xref: /linux/drivers/net/wireless/ralink/rt2x00/rt73usb.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4 	<http://rt2x00.serialmonkey.com>
5 
6  */
7 
8 /*
9 	Module: rt73usb
10 	Abstract: rt73usb device specific routines.
11 	Supported chipsets: rt2571W & rt2671.
12  */
13 
14 #include <linux/crc-itu-t.h>
15 #include <linux/delay.h>
16 #include <linux/etherdevice.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/usb.h>
21 
22 #include "rt2x00.h"
23 #include "rt2x00usb.h"
24 #include "rt73usb.h"
25 
26 /*
27  * Allow hardware encryption to be disabled.
28  */
29 static bool modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
32 
33 /*
34  * Register access.
35  * All access to the CSR registers will go through the methods
36  * rt2x00usb_register_read and rt2x00usb_register_write.
37  * BBP and RF register require indirect register access,
38  * and use the CSR registers BBPCSR and RFCSR to achieve this.
39  * These indirect registers work with busy bits,
40  * and we will try maximal REGISTER_BUSY_COUNT times to access
41  * the register while taking a REGISTER_BUSY_DELAY us delay
42  * between each attampt. When the busy bit is still set at that time,
43  * the access attempt is considered to have failed,
44  * and we will print an error.
45  * The _lock versions must be used if you already hold the csr_mutex
46  */
47 #define WAIT_FOR_BBP(__dev, __reg) \
48 	rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
49 #define WAIT_FOR_RF(__dev, __reg) \
50 	rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
51 
52 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
53 			      const unsigned int word, const u8 value)
54 {
55 	u32 reg;
56 
57 	mutex_lock(&rt2x00dev->csr_mutex);
58 
59 	/*
60 	 * Wait until the BBP becomes available, afterwards we
61 	 * can safely write the new data into the register.
62 	 */
63 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
64 		reg = 0;
65 		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
66 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
67 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
68 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
69 
70 		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
71 	}
72 
73 	mutex_unlock(&rt2x00dev->csr_mutex);
74 }
75 
76 static u8 rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
77 			   const unsigned int word)
78 {
79 	u32 reg;
80 	u8 value;
81 
82 	mutex_lock(&rt2x00dev->csr_mutex);
83 
84 	/*
85 	 * Wait until the BBP becomes available, afterwards we
86 	 * can safely write the read request into the register.
87 	 * After the data has been written, we wait until hardware
88 	 * returns the correct value, if at any time the register
89 	 * doesn't become available in time, reg will be 0xffffffff
90 	 * which means we return 0xff to the caller.
91 	 */
92 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
93 		reg = 0;
94 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
95 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
96 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
97 
98 		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
99 
100 		WAIT_FOR_BBP(rt2x00dev, &reg);
101 	}
102 
103 	value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
104 
105 	mutex_unlock(&rt2x00dev->csr_mutex);
106 
107 	return value;
108 }
109 
110 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
111 			     const unsigned int word, const u32 value)
112 {
113 	u32 reg;
114 
115 	mutex_lock(&rt2x00dev->csr_mutex);
116 
117 	/*
118 	 * Wait until the RF becomes available, afterwards we
119 	 * can safely write the new data into the register.
120 	 */
121 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
122 		reg = 0;
123 		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
124 		/*
125 		 * RF5225 and RF2527 contain 21 bits per RF register value,
126 		 * all others contain 20 bits.
127 		 */
128 		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
129 				   20 + (rt2x00_rf(rt2x00dev, RF5225) ||
130 					 rt2x00_rf(rt2x00dev, RF2527)));
131 		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
132 		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
133 
134 		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
135 		rt2x00_rf_write(rt2x00dev, word, value);
136 	}
137 
138 	mutex_unlock(&rt2x00dev->csr_mutex);
139 }
140 
141 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
142 static const struct rt2x00debug rt73usb_rt2x00debug = {
143 	.owner	= THIS_MODULE,
144 	.csr	= {
145 		.read		= rt2x00usb_register_read,
146 		.write		= rt2x00usb_register_write,
147 		.flags		= RT2X00DEBUGFS_OFFSET,
148 		.word_base	= CSR_REG_BASE,
149 		.word_size	= sizeof(u32),
150 		.word_count	= CSR_REG_SIZE / sizeof(u32),
151 	},
152 	.eeprom	= {
153 		.read		= rt2x00_eeprom_read,
154 		.write		= rt2x00_eeprom_write,
155 		.word_base	= EEPROM_BASE,
156 		.word_size	= sizeof(u16),
157 		.word_count	= EEPROM_SIZE / sizeof(u16),
158 	},
159 	.bbp	= {
160 		.read		= rt73usb_bbp_read,
161 		.write		= rt73usb_bbp_write,
162 		.word_base	= BBP_BASE,
163 		.word_size	= sizeof(u8),
164 		.word_count	= BBP_SIZE / sizeof(u8),
165 	},
166 	.rf	= {
167 		.read		= rt2x00_rf_read,
168 		.write		= rt73usb_rf_write,
169 		.word_base	= RF_BASE,
170 		.word_size	= sizeof(u32),
171 		.word_count	= RF_SIZE / sizeof(u32),
172 	},
173 };
174 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
175 
176 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
177 {
178 	u32 reg;
179 
180 	reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13);
181 	return rt2x00_get_field32(reg, MAC_CSR13_VAL7);
182 }
183 
184 #ifdef CONFIG_RT2X00_LIB_LEDS
185 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
186 				   enum led_brightness brightness)
187 {
188 	struct rt2x00_led *led =
189 	   container_of(led_cdev, struct rt2x00_led, led_dev);
190 	unsigned int enabled = brightness != LED_OFF;
191 	unsigned int a_mode =
192 	    (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
193 	unsigned int bg_mode =
194 	    (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
195 
196 	if (led->type == LED_TYPE_RADIO) {
197 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
198 				   MCU_LEDCS_RADIO_STATUS, enabled);
199 
200 		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
201 					    0, led->rt2x00dev->led_mcu_reg,
202 					    REGISTER_TIMEOUT);
203 	} else if (led->type == LED_TYPE_ASSOC) {
204 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
205 				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
206 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
207 				   MCU_LEDCS_LINK_A_STATUS, a_mode);
208 
209 		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
210 					    0, led->rt2x00dev->led_mcu_reg,
211 					    REGISTER_TIMEOUT);
212 	} else if (led->type == LED_TYPE_QUALITY) {
213 		/*
214 		 * The brightness is divided into 6 levels (0 - 5),
215 		 * this means we need to convert the brightness
216 		 * argument into the matching level within that range.
217 		 */
218 		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
219 					    brightness / (LED_FULL / 6),
220 					    led->rt2x00dev->led_mcu_reg,
221 					    REGISTER_TIMEOUT);
222 	}
223 }
224 
225 static int rt73usb_blink_set(struct led_classdev *led_cdev,
226 			     unsigned long *delay_on,
227 			     unsigned long *delay_off)
228 {
229 	struct rt2x00_led *led =
230 	    container_of(led_cdev, struct rt2x00_led, led_dev);
231 	u32 reg;
232 
233 	reg = rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14);
234 	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
235 	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
236 	rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
237 
238 	return 0;
239 }
240 
241 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
242 			     struct rt2x00_led *led,
243 			     enum led_type type)
244 {
245 	led->rt2x00dev = rt2x00dev;
246 	led->type = type;
247 	led->led_dev.brightness_set = rt73usb_brightness_set;
248 	led->led_dev.blink_set = rt73usb_blink_set;
249 	led->flags = LED_INITIALIZED;
250 }
251 #endif /* CONFIG_RT2X00_LIB_LEDS */
252 
253 /*
254  * Configuration handlers.
255  */
256 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
257 				     struct rt2x00lib_crypto *crypto,
258 				     struct ieee80211_key_conf *key)
259 {
260 	struct hw_key_entry key_entry;
261 	struct rt2x00_field32 field;
262 	u32 mask;
263 	u32 reg;
264 
265 	if (crypto->cmd == SET_KEY) {
266 		/*
267 		 * rt2x00lib can't determine the correct free
268 		 * key_idx for shared keys. We have 1 register
269 		 * with key valid bits. The goal is simple, read
270 		 * the register, if that is full we have no slots
271 		 * left.
272 		 * Note that each BSS is allowed to have up to 4
273 		 * shared keys, so put a mask over the allowed
274 		 * entries.
275 		 */
276 		mask = (0xf << crypto->bssidx);
277 
278 		reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0);
279 		reg &= mask;
280 
281 		if (reg && reg == mask)
282 			return -ENOSPC;
283 
284 		key->hw_key_idx += reg ? ffz(reg) : 0;
285 
286 		/*
287 		 * Upload key to hardware
288 		 */
289 		memcpy(key_entry.key, crypto->key,
290 		       sizeof(key_entry.key));
291 		memcpy(key_entry.tx_mic, crypto->tx_mic,
292 		       sizeof(key_entry.tx_mic));
293 		memcpy(key_entry.rx_mic, crypto->rx_mic,
294 		       sizeof(key_entry.rx_mic));
295 
296 		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
297 		rt2x00usb_register_multiwrite(rt2x00dev, reg,
298 					      &key_entry, sizeof(key_entry));
299 
300 		/*
301 		 * The cipher types are stored over 2 registers.
302 		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
303 		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
304 		 * Using the correct defines correctly will cause overhead,
305 		 * so just calculate the correct offset.
306 		 */
307 		if (key->hw_key_idx < 8) {
308 			field.bit_offset = (3 * key->hw_key_idx);
309 			field.bit_mask = 0x7 << field.bit_offset;
310 
311 			reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR1);
312 			rt2x00_set_field32(&reg, field, crypto->cipher);
313 			rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
314 		} else {
315 			field.bit_offset = (3 * (key->hw_key_idx - 8));
316 			field.bit_mask = 0x7 << field.bit_offset;
317 
318 			reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR5);
319 			rt2x00_set_field32(&reg, field, crypto->cipher);
320 			rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
321 		}
322 
323 		/*
324 		 * The driver does not support the IV/EIV generation
325 		 * in hardware. However it doesn't support the IV/EIV
326 		 * inside the ieee80211 frame either, but requires it
327 		 * to be provided separately for the descriptor.
328 		 * rt2x00lib will cut the IV/EIV data out of all frames
329 		 * given to us by mac80211, but we must tell mac80211
330 		 * to generate the IV/EIV data.
331 		 */
332 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
333 	}
334 
335 	/*
336 	 * SEC_CSR0 contains only single-bit fields to indicate
337 	 * a particular key is valid. Because using the FIELD32()
338 	 * defines directly will cause a lot of overhead we use
339 	 * a calculation to determine the correct bit directly.
340 	 */
341 	mask = 1 << key->hw_key_idx;
342 
343 	reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0);
344 	if (crypto->cmd == SET_KEY)
345 		reg |= mask;
346 	else if (crypto->cmd == DISABLE_KEY)
347 		reg &= ~mask;
348 	rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
349 
350 	return 0;
351 }
352 
353 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
354 				       struct rt2x00lib_crypto *crypto,
355 				       struct ieee80211_key_conf *key)
356 {
357 	struct hw_pairwise_ta_entry addr_entry;
358 	struct hw_key_entry key_entry;
359 	u32 mask;
360 	u32 reg;
361 
362 	if (crypto->cmd == SET_KEY) {
363 		/*
364 		 * rt2x00lib can't determine the correct free
365 		 * key_idx for pairwise keys. We have 2 registers
366 		 * with key valid bits. The goal is simple, read
367 		 * the first register, if that is full move to
368 		 * the next register.
369 		 * When both registers are full, we drop the key,
370 		 * otherwise we use the first invalid entry.
371 		 */
372 		reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2);
373 		if (reg && reg == ~0) {
374 			key->hw_key_idx = 32;
375 			reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3);
376 			if (reg && reg == ~0)
377 				return -ENOSPC;
378 		}
379 
380 		key->hw_key_idx += reg ? ffz(reg) : 0;
381 
382 		/*
383 		 * Upload key to hardware
384 		 */
385 		memcpy(key_entry.key, crypto->key,
386 		       sizeof(key_entry.key));
387 		memcpy(key_entry.tx_mic, crypto->tx_mic,
388 		       sizeof(key_entry.tx_mic));
389 		memcpy(key_entry.rx_mic, crypto->rx_mic,
390 		       sizeof(key_entry.rx_mic));
391 
392 		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
393 		rt2x00usb_register_multiwrite(rt2x00dev, reg,
394 					      &key_entry, sizeof(key_entry));
395 
396 		/*
397 		 * Send the address and cipher type to the hardware register.
398 		 */
399 		memset(&addr_entry, 0, sizeof(addr_entry));
400 		memcpy(&addr_entry, crypto->address, ETH_ALEN);
401 		addr_entry.cipher = crypto->cipher;
402 
403 		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
404 		rt2x00usb_register_multiwrite(rt2x00dev, reg,
405 					    &addr_entry, sizeof(addr_entry));
406 
407 		/*
408 		 * Enable pairwise lookup table for given BSS idx,
409 		 * without this received frames will not be decrypted
410 		 * by the hardware.
411 		 */
412 		reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR4);
413 		reg |= (1 << crypto->bssidx);
414 		rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
415 
416 		/*
417 		 * The driver does not support the IV/EIV generation
418 		 * in hardware. However it doesn't support the IV/EIV
419 		 * inside the ieee80211 frame either, but requires it
420 		 * to be provided separately for the descriptor.
421 		 * rt2x00lib will cut the IV/EIV data out of all frames
422 		 * given to us by mac80211, but we must tell mac80211
423 		 * to generate the IV/EIV data.
424 		 */
425 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
426 	}
427 
428 	/*
429 	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
430 	 * a particular key is valid. Because using the FIELD32()
431 	 * defines directly will cause a lot of overhead we use
432 	 * a calculation to determine the correct bit directly.
433 	 */
434 	if (key->hw_key_idx < 32) {
435 		mask = 1 << key->hw_key_idx;
436 
437 		reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2);
438 		if (crypto->cmd == SET_KEY)
439 			reg |= mask;
440 		else if (crypto->cmd == DISABLE_KEY)
441 			reg &= ~mask;
442 		rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
443 	} else {
444 		mask = 1 << (key->hw_key_idx - 32);
445 
446 		reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3);
447 		if (crypto->cmd == SET_KEY)
448 			reg |= mask;
449 		else if (crypto->cmd == DISABLE_KEY)
450 			reg &= ~mask;
451 		rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
452 	}
453 
454 	return 0;
455 }
456 
457 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
458 				  const unsigned int filter_flags)
459 {
460 	u32 reg;
461 
462 	/*
463 	 * Start configuration steps.
464 	 * Note that the version error will always be dropped
465 	 * and broadcast frames will always be accepted since
466 	 * there is no filter for it at this time.
467 	 */
468 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
469 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
470 			   !(filter_flags & FIF_FCSFAIL));
471 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
472 			   !(filter_flags & FIF_PLCPFAIL));
473 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
474 			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
475 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
476 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
477 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
478 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
479 			   !rt2x00dev->intf_ap_count);
480 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
481 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
482 			   !(filter_flags & FIF_ALLMULTI));
483 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
484 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
485 			   !(filter_flags & FIF_CONTROL));
486 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
487 }
488 
489 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
490 				struct rt2x00_intf *intf,
491 				struct rt2x00intf_conf *conf,
492 				const unsigned int flags)
493 {
494 	u32 reg;
495 
496 	if (flags & CONFIG_UPDATE_TYPE) {
497 		/*
498 		 * Enable synchronisation.
499 		 */
500 		reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
501 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
502 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
503 	}
504 
505 	if (flags & CONFIG_UPDATE_MAC) {
506 		reg = le32_to_cpu(conf->mac[1]);
507 		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
508 		conf->mac[1] = cpu_to_le32(reg);
509 
510 		rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
511 					    conf->mac, sizeof(conf->mac));
512 	}
513 
514 	if (flags & CONFIG_UPDATE_BSSID) {
515 		reg = le32_to_cpu(conf->bssid[1]);
516 		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
517 		conf->bssid[1] = cpu_to_le32(reg);
518 
519 		rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
520 					    conf->bssid, sizeof(conf->bssid));
521 	}
522 }
523 
524 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
525 			       struct rt2x00lib_erp *erp,
526 			       u32 changed)
527 {
528 	u32 reg;
529 
530 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
531 	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
532 	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
533 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
534 
535 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
536 		reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4);
537 		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
538 		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
539 				   !!erp->short_preamble);
540 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
541 	}
542 
543 	if (changed & BSS_CHANGED_BASIC_RATES)
544 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
545 					 erp->basic_rates);
546 
547 	if (changed & BSS_CHANGED_BEACON_INT) {
548 		reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
549 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
550 				   erp->beacon_int * 16);
551 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
552 	}
553 
554 	if (changed & BSS_CHANGED_ERP_SLOT) {
555 		reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9);
556 		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
557 		rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
558 
559 		reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR8);
560 		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
561 		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
562 		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
563 		rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
564 	}
565 }
566 
567 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
568 				      struct antenna_setup *ant)
569 {
570 	u8 r3;
571 	u8 r4;
572 	u8 r77;
573 	u8 temp;
574 
575 	r3 = rt73usb_bbp_read(rt2x00dev, 3);
576 	r4 = rt73usb_bbp_read(rt2x00dev, 4);
577 	r77 = rt73usb_bbp_read(rt2x00dev, 77);
578 
579 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
580 
581 	/*
582 	 * Configure the RX antenna.
583 	 */
584 	switch (ant->rx) {
585 	case ANTENNA_HW_DIVERSITY:
586 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
587 		temp = !rt2x00_has_cap_frame_type(rt2x00dev) &&
588 		       (rt2x00dev->curr_band != NL80211_BAND_5GHZ);
589 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
590 		break;
591 	case ANTENNA_A:
592 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
593 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
594 		if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
595 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
596 		else
597 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
598 		break;
599 	case ANTENNA_B:
600 	default:
601 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
602 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
603 		if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
604 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
605 		else
606 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
607 		break;
608 	}
609 
610 	rt73usb_bbp_write(rt2x00dev, 77, r77);
611 	rt73usb_bbp_write(rt2x00dev, 3, r3);
612 	rt73usb_bbp_write(rt2x00dev, 4, r4);
613 }
614 
615 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
616 				      struct antenna_setup *ant)
617 {
618 	u8 r3;
619 	u8 r4;
620 	u8 r77;
621 
622 	r3 = rt73usb_bbp_read(rt2x00dev, 3);
623 	r4 = rt73usb_bbp_read(rt2x00dev, 4);
624 	r77 = rt73usb_bbp_read(rt2x00dev, 77);
625 
626 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
627 	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
628 			  !rt2x00_has_cap_frame_type(rt2x00dev));
629 
630 	/*
631 	 * Configure the RX antenna.
632 	 */
633 	switch (ant->rx) {
634 	case ANTENNA_HW_DIVERSITY:
635 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
636 		break;
637 	case ANTENNA_A:
638 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
639 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
640 		break;
641 	case ANTENNA_B:
642 	default:
643 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
644 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
645 		break;
646 	}
647 
648 	rt73usb_bbp_write(rt2x00dev, 77, r77);
649 	rt73usb_bbp_write(rt2x00dev, 3, r3);
650 	rt73usb_bbp_write(rt2x00dev, 4, r4);
651 }
652 
653 struct antenna_sel {
654 	u8 word;
655 	/*
656 	 * value[0] -> non-LNA
657 	 * value[1] -> LNA
658 	 */
659 	u8 value[2];
660 };
661 
662 static const struct antenna_sel antenna_sel_a[] = {
663 	{ 96,  { 0x58, 0x78 } },
664 	{ 104, { 0x38, 0x48 } },
665 	{ 75,  { 0xfe, 0x80 } },
666 	{ 86,  { 0xfe, 0x80 } },
667 	{ 88,  { 0xfe, 0x80 } },
668 	{ 35,  { 0x60, 0x60 } },
669 	{ 97,  { 0x58, 0x58 } },
670 	{ 98,  { 0x58, 0x58 } },
671 };
672 
673 static const struct antenna_sel antenna_sel_bg[] = {
674 	{ 96,  { 0x48, 0x68 } },
675 	{ 104, { 0x2c, 0x3c } },
676 	{ 75,  { 0xfe, 0x80 } },
677 	{ 86,  { 0xfe, 0x80 } },
678 	{ 88,  { 0xfe, 0x80 } },
679 	{ 35,  { 0x50, 0x50 } },
680 	{ 97,  { 0x48, 0x48 } },
681 	{ 98,  { 0x48, 0x48 } },
682 };
683 
684 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
685 			       struct antenna_setup *ant)
686 {
687 	const struct antenna_sel *sel;
688 	unsigned int lna;
689 	unsigned int i;
690 	u32 reg;
691 
692 	/*
693 	 * We should never come here because rt2x00lib is supposed
694 	 * to catch this and send us the correct antenna explicitely.
695 	 */
696 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
697 	       ant->tx == ANTENNA_SW_DIVERSITY);
698 
699 	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
700 		sel = antenna_sel_a;
701 		lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
702 	} else {
703 		sel = antenna_sel_bg;
704 		lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
705 	}
706 
707 	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
708 		rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
709 
710 	reg = rt2x00usb_register_read(rt2x00dev, PHY_CSR0);
711 
712 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
713 			   (rt2x00dev->curr_band == NL80211_BAND_2GHZ));
714 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
715 			   (rt2x00dev->curr_band == NL80211_BAND_5GHZ));
716 
717 	rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
718 
719 	if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
720 		rt73usb_config_antenna_5x(rt2x00dev, ant);
721 	else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
722 		rt73usb_config_antenna_2x(rt2x00dev, ant);
723 }
724 
725 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
726 				    struct rt2x00lib_conf *libconf)
727 {
728 	u16 eeprom;
729 	short lna_gain = 0;
730 
731 	if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
732 		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
733 			lna_gain += 14;
734 
735 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
736 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
737 	} else {
738 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
739 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
740 	}
741 
742 	rt2x00dev->lna_gain = lna_gain;
743 }
744 
745 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
746 				   struct rf_channel *rf, const int txpower)
747 {
748 	u8 r3;
749 	u8 r94;
750 	u8 smart;
751 
752 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
753 	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
754 
755 	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
756 
757 	r3 = rt73usb_bbp_read(rt2x00dev, 3);
758 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
759 	rt73usb_bbp_write(rt2x00dev, 3, r3);
760 
761 	r94 = 6;
762 	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
763 		r94 += txpower - MAX_TXPOWER;
764 	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
765 		r94 += txpower;
766 	rt73usb_bbp_write(rt2x00dev, 94, r94);
767 
768 	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
769 	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
770 	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
771 	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
772 
773 	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
774 	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
775 	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
776 	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
777 
778 	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
779 	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
780 	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
781 	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
782 
783 	udelay(10);
784 }
785 
786 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
787 				   const int txpower)
788 {
789 	struct rf_channel rf;
790 
791 	rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
792 	rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
793 	rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
794 	rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);
795 
796 	rt73usb_config_channel(rt2x00dev, &rf, txpower);
797 }
798 
799 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
800 				       struct rt2x00lib_conf *libconf)
801 {
802 	u32 reg;
803 
804 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4);
805 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
806 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
807 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
808 	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
809 			   libconf->conf->long_frame_max_tx_count);
810 	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
811 			   libconf->conf->short_frame_max_tx_count);
812 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
813 }
814 
815 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
816 				struct rt2x00lib_conf *libconf)
817 {
818 	enum dev_state state =
819 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
820 		STATE_SLEEP : STATE_AWAKE;
821 	u32 reg;
822 
823 	if (state == STATE_SLEEP) {
824 		reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11);
825 		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
826 				   rt2x00dev->beacon_int - 10);
827 		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
828 				   libconf->conf->listen_interval - 1);
829 		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
830 
831 		/* We must first disable autowake before it can be enabled */
832 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
833 		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
834 
835 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
836 		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
837 
838 		rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
839 					    USB_MODE_SLEEP, REGISTER_TIMEOUT);
840 	} else {
841 		reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11);
842 		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
843 		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
844 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
845 		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
846 		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
847 
848 		rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
849 					    USB_MODE_WAKEUP, REGISTER_TIMEOUT);
850 	}
851 }
852 
853 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
854 			   struct rt2x00lib_conf *libconf,
855 			   const unsigned int flags)
856 {
857 	/* Always recalculate LNA gain before changing configuration */
858 	rt73usb_config_lna_gain(rt2x00dev, libconf);
859 
860 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
861 		rt73usb_config_channel(rt2x00dev, &libconf->rf,
862 				       libconf->conf->power_level);
863 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
864 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
865 		rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
866 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
867 		rt73usb_config_retry_limit(rt2x00dev, libconf);
868 	if (flags & IEEE80211_CONF_CHANGE_PS)
869 		rt73usb_config_ps(rt2x00dev, libconf);
870 }
871 
872 /*
873  * Link tuning
874  */
875 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
876 			       struct link_qual *qual)
877 {
878 	u32 reg;
879 
880 	/*
881 	 * Update FCS error count from register.
882 	 */
883 	reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0);
884 	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
885 
886 	/*
887 	 * Update False CCA count from register.
888 	 */
889 	reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1);
890 	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
891 }
892 
893 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
894 				   struct link_qual *qual, u8 vgc_level)
895 {
896 	if (qual->vgc_level != vgc_level) {
897 		rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
898 		qual->vgc_level = vgc_level;
899 		qual->vgc_level_reg = vgc_level;
900 	}
901 }
902 
903 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
904 				struct link_qual *qual)
905 {
906 	rt73usb_set_vgc(rt2x00dev, qual, 0x20);
907 }
908 
909 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
910 			       struct link_qual *qual, const u32 count)
911 {
912 	u8 up_bound;
913 	u8 low_bound;
914 
915 	/*
916 	 * Determine r17 bounds.
917 	 */
918 	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
919 		low_bound = 0x28;
920 		up_bound = 0x48;
921 
922 		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
923 			low_bound += 0x10;
924 			up_bound += 0x10;
925 		}
926 	} else {
927 		if (qual->rssi > -82) {
928 			low_bound = 0x1c;
929 			up_bound = 0x40;
930 		} else if (qual->rssi > -84) {
931 			low_bound = 0x1c;
932 			up_bound = 0x20;
933 		} else {
934 			low_bound = 0x1c;
935 			up_bound = 0x1c;
936 		}
937 
938 		if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
939 			low_bound += 0x14;
940 			up_bound += 0x10;
941 		}
942 	}
943 
944 	/*
945 	 * If we are not associated, we should go straight to the
946 	 * dynamic CCA tuning.
947 	 */
948 	if (!rt2x00dev->intf_associated)
949 		goto dynamic_cca_tune;
950 
951 	/*
952 	 * Special big-R17 for very short distance
953 	 */
954 	if (qual->rssi > -35) {
955 		rt73usb_set_vgc(rt2x00dev, qual, 0x60);
956 		return;
957 	}
958 
959 	/*
960 	 * Special big-R17 for short distance
961 	 */
962 	if (qual->rssi >= -58) {
963 		rt73usb_set_vgc(rt2x00dev, qual, up_bound);
964 		return;
965 	}
966 
967 	/*
968 	 * Special big-R17 for middle-short distance
969 	 */
970 	if (qual->rssi >= -66) {
971 		rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
972 		return;
973 	}
974 
975 	/*
976 	 * Special mid-R17 for middle distance
977 	 */
978 	if (qual->rssi >= -74) {
979 		rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
980 		return;
981 	}
982 
983 	/*
984 	 * Special case: Change up_bound based on the rssi.
985 	 * Lower up_bound when rssi is weaker then -74 dBm.
986 	 */
987 	up_bound -= 2 * (-74 - qual->rssi);
988 	if (low_bound > up_bound)
989 		up_bound = low_bound;
990 
991 	if (qual->vgc_level > up_bound) {
992 		rt73usb_set_vgc(rt2x00dev, qual, up_bound);
993 		return;
994 	}
995 
996 dynamic_cca_tune:
997 
998 	/*
999 	 * r17 does not yet exceed upper limit, continue and base
1000 	 * the r17 tuning on the false CCA count.
1001 	 */
1002 	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1003 		rt73usb_set_vgc(rt2x00dev, qual,
1004 				min_t(u8, qual->vgc_level + 4, up_bound));
1005 	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1006 		rt73usb_set_vgc(rt2x00dev, qual,
1007 				max_t(u8, qual->vgc_level - 4, low_bound));
1008 }
1009 
1010 /*
1011  * Queue handlers.
1012  */
1013 static void rt73usb_start_queue(struct data_queue *queue)
1014 {
1015 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1016 	u32 reg;
1017 
1018 	switch (queue->qid) {
1019 	case QID_RX:
1020 		reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
1021 		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1022 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1023 		break;
1024 	case QID_BEACON:
1025 		reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1026 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1027 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1028 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1029 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1030 		break;
1031 	default:
1032 		break;
1033 	}
1034 }
1035 
1036 static void rt73usb_stop_queue(struct data_queue *queue)
1037 {
1038 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1039 	u32 reg;
1040 
1041 	switch (queue->qid) {
1042 	case QID_RX:
1043 		reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
1044 		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1045 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1046 		break;
1047 	case QID_BEACON:
1048 		reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1049 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1050 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1051 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1052 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1053 		break;
1054 	default:
1055 		break;
1056 	}
1057 }
1058 
1059 /*
1060  * Firmware functions
1061  */
1062 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1063 {
1064 	return FIRMWARE_RT2571;
1065 }
1066 
1067 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1068 				  const u8 *data, const size_t len)
1069 {
1070 	u16 fw_crc;
1071 	u16 crc;
1072 
1073 	/*
1074 	 * Only support 2kb firmware files.
1075 	 */
1076 	if (len != 2048)
1077 		return FW_BAD_LENGTH;
1078 
1079 	/*
1080 	 * The last 2 bytes in the firmware array are the crc checksum itself,
1081 	 * this means that we should never pass those 2 bytes to the crc
1082 	 * algorithm.
1083 	 */
1084 	fw_crc = (data[len - 2] << 8 | data[len - 1]);
1085 
1086 	/*
1087 	 * Use the crc itu-t algorithm.
1088 	 */
1089 	crc = crc_itu_t(0, data, len - 2);
1090 	crc = crc_itu_t_byte(crc, 0);
1091 	crc = crc_itu_t_byte(crc, 0);
1092 
1093 	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1094 }
1095 
1096 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1097 				 const u8 *data, const size_t len)
1098 {
1099 	unsigned int i;
1100 	int status;
1101 	u32 reg;
1102 
1103 	/*
1104 	 * Wait for stable hardware.
1105 	 */
1106 	for (i = 0; i < 100; i++) {
1107 		reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0);
1108 		if (reg)
1109 			break;
1110 		msleep(1);
1111 	}
1112 
1113 	if (!reg) {
1114 		rt2x00_err(rt2x00dev, "Unstable hardware\n");
1115 		return -EBUSY;
1116 	}
1117 
1118 	/*
1119 	 * Write firmware to device.
1120 	 */
1121 	rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1122 
1123 	/*
1124 	 * Send firmware request to device to load firmware,
1125 	 * we need to specify a long timeout time.
1126 	 */
1127 	status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1128 					     0, USB_MODE_FIRMWARE,
1129 					     REGISTER_TIMEOUT_FIRMWARE);
1130 	if (status < 0) {
1131 		rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
1132 		return status;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 /*
1139  * Initialization functions.
1140  */
1141 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1142 {
1143 	u32 reg;
1144 
1145 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
1146 	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1147 	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1148 	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1149 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1150 
1151 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR1);
1152 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1153 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1154 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1155 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1156 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1157 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1158 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1159 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1160 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1161 
1162 	/*
1163 	 * CCK TXD BBP registers
1164 	 */
1165 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR2);
1166 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1167 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1168 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1169 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1170 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1171 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1172 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1173 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1174 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1175 
1176 	/*
1177 	 * OFDM TXD BBP registers
1178 	 */
1179 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR3);
1180 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1181 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1182 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1183 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1184 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1185 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1186 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1187 
1188 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR7);
1189 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1190 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1191 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1192 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1193 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1194 
1195 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR8);
1196 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1197 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1198 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1199 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1200 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1201 
1202 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1203 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1204 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1205 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1206 	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1207 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1208 	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1209 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1210 
1211 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1212 
1213 	reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR6);
1214 	rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1215 	rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1216 
1217 	rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1218 
1219 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1220 		return -EBUSY;
1221 
1222 	rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1223 
1224 	/*
1225 	 * Invalidate all Shared Keys (SEC_CSR0),
1226 	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1227 	 */
1228 	rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1229 	rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1230 	rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1231 
1232 	reg = 0x000023b0;
1233 	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1234 		rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1235 	rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1236 
1237 	rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1238 	rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1239 	rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1240 
1241 	reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9);
1242 	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1243 	rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1244 
1245 	/*
1246 	 * Clear all beacons
1247 	 * For the Beacon base registers we only need to clear
1248 	 * the first byte since that byte contains the VALID and OWNER
1249 	 * bits which (when set to 0) will invalidate the entire beacon.
1250 	 */
1251 	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1252 	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1253 	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1254 	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1255 
1256 	/*
1257 	 * We must clear the error counters.
1258 	 * These registers are cleared on read,
1259 	 * so we may pass a useless variable to store the value.
1260 	 */
1261 	reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0);
1262 	reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1);
1263 	reg = rt2x00usb_register_read(rt2x00dev, STA_CSR2);
1264 
1265 	/*
1266 	 * Reset MAC and BBP registers.
1267 	 */
1268 	reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1);
1269 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1270 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1271 	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1272 
1273 	reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1);
1274 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1275 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1276 	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1277 
1278 	reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1);
1279 	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1280 	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1281 
1282 	return 0;
1283 }
1284 
1285 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1286 {
1287 	unsigned int i;
1288 	u8 value;
1289 
1290 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1291 		value = rt73usb_bbp_read(rt2x00dev, 0);
1292 		if ((value != 0xff) && (value != 0x00))
1293 			return 0;
1294 		udelay(REGISTER_BUSY_DELAY);
1295 	}
1296 
1297 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1298 	return -EACCES;
1299 }
1300 
1301 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1302 {
1303 	unsigned int i;
1304 	u16 eeprom;
1305 	u8 reg_id;
1306 	u8 value;
1307 
1308 	if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1309 		return -EACCES;
1310 
1311 	rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1312 	rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1313 	rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1314 	rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1315 	rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1316 	rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1317 	rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1318 	rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1319 	rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1320 	rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1321 	rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1322 	rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1323 	rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1324 	rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1325 	rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1326 	rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1327 	rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1328 	rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1329 	rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1330 	rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1331 	rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1332 	rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1333 	rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1334 	rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1335 	rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1336 
1337 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1338 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1339 
1340 		if (eeprom != 0xffff && eeprom != 0x0000) {
1341 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1342 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1343 			rt73usb_bbp_write(rt2x00dev, reg_id, value);
1344 		}
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 /*
1351  * Device state switch handlers.
1352  */
1353 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1354 {
1355 	/*
1356 	 * Initialize all registers.
1357 	 */
1358 	if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1359 		     rt73usb_init_bbp(rt2x00dev)))
1360 		return -EIO;
1361 
1362 	return 0;
1363 }
1364 
1365 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1366 {
1367 	rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1368 
1369 	/*
1370 	 * Disable synchronisation.
1371 	 */
1372 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1373 
1374 	rt2x00usb_disable_radio(rt2x00dev);
1375 }
1376 
1377 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1378 {
1379 	u32 reg, reg2;
1380 	unsigned int i;
1381 	bool put_to_sleep;
1382 
1383 	put_to_sleep = (state != STATE_AWAKE);
1384 
1385 	reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR12);
1386 	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1387 	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1388 	rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1389 
1390 	/*
1391 	 * Device is not guaranteed to be in the requested state yet.
1392 	 * We must wait until the register indicates that the
1393 	 * device has entered the correct state.
1394 	 */
1395 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1396 		reg2 = rt2x00usb_register_read(rt2x00dev, MAC_CSR12);
1397 		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1398 		if (state == !put_to_sleep)
1399 			return 0;
1400 		rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1401 		msleep(10);
1402 	}
1403 
1404 	return -EBUSY;
1405 }
1406 
1407 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1408 				    enum dev_state state)
1409 {
1410 	int retval = 0;
1411 
1412 	switch (state) {
1413 	case STATE_RADIO_ON:
1414 		retval = rt73usb_enable_radio(rt2x00dev);
1415 		break;
1416 	case STATE_RADIO_OFF:
1417 		rt73usb_disable_radio(rt2x00dev);
1418 		break;
1419 	case STATE_RADIO_IRQ_ON:
1420 	case STATE_RADIO_IRQ_OFF:
1421 		/* No support, but no error either */
1422 		break;
1423 	case STATE_DEEP_SLEEP:
1424 	case STATE_SLEEP:
1425 	case STATE_STANDBY:
1426 	case STATE_AWAKE:
1427 		retval = rt73usb_set_state(rt2x00dev, state);
1428 		break;
1429 	default:
1430 		retval = -ENOTSUPP;
1431 		break;
1432 	}
1433 
1434 	if (unlikely(retval))
1435 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1436 			   state, retval);
1437 
1438 	return retval;
1439 }
1440 
1441 /*
1442  * TX descriptor initialization
1443  */
1444 static void rt73usb_write_tx_desc(struct queue_entry *entry,
1445 				  struct txentry_desc *txdesc)
1446 {
1447 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1448 	__le32 *txd = (__le32 *) entry->skb->data;
1449 	u32 word;
1450 
1451 	/*
1452 	 * Start writing the descriptor words.
1453 	 */
1454 	word = rt2x00_desc_read(txd, 0);
1455 	rt2x00_set_field32(&word, TXD_W0_BURST,
1456 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1457 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1458 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1459 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1460 	rt2x00_set_field32(&word, TXD_W0_ACK,
1461 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1462 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1463 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1464 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1465 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1466 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1467 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1468 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1469 	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1470 			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1471 	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1472 			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1473 	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1474 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1475 	rt2x00_set_field32(&word, TXD_W0_BURST2,
1476 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1477 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1478 	rt2x00_desc_write(txd, 0, word);
1479 
1480 	word = rt2x00_desc_read(txd, 1);
1481 	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1482 	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1483 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1484 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1485 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1486 	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1487 			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1488 	rt2x00_desc_write(txd, 1, word);
1489 
1490 	word = rt2x00_desc_read(txd, 2);
1491 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1492 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1493 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1494 			   txdesc->u.plcp.length_low);
1495 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1496 			   txdesc->u.plcp.length_high);
1497 	rt2x00_desc_write(txd, 2, word);
1498 
1499 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1500 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1501 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1502 	}
1503 
1504 	word = rt2x00_desc_read(txd, 5);
1505 	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1506 			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1507 	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1508 	rt2x00_desc_write(txd, 5, word);
1509 
1510 	/*
1511 	 * Register descriptor details in skb frame descriptor.
1512 	 */
1513 	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1514 	skbdesc->desc = txd;
1515 	skbdesc->desc_len = TXD_DESC_SIZE;
1516 }
1517 
1518 /*
1519  * TX data initialization
1520  */
1521 static void rt73usb_write_beacon(struct queue_entry *entry,
1522 				 struct txentry_desc *txdesc)
1523 {
1524 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1525 	unsigned int beacon_base;
1526 	unsigned int padding_len;
1527 	u32 orig_reg, reg;
1528 
1529 	/*
1530 	 * Disable beaconing while we are reloading the beacon data,
1531 	 * otherwise we might be sending out invalid data.
1532 	 */
1533 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1534 	orig_reg = reg;
1535 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1536 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1537 
1538 	/*
1539 	 * Add space for the descriptor in front of the skb.
1540 	 */
1541 	skb_push(entry->skb, TXD_DESC_SIZE);
1542 	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1543 
1544 	/*
1545 	 * Write the TX descriptor for the beacon.
1546 	 */
1547 	rt73usb_write_tx_desc(entry, txdesc);
1548 
1549 	/*
1550 	 * Dump beacon to userspace through debugfs.
1551 	 */
1552 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1553 
1554 	/*
1555 	 * Write entire beacon with descriptor and padding to register.
1556 	 */
1557 	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1558 	if (padding_len && skb_pad(entry->skb, padding_len)) {
1559 		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1560 		/* skb freed by skb_pad() on failure */
1561 		entry->skb = NULL;
1562 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1563 		return;
1564 	}
1565 
1566 	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1567 	rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1568 				      entry->skb->len + padding_len);
1569 
1570 	/*
1571 	 * Enable beaconing again.
1572 	 *
1573 	 * For Wi-Fi faily generated beacons between participating stations.
1574 	 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1575 	 */
1576 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1577 
1578 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1579 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1580 
1581 	/*
1582 	 * Clean up the beacon skb.
1583 	 */
1584 	dev_kfree_skb(entry->skb);
1585 	entry->skb = NULL;
1586 }
1587 
1588 static void rt73usb_clear_beacon(struct queue_entry *entry)
1589 {
1590 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1591 	unsigned int beacon_base;
1592 	u32 orig_reg, reg;
1593 
1594 	/*
1595 	 * Disable beaconing while we are reloading the beacon data,
1596 	 * otherwise we might be sending out invalid data.
1597 	 */
1598 	orig_reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1599 	reg = orig_reg;
1600 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1601 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1602 
1603 	/*
1604 	 * Clear beacon.
1605 	 */
1606 	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1607 	rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
1608 
1609 	/*
1610 	 * Restore beaconing state.
1611 	 */
1612 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1613 }
1614 
1615 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1616 {
1617 	int length;
1618 
1619 	/*
1620 	 * The length _must_ be a multiple of 4,
1621 	 * but it must _not_ be a multiple of the USB packet size.
1622 	 */
1623 	length = roundup(entry->skb->len, 4);
1624 	length += (4 * !(length % entry->queue->usb_maxpacket));
1625 
1626 	return length;
1627 }
1628 
1629 /*
1630  * RX control handlers
1631  */
1632 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1633 {
1634 	u8 offset = rt2x00dev->lna_gain;
1635 	u8 lna;
1636 
1637 	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1638 	switch (lna) {
1639 	case 3:
1640 		offset += 90;
1641 		break;
1642 	case 2:
1643 		offset += 74;
1644 		break;
1645 	case 1:
1646 		offset += 64;
1647 		break;
1648 	default:
1649 		return 0;
1650 	}
1651 
1652 	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
1653 		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1654 			if (lna == 3 || lna == 2)
1655 				offset += 10;
1656 		} else {
1657 			if (lna == 3)
1658 				offset += 6;
1659 			else if (lna == 2)
1660 				offset += 8;
1661 		}
1662 	}
1663 
1664 	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1665 }
1666 
1667 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1668 				struct rxdone_entry_desc *rxdesc)
1669 {
1670 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1671 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1672 	__le32 *rxd = (__le32 *)entry->skb->data;
1673 	u32 word0;
1674 	u32 word1;
1675 
1676 	/*
1677 	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1678 	 * frame data in rt2x00usb.
1679 	 */
1680 	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1681 	rxd = (__le32 *)skbdesc->desc;
1682 
1683 	/*
1684 	 * It is now safe to read the descriptor on all architectures.
1685 	 */
1686 	word0 = rt2x00_desc_read(rxd, 0);
1687 	word1 = rt2x00_desc_read(rxd, 1);
1688 
1689 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1690 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1691 
1692 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1693 	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1694 
1695 	if (rxdesc->cipher != CIPHER_NONE) {
1696 		rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
1697 		rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
1698 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1699 
1700 		rxdesc->icv = _rt2x00_desc_read(rxd, 4);
1701 		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1702 
1703 		/*
1704 		 * Hardware has stripped IV/EIV data from 802.11 frame during
1705 		 * decryption. It has provided the data separately but rt2x00lib
1706 		 * should decide if it should be reinserted.
1707 		 */
1708 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1709 
1710 		/*
1711 		 * The hardware has already checked the Michael Mic and has
1712 		 * stripped it from the frame. Signal this to mac80211.
1713 		 */
1714 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1715 
1716 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1717 			rxdesc->flags |= RX_FLAG_DECRYPTED;
1718 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1719 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1720 	}
1721 
1722 	/*
1723 	 * Obtain the status about this packet.
1724 	 * When frame was received with an OFDM bitrate,
1725 	 * the signal is the PLCP value. If it was received with
1726 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1727 	 */
1728 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1729 	rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1730 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1731 
1732 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1733 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1734 	else
1735 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1736 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1737 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1738 
1739 	/*
1740 	 * Set skb pointers, and update frame information.
1741 	 */
1742 	skb_pull(entry->skb, entry->queue->desc_size);
1743 	skb_trim(entry->skb, rxdesc->size);
1744 }
1745 
1746 /*
1747  * Device probe functions.
1748  */
1749 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1750 {
1751 	u16 word;
1752 	u8 *mac;
1753 	s8 value;
1754 
1755 	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1756 
1757 	/*
1758 	 * Start validation of the data that has been read.
1759 	 */
1760 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1761 	rt2x00lib_set_mac_address(rt2x00dev, mac);
1762 
1763 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1764 	if (word == 0xffff) {
1765 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1766 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1767 				   ANTENNA_B);
1768 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1769 				   ANTENNA_B);
1770 		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1771 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1772 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1773 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1774 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1775 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1776 	}
1777 
1778 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1779 	if (word == 0xffff) {
1780 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1781 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1782 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1783 	}
1784 
1785 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
1786 	if (word == 0xffff) {
1787 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1788 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1789 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1790 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1791 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1792 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1793 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1794 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1795 		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1796 				   LED_MODE_DEFAULT);
1797 		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1798 		rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
1799 	}
1800 
1801 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
1802 	if (word == 0xffff) {
1803 		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1804 		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1805 		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1806 		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
1807 	}
1808 
1809 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
1810 	if (word == 0xffff) {
1811 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1812 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1813 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1814 		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1815 	} else {
1816 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1817 		if (value < -10 || value > 10)
1818 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1819 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1820 		if (value < -10 || value > 10)
1821 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1822 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1823 	}
1824 
1825 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
1826 	if (word == 0xffff) {
1827 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1828 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1829 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1830 		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1831 	} else {
1832 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1833 		if (value < -10 || value > 10)
1834 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1835 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1836 		if (value < -10 || value > 10)
1837 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1838 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1839 	}
1840 
1841 	return 0;
1842 }
1843 
1844 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1845 {
1846 	u32 reg;
1847 	u16 value;
1848 	u16 eeprom;
1849 
1850 	/*
1851 	 * Read EEPROM word for configuration.
1852 	 */
1853 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1854 
1855 	/*
1856 	 * Identify RF chipset.
1857 	 */
1858 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1859 	reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0);
1860 	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1861 			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1862 
1863 	if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1864 		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1865 		return -ENODEV;
1866 	}
1867 
1868 	if (!rt2x00_rf(rt2x00dev, RF5226) &&
1869 	    !rt2x00_rf(rt2x00dev, RF2528) &&
1870 	    !rt2x00_rf(rt2x00dev, RF5225) &&
1871 	    !rt2x00_rf(rt2x00dev, RF2527)) {
1872 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1873 		return -ENODEV;
1874 	}
1875 
1876 	/*
1877 	 * Identify default antenna configuration.
1878 	 */
1879 	rt2x00dev->default_ant.tx =
1880 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1881 	rt2x00dev->default_ant.rx =
1882 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1883 
1884 	/*
1885 	 * Read the Frame type.
1886 	 */
1887 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1888 		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
1889 
1890 	/*
1891 	 * Detect if this device has an hardware controlled radio.
1892 	 */
1893 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1894 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1895 
1896 	/*
1897 	 * Read frequency offset.
1898 	 */
1899 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
1900 	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1901 
1902 	/*
1903 	 * Read external LNA informations.
1904 	 */
1905 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1906 
1907 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1908 		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
1909 		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
1910 	}
1911 
1912 	/*
1913 	 * Store led settings, for correct led behaviour.
1914 	 */
1915 #ifdef CONFIG_RT2X00_LIB_LEDS
1916 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
1917 
1918 	rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1919 	rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1920 	if (value == LED_MODE_SIGNAL_STRENGTH)
1921 		rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1922 				 LED_TYPE_QUALITY);
1923 
1924 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1925 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1926 			   rt2x00_get_field16(eeprom,
1927 					      EEPROM_LED_POLARITY_GPIO_0));
1928 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1929 			   rt2x00_get_field16(eeprom,
1930 					      EEPROM_LED_POLARITY_GPIO_1));
1931 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1932 			   rt2x00_get_field16(eeprom,
1933 					      EEPROM_LED_POLARITY_GPIO_2));
1934 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1935 			   rt2x00_get_field16(eeprom,
1936 					      EEPROM_LED_POLARITY_GPIO_3));
1937 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1938 			   rt2x00_get_field16(eeprom,
1939 					      EEPROM_LED_POLARITY_GPIO_4));
1940 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1941 			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1942 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1943 			   rt2x00_get_field16(eeprom,
1944 					      EEPROM_LED_POLARITY_RDY_G));
1945 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1946 			   rt2x00_get_field16(eeprom,
1947 					      EEPROM_LED_POLARITY_RDY_A));
1948 #endif /* CONFIG_RT2X00_LIB_LEDS */
1949 
1950 	return 0;
1951 }
1952 
1953 /*
1954  * RF value list for RF2528
1955  * Supports: 2.4 GHz
1956  */
1957 static const struct rf_channel rf_vals_bg_2528[] = {
1958 	{ 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1959 	{ 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1960 	{ 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1961 	{ 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1962 	{ 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1963 	{ 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1964 	{ 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1965 	{ 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1966 	{ 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1967 	{ 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1968 	{ 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1969 	{ 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1970 	{ 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1971 	{ 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1972 };
1973 
1974 /*
1975  * RF value list for RF5226
1976  * Supports: 2.4 GHz & 5.2 GHz
1977  */
1978 static const struct rf_channel rf_vals_5226[] = {
1979 	{ 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1980 	{ 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1981 	{ 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1982 	{ 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1983 	{ 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1984 	{ 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1985 	{ 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1986 	{ 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1987 	{ 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1988 	{ 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1989 	{ 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1990 	{ 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1991 	{ 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1992 	{ 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1993 
1994 	/* 802.11 UNI / HyperLan 2 */
1995 	{ 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1996 	{ 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1997 	{ 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1998 	{ 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1999 	{ 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2000 	{ 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2001 	{ 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2002 	{ 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2003 
2004 	/* 802.11 HyperLan 2 */
2005 	{ 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2006 	{ 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2007 	{ 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2008 	{ 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2009 	{ 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2010 	{ 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2011 	{ 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2012 	{ 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2013 	{ 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2014 	{ 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2015 
2016 	/* 802.11 UNII */
2017 	{ 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2018 	{ 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2019 	{ 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2020 	{ 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2021 	{ 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2022 	{ 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2023 
2024 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2025 	{ 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2026 	{ 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2027 	{ 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2028 	{ 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2029 };
2030 
2031 /*
2032  * RF value list for RF5225 & RF2527
2033  * Supports: 2.4 GHz & 5.2 GHz
2034  */
2035 static const struct rf_channel rf_vals_5225_2527[] = {
2036 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2037 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2038 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2039 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2040 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2041 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2042 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2043 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2044 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2045 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2046 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2047 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2048 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2049 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2050 
2051 	/* 802.11 UNI / HyperLan 2 */
2052 	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2053 	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2054 	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2055 	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2056 	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2057 	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2058 	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2059 	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2060 
2061 	/* 802.11 HyperLan 2 */
2062 	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2063 	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2064 	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2065 	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2066 	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2067 	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2068 	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2069 	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2070 	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2071 	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2072 
2073 	/* 802.11 UNII */
2074 	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2075 	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2076 	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2077 	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2078 	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2079 	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2080 
2081 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2082 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2083 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2084 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2085 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2086 };
2087 
2088 
2089 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2090 {
2091 	struct hw_mode_spec *spec = &rt2x00dev->spec;
2092 	struct channel_info *info;
2093 	u8 *tx_power;
2094 	unsigned int i;
2095 
2096 	/*
2097 	 * Initialize all hw fields.
2098 	 *
2099 	 * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are
2100 	 * capable of sending the buffered frames out after the DTIM
2101 	 * transmission using rt2x00lib_beacondone. This will send out
2102 	 * multicast and broadcast traffic immediately instead of buffering it
2103 	 * infinitly and thus dropping it after some time.
2104 	 */
2105 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2106 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2107 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2108 
2109 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2110 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2111 				rt2x00_eeprom_addr(rt2x00dev,
2112 						   EEPROM_MAC_ADDR_0));
2113 
2114 	/*
2115 	 * Initialize hw_mode information.
2116 	 */
2117 	spec->supported_bands = SUPPORT_BAND_2GHZ;
2118 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2119 
2120 	if (rt2x00_rf(rt2x00dev, RF2528)) {
2121 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2122 		spec->channels = rf_vals_bg_2528;
2123 	} else if (rt2x00_rf(rt2x00dev, RF5226)) {
2124 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2125 		spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2126 		spec->channels = rf_vals_5226;
2127 	} else if (rt2x00_rf(rt2x00dev, RF2527)) {
2128 		spec->num_channels = 14;
2129 		spec->channels = rf_vals_5225_2527;
2130 	} else if (rt2x00_rf(rt2x00dev, RF5225)) {
2131 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2132 		spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2133 		spec->channels = rf_vals_5225_2527;
2134 	}
2135 
2136 	/*
2137 	 * Create channel information array
2138 	 */
2139 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2140 	if (!info)
2141 		return -ENOMEM;
2142 
2143 	spec->channels_info = info;
2144 
2145 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2146 	for (i = 0; i < 14; i++) {
2147 		info[i].max_power = MAX_TXPOWER;
2148 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2149 	}
2150 
2151 	if (spec->num_channels > 14) {
2152 		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2153 		for (i = 14; i < spec->num_channels; i++) {
2154 			info[i].max_power = MAX_TXPOWER;
2155 			info[i].default_power1 =
2156 					TXPOWER_FROM_DEV(tx_power[i - 14]);
2157 		}
2158 	}
2159 
2160 	return 0;
2161 }
2162 
2163 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2164 {
2165 	int retval;
2166 	u32 reg;
2167 
2168 	/*
2169 	 * Allocate eeprom data.
2170 	 */
2171 	retval = rt73usb_validate_eeprom(rt2x00dev);
2172 	if (retval)
2173 		return retval;
2174 
2175 	retval = rt73usb_init_eeprom(rt2x00dev);
2176 	if (retval)
2177 		return retval;
2178 
2179 	/*
2180 	 * Enable rfkill polling by setting GPIO direction of the
2181 	 * rfkill switch GPIO pin correctly.
2182 	 */
2183 	reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13);
2184 	rt2x00_set_field32(&reg, MAC_CSR13_DIR7, 0);
2185 	rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg);
2186 
2187 	/*
2188 	 * Initialize hw specifications.
2189 	 */
2190 	retval = rt73usb_probe_hw_mode(rt2x00dev);
2191 	if (retval)
2192 		return retval;
2193 
2194 	/*
2195 	 * This device has multiple filters for control frames,
2196 	 * but has no a separate filter for PS Poll frames.
2197 	 */
2198 	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2199 
2200 	/*
2201 	 * This device requires firmware.
2202 	 */
2203 	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2204 	if (!modparam_nohwcrypt)
2205 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2206 	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2207 	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
2208 
2209 	/*
2210 	 * Set the rssi offset.
2211 	 */
2212 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2213 
2214 	return 0;
2215 }
2216 
2217 /*
2218  * IEEE80211 stack callback functions.
2219  */
2220 static int rt73usb_conf_tx(struct ieee80211_hw *hw,
2221 			   struct ieee80211_vif *vif,
2222 			   unsigned int link_id, u16 queue_idx,
2223 			   const struct ieee80211_tx_queue_params *params)
2224 {
2225 	struct rt2x00_dev *rt2x00dev = hw->priv;
2226 	struct data_queue *queue;
2227 	struct rt2x00_field32 field;
2228 	int retval;
2229 	u32 reg;
2230 	u32 offset;
2231 
2232 	/*
2233 	 * First pass the configuration through rt2x00lib, that will
2234 	 * update the queue settings and validate the input. After that
2235 	 * we are free to update the registers based on the value
2236 	 * in the queue parameter.
2237 	 */
2238 	retval = rt2x00mac_conf_tx(hw, vif, link_id, queue_idx, params);
2239 	if (retval)
2240 		return retval;
2241 
2242 	/*
2243 	 * We only need to perform additional register initialization
2244 	 * for WMM queues/
2245 	 */
2246 	if (queue_idx >= 4)
2247 		return 0;
2248 
2249 	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2250 
2251 	/* Update WMM TXOP register */
2252 	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2253 	field.bit_offset = (queue_idx & 1) * 16;
2254 	field.bit_mask = 0xffff << field.bit_offset;
2255 
2256 	reg = rt2x00usb_register_read(rt2x00dev, offset);
2257 	rt2x00_set_field32(&reg, field, queue->txop);
2258 	rt2x00usb_register_write(rt2x00dev, offset, reg);
2259 
2260 	/* Update WMM registers */
2261 	field.bit_offset = queue_idx * 4;
2262 	field.bit_mask = 0xf << field.bit_offset;
2263 
2264 	reg = rt2x00usb_register_read(rt2x00dev, AIFSN_CSR);
2265 	rt2x00_set_field32(&reg, field, queue->aifs);
2266 	rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2267 
2268 	reg = rt2x00usb_register_read(rt2x00dev, CWMIN_CSR);
2269 	rt2x00_set_field32(&reg, field, queue->cw_min);
2270 	rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2271 
2272 	reg = rt2x00usb_register_read(rt2x00dev, CWMAX_CSR);
2273 	rt2x00_set_field32(&reg, field, queue->cw_max);
2274 	rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2275 
2276 	return 0;
2277 }
2278 
2279 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2280 {
2281 	struct rt2x00_dev *rt2x00dev = hw->priv;
2282 	u64 tsf;
2283 	u32 reg;
2284 
2285 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR13);
2286 	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2287 	reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR12);
2288 	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2289 
2290 	return tsf;
2291 }
2292 
2293 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2294 	.add_chanctx = ieee80211_emulate_add_chanctx,
2295 	.remove_chanctx = ieee80211_emulate_remove_chanctx,
2296 	.change_chanctx = ieee80211_emulate_change_chanctx,
2297 	.switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx,
2298 	.tx			= rt2x00mac_tx,
2299 	.wake_tx_queue		= ieee80211_handle_wake_tx_queue,
2300 	.start			= rt2x00mac_start,
2301 	.stop			= rt2x00mac_stop,
2302 	.add_interface		= rt2x00mac_add_interface,
2303 	.remove_interface	= rt2x00mac_remove_interface,
2304 	.config			= rt2x00mac_config,
2305 	.configure_filter	= rt2x00mac_configure_filter,
2306 	.set_tim		= rt2x00mac_set_tim,
2307 	.set_key		= rt2x00mac_set_key,
2308 	.sw_scan_start		= rt2x00mac_sw_scan_start,
2309 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2310 	.get_stats		= rt2x00mac_get_stats,
2311 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2312 	.conf_tx		= rt73usb_conf_tx,
2313 	.get_tsf		= rt73usb_get_tsf,
2314 	.rfkill_poll		= rt2x00mac_rfkill_poll,
2315 	.flush			= rt2x00mac_flush,
2316 	.set_antenna		= rt2x00mac_set_antenna,
2317 	.get_antenna		= rt2x00mac_get_antenna,
2318 	.get_ringparam		= rt2x00mac_get_ringparam,
2319 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2320 };
2321 
2322 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2323 	.probe_hw		= rt73usb_probe_hw,
2324 	.get_firmware_name	= rt73usb_get_firmware_name,
2325 	.check_firmware		= rt73usb_check_firmware,
2326 	.load_firmware		= rt73usb_load_firmware,
2327 	.initialize		= rt2x00usb_initialize,
2328 	.uninitialize		= rt2x00usb_uninitialize,
2329 	.clear_entry		= rt2x00usb_clear_entry,
2330 	.set_device_state	= rt73usb_set_device_state,
2331 	.rfkill_poll		= rt73usb_rfkill_poll,
2332 	.link_stats		= rt73usb_link_stats,
2333 	.reset_tuner		= rt73usb_reset_tuner,
2334 	.link_tuner		= rt73usb_link_tuner,
2335 	.watchdog		= rt2x00usb_watchdog,
2336 	.start_queue		= rt73usb_start_queue,
2337 	.kick_queue		= rt2x00usb_kick_queue,
2338 	.stop_queue		= rt73usb_stop_queue,
2339 	.flush_queue		= rt2x00usb_flush_queue,
2340 	.write_tx_desc		= rt73usb_write_tx_desc,
2341 	.write_beacon		= rt73usb_write_beacon,
2342 	.clear_beacon		= rt73usb_clear_beacon,
2343 	.get_tx_data_len	= rt73usb_get_tx_data_len,
2344 	.fill_rxdone		= rt73usb_fill_rxdone,
2345 	.config_shared_key	= rt73usb_config_shared_key,
2346 	.config_pairwise_key	= rt73usb_config_pairwise_key,
2347 	.config_filter		= rt73usb_config_filter,
2348 	.config_intf		= rt73usb_config_intf,
2349 	.config_erp		= rt73usb_config_erp,
2350 	.config_ant		= rt73usb_config_ant,
2351 	.config			= rt73usb_config,
2352 };
2353 
2354 static void rt73usb_queue_init(struct data_queue *queue)
2355 {
2356 	switch (queue->qid) {
2357 	case QID_RX:
2358 		queue->limit = 32;
2359 		queue->data_size = DATA_FRAME_SIZE;
2360 		queue->desc_size = RXD_DESC_SIZE;
2361 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
2362 		break;
2363 
2364 	case QID_AC_VO:
2365 	case QID_AC_VI:
2366 	case QID_AC_BE:
2367 	case QID_AC_BK:
2368 		queue->limit = 32;
2369 		queue->data_size = DATA_FRAME_SIZE;
2370 		queue->desc_size = TXD_DESC_SIZE;
2371 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
2372 		break;
2373 
2374 	case QID_BEACON:
2375 		queue->limit = 4;
2376 		queue->data_size = MGMT_FRAME_SIZE;
2377 		queue->desc_size = TXINFO_SIZE;
2378 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
2379 		break;
2380 
2381 	case QID_ATIM:
2382 	default:
2383 		BUG();
2384 		break;
2385 	}
2386 }
2387 
2388 static const struct rt2x00_ops rt73usb_ops = {
2389 	.name			= KBUILD_MODNAME,
2390 	.max_ap_intf		= 4,
2391 	.eeprom_size		= EEPROM_SIZE,
2392 	.rf_size		= RF_SIZE,
2393 	.tx_queues		= NUM_TX_QUEUES,
2394 	.queue_init		= rt73usb_queue_init,
2395 	.lib			= &rt73usb_rt2x00_ops,
2396 	.hw			= &rt73usb_mac80211_ops,
2397 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2398 	.debugfs		= &rt73usb_rt2x00debug,
2399 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2400 };
2401 
2402 /*
2403  * rt73usb module information.
2404  */
2405 static const struct usb_device_id rt73usb_device_table[] = {
2406 	/* AboCom */
2407 	{ USB_DEVICE(0x07b8, 0xb21b) },
2408 	{ USB_DEVICE(0x07b8, 0xb21c) },
2409 	{ USB_DEVICE(0x07b8, 0xb21d) },
2410 	{ USB_DEVICE(0x07b8, 0xb21e) },
2411 	{ USB_DEVICE(0x07b8, 0xb21f) },
2412 	/* AL */
2413 	{ USB_DEVICE(0x14b2, 0x3c10) },
2414 	/* Amigo */
2415 	{ USB_DEVICE(0x148f, 0x9021) },
2416 	{ USB_DEVICE(0x0eb0, 0x9021) },
2417 	/* AMIT  */
2418 	{ USB_DEVICE(0x18c5, 0x0002) },
2419 	/* Askey */
2420 	{ USB_DEVICE(0x1690, 0x0722) },
2421 	/* ASUS */
2422 	{ USB_DEVICE(0x0b05, 0x1723) },
2423 	{ USB_DEVICE(0x0b05, 0x1724) },
2424 	/* Belkin */
2425 	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050B ver. 3.x */
2426 	{ USB_DEVICE(0x050d, 0x705a) },
2427 	{ USB_DEVICE(0x050d, 0x905b) },
2428 	{ USB_DEVICE(0x050d, 0x905c) },
2429 	/* Billionton */
2430 	{ USB_DEVICE(0x1631, 0xc019) },
2431 	{ USB_DEVICE(0x08dd, 0x0120) },
2432 	/* Buffalo */
2433 	{ USB_DEVICE(0x0411, 0x00d8) },
2434 	{ USB_DEVICE(0x0411, 0x00d9) },
2435 	{ USB_DEVICE(0x0411, 0x00e6) },
2436 	{ USB_DEVICE(0x0411, 0x00f4) },
2437 	{ USB_DEVICE(0x0411, 0x0116) },
2438 	{ USB_DEVICE(0x0411, 0x0119) },
2439 	{ USB_DEVICE(0x0411, 0x0137) },
2440 	/* CEIVA */
2441 	{ USB_DEVICE(0x178d, 0x02be) },
2442 	/* CNet */
2443 	{ USB_DEVICE(0x1371, 0x9022) },
2444 	{ USB_DEVICE(0x1371, 0x9032) },
2445 	/* Conceptronic */
2446 	{ USB_DEVICE(0x14b2, 0x3c22) },
2447 	/* Corega */
2448 	{ USB_DEVICE(0x07aa, 0x002e) },
2449 	/* D-Link */
2450 	{ USB_DEVICE(0x07d1, 0x3c03) },
2451 	{ USB_DEVICE(0x07d1, 0x3c04) },
2452 	{ USB_DEVICE(0x07d1, 0x3c06) },
2453 	{ USB_DEVICE(0x07d1, 0x3c07) },
2454 	/* Edimax */
2455 	{ USB_DEVICE(0x7392, 0x7318) },
2456 	{ USB_DEVICE(0x7392, 0x7618) },
2457 	/* EnGenius */
2458 	{ USB_DEVICE(0x1740, 0x3701) },
2459 	/* Gemtek */
2460 	{ USB_DEVICE(0x15a9, 0x0004) },
2461 	/* Gigabyte */
2462 	{ USB_DEVICE(0x1044, 0x8008) },
2463 	{ USB_DEVICE(0x1044, 0x800a) },
2464 	/* Huawei-3Com */
2465 	{ USB_DEVICE(0x1472, 0x0009) },
2466 	/* Hercules */
2467 	{ USB_DEVICE(0x06f8, 0xe002) },
2468 	{ USB_DEVICE(0x06f8, 0xe010) },
2469 	{ USB_DEVICE(0x06f8, 0xe020) },
2470 	/* Linksys */
2471 	{ USB_DEVICE(0x13b1, 0x0020) },
2472 	{ USB_DEVICE(0x13b1, 0x0023) },
2473 	{ USB_DEVICE(0x13b1, 0x0028) },
2474 	/* MSI */
2475 	{ USB_DEVICE(0x0db0, 0x4600) },
2476 	{ USB_DEVICE(0x0db0, 0x6877) },
2477 	{ USB_DEVICE(0x0db0, 0x6874) },
2478 	{ USB_DEVICE(0x0db0, 0xa861) },
2479 	{ USB_DEVICE(0x0db0, 0xa874) },
2480 	/* Ovislink */
2481 	{ USB_DEVICE(0x1b75, 0x7318) },
2482 	/* Ralink */
2483 	{ USB_DEVICE(0x04bb, 0x093d) },
2484 	{ USB_DEVICE(0x148f, 0x2573) },
2485 	{ USB_DEVICE(0x148f, 0x2671) },
2486 	{ USB_DEVICE(0x0812, 0x3101) },
2487 	/* Qcom */
2488 	{ USB_DEVICE(0x18e8, 0x6196) },
2489 	{ USB_DEVICE(0x18e8, 0x6229) },
2490 	{ USB_DEVICE(0x18e8, 0x6238) },
2491 	/* Samsung */
2492 	{ USB_DEVICE(0x04e8, 0x4471) },
2493 	/* Senao */
2494 	{ USB_DEVICE(0x1740, 0x7100) },
2495 	/* Sitecom */
2496 	{ USB_DEVICE(0x0df6, 0x0024) },
2497 	{ USB_DEVICE(0x0df6, 0x0027) },
2498 	{ USB_DEVICE(0x0df6, 0x002f) },
2499 	{ USB_DEVICE(0x0df6, 0x90ac) },
2500 	{ USB_DEVICE(0x0df6, 0x9712) },
2501 	/* Surecom */
2502 	{ USB_DEVICE(0x0769, 0x31f3) },
2503 	/* Tilgin */
2504 	{ USB_DEVICE(0x6933, 0x5001) },
2505 	/* Philips */
2506 	{ USB_DEVICE(0x0471, 0x200a) },
2507 	/* Planex */
2508 	{ USB_DEVICE(0x2019, 0xab01) },
2509 	{ USB_DEVICE(0x2019, 0xab50) },
2510 	/* WideTell */
2511 	{ USB_DEVICE(0x7167, 0x3840) },
2512 	/* Zcom */
2513 	{ USB_DEVICE(0x0cde, 0x001c) },
2514 	/* ZyXEL */
2515 	{ USB_DEVICE(0x0586, 0x3415) },
2516 	{ 0, }
2517 };
2518 
2519 MODULE_AUTHOR(DRV_PROJECT);
2520 MODULE_VERSION(DRV_VERSION);
2521 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2522 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2523 MODULE_FIRMWARE(FIRMWARE_RT2571);
2524 MODULE_LICENSE("GPL");
2525 
2526 static int rt73usb_probe(struct usb_interface *usb_intf,
2527 			 const struct usb_device_id *id)
2528 {
2529 	return rt2x00usb_probe(usb_intf, &rt73usb_ops);
2530 }
2531 
2532 static struct usb_driver rt73usb_driver = {
2533 	.name		= KBUILD_MODNAME,
2534 	.id_table	= rt73usb_device_table,
2535 	.probe		= rt73usb_probe,
2536 	.disconnect	= rt2x00usb_disconnect,
2537 	.suspend	= rt2x00usb_suspend,
2538 	.resume		= rt2x00usb_resume,
2539 	.reset_resume	= rt2x00usb_resume,
2540 	.disable_hub_initiated_lpm = 1,
2541 };
2542 
2543 module_usb_driver(rt73usb_driver);
2544