + 1,
1004 						    target_pkt.word_en,
1005 						    target_pkt.data);
1006 
1007 			if ((badworden & 0x0F) == 0x0F) {
1008 				continual = false;
1009 			} else {
1010 				efuse_addr =
1011 				    efuse_addr + (2 * target_word_cnts) + 1;
1012 
1013 				target_pkt.offset = offset;
1014 				target_pkt.word_en = badworden;
1015 				target_word_cnts =
1016 				    efuse_calculate_word_cnts(target_pkt.
1017 							      word_en);
1018 				write_state = PG_STATE_HEADER;
1019 				repeat_times++;
1020 				if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1021 					continual = false;
1022 					result = false;
1023 				}
1024 				RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1025 					"efuse PG_STATE_HEADER-3\n");
1026 			}
1027 		}
1028 	}
1029 
1030 	if (efuse_addr >= (EFUSE_MAX_SIZE -
1031 		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1032 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1033 			 "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1034 	}
1035 
1036 	return true;
1037 }
1038 
1039 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1040 					u8 *targetdata)
1041 {
1042 	if (!(word_en & BIT(0))) {
1043 		targetdata[0] = sourdata[0];
1044 		targetdata[1] = sourdata[1];
1045 	}
1046 
1047 	if (!(word_en & BIT(1))) {
1048 		targetdata[2] = sourdata[2];
1049 		targetdata[3] = sourdata[3];
1050 	}
1051 
1052 	if (!(word_en & BIT(2))) {
1053 		targetdata[4] = sourdata[4];
1054 		targetdata[5] = sourdata[5];
1055 	}
1056 
1057 	if (!(word_en & BIT(3))) {
1058 		targetdata[6] = sourdata[6];
1059 		targetdata[7] = sourdata[7];
1060 	}
1061 }
1062 
1063 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1064 				  u16 efuse_addr, u8 word_en, u8 *data)
1065 {
1066 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1067 	u16 tmpaddr;
1068 	u16 start_addr = efuse_addr;
1069 	u8 badworden = 0x0F;
1070 	u8 tmpdata[8];
1071 
1072 	memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1073 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1074 		 "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1075 
1076 	if (!(word_en & BIT(0))) {
1077 		tmpaddr = start_addr;
1078 		efuse_one_byte_write(hw, start_addr++, data[0]);
1079 		efuse_one_byte_write(hw, start_addr++, data[1]);
1080 
1081 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1082 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1083 		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1084 			badworden &= (~BIT(0));
1085 	}
1086 
1087 	if (!(word_en & BIT(1))) {
1088 		tmpaddr = start_addr;
1089 		efuse_one_byte_write(hw, start_addr++, data[2]);
1090 		efuse_one_byte_write(hw, start_addr++, data[3]);
1091 
1092 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1093 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1094 		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1095 			badworden &= (~BIT(1));
1096 	}
1097 
1098 	if (!(word_en & BIT(2))) {
1099 		tmpaddr = start_addr;
1100 		efuse_one_byte_write(hw, start_addr++, data[4]);
1101 		efuse_one_byte_write(hw, start_addr++, data[5]);
1102 
1103 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1104 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1105 		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1106 			badworden &= (~BIT(2));
1107 	}
1108 
1109 	if (!(word_en & BIT(3))) {
1110 		tmpaddr = start_addr;
1111 		efuse_one_byte_write(hw, start_addr++, data[6]);
1112 		efuse_one_byte_write(hw, start_addr++, data[7]);
1113 
1114 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1115 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1116 		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1117 			badworden &= (~BIT(3));
1118 	}
1119 
1120 	return badworden;
1121 }
1122 
1123 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1124 {
1125 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1126 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1127 	u8 tempval;
1128 	u16 tmpV16;
1129 
1130 	if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1131 
1132 		if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1133 		    rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1134 			rtl_write_byte(rtlpriv,
1135 				       rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1136 		} else {
1137 			tmpV16 =
1138 			  rtl_read_word(rtlpriv,
1139 					rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1140 			if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1141 				tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1142 				rtl_write_word(rtlpriv,
1143 					       rtlpriv->cfg->maps[SYS_ISO_CTRL],
1144 					       tmpV16);
1145 			}
1146 		}
1147 		tmpV16 = rtl_read_word(rtlpriv,
1148 				       rtlpriv->cfg->maps[SYS_FUNC_EN]);
1149 		if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1150 			tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1151 			rtl_write_word(rtlpriv,
1152 				       rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1153 		}
1154 
1155 		tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1156 		if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1157 		    (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1158 			tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1159 				   rtlpriv->cfg->maps[EFUSE_ANA8M]);
1160 			rtl_write_word(rtlpriv,
1161 				       rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1162 		}
1163 	}
1164 
1165 	if (pwrstate) {
1166 		if (write) {
1167 			tempval = rtl_read_byte(rtlpriv,
1168 						rtlpriv->cfg->maps[EFUSE_TEST] +
1169 						3);
1170 
1171 			if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1172 				tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1173 				tempval |= (VOLTAGE_V25 << 3);
1174 			} else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1175 				tempval &= 0x0F;
1176 				tempval |= (VOLTAGE_V25 << 4);
1177 			}
1178 
1179 			rtl_write_byte(rtlpriv,
1180 				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1181 				       (tempval | 0x80));
1182 		}
1183 
1184 		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1185 			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1186 				       0x03);
1187 		}
1188 	} else {
1189 		if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1190 		    rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1191 			rtl_write_byte(rtlpriv,
1192 				       rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1193 
1194 		if (write) {
1195 			tempval = rtl_read_byte(rtlpriv,
1196 						rtlpriv->cfg->maps[EFUSE_TEST] +
1197 						3);
1198 			rtl_write_byte(rtlpriv,
1199 				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1200 				       (tempval & 0x7F));
1201 		}
1202 
1203 		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1204 			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1205 				       0x02);
1206 		}
1207 	}
1208 }
1209 
1210 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1211 {
1212 	int continual = true;
1213 	u16 efuse_addr = 0;
1214 	u8 hoffset, hworden;
1215 	u8 efuse_data, word_cnts;
1216 
1217 	while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1218 	       (efuse_addr < EFUSE_MAX_SIZE)) {
1219 		if (efuse_data != 0xFF) {
1220 			hoffset = (efuse_data >> 4) & 0x0F;
1221 			hworden = efuse_data & 0x0F;
1222 			word_cnts = efuse_calculate_word_cnts(hworden);
1223 			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1224 		} else {
1225 			continual = false;
1226 		}
1227 	}
1228 
1229 	return efuse_addr;
1230 }
1231 
1232 static u8 efuse_calculate_word_cnts(u8 word_en)
1233 {
1234 	u8 word_cnts = 0;
1235 	if (!(word_en & BIT(0)))
1236 		word_cnts++;
1237 	if (!(word_en & BIT(1)))
1238 		word_cnts++;
1239 	if (!(word_en & BIT(2)))
1240 		word_cnts++;
1241 	if (!(word_en & BIT(3)))
1242 		word_cnts++;
1243 	return word_cnts;
1244 }
1245 
1246